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On Isotropic Minimal Surfaces m Euclidean Space 

Masatoshi Kokubu 

Abstract. 

We investigate a certain class of minimal surfaces in Euclidean 
space, which are constructed from a generalization of the Weierstrass 
formula. We also show a characterization of the catenoid. 

§1. Introduction 

Let f be a conformal minimal immersion from a Riemann surface 
Minto Euclidean N-space JEN. It is given (at least locally) by the real 
part of an isotropic holomorphic immersion F from M into complex 
Euclidean space !CP. We say that f ism-isotropic if the derivatives J(k) 

off of order k (k = 1, 2, ... , m) are isotropic vectors in CCN. (Note that 
f is necessarily 1-isotropic, which is equivalent to the conformality of f.) 
In other words, an m-isotropic minimal surface is locally the projection 
from CCN of an m-isotropic curve to JEN. 

Them-isotropic curves fully immersed in cczm+l have a remarkable 
representation formula (cf. [4]), which is a generalization of the integral­
free form of the Weierstrass formula for minimal surfaces. In the first 
half of this paper, applying it, we present some examples of complete 
minimal surfaces in IE2m+l. They are based on Enneper's surface and 
the catenoid. 

In the latter half of this paper, we study the total curvature of 
m-isotropic complete minimal surfaces. Several interesting inequalities 
concerning the total curvature of complete minimal surfaces in lEN have 
been known ( cf. [1], [5], [6]). Among those, we focus our attention on 
the following two inequalities. 

Given an m-isotropic complete minimal immersion f: M ~ JEN, we 
denote the Gaussian curvature by K, the area element by dA, the genus 
by g, and the number of ends by r, respectively. 

• (Chern-Osserman's inequality) 

(1) JM KdA :S 4(1- g- r)1r. 

2000 Mathematics Subject Classification. Primary 53A10; Secondary 
53A07, 53C42. 
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• (Ejiri's inequality) 
If the immersion f is full and k-degenerate, then 

(2) JM KdA ~ 2(1- g- N + k)1r. 

Here, we say that an immersion f: M---> lEN is full if the image f(M) 
is not contained in any hyperplanes of JEN, and that f is k-degenerate 
if its Gauss image v(M) is contained in an (N - 1 - k)-dimensional 
subspace of complex projective (N- 1)-space c_pN-l. (By definition, 
the Gauss map v off is given by v = [8f/8z]: M---> c_pN-I, where 
[8! j8z] denotes the complex line spanned by the vector 8f /8z E C. 

Recall that the catenoid is a complete minimal surface in IE3 , which 
is of genus zero, with two ends and of total curvature -47r. So it satisfies 
the equality in (1). 

Jorge and Meeks [7] showed the formula 

1 KdA=2 (2(1-g)-r- tli) 1r, 
M J=l 

where h, ... Jr are positive integers that describe the behaviours of 
ends PI> ... , Pr, respectively. In particular, they proved that an end Pi 
is embedded if and only if Ij = 1, and hence, that the equality in (1) 
holds if and only if all ends of M are embedded. Indeed, the catenoid has 
embedded ends. In [7], they also constructed examples with arbitrary 
number of embedded ends, which are now called Jorge-Meeks' n-noid 
(n is an integer greater than 1). Note that Jorge-Meeks' 2-noid is the 
catenoid. 

On the other hand, the catenoid also satisfies the equality in (2). So 
the catenoid is an example satisfying the equality both in (1) and in (2). 
Then it is natural to ask if there are any other examples with the same 
property. We can answer this question for strictly m-isotropic complete 
minimal surfaces as follows: 

Main Theorem (A characterization of the catenoid). The 
catenoid in IE3 is the only strictly m-isotropic complete minimal surface 
in IE2m+l, which attains the equality both in Chern-Osserman's inequal­
ity and in Ejiri 's inequality. 

The author is grateful to Professor Masaaki U mehara for directing 
his attention to this subject. He also thanks Professor Katsuei Kenmotsu 
and the referee for their helpful comments. 
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§2. Preliminaries 

We denote by M a Riemann surface, and by F: M ---+ e,N a mero­
morphic curve. Let ( , ) denote the standard inner product of JEN, 
and the quadratic form on f:.N which is the C.-linear extension of it­
self as well. A linear subspace V of e,N is said to be isotropic if 
V C VJ. := {w E CNJ (v,w) = 0 for all v E V} holds. Note that 
if Vis isotropic then Vis also isotropic, V n V = {0} and 2 dim V ~ N. 
Here, we denote by V the set of all complex conjugate vectors in V. 

Definition 1. F: M ---+ e,N is called an m-isotropic curve if 
(F(k), p(k)) = 0 (1 ~ k ~ m) hold except at the poles. Here, p(k) 

denotes the derivative of F of order k with respect to a local coordinate 
z of M. For simplicity, a 1-isotropic curve is said to be isotropic. An m­
isotropic curve that is not (m+ I)-isotropic is called a strictly m-isotropic 
curve. 

The following two lemmas can be easily checked. 

Lemma 1. If F: M ---+ e,N is m-isotropic, then the following 
equations hold except for poles of p(k): 

(F(i), p(j)) = 0, i + j ~2m+ 1. 

Lemma 2. F: M ---+ e,N is full if and only if at each point p E M, 
the vectors F', F", ... , p(N) are linearly independent except for isolated 
points. 

Note that Lemma 1 implies that Definition 1 is well-defined. 

Proposition 1. IfF: M ---+ e,N is strictly m-isotropic, then 2m+ 
1 ~ N. Namely, N =2m+ 1 is the minimum dimension of e,N for 
which an m-isotropic curve exists. 

Proof. It is enough to prove this under the assumption 
that F is full. By Lemma 2, F', ... , p(N) are linearly independent 
almost everywhere on M. At such a point p, the subspace 
V Span{F' (p ), ... , p(m) (p)} is an m-dimensional isotropic 
subspace of e,N by Lemma 1. Since F is strictly m-isotropic, 
(F(m+l)(p),F(m+l)(p)) =/:. 0. Hence, p(m+l)(p) fl. V EB V. In fact, sup­
pose that p(m+l)(p) E V EB V. Then we may write 

(3) 

The inner product of (3) and p(j)(p) then implies 

(4) 
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Here, by the linearly independency of p(k), the matrix ( (F(i) (p), p(j) (p))) 
is nonsingular. Hence, each /1i must be zero by (4). Substituting these 
into (3), we have p(m+ll(p) = L),ip(i)(p). This contradicts to the 
linearly independency of p(k). 

Therefore, c_N contains a (2m+ !)-dimensional subspace V EEl V EEl 
{F(rn+ll}. It implies that 2m+ 1:::; N. D 

Lemma 3. Let F: M ---t C2rn+l be an m-isotropic curve. Then 
F is strictly m-isotropic if and only ifF is full. 

Proof. It is obvious from Proposition 1 that the strictness implies 
the fullness. 

Suppose now that the m-isotropicity of F is not strict. It implies 
that F is (m + 1)-isotropic. By Lemma 1, the equations 

(F(i), p(j)) = 0, i + j :::; 2m+ 3 

holds, which implies that 

( 
tp! ) 
: (F' 

tp(2m+l) 
( 00': * 0) . p(2m+ll) = 

(Here, we regard F as a column vector and denote by tp its transpose.) 
Hence, det(F' · · · F(2rn+l)) = 0. Therefore, F is not full. D 

Now we are in a position to state an important and fundamental the­
orem concerning full m-isotropic curves in C2rn+l, which will be needed 
in Section 3. 

Theorem 1 (Weierstrass-Ejiri formula). Let G: M ---t C2rn-l be 
a full ( m- 1) -isotropic curve. Suppose that g is a meromorphic function 
on M which is not of the form a(G, G) + (B, G) + c, where a and c 
are complex numbers and B is a constant vector in C2rn-l. Then the 
following system of equations 

(G(k), H)= g(k), k = 1, 2, ... , 2m- 1, 

has a unique solution H: M ---t c_2m-l. 
Moreover, if we define a function h by h = (G, H') / (G, G'), then 

the curve defined by 

( ~{1- (G, G) }h + (H, G)- g, yCi ( ~{1 + (G, G) }h- (H, G)+ g) , 

hG-H) 
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is full and m-isotropic in e2m+l 0 

Conversely, any full m-isotropic curve in e2m+l can be represented 
in this form. 

In the case of m = 1, Theorem 1 is the integral-free version of the 
Weierstrass formula for minimal surfaces (cf. [2]). For general m, this 
formula was proved by Ejiri [4]. 

§3. Applications of Theorem 1 

Recall that a minimal surface in lEn is given by the real part of 
an isotropic curve in en (at least locally). Namely, for a conformal 
minimal immersion f: M ----+ lEN, there exists an isotropic curve F : M ----+ 

eN such that f 0 7r = ReF. Here, 7r: M ____, M denotes the universal 
covering of M. In other words, there exists a multi-valued isotropic 
curve F: M----+ eN such that f =ReF. We call F the lift of f. 

First, let us recall well-known minimal surfaces in JE3. 

Example 1 (Enneper's surface). M = e, and 

(5) f(z) = Re (3z- z 3 , H(3z + z3 ), 3z2). 

Example 2 (the catenoid). M = e \ {0}, and 

( 6) f ( z) = Re ( ~ (- ~ - z) , ~ (- ~ + z) , log z) . 

Example 3 (Jorge-Meeks' n-noid). M = (e U {=}) \ {zn = 1}, 
and 
(7) 

(/ 
1 _ z2n-2 J y'=T(l + z2n-2) J zn-1 ) 

f(z) = Re 2(zn -1)2dz, 2(zn -1)2 dz, (zn -1)2dz . 

In the case of n = 3, integrating (7), we have 

z 2log(-1+z) log(1+z+z2) 
~------~- +~~~----~ 
6 (1 + z + z 2 ) 9 9 

(8) f(z) = Re A { z (1 + z) + 2 arctan((1 + 2z)/J3))} 
6-6z3 3J3 

1 

3 (z3 - 1) 

We define the m-isotropicity for minimal surfaces in JEN as well as 
for curves in eN. 
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Definition 2 ([3]*). A conformal minimal immersion f: M _, JEN 
is said to be m-isotropic if it satisfies the condition that 
(f(k), f(k)) = 0 for 1 S k Sm. Here, f(k) denotes the partial derivative 
ak f jazk with respect to a local coordinate z of M. An m-isotropic min­
imal surface that is not (m +I)-isotropic is called a strictly m-isotropic 
minimal surface. 

A conformal minimal immersion is necessarily !-isotropic, because 
the conformality is nothing but the 1-isotropicity. Assume that F is a 
lift off, that is, f =ReF. It then follows from 2f(k) = F(k) that the 
(strictly) m-isotropicity off is equivalent to that of F. 

We will construct examples of strictly m-isotropic minimal surface 
in JE2m+1 by making use of the Weierstrass-Ejiri formula. Our examples 
are based on Enneper's surface and the catenoid. 

First, we recall Theorem 1, the Weierstrass-Ejiri formula. It asserts 
that a full m-isotropic curve F: M _, «::::2=+1 is constructed from a full 
(m- I)-isotropic curve G: M _, C2m-1 and a meromorphic function g. 
We denote the curve F constructed with these data by WE(M, G, g). 

With this notation, Enneper's surface can be written as the real 
part ofF = WE(C, z, z3 ). Namely, (5) is constructed from G(z) = z 
and g(z) = z 3 through the Weierstrass-Ejiri formula. It is also easily 
verified that the catenoid (6) is given by the real part ofF= WE(C \ 
{ 0}, z, z log z) . 

We note that the data of Enneper's surface are given by polynomials, 
and Enneper's surface is also given by polynomials. t We can construct 
a series of m-isotropic minimal surfaces (m = 1, 2, ... ) which are given 
by polynomials. 

Proposition 2. Consider the following recurrence formula: 

Fo(z) = z, Fm = WE(C,Fm-1,z2m+1) (m ~ 1) 

Then it inductively defines strictly m-isotropic polynomials F m : C _, 
C2m+ 1 of degree 2m + 1. The real part ReF m : C _, lE2m+ 1 is a simply­
connected, complete minimal surface of total curvature -4m7r. In par­
ticular, ReF1 is Enneper's surface. 

For the proof, we need the following lemma. 

*In [3], a full m-isotropic minimal surface in JE2rn+l is simply called an 
isotropic minimal surface. 

twe say that F = (H, ... , FN) is a polynomial if each component F; is a 
polynomial. By the degree of F we mean the maximum of deg F; . 
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Lemma 4. Let F: C ---+ C 2m+l be an m-isotropic polynomial of 
degree 2m + 1. Then (F, F) is a polynomial of degree smaller than or 
equal to 2m+ 2. Moreover, ifF is full, then the degree of (F, F) is equal 
to 2m+ 2. 

Proof. It follows from the m-isotropicity that 

(9) 

Since F is a polynomial of degree 2m+ 1, 

(10) F(k) = 0, k;:::: 2m+ 2. 

Equations (9) and (10) then imply 

(11) 

(12) 

(F, F} (2m+2) = 2(F(2m+l)' F'}' 

(F, F)(2m+3) = 2(F(2m+l)' F"}. 

In particular, we consider the case of i + j = 2m+ 1 in (9), that is, 

(13) (F(i), F(2m-i+l)) = 0, i = 1, 2, ... , 2m. 

Differentiating (13) twice, we have for i=1,2, ... ,2m, 
(14) 

(F(i+2), F(2m-i+l)) + 2(F(i+l), F(2m-i+2)J + (F(i), F(2m-i+3)J = 0. 

We write the cases i = 1, ... , m in (14) into the matrix form: 

(15) 

2 1 
1 2 

1 

0 

1 0 

2 1 
1 3 

(F(2), F(2m+l)) 

(F(3), F(2m)J 

(F(m), F(m+3)J 

(F(m+l), F(m+2) J 

0 

0 

Here, them x m matrix on the left-hand side is nonsingular, in fact, its 
determinant is equal to 2m+ 1. It then follows that (F(2), F(2m+l)) = 0. 
This implies that (F, F)(2m+3) = 0 by (12). So we can conclude that 
the degree of (F, F) is smaller than or equal to 2m+ 2. 

Suppose now that F is full. By Lemma 3 it is strictly m-isotropic. 
So (F(m+l), F(m+l)) =f. 0. Hence, 

(F(2m+l), F'} =(F(2m), F'}' _ (F(2m), F") = -(F(2m), F"} 
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Therefore, by (11), we may conclude that the degree of (F, F) is 2m+ 
2. [] 

Proof of Proposition 2. We prove this by an induction. 
First, note that it is trivial in the case of m = 1. 
Assuming that the assertion is true up to m- 1, we are going to 

show the case m. 
The data for constructing Fm are G = Fm-l and g(z) = z2m+l. By 

our induction assumption and Lemma 4, the function a(G, G)+(B, G)+c 
is a polynomial of degree 2m, and hence, g is not identical with it. 
Therefore, it is assured that Fm can be constructed. 

We show that Fm is a polynomial of degree 2m+ 1. For this, it 
suffices to prove that H and h are also polynomials and that the following 
inequalities hold: 

degH ~2m+ 1, deg(H,G) ~2m+ 1, degh ~ 1, 

because deg G = 2m - 1 and deg g = 2m + 1. 
First, we prove that H is a polynomial. Recall that H is determined 

by (G(kl,H) = g(k). Note that the determinant of the matrix (G(k)) 

satisfies 
IG' 0 0 0 G(2m-l) I' = IG' 0 0 0 c(2m-2) c(2m) I = 0, 

and hence, it is constant. This implies that the inverse of (G(k)) has 
components consisting of polynomials. Therefore, H is also a polyno­
mial. 

In the following, we calculate the degree of H. Differentiating 

(16) (G(k), H) = g(k), k = 1, ... , 2m- 1 

we have 

(17) (G(k+l), H)+ (G(k), H') = g(k+l), k = 1, ... , 2m- 1. 

Substituting (17) into (16), we have 

(18) { 
(G(k), H') = 0, k = 1, ... , 2m-2, 
(G(2m-l), H') = g(2m). 

Moreover, if we differentiate (18) and carry out the calculation similar 
to the above, then we have 

(19) { 
(G(k), H") = 0, k = 1, ... , 2m-3 
g(2m) + (G(2m-2), H") = 0, 

(G(2m-l), H") = g(2m+l). 
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Similarly, it follows from (19) that 

{

(GCkl,H"') = 0, k = 1, ... ,2m-4, 

-g(2m) + (G(2m-3), H"') = 0, 

2g(2m+1) + (Q(2m-2) 1 H"') = 0, 

(G(2m-1J' H"') = 0. 

Proceeding successively, we obtain 

and 

{
(G', H(2ml) =(2m- l)gC2m+l)-:/= 0, 

IQ(k) H(2m))- 0 k- 2 2 - 1 \ ' - ' - , ... , m ' 

(G(k)' H(2m+1)) = 0, k = 1, ... '2m- 1. 

163 

Hence, we have H(2m) i 0 and H(2m+l) = 0, since G', ... , Q(2m-1) are 
linearly independent. Hence the degree of His 2m. 

Since G', ... , G(2m-1) form a basis ofC2m-1 at every point p E C, we 
can write H' = a1G' +· · ·+a2m-1G(2m-1). Hence, fork= 1, ... , 2m-2, 

(GCkl,H') = (GCkl,a1G' + · · · + a2m-1G(2m- 1)) 

= a1 (cCkJ' G') + ... + a2m-I\G(k)' Q(2m-1J). 

It follows from the isotropicity of G and (18) that a2 = · · · = a 2m_1 = 0. 
So, H' = a1 G'. It is easy to see that a 1 = h. Hence, H' = hG'. This 
implies that h is a rational function PI/ P2 and deg P1 - deg P2 = 1. 
Furthermore, taking the inner product of H' = hG' with Q(2m-1), we 
conclude by (18) that h(G', G(2m- 1l) = gC2m). Since gC2m) has degree 1, 
it follows from the above fact that degh = 1 and deg(G',G(2m-1l) = 0. 

Finally, it follows from 

(H,G)' = (H',G) + (H,G') = h(G',G) +g' = ~(G,G)' + g' 

that deg(H, G)' is at most 2m. D 

In Proposition 2, We have constructed examples Fm as a general­
ization of Enneper's surface. We also construct a generalized catenoid 
by applying the Weierstrass-Ejiri formula. 

Let Fm_1 be an (m- I)-isotropic curve obtained in Proposition 2. 
Then Fm-1 and the multi-valued function g(z) = zm log z on C\ {0} sat­
isfy the assumption of Theorem 1. So, Cm := WE(C\ {0}, Fm_1, zm log z) 
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is a multi-valued strictly m-isotropic curve em: C \ {0} --+ C2m+l. Ex­
plicit computations according to Theorem 1 shows that Reem : C\ { 0} --+ 

JE2m+l is single-valued for m = 1, 2, 3. Indeed, they are given by 

__!__ (~ + z) 
18 z ' 

( -1 4 A 4 5 2 2 
F2 (z) = 3 z(3z + 5), - 3-z(3z - 5), 6z (z - 6), 

-5 -10 ) 6yCiz2(z2 + 6), -3-z3 ' 

( ( 1 ( 9 3 ) A ( 9 3 ) 1 ( 5 2 ) e3 z) = -- - + 10z -- - - 10z -- - - 3z 
3600 z3 ' 3600 z3 ' 400 z 2 ' 

- A (~ + 3z2 ) _ __!__ (~ + z) -A (~- z) 
400 z 2 ' 80 z ' 80 z ' 

1 ~0 (6log z - 5)) . 

Hence, Ree1 , Ree2 and Ree3 are single-valued.+ 
In the cases of m = 1, 2, 3, explicit formulas of em also show that 

Reem is a complete· minimal surface of genus zero, with two ends and 
of total curvature -4mn. In particular, Ree1 is the catenoid. 

If we represent Jorge-Meeks' trinoid (8) by the Weierstrass-Ejiri For­
mula, then it is given by 

G(z) = z2 , 

z 2 1 ( 1 + 2 z) 1 4 z 2 + z + 1 g(z) = -6 + ;;;-arctan ~ + -(z - 1) log ( )2 . 
3v3 v3 18 z -1 

Also, the following is an example similar to the trinoid. 

*For general m, it is still open whether ReCm is single-valued or not. 
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which is given by 

through the Weierstrass-Ejiri formula. 
This is a strictly 2-isotropic complete minimal surface with three 

ends, of genus zero and of total curvature - 20n. 

§4. Total curvature 

First, we recall some fundamental facts needed later (see [1], [5] 
etc.). 

If a complete minimal surface f: M -+ lEN has finite total curvature, 
then M is biholomorphic to a compact Riemann surface M punctured 
at a finite number of points P1, ... , Pn i.e., M ~ M \ {P1, ... , Pr}. A 
sufficiently small neighborhood of each p 8 is called an end of M. The 
Gauss map [aj jaz]: M -+ c_pN-1 can extend to a holomorphic map 
from M to c_pN-1. In other words, ajjaz has a pole at each end. It 
is known that because of the completeness the order of pole at any end 
is greater than or equal to 2, that is, the Laurent expansion of a f I az 
centered at p 8 (s = 1, ... , r) 

( ) a f 1 8 1 8 h 1 h" 8 ..;.. rrN 20 - = - 1-a_1 + · · · + -a_1 + o omorp 1c part, a_ 18 r 0 E ~L-az z 8 s z 

has the property that 

(21) l8 2: 2, S = 1, . .. , r. 

Note that Chern-Osserman's inequality is an immediate conclusion of 
(21). 
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We also have 

(22) a~ 1 E IRN, s = 1, ... , r, 

sinceRe J(8f j8z)dz is single-valued. 
Let v be a complex vector subspace of eN spanned by 

and V a real vector subspace of JEN spanned by 

If f is a full immersion, then it holds that 

(23) dimV = N. 

On the other hand, it is known that the following equality, which is 
called the Balancing formula (see [5]), holds: 

(24) 
8 

Hence, we have 

(25) 
8 

Note that the inequality (25) is one of the reason why Ejiri's inequality 
holds. 

In the following, we investigate what surface attains the equality 
both in Chern-Osserman's inequality and in Ejiri's inequality. 

Recall that Jorge-Meeks' n-noid attains the equality in Chern-Osser­
man's inequality for any nand that Jorge-Meeks' 2-noid is the catenoid. 
On the other hand, the equality in Ejiri's inequality is attained by 
ReFm (m = 1, 2, ... ) or ReCm (m = 1, 2, 3) obtained in Section 3. 
This is verified by proving the following lemma. 

Lemma 5. A strictly m-isotropic minimal surface in JE2m+l is 
nondegenerate. 

Proof. Let f: M -+ JE2m+l be a strictly m-isotropic minimal sur­
face, and F: M -+ C2m+l its lift. Then F is also strictly m-isotropic, 
and hence is full by Lemma 3. The Gauss map [!'] is equal to [F']. 

Assume that f is degenerate. Then there exists a constant vector 
~ E C2m+l such that (F',~) = 0. Hence, (F,~) = constant, which 
contradicts to the fullness of F. 0 
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Recall that ReC1 is also the catenoid. So, the catenoid is an ex­
ample of complete minimal surfaces which attain the equality both in 
Chern-Osserman's inequality and in Ejiri's inequality. Conversely, Main 
Theorem in Section 1 asserts that the catenoid can be characterized as 
an m-isotropic surface in IE2m+l with these properties. 

We now give a proof of Main Theorem in what follows. 

Lemma 6. If a strictly m-isotropic complete minimal surface M 
in IE2m+l attains the equality in Chern-Osserman's inequality, then the 
number of ends of M is greater than m. 

Proof. The equality implies that the order of pole at each end is 
exactly 2. Hence, the Laurent expansion (20) leads to 

(26) 

(27) 

8 f 1 8 1 8 h l h" 8 -'- tr'N -8 = --za_2 + -a_1 + o omorp IC part, a_2 -r- 0 E IL- • 
z z z 

If m;:::: 2, then it is verified from the 2-isotropicity and (22) that 

in (26). Hence, dim V :::; 2r. Therefore, 2m+ 1 :::; 2r by (23). Since m 
and r are integers, we conclude that m + 1 :::; r. 

If m = 1, then by the Balancing formula (24), we have 

3 =dim V:::; 2r + (r- 1). 

Hence, 4 :=:; 3r, which means that 2:::; r, since r is an integer. D 

Lemma 7. If a strictly m-isotropic complete minimal surface M 
in JE2m+l attains the equality both in Chern-Osserman's inequality and 
in Ejiri's inequality, then the genus of M is zero and the number of ends 
of M ism+ 1. 

Proof By our assumption, we have 

JM KdA = 4(1- g- r)n = 2(1- g- (2m+ 1))n, 

which implies that 

(28) 2(m+1-r)=g. 

The left-hand side of (28) is smaller than or equal to 0 by Lemma 6 and 
the right-hand side is greater than or equal to 0. Therefore, both side 
must be 0. D 
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Proof of Main Theorem. The equality in Chern-Osserman's inequal­
ity implies that 

(29) L l 8 = 2r = 2 ( m + 1) 
8 

by Lemma 7. Moreover, the equality in Ejiri's inequality implies that 
the equality must hold in (25). It follows from (29) that 

(30) dime V = 2(m + 1)- 1 =2m+ 1. 

On the other hand, if we assume m 2: 2, then dime V ::; r = m + 1 
holds because of (27), and hence the equality (30) cannot occur. 

Therefore, we have m = 1. In this case, g = 0, r = 2 and the total 
curvature is -47r. So, it is the catenoid. D 

Next, we consider only Chern-Osserman's inequality for strictly m­
isotropic complete minimal surfaces in JE2m+l. 

Assume now that the equality is attained by a strictly m-isotropic 
complete minimal surface f: M ----> JE2m+l. By Lemma 6, the number of 
ends of M is greater than m. Hence, in the case of m = 1, the possibility 
of the number of ends is 2, 3, 4, .. 00 Indeed, Jorge Meeks' n-noids realize 
these values. In the case of m = 2, the possibility of the number of ends 
is 3, 4, 5, .. 00 However, this case is not quite similar to the case of m = 1. 

Proposition 3. A strictly 2-isotropic complete minimal surface 
of genus zero with three ends in JE5 never attain the equality in Chern­
Osserman's inequality. 

Proof. Assume that there exists a strictly 2-isotropic complete min­
imal surface of genus zero with three ends in JE5 which attains the equal­
ity in Chern-Osserman's inequality. 

By our assumption, the surface is biholomorphic to IC U { oo} punc­
tured at three points. Without loss of generality, we may assume that 
these three points are cubic roots of 1, i.e., { z3 = 1} (if necessary, three 
punctured points can be mapped to { z3 = 1} by a linear transformation 
of IC U { oo} ). 

Since the equality is attained in Chern-Osserman's inequality, the 
1CN-valued one-form (8f/8z)dz has a pole of order 2 at each end and 
the other points are regular. Hence, 0 := (z3 - 1)2 (8f j8z) has a pole 
only at z = oo. This implies that 0 is a polynomial of z. The degree of 
n is 4, since the induced metric 
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determines a positive definite inner product at z = oo. 
Now, we put 

of aoz4 + a1z3 + a2z2 + a3Z + a4 
oz (z3 - 1)2 

(31) 

Since Re J(of loz)dz is single-valued, the residue at each pole takes a 
value in JR. 

Indeed, 

1 
Resz=1 = g(2ao + a1- a3- 2a4), 

Resz=( _1)2/3 = - 1
1
8 (2ao + a1 - a3 - 2a4) - '{'; i(2ao - a1 - a3 + 2a4), 

1 J3. 
Resz=(-1)4/3 = - 18 (2ao + a1- a3- 2a4) + lsz(2ao- a1- a3 + 2a4), 

where i denotes the imaginary unit J=I. Hence, the following holds. 

(32) { 
2ao + a1 - a3 - 2a4 E JR5 , 

2ao- a1- a3 + 2a4 E J=lJR5 . 

In the following, we show that the equation (32) contradicts the 
strictly 2-isotropicity of the surface. 

By (31), the 1-isotropicity (of loz, of loz) = 0 implies that 

(ao, ao) =0, (ao, a1) =0, (a1, a1) + 2(ao, a2) =0, (ab a2) + (ao, a3) =0, 
(a2, a2) + 2(a~, a3) + 2(ao, a4) = 0, (a2, a3) + (a1, a4) = 0, 

(a3, a3) + 2(a2, a4) = 0, (a3, a4) = 0, (a4, a4) = 0, 

and the condition (o2 f I oz2 , o2 f I oz2) = 0 implies that 

(ao, ao) = 0, (ao, a1) = 0, 9(a~, a1) + 16(ao, a2) = 0, 
3(a~, a2) + 2(ao, a3) = 0, 2(a2, a2) + 3(a1, a3) = 0, (a2, a3) = 0, 
(a3, a3) = 0. 

Summing up these, we have 

(33) (ao, ao) = (ao, a1) = (ao, a2) = (ao, a3) = (a1, a1) = (a~, a2) 

= (a1, a4) = (a2, a3) = (a2, a4) = (a3, a3) = (a3, a4) = (a4, a4) = 0, 
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Equations in (34) imply that 

(35) 

It then follows from (33) and (35) that 2ao +a1- a3- 2a4 and 2ao- a1-
a3 + 2a4 are both isotropic vectors. However, they are real-valued and 
purely imaginary-valued, respectively. Hence, they must be zero, i.e., 

Therefore, we have 

It follows that 
(a1,a3) = 4(ao,a4), 

which implies from (35) that 

(a1, a3) = (ao, a4) = 0. 

By (34), we also have (a2 , a2 ) = 0. Consequently, we have for all j, k = 
0, 1, 2, 3,4, 

(aj, ak) = 0. 

Therefore, (83 f /8z3 , 8 3 f /8z3) = 0, which is a contradiction to the 
strictness of the surface. D 

Finally of this paper, we propose a problem related to Proposition 
3. 

Problem. Is there an inequality sharper than Chern-Osserman's 
inequality for strictly m-isotropic complete minimal surfaces in JE2m+l 

(m ~ 2)? Namely, is there a constant C(m,g,r) depending only on 
m, g, r such that 

JM KdA:::; C(m,g,r):::; 4(1- g- r)rr 

holds for all strictly m-isotropic complete minimal surfaces in JE2m+l of 
genus g and with rends? 

Proposition 3 means that 

!M KdA < 4(1- g- r)rr 

in the case of m = 2, g = 0 and r = 3. Hence, C(2, 0, 3) is at most 4(1-
0- 3)rr- 2rr = -lOrr, because the total curvature of complete minimal 
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surface takes value in 21rZ. On the other hand, there exists a strictly 
2-isotropic complete minimal surface with three ends, of genus zero and 
of total curvature -207r, which is stated in Example 4. Therefore we 
conclude that -207r :::;: C(2, 0, 3) :::;: -l01r. 
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