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Hardy Spaces, Carleson Measures and 
a Gradient Estimate for Harmonic Functions 

on Negatively Curved Manifolds 

Hitoshi Arai 

Abstract. 

In this paper we study Hardy spaces, BMO, Carleson measures, 
Green potential and Bloch functions on a Cartan-Hadamard mani­
fold M of pinched negative curvature. Further, using our results on 
Carleson measure and BMO, we give a gradient estimate for har­
monic functions on M. It is different from Yau's gradient estimates, 
and is applied to the existence problem of harmonic Bloch functions 
described in §10. We deal also with boundary behavior of harmonic 
Bloch functions on M. 

§1. Introduction 

In their paper [22], C. Fefferman and E. Stein developed the theory 
of Hardy spaces of harmonic functions on the upper-half spaces endowed 
with the Euclidean metric. As is well known, their theory have played 
crucial roles in the classical harmonic analysis. In 1981 and 1982, D. Jeri­
son, E. Fabes, C. Kenig and U. Neri extended some important parts of 
the theory of Hardy spaces on the upper-half spaces to more general 
Euclidean domains with non-smooth boundaries ([21], [20] and [26]). 

On the other hand, after the work of A. Koninyi on the boundary 
behavior of harmonic functions on symmetric spaces ([28]), Hardy spaces 
have been investigated also for symmetric spaces. In particular, D. Geller 
([23]) and A. Debiard ([16], [17]) studied Hardy spaces on Siegel upper­
half spaces of type II, and in somewhat later, P. Cifuentes extended the 
classical theorems on the probabilistic characterization and area inte­
gral characterization of Hardy spaces to rank one symmetric spaces of 
noncompact type ([12] and [13]). 

Now in this paper we study Hardy spaces, BMO and Carleson mea­
sures on a complete, simply connected n-dimensional Riemannian man­
ifold (M,g) such that the sectional curvatures.K¥ of M satisfy-,;~::=; 
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KM ~ -K,i, for some constants /'\,1 and /'\,2 with 0 < /'\,1 ~ /'\,2 < +oo. 
A typical example of such a manifold is a rank one symmetric space of 
noncompact type, but also many other examples are known. 

For the manifold M, the boundary behavior of harmonic functions 
has been studied by several authors; For instance, the solvability of the 
Dirichlet problem for the manifold M was proved by Anderson [2] and 
D. Sullivan [46], and moreover in Anderson and Schoen [3] it was proved 
that the Eberlein-O'Neill compactification of M is homeomorphic to the 
Martin compactification (see also Kifer [27], Ancona [1]). Then Ander­
son and Schoen [3], Ancona [1], Arai [5], Mouton [38], and Cifuentes and 
Koninyi [14] studied boundary behavior of harmonic functions on M. 

This paper consists of two parts. First part is concerned with the 
Hardy spaces of harmonic functions on M, and the second part with 
Carleson measures. Then we will give an application to Bloch functions 
onM. 

We will begin in §2 with a quick review of some preliminaries about 
harmonic functions on M. In §3 we will define analogues to the manifold 
M of the classical Stoltz domain and of the classical Hardy spaces of 
harmonic functions. Section 4 contains a review real analysis on the 
sphere at infinity. In §5 we prove some elementary properties of Hardy 
spaces HP, and then in §6 we prove that the Hardy space H 1 , atomic 
Hardy space Hitom and probabilistic Hardy space H~rob are mutually 
equivalent. Some results in this section were announced already in our 
paper [5], but in the announcement we assumed an additional geometric 
condition in order to show that every (1, oo )-atom is in H 1 . In the 
present paper we call it the condition ((3). As pointed out in [5], there 
are some examples of manifolds having the condition ((3). However, 
recently Cifuentes and Koranyi [14] proved that M possesses always the 
condition. Therefore combining theorems announced in [5] with their 
result, we gain the equivalence of the three different definitions of Hardy 
spaces. 

In the second part of this paper we study Carleson measure and its 
application to Bloch functions on M. In §7 we are concerned with rela­
tionship between Carleson measures and LP boundedness of the Martin 
integral, and in §8 we give a characterization of Carleson measure in 
terms of a certain Green potential. Using it, in §9 we prove Carleson 
measure characterization of BMO functions. In the classical Euclidean 
case, this characterization was found by C. Fefferman and E. Stein ([22]), 
and in the case of the complex unit ball endowed with the Bergman met­
ric, the characterization was proved by Jevtic [25]. However, his proof 
is based on the nature of the ball. Our proof is different from it. In 
§10 we will study harmonic Bloch functions defined on M. From our 
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Carleson measure characterization of BMO functions, we give a gradient 
estimate for harmonic functions on M (see ( 45)), and prove existence of 
unbounded harmonic Bloch function on M. Moreover in §11 we study 
boundary behavior of unbounded harmonic Bloch functions, and prove 
a generalization of Lyons' theorem on the law of iterated logarithm. 

Notation: In this paper we fix a point o in Mas a reference point. 
The constants depending only on g, n, ~1, ~2 and o will usually be 
denoted by C, C' or Ci (j = 1,2, ... ). But C and C' may change in 
value from one occurrence to the next, while constants Cj (j = 1, 2, ... ) 
retain a fixed value. For two nonnegative functions f and g defined on 
a set U, the notation f ~ g indicate that f(x) :::; Cg(x) for all x E U, 
and f ~ g means that f ~ g and g ~ f. 

Acknowledgement. The author would like to thank to Professor 
Adam Koranyi for his suggestion and encouragement. The author is 
honored to be invited to the last Taniguchi conference on Mathematics, 
and thanks to the organizing comittee of the conference. 

§2. Prelimhiaries 

In this section, we review Harnack type inequalities for positive har­
monic functions and some facts about the Martin compactification. Both 
are very important for us. 

A C2 function f in an open set U of M is called harmonic in U if 
ll.Mf = 0 in U, where ll.M is the Laplace-Beltrami operator of (M,g). 
For x EM and r > 0, let B(x,r) := {y EM: d(x,y) < r}, where d(, ) 
is the distance function with respect to the Riemannian metric g. Then 
Moser's Harnack inequality implies 

Theorem H (Interior Harnack inequality). Let R > 0. Then for 
every positive harmonic function u on a ball B(x,2R), 

(1) 

for ally E B(x, R), where cl,R is a positive constant depending only on 
M andR. 

In this paper we will use the so-called boundary Harnack inequal­
ities. They were proved firstly by Anderson and Schoen [3] and then 
also by Ancona [1]. To describe them we need some notation. De­
note by S(oo) the sphere at infinity of M and by M the Eberlein and 
O'Neill compactification M U S(oo) of M (see [19] for definitions). For 
x EM andy EM (x =/= y), let 'Yxy be the unit speed geodesic such that 
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"Yxy(O) = x and "Yxy(t) = y for some t E (0, +oo]. Since such a number t 
is unique, we denote it by txy· 

For p EM, v E TpM and 8 > 0, let C(p, v, 8) be the cone about the 
tangent vector v of angle 8 defined by 

C(p,v,8) := {x EM\ {p}: Lp(v,i'px(O)) < 8}, 

where Lp denotes the angle in TpM and i'px(t) is its tangent vector at t. 
The following is called boundary Harnack inequality: 

Theorem BHl (Anderson and Schoen [3]: see also [1], [27]). Let 
p EM and v E TPM with gp(v,v) = 1. Denote C = C(p,v,7r/4) and 
T = C(p, v, 1r /8) \ B(p, 1). Let u and h be positive harmonic functions 
on C n M, continuous up to the closure C of C in M and vanishing on 
C n S(oo). Then 

(2) 

(3) 

u(x) 
C1exp{-C2d(p,x)}:::; -(-):::; C3 exp{-C4 d(p,x)}, 

u Po 

c-1 u(po) < u(x) < c u(po) 
5 h(po) - h(x) - 6 h(po)' 

for X E T' where Po = expp ( v)' and c1' 0 0 0 'c6 are constants depending 
only on M. 

For z EM\ {o} and t E R, we denote 

C(z, t) = C("Yaz(taz + t), i'az ( taz + t), 7r I 4), and z(t) = "Yaz ( taz + t). 

In this paper we will use the following variation of Theorem BH1: 

Theorem BH2 (Ancona [1]). (1) Let u and h be positive har­
monic functions on a cone C(z, t) n M and vanishing continuously on 
C(z, t) n S( oo). Then 

c-1u(z(t+ 1)) < u(x) <C u(z(t+ 1)) forallxEC(z,t+1)nM, 
7 h(z(t+1))- h(x)- 7 h(z(t+1))' 

where C7 is a positive constant depending only on M. 
(2) Let u and h be positive harmonic functions on M \ C(z, t + 1), 

and vanishing continuously on (M \ C(z, t + 1)) n S(oo). Then 

c-1 u(z(t)) < u(x) < c u(z(t)) for all X EM\ C(z, t), 
8 h(z(t)) - h(x) - 8 h(z(t))' 
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where C8 is a positive constant depending only on M. 

The second statement in Theorem BH2 seems to be a little different 
from (1), but it is actually a special case of Theorem 5' in (1). For reader's 
convenience, we give a proof of Theorem BH2 (2) in Appendix 1. 

The following theorem is an important consequence of boundary 
Harnack inequalities: 

Theorem AS (Anderson and Schoen (3); (1), [27)). (1) The Mar­
tin compactijication of M with respect to the Laplacian D.M is homeo­
morphic to Eberlein and O'Neill's compactijication M, and the Martin 
boundary consists only of minimal points. 

(2) For every z E M, there exists a unique function Kz ( x, Q) ( Q E 
S(oo), x EM\ {Q}) such that for every Q E S(oo), 

(4) 

(5) 

(6) 

(7) 

Kz( ·, Q) is positive harmonic on M, 

Kz( ·, Q) is continuous on M \ {Q}, 

Kz(Q',Q) = 0 for all Q' E S(oo) \ {Q}, and 

Kz(z,Q) = 1. 

(This function is called the Poisson kernel normalized at z.) 
(3) For every z EM and for every positive harmonic function u on 

M, there exists a unique Borel measure m~ on S(oo) such that 

(8) u(x) = { Kz(x, Q) dm!(Q), x EM. 
Js(oo) 

(The measure m! is called a Martin representing measure relative to u 
and z.) 

Throughout this paper, we denote K(x, Q) = K 0 (x, Q), and write 
simply wx the Martin representing measure relative to the constant func­
tion 1 and x E M. It is called the harmonic measure relative to x. 
In particular, let w = w0 • Note that wx(S(oo)) = 1 and dwx(Q) = 

K(x, Q) dw( Q), for all x E M. 
Theorem H yields that for any compact sets E C M, there exists a 

positive constant CE satisfying 

(9) 

for all x,y E E and for all Borel sets A C S(oo). 
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§3. Approach regions and Hardy spaces 

In order to study Hardy space H 1 and BMO on M, we begin with 
recalling two analogues for M of the classical Stoltz region. First is the 
following: 

Definition 3.1 (Anderson and Schoen [3]). For Q E S(oo) and 
d > 0, let 

(10) Td(Q) = U B('"Yoq(t),d). 
t>O 

Following [3], we call such a set the nontangential region at Q E S(oo). 

In this paper we will be mainly concerned with another analogue of 
the Stoltz region in some technical reasons: For x E M and t E R, let 

(11) ~(x, t) = C(x, t) n S(oo). 

Definition 3.2 ([5]). For Q E S(oo) and a E R, let 

(12) fa(Q) = {z EM: Q E ~(z,a)}, 

and we call this set an admissible region at Q. 

This definition is motivated by the following consideration about 
classical Stoltz domains in the upper half-plane R~: Recall that the 
Stoltz domain Sa(x) at x E R with angle a > 0 is the set {(y,t) E 

R x (O,+oo) : IY- xl <at}. For z(= (zo,t)) E R~, let D(z,a) := 

{y E R : the angle at z between the segment zy and zzo is less than 

a}, where pq is the segment joining p and q for p, q E R!. Denote 

S~(x) = {z E R~ : x E D(z, a)}. Then Sa(x) = S~(x). Now we can 
easily see that our set ~ ( z, a) corresponds to the domain D( z, a), and 
r a(x) to the set S~(x). 

We note that if we define Hardy spaces by using our admissible 
domains, we may apply "tent" method to our case as we will show later. 
By this reason, in this paper, we use the admissible regions instead of 
nontangential regions in the sense of [3]. However, it should be noted 
that both are closely related to each other: 

Theorem CKl (Cifuentes and Koninyi [14]). Two families of ap­
proach regions {Td(Q)} and {f a(Q)} are equivalent in the sense of [14], 
that is, for all a E R, there exists d > 0 and R > 0 such that for all 
Q E S(oo), 

(13) fa(Q)n(M\B(o,R)) cTd(Q)n(M\B(o,R)), 



Harmonic Functions on Negatively Curved Manifolds 7 

and vice versa. 

For the notational convenience, for every f E L 1 (w) ( = L1(S(oo ), w)), 
let 

j(x) = { fs(oo) K(x, Q)f(Q) dw(Q), x EM, 

f(x), x E S(oo). 

Then j is harmonic on M. Now Hardy spaces HP(w, a) (1 :'S: p :'S: oo, 
a E R) are defined as follows: For a function u on M, let 

and let 

Na(u)(Q) := sup lu(x)l, Q E S(oo), 
xHa(Q) 

HP(w,a) = {! E LP(w): Na(j) E LP(w)}. 

Denote IIJIIH•(w,a) := IINa(J)IILv(w)· 
Here we should note that when u is a continuous function on M, 

then N01 (u) is lower semicontinuous on S(oo). Indeed for every .A> 0, 
the set E := {Q E S(oo): N01 (u) >.A} is open. For if Q E E, then there 
exist E: > 0 and z E r a(Q) such that lu(z)l >.A+ E:. By the definition of 
r 01 (Q), we have Q E ~(z, a). We can take an open subset U of S(oo) 
such that Q E U C ~(z, a). Since z E r a(Q') for all Q' E U, we have 
U C E. This implies that E is open. 

As we will see in §5, these spaces HP(w, a) and HP(w, {3) are equiv­
alent for every a, {3 E R. We denote 

HP(w) = HP(w,O), and IIJIIHv(w) = IIJIIHv(w,O)· 

Remark 1. As in the classical case, another Hardy spaces of har­
monic functions· on M are defined by 

HP(M) := {u: u is harmonic on M and N0 (u) E LP(w)}, 1 :'S: p :'S: oo. 

See Appendix 3 for these Hardy spaces. 

§4. Real analysis at infinity - Quick Review -

Before going to the main body of this paper, we set down the basic 
facts about real analysis on the sphere at infinity S ( oo) of M. All 
theorems stated in this section follow immediately from results in [3] and, 
in particular, from the abstract theory of real analysis due to Coifman 
and Weiss [15]. For any Q E S(oo) we define ~t(Q) to be the "ball" in 
S ( oo) centered at Q, 

~t( Q) := ~('YoQ(t), 0) (= C('YoQ(t), i'oQ(t), 1r /4) n S(oo )), 
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when t 2: 0, and let .D.t(Q) = S(oo) when tis negative. Then we can see 
that the family of the sets { .D.t ( Q)} defines a quasi-distance p on S ( oo) 
which makes the triple (S(oo),p,w) is a space of homogeneous type in 
the sense of Coifman and Weiss [15] as follows: By [3] the family of 
"balls" { .D.t ( Q)} satisfies the following properties: 

(H1) For all s > 0 and r > 0 

S(oo) = lim .D.t(Q) ::> .D.r(Q) ::>::> .D.r+s(Q) ::> lim .D.t(Q) = {Q}, 
t__,.-oo , t-+oo 

where A =:>=:> B means that A contains the closure of B. Furthermore, 
{.D.r(Q): r E R} is a fundamental system of neighborhoods of Q. 

(H2) Let Q1, Q2 E S( oo) and r E R. If .D.r( Ql) n .D.r ( Q2) -=f. 0, then 
.D.r-k(Ql) ::> .D.r(Q2), where k is a positive integer depending only on 
the curvature bounds ~1 and ~2. 

(H3) 0 < w(.D.r(Q)) :S 1 for every Q E S(oo) andrE R. 
(H4) For every .D.r(Q) and l > 0, w(.D.r-z(Q)) :S C(l)w(.D.r(Q)), 

where C(l) is a positive constant depending only on M, o and l. 
Without loss of generality, we may assume k 2: 2. Note that the 

function 

Po(Q, Q') := inf{e-t: Q' E .D.t(Q)}, Q, Q' E S(oo) 

satisfies that 
(D1) Po(Q,Q') = 0 implies Q = Q', 
(D2) p0 (Q,Q') :S ekp0 (Q',Q), where k is the constant in (H2), 
(D3) Po(Q, Q") :S e2k(Po(Q, Q') + p(Q', Q")), 
(D4) {Q': Po(Q,Q') < r} = .D.log(l/r)(Q) (r > 0) and 

(14) w({Q': Po(Q,Q') < 2r}) :S Cw({Q': Po(Q,Q') < r}). 

Consequently, the symmetrization 

p(Q, Q') = Po(Q, Q'); Po(Q', Q) 

is a quasi-distance in the sense of [15] such that (S(oo),p,w) is a space 
of homogeneous type, because there exists positive constants k1 and k2 

depending only on M such that 

(15) .D.log(l/r)+k1 (Q) C {Q': p(Q,Q') < r} C .D.log(l/r)-k2 (Q). 

Therefore the abstract theory in [15] can be transplanted to our case. 
For instance, some covering lemmas, theorems on atomic Hardy spaces 
and BMO on spaces of homogeneous type hold true for (S( oo ), w, p). We 
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will sketch statements of some of them. As first, we deal with a covering 
lemma of Vitali type. Since the family of balls defined by the quasi­
distance p and the family of sets {~t(Q)} are equivalent (see (15)), we 
can state Vitali's covering lemma in terms of {~t(Q)}: 

Lemma V (Vitali type covering lemma: see [3], [15]). Let E C 

S(oo). Suppose {~r(Q)(Q) : Q E E} is a covering of E. Then there 
exist Q~, Q2 , .•. in E such that 
(16) ~r(Q;)(Qi)n~r(Qj)(Qj) =0, i=/=j, and 
(17) for every Q E S(oo), there exists i with ~r(Q)(Q) C ~r(Q;)-k'(Qi), 
where k' is a positive constant depending only on M and o. 

As known, from this lemma it follows the Hardy-Littlewood maxi­
mal theorem. To mention the theorem, we need the uncentered Hardy­
Littlewood maximal function off E L 1 (w) defined as 

(18) VJ!:(f)(Q) := sup (~ 1(Q')) { lfl ®.J, Q E S(oo). 
~.(Q'):QE~.(Q')w t J~.(Q') 

Then we have 

Theorem HL (see [15]). (1) There exists a positive constant C9 

such that 

w({Q E S(oo): VJ!:(f)(Q) >A})~ CgA-1IIfllucw) 

for all f E L 1 (w) and for all A> 0. 
(2) For every 1 < p ~ oo, there exists a positive constant C10 ,p such 

that 

for every f E LP(w). 

Now let us mention the definition of atomic Hardy spaces on S(oo). 
In [15], atomic Hardy spaces and BMO on a space of homogeneous type 
are defined in terms of its quasi-distance. However in our case, as we 
have seen, the family of balls defined by p is equivalent to { ~t ( Q)}. For 
this reason, one can define atomic Hardy spaces and BMO in terms of 
{~t(Q)} which are equivalent to those defined by the quasi-distace p: 
Let 0 < p < q and p ~ 1 ~ q ~ oo. A function a on S(oo) is called (p, q)­
atom if the support of a is contained in a "ball" ~r(Q), fs(oo) a®J = 0, 

and llaiiL•(w) ~ w(~r(Q)) 1fq-l/P. Since w(S(oo)) = 1, we regard also 
the constant function 1 as a (p, q)-atom. 
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For a continuous function f on S ( oo), let 

1!1 { lf(Q)- f(Q')I R Q" S( ) . h Q Q' A (Q")} a=sup w(~r(Q"))"' :rE , E 00 Wit , Eur . 

Let A"' be the set of all continuous functions f with lila < oo. The 
atomic Hardy spaces Hp,q(w) (= Hp,q(S(oo),w)) are defined as follows: 

(i) If 0 < p < 1 ::; q ::; oo, then Hp,q(w) is the subspace of the 
dual of A1fp-l consisting of those linear functionals admitting an atomic 
decomposition 

00 

(19) h = LAjaj, 
j=l 

where Aj E R, and aj's are (p,q)-atoms and Z::j:1 1AjiP < oo. 

(ii) If p = 1 < q::; oo, then H 1,q(w) is defined as the set of all func­
tions h in L1 (S(oo),w) such that h has an atomic decomposition (19), 
where aj's are (1,q)-atom and Z::}:1 1Ajl < oo. 

In any case we set 

for h E Hp,q(w). Then the function ¢(h, f) = lh- flp,q is defines a 
complete metric on HP,q(w). 

By Coifman and Weiss [15], we obtain that Hp,q(w) is isomorphic 
to HP,=(w), for 1 < q < oo. 

Let BMO(w) be the set of all functions f E L1 (S(oo),w) such that 

lfiBMO(w) = sup (~ \Q)) r If- mAr(Q)fl dw + llfllu(w) 
QES(oo),rER W r }Ar(Q) 

< oo, 

where 

Moreover, since the definitions of HP,q(w) and BMO(w) are equivalent 
to those by [15], we have the following: 
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Theorem CW ([15]). (1) Hp,q(w) = HP,=(w), and moreover the 
(quasi-) norms l·lp,q and l·lp,oo are equivalent (0 < p::::; 1, 1 < q < oo). 

(2) If p < 1, a= 1/p- 1 and 1 < q ::::; oo, then N' is isomorphic to 
the dual of Hp,q(w). 

(3) For every 1 < q ::::; oo, the dual of H 1,q(w) is regarded as the 
space BMO(w) in the following sense: If h = I:..>..1a1 E H 1 ,q(w), then 
for each£ E BMO(w) 

(h, £) := lim .>..1 { £a1 dw 
m---+oo lx 

is a well defined continuous linear functional and its norm is equivalent 
to I£1BMO. Moreover, every linear continuous functional on Hl,q (w) has 
this form. 

In this paper we write 

H~tom(w) = H1'00 (w), and II ·lkatom = l·l1,oo· 

§5. Some basic properties of Hardy spaces 

This section is concerned with an elementary properties of Hardy 
spaces. As first we prove the equivalence of HP(w, a) (a E R). From 
now on, for z EM\ {o}, we denote Zoo= /'az(+oo) and t(z) = taz, where 
taz is a unique positive number such that l'az(taz) = z. 

Proposition 5.1. Suppose -oo < a < (3 < oo. For every 1 ::::; 
p::::; oo, HP(w,a) = HP(w,(3). Moreover, the norms llfiiHP(w,,B) and 

llfiiHP(w,a) are equivalent. 

Proof. This proposition is a direct consequence of the following 
lemma: 

Lemma 5.2. For every continuous function u on M, 

w({Q E S(oo): N,a(u)(Q) > .>..}) 

::::; w({Q E S(oo): Na(u)(Q) >.A}) 

::::; Ca,,aw({Q E S(oo): N,a(u)(Q) > .>..}), 

for all).. > 0, where Ca,,B is a positive constant depending only on a, (3, 
o and M. 

Proof of Lemma 5.2. We adapt a standard argument (cf. [10]) to 
our case. Since by definition, r,a(Q) c r a(Q), it is sufficient to prove 
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the second inequality. Let f be the characteristic function of the set 
{N;3(u) > .A}. For every Q E {Na(u) > .A}, there is a point z E M 
such that lu(z)l > >. and Q E 6.(z, a). Then since Q E 6.(z, a) = 

6-t(z)..f.a(z=), we have 

(20) '.m(f)(Q) ~ (6./ )) r lfl dw. 
w z, a J i:;.(z,a) 

On the other hand, (H2) implies that 

6.(z,(3) C 6.(z,a) = 6.t(z)+a(z=) C 6.t(z)+a-k(Q) 

C 6.t(z)+a-2k(z=) = 6.t(z)+;3-(;3+2k-a)(z=)· 

Hence by (20), 

'.m(f)(Q) ~ 1 1 lfl dw 
w( 6.t(z)+;3-(;3+2k-a) ( Z=)) i:;.(z,;3) 

> C(f3 + 2k- a)-1 ( 1 ( )) { lfl dw (:=(I), say). 
- w 6.t(z )+;3 z<X) J i:;.(z,;3) 

Further, since for Q' E 6.(z, (3), N;3(u)(Q') > >., so we have that 
lf(Q')I ~ 1, and therefore (I) ~ C(f3 + 2k- a)-1 > 0. Consequently, 
{Na(u) > .A} C {'.m(f) > C(f3 + 2k- a)- 1 }. Accordingly by Theo­
rem HL (1) we obtain that 

w({Na(u) >.A}) :S CgC(f3+2k-a)llfllu(w) 

= C9C(f3+ 2k- a)w({N;3(u) > >.}). 

Q.E.D. 

Next we prove some estimates for the Poisson kernel which will be 
used in this paper: 

Lemma 5.3. (i) Suppose r > 0. Then there exists a positive 
constant Co,r such that 

C0) :<::; K(x, Q) :<::; Co,r, for all x E B(o, r) and Q E 8(=). 

(ii) There exist positive constants 0 11 , 0 12 and 0 13 satisfying the 
following (a) and (b): 

(a) For every x EM\ B(o,3) and for every positive integer j with 
d(o,x) >j+1, 

sup{K(x, Q): Q E 6.(x, -j- 1) \ 6.(x, -j)} :<::; C11 (~~p( -j~4 ) )) . 
w x, -J -1 
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Let N be the largest positive integer N with d( o, x) > N + 1. Then 

sup{K(x, Q): Q E S(oo) \ b..(x, -N- 1)}:::; C12 exp( -C4d(o, x)). 

(b) For every x EM\ {o}, 

1 
sup{K(x, Q): Q E b..(x, 0)}:::; C13 w(b..(x, O))" 

(iii) Suppose r > 0 and Q E S(oo). There exists a positive constants 
C14 depending only on M such that for all t > r and Q' E S ( oo) \ b..r ( Q), 

Proof. (i) This is proved easily by Harnack inequality: Let x E 

B(o,r). Then Theorem H implies that for ally E M \ B(o,r + 1), 
G(x, y) :::; CrG(o, y), where Cr is a positive constant depending only on 
M and r. Hence the construction of the Martin kernel (see [3]), 

G(x, y) 
K(x, Q) :::; sup :::; C, 

yEM\B(o,r+l) G(o, Y) 

and 1 = K(o, Q) ~ K(x, Q). Consequently we have (i). 
(ii) Suppose x E M \ B(o, 3), and let j be a positive integer such 

that d(o, x) > j + 1. For simplicity, let x( -j) = rax(t(x) - j). Let 
F be an arbitrary Borel subset of b..(x, -j- 1) \ b..(x, -j). Then by 
Theorem BH2, we have that 

wx(F) Wx(-j+l)(F) wx(-j)(F) 

G(x, o) ~ G(x( -j + 1), o) ~ G(x( -j), o)' 

On the other hand, Theorems BH1 and BH2 imply that 

G(o,x) ~ G(x(-j-1),x) ~G(x(-j- 1 ),x) 
G(o,x(-j)) G(x(-j -1),x(-j)) 

~ exp(-C4d(x(-j -1),x)). 

Combining these inequalities we have 

Since there exists a positive constant c such that for every z E M \ { o}, 

(21) wz(b..(z, 0)) :::0: c, (see the proof of [3, Lemma 7.4]), 
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we have by Theorem BH2 (2) that 

x(-i-1)(F) (F) 
w"'(-j-1)(F) .:S .w ~ w . . 

~ wx(-J-1)(~(x, -j- 1)) w(~(x, -J- 1)) 

Hence 
w"'(F) < ( .) ( ( . ))-1 w(F) ~ exp -C4J w ~ -J - 1 . 

Therefore for Q E ~(x, -j- 1) \ ~(x, -j), we have the first inequality 
in (a): 

K(x,Q) = lim w"'((FF)) ~ Cexp(-C4j)w(~(-j -1))-1 . 
F---+{Q} W 

The second inequality in (a) is a direct consequence of Theorems BH2 
and BH1: From (i) and Theorem BH2 it follows that for Q E S(oo) \ 
~(x, -N -1), 

K(x,Q) ~ K(x(-N),Q) ~ 1, 
G(x,o) G(x(-N),o) 

and consequently K(x, Q) ~ G(x, o) ~ exp( -C4 d(o, x)). 
To prove (b) we use (21). For Q E ~(x, 0), 

K(x, Q) ~ K(x, Q) ~ K(o, Q) = 1 . 
w"'(~(x, 0)) w(~(x, 0)) w(~(x, 0)) 

This yields (b). 
We prove (iii). Let t > r + 1. Then by Theorem BH2 we have 

K('YoQ(t), Q') ~ . K('YoQ(r + 1), Q') ~ K( ( + 1) Q') 
G('YoQ(t),"foQ(r)) ~ G('YoQ(r + 1),"foQ(r)) ~ 'YoQ r ' 

~ K('YoQ(r), Q') ~ Co,r· 

Hence K('YoQ(t),Q') ~ Co,rGboQ(t),"foQ(r)), and this implies (iii). 
Q.E.D. 

Using Lemma 5.3, we have 

Lemma 5.4. There exists a positive constant C15 such that for 
every f E L 1 (w), 

No(})(Q) ~ C15VR(f)(Q), Q E S(oo). 

We can prove this lemma by combining [3, Theorem 7.3) with The­
orem CK1. However here we give a direct proof using Lemma 5.3: 
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Proof. Let x be an arbitrary point in r 0 (Q) \ B(o,3). Then Q E 
D.(x,O). Let N be the largest positive integer with d(o,x) > N + 1. 

N 

il(x)l ~ r + L r 
1 S(oo)\L:;.(x,-N -1) j=O 1 L:;.(x,-j-1)\L:;.(x,-j) 

+ r K(x, Q)if(Q)I dw(Q) 
1L:;.(x,O) 

( = (I) + (II) + (III), say). 

Then by Lemma 5.3, 

(I)~ c12 r Ill dw ~ CdJJ!:(f)(Q), and 
1s(oo) 

(II) ~Cut exp( -j?4 ) r Ill dw 
j=O w(D.(x, -J- 1)) 1t:;.(x,-j-1) 

N 

~ Cn L exp( -jC4)Vlt(f)(Q) ~ VR(f)(Q). 
j=O 

Further, 

c13 1 (III)~ (D.( o)) I! I dw ~ c13VR(f)(Q). 
W X, L:;.(x,O) 

Consequently, we have lf(x)l ~ VR(f)(Q). 
Now we consider the case of x E B( o, 3). By Lemma 5.3 (i), 

if(x)l ~ { K(x, ()if(()! dw(() 
1s(oo) 

~ Co,3 { 1/(()jdw(() ~ Co,3VR(f)(Q). 
1s(oo) 

Thus we obtain the desired inequality. Q.E.D. 

Now we have the following theorem as known in the classical case. 

Theorem 5.5. (i) For 1 ~ p ~ oo, llfiiLP(w) ~ llfiiHP(w)• for all 

f E H 1(w). 
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(ii) Suppose 1 < p ::; oo. Then HP(w) = LP(w), and there exists 
a positive constant C16(P) such that llfiiHP(w) ::; C16(P)IIflb(w) for all 
f E HP(w). 

Proof. Note that for a given function f E L 1 (w) and for a Lebesgue 
point Q off, 

lim J(ToQ(t)) = f(Q). 
t-+oo 

Indeed by Lemma 5.4 and Lemma 5.3 (iii), we can prove this assertion 
by a similar way as the classical case (see [44, p.244]). Accordingly (i) 
is obvious. 

Theorem HL and Lemma 5.4 guarantee (ii). Q.E.D. 

We close this section with making some remarks on truncated max­
imal functions. For r > 0, let 

No,r(f)(Q) := sup{li(z)l: z E ro(Q) n (M \ B(o,r))}. 

By the same way as in the case of N 0 (f), we have that the function 
No,r(f) is lower semicontinuous on S(oo). Using Lemma 5.3 (ii) we 
obtain that 

(22) No,r(f)(Q)::; No(f)(Q)::; Crllfllu(w)+No,r(f)(Q), Q E S(oo). 

Therefore for every r > 0, 

(23) llfiiHP ~ IINo,rU)Ibcw)· 

§6. Hardy spaces, atoms and Brownian motion 

In this section we prove the equivalence of the spaces H 1 ( w), H~tom 
and probabilistic analogues of Hardy spaces which will be mentioned 
later. To describe the analogues we recall some facts and notions in 
probability theory: 

Let W be the set of all continuous maps from [0, oo) to M, and let 
Zt(w) = w(t), w E W. Since by Yau [50] the life time of Brownian 
motion on M is equal to +oo, so there exists a system of probability 
measures {Px}xEM on W such that (Px, Zt) is a Brownian motion start­
ing at x. From Sullivan [46] or Kifer [27] it follows the following (A) 
and (B): 

(A) There exists a limit Z00 (w) := limt-+oo Zt(w) for almost sure 
w E W with respect to Px, x E M. Moreover, Z00 (w) E S(oo) for 
Px-a.s. wE W. 
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(B) For every x EM and for every Borel subset F of S(oo), 

Since for every f E L1 (w), we have f E L 1 (wx) for all x EM by (9). 

Therefore for every f E L 1 (w), j(x) = Ex[f(Zoo)] for all x E M and 

limt_,00 j(Zt) = f(Z00 ) Px-a.s., where Ex[ ] denotes the expectation 
with respect to Px (x EM). 

We denote P =Po and E[ ] =Eo[ ]. First we describe a probabilis­
tic analogue of Hardy spaces: 

H~rob := {f E LP(w): llfllw = E [ sup jJ(Zt)JP] 
1
/P < oo}, 

pwb O:St<oo 

1 ::::: p < 00. 

Next we will deal with another probabilistic analogue of Hardy 
spaces. To define it, we recall some facts on Markov properties of 
{Px}xEM: Let B (resp. Bt) be the smallest a--field for which all ran­
dom variables Z 8 , s 2:: 0 (resp. Z 8 , 0 :::; s :::; t) are measurable. For 
a probability Borel measure p, on M, let P!L(A) = fs(oo) Px(A) dp,(x), 

A C W. We denote by (W,:F~",:Ff:,P!L) the usual P!L augmentation of 
(W,B,Bt,P!L) in the sense of [43, III 9]. In particular, (W,:Fx,:Ff,Px) 
denotes the Px-augmentation of (W, B, Bt, P~"). Put j: := n :F~" and 

Ft := n :Ff' where the intersection is taken over all probability Borel 

measures p, on M. Then (Zt, W, f:, Ft, Px : x E M) is a strong Markov 
process. If fact, considering that M is diffeomorphic to R n, it is a honest 
FD diffusion in the sense of [43, III 3, III 13]. 

It is known that the usual Px-augmentation (W, .rx, :Ff, Px) satisfies 
the so-called usual condition (see [43, III 9]). Moreover, for every har­
monic function u on M, the process u(Zt) is a continuous local (Px, .rn­
martingale. Denote by (W, :F, :Ft, P) the usual P 0 -augmentation (W, :F0 , 

:Ff, Po). As usual, Hardy spaces of martingales are defined as follows: 

MP := {x E L 1 (W,:F, P): IIXIIMv := E [ sup IE[XI:Ft]IP] 
1
/P < oo}, 

O:St<oo 

(1 :::; p < oo), where and always E[ ·ICJ denotes the conditional expec­
tation with respect to P and a sub a--field C of :F. Note that Meyer's 
previsibility theorem ([43, VI 15, Theorem 15.4]) implies that for every 
X E L 1 (W,P), the process (E[X/FtDt>o is an (:Ft)-continuous martin­
gale. 
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For X E L 1 (W,F, P), let N'(X) := E[Xju(Zoo)], where u(Zoo) is 
the sub u-field ofF generated by the random variable Z00 • Then by (A) 
there exists a unique element f E L 1 (w) such that N'(X) = f(Z00 ), 

P-a.s. Denote the function f by NX. Now we can mention the second 
probabilistic analogue of Hardy spaces: 

H:;,art := {.i\f(X) : X E MP}, 1 :::; p < oo, 

and IIN(X)IIw := inf{IIYIIMv :N(Y) = N(X), Y E MP}. 
mart 

To describe our results, we use the following notation: For two 
normed spaces (A, II IIA) and (B, II liB), we denote by A ~ B that 
A C B and llxiiB :::; CllxiiA for every x E A, where C is a constant 
independent of x. Further we set A ~ B if A ~ B and B ~ A. 

Theorem 6.1. 

Before proving this theorem, we would like to refer to both a work 
of Cifuentes and Koranyi ([14]) and our previous announcement [5]. As 
pointed out briefly in Introduction, we announced in [5] the following 
two theorems: 

Theorem 6.2. 

H 1(w) ~ H~rob ~ H!,art ~ H~tom(w). 

Theorem 6.3. Consider the following geometric condition: 
({3) For every Q E S(oo), t > 0 and z E C('YoQ(t),O), 

~th'oz(+oo)) n ~t(Q) =f. 0. 

If our manifold M satisfies the condition ({3), we have H:tom(w) ~ 
H 1(w). 

It is easy to see that when M is rotationally symmetric at o or the 
dimension of M is two, the condition ({3) is satisfied. However recently, 
Cifuentes and Koranyi proved the following 

Theorem CK2 ([14]). The manifold M satisfies always the con­
dition ({3). 

Therefore combining our Theorems 6.2 and 6.3 with Theorem CK2, 
we gain finally Theorem 6.1. For this reason, in order to get Theorem 6.1, 
we prove in this section Theorems 6.2 and 6.3. 

First we prove the following 
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Proposition 6.4. For every continuous function u on M, and for 
every..\> 0, 

P ({wE W: sup iu(Zt)l > .x}) ~ w(N0 (u) > ..\). 
O:C:t<oo 

In particular, we have H 1 ( w) ::S H~rob. 

Proof. We adapt to our case of an idea of Burkholder, Gundy and 
Silverstein [10]. Let F = {No(u) > ..\}. By the definition of admissible 
regions, when lu(z)l > ..\, then ~(z,O) C F. Hence by (21) wz(F) ~ 
wz(~(z, 0)) ~ c > 0. Denote by XF the characteristic function of F. 
From Doob's maximal theorem it follows that 

P({suplu(Zt)l > ..\}):::; P({supwz'(F) > c}) = P({supE[xF/Ft] > c}) 
t t t 

Q.E.D. 

For f E H~rob' we have that N f(Z00 ) = f and E[f(Zoo)/Ft] = 

](Zt)· Accordingly H~rob ::S H1nart" 

Next we prove H1nart :::5 Hltom. For this aim, we need to recall a 
probabilistic version of BMO: For f E L 1 (w), let 

IIJIIBMOpwb := sup liE [JJ(Zoo)- j(Zt)J/Ft] II + IIJII£1(w)' 
O:'::t<oo L=(W,P) 

and let BMOprob := {J E L 1 (w) : IIJIIBMOprob < 00 }. 

As in the classical case, one can consider the following version of 
BMO norm called "Garsia norm": 

II file:= sup f lf(Q)- ](x)l dwx(Q) + IIJII£lcwJ (:::::: oo), 
xEMJM 

for f E Ll(w). 
Before proving H1nart :::5 H!tom ( w), we show the following relation 

among these variants of BMOnorms by using ideas in [48]: 

Proposition 6.5. Let f E L 1 (w). Then 

(24) IIJIIBMOprob ~ IIJIIc ~ IIJIIBMO· 
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Proof. Let F8 (w) := l](w(s))- ](w(O))I, wE W, and let Ot be the 
shift operator, i.e., Ot(w)(s) := w(s + t). Then the Markov property of 
Brownian motion on M, we have that E[F8 o Otf:Ft] = Ex,[F8 ]. Hence 
E[lf(Xt+s)- f(Xt)I/:Ft] =Ex, [lf(Xs)- f(Xo)l] P-a.s. Letting s _., oo, 
we have 

E[lf(Xoo)- f(Xt)I/:Ft] =Ex, [lf(Xoo)- f(Xo)IJ 

= JM lf(Q)- f(Xt)l dwx'(Q), 

P-a.s. Consequently, we obtain the first inequality of (24). 

For x EM\ B(o, 3), we set ~(x) = ~(x, 0). Then 

r lf(Q)- ](x)l dwx(Q) 
Js(oo) 

:::; r lf(Q)- m~(x)fl dwx(Q) + r lm~(x)f- ](x)l dwx 
Js(oo) Js(oo) 

= r lf(Q)- m~(x)il dwx(Q) + l](x)- m~(x)il 
Js(oo) 

:::; 2 f If- m~(xJfl dwx 
Js(oo) 

:::; 2 f If - m~(x)!l dwx + 21 If - m~(xJfl dwx 
Js(oo)\~(x) ~(x) 

(:=(I)+ (II)) 

By Lemma 5.3 (ii) (b), we have 

(II):=:; C w(;(x)) i(x) If- m~(x)il dw :=:; CllfiiBMO· 

To estimate (I), we use Lemma 5.3 (ii) (a): Let N be the largest positive 
integer with d(o,x) > N + 1, and let ~(j) = ~(x, -j). Then 

(I)= + L If- m~(x)l dwx ( 
N ) L(oo)\~(N+l) j=l i(J+l)\~(j) 

=: (III)+ (IV). 
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From Lemma 5.3 it follows that 

< ~ exp(-jC4) 1 
(IV)~~ (~(. + 1)) . If- m~(x)fl dw 

j=l w J ~(J+l) 

< ~ exp(-jC4) {1 · 
~ ~ w(~(j + 1)) . If- m~(jHJil dw 

J=l ~(J+l) 

+ r lm~(j+l)!- m~(j)fl dw 
J~(j+l) 

+ ... + r lm~(l)f- m~(o)fl dw}. 
J~(j+l) 

Since (H4) implies lm~(J+l)f- m~(j)fl ~ llfiiBMO, we have 

N 

(IV)~ L exp( -jC4) {llfiiBMO + jllfiiBMo} ~ llfiiBMO· 
j=l 

Moreover, by Lemma 5.3 (ii) (a), 

(III)~exp(-C4d(o,x)) { lf-m~(x)ldw 
Js(oo)\~(N+l) 

::::; 2exp(-C4d(o,x))llfllu(w)· 

When x E B(o, 3), applying Theorem H we have 

Consequently we gain llfllc ~ llfiiBMO· Q.E.D. 

As a consequence of this proposition and of a probabilistic version 
of Fefferman's inequality ([24]), we have 

Proposition 6.6. For X E M 1 , 

Therefore H1uart j Hltom · 
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Proof. Suppose X E L 2 (W, P). Then from H!tom-BMO duality 
theorem in [15] it follows that 

IINXIIl,atom =sup {lw(NX)I: \]! E (H~tom)*, ll\llllcH~taml* ~ 1} 

~sup {I fs(oo) '1/JNX dwl : '¢ E BMO(w), 11'1/JIIBMO ~ 1} 
=:(I). 

Now using a martingale version ofFefferman's inequality ([24]), we have 
that 

(I)= sup{IE['¢(Zoo)NX(Zoo)]l: '¢ E BMO(w), 11'1/JIIBMo ~ 1} 

=sup {IE['¢(Zoo)X]I: '¢ E BMO(w), 11'1/JIIBMo ·~ 1} 

~ IIXIIMl sup {11'1/JIIBMOprob : '¢ E BMO(w), 11'1/JIIBMO ~ 1} 
~IIXIIMl, 

where the last inequality is proved by Proposition 6.5. 
Now suppose X E M 1. It is well known that for X E M\ there 

exist Xk E M 2 (k = 1, 2, ... ) such that IIXk - XIIMl ----t 0 as k ----t oo. 
From what we have proved it follows that IINXk -NX1IIH1 ;S IIXk-

atom~ 

X 1IIM1 ----t 0 (k,l ----too). Since H!tom is complete ([15]), there exists 
hE H!tom such that llh- NXkll1,atom ----t 0 ask----too. Therefore 

IINX- hll£1(w) ~ IINX -NXkll£l(w) + IINXk- hll£l(w) 

~ IIX- XkiiLl(W,P) + IINXk- hlh,atom 

~ IIX- XkiiMl + IINXk- hlh,atom ----t 0, (k ----too). 

Hence N X = h w-a.e. Therefore 

IINXIIl,atom = llhlll,atom = klim IINXklll,atom ~ klim IIXkiiMl 
~00 ~00 

=IIXIIMl· 

Q.E.D. 

When M is the open unit disc, this proposition for BMO was proved 
in [48]. See also [51] for balls. 

What we have proved implies Theorem 6.2. 
In order to prove Theorem 6.3, we need the following estimate: 
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Lemma 6.7. Suppose Q0 E S(oo), r > 3k and Q E ~r(Q0 ). Let 
N be the biggest positive integer such that r > (N + 2)k. Let C(j) = 

C('Y0 Q 0 (r- jk), 0) (j = 0, 1, ... , N). Then for every j E {0, 1, ... , N} 
and for every x EM\ C(j), 

IK(x, Q)- K(x, Qo)l ~ d K(x, Qo), 

where c is a positive constant such that c < 1 and is depending only on 
M. 

Proof. The following proof is based on an idea in Anderson and 
Schoen [3, p.449]. Let D(j) = M \ C(j), and let 

_ K(z,Q) 
'Pj = sup , 

zED(j) K(z, Qo) 
. f K(z, Q) 

r.p = Ill 
-J zED(J) K(z, Qo) 

Let uj(z) = K(z,Q)- :£_j_1K(z,Q0 ). Then Uj is harmonic on M and 

positive on D(j- 1). Hence by Theorem BH2 (2), 

(25) 
uj(z) C . f uj(z) 

sup ~ s 1n . 
zED(j) K(z, Qo) zED(j) K(z, Qo) 

(Note that C8 > 1.) By (25), we have 

(26) 'PJ· -r.p._1 ~ Cs(r.p. -r.p._1). -J -J -J 

On the other hand, if we consider the function vi(z) = cpj_ 1 K(z, Qo)­
K(z, Q) in stead of uj, we obtain the following estimate: 

(27) 

Let osc(j) = <pj - :£r Then by (26) and (27), we have 

C8 -1 
osc(j) ~ Cs + 1 osc(j- 1). 

Hence when x EM\ C(j), then 

I
K(x,Q) -11=1K(x,Q)- K(o,Q) [<osc(j) 
K(x, Qo) K(x, Qo) K(o, Qo) -

~ (~: ~ ~r-1 
osc(1). 
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Moreover, since 
K(z, Q) ~ K(o, Q) = 1, 
K(z,Qo) K(o,Qo) 

for all z E M \ C(j -1) by Theorem BH2 (2), we have that osc(1) is 
bounded by a positive constant depending only on M. Now what we 
have obtained implies the desired inequality. Q.E.D. 

To prove the following lemma, we need the condition ((3) stated in 
Theorem 6.3: 

Lemma 6.8. For every Q E S(oo), t > k and Q' E S(oo) \ 
Llt-k(Q), we have ro(Q') n C('YoQ(t), 0) = 0. 

Proof. Suppose that there exists a point z E r 0 (Q') n C('Y0 Q(t), 0). 
Then Q' E Ll(z, 0) and d(o, z) > t. Further by the condition ((3), we 
have Lltboz(+oo)) n Llt(Q) #0. Therefore from (H3) it follows that 

Llt-k(Q) ~ Llt(1'oz(+oo)) ~ Lld(o,z)boz(+oo)) = Ll(z,O) 3 Q'. 

This contradicts to that Q' E S(oo) \ Llt-k(Q). Q.E.D. 

Now we are ready to prove Theorem 6.3: 

Proof of Theorem 6.3. It is sufficient to prove that for every (1, oo)­
atom a, llaJIHl ~ C, where Cis a positive constant depending only on 
M. Let a be a (1,oo)-atom, that is, there exists a ball Llr(Q0 ) such that 

suppa C Llr(Qo), JM adi.v = 0, llall£<"' ~ 1/w(Ll.r(Qo)). 

Suppose r > 3k. For simplicity, let Ll = Llr(Qo), Ll(j) = C(1'0 Q 0 (r­
jk),O) n S(oo) (= Llr-jk(Qo)), and A(j) = 1'oQ0 (r- jk). Then 

N 

IINo(a)llucw) = 1 No( a) dJ.v + L [ No(a) dw 
S(oo)\A(N+2) j=l jA(j+2)\A(j+l) 

+ { No(a) dJ.v (:=(I)+ (II)+ (III)), 
jA(2) 

where N is the biggest integer with r > (N +2)k. First we estimate (II). 
Let p E Ll(j + 2) \ Ll(j + 1). Then by Lemma 6.8, ro(P) n C('Y0 Q0 (r­
jk), D)= 0. For x EM\ C('YoQ0 (r- jk), 0), 

( ) < K(x,Qo) ~ K(o,Qo) _ 1 
K x, Qo - w"'(Ll(j)) ~ w0 (Ll(j)) - w(Ll(j))" 
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Hence by Lemma 6.7, for every X E ro(p), 

la(x)l = li a(Q){K(x, Q)- K(x, Qo)} dwl 

:S llallu"' i IK(x, Q) - K(x, Qo)l dw 

. . 1 
;:2 d K(x, Q0 ) ;:2 d w(~(j))' 

Using this estimate, we have that 

1 No( a) dw ;:2 d 1 w(~(j))- 1 dw ;:2 d. 
~(j+2)\~(j+1) ~(j+2) 

Accordingly (II) ::; C. To estimate (I) , let p E S ( oo) \ ~ ( N + 2). 
Then ro(P) n C("YaQo(r- Nk),O) = 0. Note that dist (8C("YaQo(r­
Nk),0),8C("YaQo(r- (N -1)k),O)) 2: c for some positive constant de­
pending only on the curvature bounds 1\;1 and 1\;2 (see [6, pp.310-311] for 
a related estimate). Therefore for every x E r 0 (p) and Q E ~r(Q0 ), 

K < K(x, Q) ~ K(A(N), Q) 
(x, Q)- C G(x, A(N- 1)) ~ G(A(N), A(N- 1)) 

~ K(A(N), Q) ::; C, 

where the last inequality is proved by Lemma 5.3 (ii). Hence la(x)l ::; C, 
and therefore N 0 (a) (p) ::; C. Consequently we have (I) ::; C. 

(28) 

Next we estimate (III). For x EM, 

la(x)l ::; j K(x, Q)la(Q)I dw(Q) 
~r(Qo) 

:S llaiiL= h(oo) dwx :S w(~r~Qo)) · 
This implies that (III) ::; C. 

Lastly we consider the case r < 3k. By Theorem Hand (21), 

for some positive constant c depending only on M. Therefore (28) yields 
that No(a)::; c-1 , and that llaiiHl(w)::; c-1 . Q.E.D. 
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Now we have proved Theorems 6.2 and 6.3. Therefore by combining 
these theorems with Theorem CK2, we gain Theorem 6.1. 

As an immediate consequence of Theorem 6.1, we have the equiva­
lence of BMO norm, Garsia norm and probabilistic BMO norm. 

Corollary 6.9. Let f E L 1 (w). Then 

llfiiBMO >::; llfllc >::; llfiiBMOprob· 

Proof. By Proposition 6.5, it is sufficient to prove llfiiBMO ~ 
llfiiBMOprob· Note that iff E BMOprob, then f E L 2 (w). Moreover, 
L2 (w) is dense in Hltom· Therefore by Hltom-BMO duality theorem 
(cf. [15]) and Theorem 6.1, we have that 

llfiiBMO >::;sup { lls(oo) fhdwl: hE L2 (w), llhlil,atom = 1} 
>::; sup{IE[f(Zoo)h(Zoo)]l: hE L 2 (w), llhlil,prob = 1} 

~ llfiiBMOprobl 

where for the last inequality, a probabilistic version of Fefferman's in­
equality is used. Q.E.D. 

Remark 2. For f E L 1 (w), let 

llfiiBMO,p := sup m.6.,(Q) (If- m.6.,(Q)(f)IP) 11P + llfiiLv(w)' 
tER, QES(oo) 

llflla,p := sup ( r If- i(z)IP dwz) 1
/p + llfiiLP(w), 

zEM JM 

llfiiBMOprob,P := sup liE [lf(Zoo)- i(Zt)IP] 1/PII + llfii£P(w)· 
09<oo L=(W,P) 

It is known that iff E BMO(w), then f E LP(w) and llfiiBMO,p >::; 
llfiiBMO (cf. [15]). The same is true for probabilistic BMO, that is, if 

f E BMOprob, then j(Zoo) E LP(W, P) and llfiiBMOprob,p >::; llfiiBMOprob 
(cf. [36]). Now by a similar way as the proof of Proposition 6.5 we can 
prove that llfiiBMOprob,P :S: Cllfllc,p :S: CJifiiBMO,p, for every f E LP(w). 
Therefore what we have noted guarantees that 

(29) llflla,p >::; llflla. 
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§7. Carleson measures and Martin integrals 

In this section we study a condition on a measure f.L on M in order 
that the Martin integral operator, 

K[f](z) = { K(z, Q)f(Q) dw(Q) (= j(z)), z EM, 
Js(oo) 

is bounded from LP(w) to LP(M, JL). This problem was studied by 
L. Carleson in the classical Euclidean case, and he found a necessary 
and sufficient condition called now "Carleson condition". We will study 
a version to M of "Carleson condition": 

Definition 7.1. For a set A C S(=) and r > 0, let 

Sr[A] := {z EM\ B(o, r): b..(z, 0) c A}. 

A given complex Borel measure JL on M is said to be a Carleson measure 
on M if for every r > 0, 

IMI(Sr[b..t(Q)]) 
IIMIIc,r := sup (b. (Q)) + IMI(M) < =, 

QES(oo), t>l W t 

where IMI is the total variation of f.L· We wirte IIMIIc = IIMIIc,l· 

As an analogue of the classical Carleson-Hormander's theorem, we 
will prove the following by using Stein's idea: 

Theorem 7 .1. Let JL be a complex Borel measure on M. Then 
the following are equivalent: 

(i) JL is a Carleson measure on M. 
(ii) IIMIIc,r < =for some r > 0. 
(iii) For every 1 :::::; p < =, the Martin integral operator K is bounded 

from HP(w) to LP(M, IJ.LI). 
(iv) For every 1 < p < =, the operator K is bounded from LP(w) to 

LP(M, IJ.LI). 
(v) For some 1 < p < =, the operator K is bounded from LP(w) to 

LP(M, IJ.LI). 
Furthermore, for every r > 0, there is a constant c; depending only 

on M, o and r such that 

Proof. We begin with proving "(ii) ::::? (iii)". We may assume that 
r > k' + 1, where k' is the positive constant in Lemma V. Suppose 



28 H. Arai 

f E HP(w) and .X > 0. Let E := {Q E S(=) : No,r(J) > .X}, and 

G := {z E M \ B(o, r) : lf(z)l > .X}. Since {~(z, 0) : z E Sr(E)} 
is a covering of the bounded open set E, Vitali type covering lemma 
(Lemma V) guarantees that there exist z1, z2, ... E Sr(E) satisfying 
that ~(zi,O) n ~(zj,O) = 0 (i "1- j), and that for every z E Sr(E), 
~(z, 0) C ~(zi, -k') for some i. 

Now let z E G, and Q E ~(z, 0). Then z E ro(Q) n (M \ B(o, r)), 
and therefore No,r(J)(Q) >.X. Hence ~(z,O) C E. Hence there exists 
i such that ~(z, 0) C ~(zi, -k'). This implies that z E Sr[~(z, 0)] C 

Sr[~(zi, -k')]. Consequently, G C Uj Sr[~(zj, -k')]. Using this we 
have 

j j 

:::; C(k')IIMIIc,r Lw(~(zj, O)):::; C(k')IIMIIc,rw(E). 
j 

Accordingly by these estimates, Lemma 5.3 (1) and (23) we have that 

{ lfiP diJLI = { lfiP diJLI + { I liP diJLI 
} M } B(o,r) } M\B(o,r) 

~ sup li(z)IPIJLI(M) + 11~-LIIc,r { No,r(J)P dw 
zEB(o,r) Js(=) 

:::; CriJLI(M)IIJII£1(w) + IIMIIc,riiNo,r(J)IILv(w) 

:::; (Cr + 1)11MIIc,rii!IIHP(wJ· 

The part "(iii) ==;. (iv)" and "(iv) ==;. (v)" are obvious. We prove "(v) ==;. 

(i)". Let f be the characteristic function of ~t( Q) (t > 1, Q E S( CXJ) ). 
Suppose r > 0. If z E Sr[~t(Q)], then ~(z, 0) C ~t(Q). Hence for 
every z E Sr[~t(Q)], j(z) 2: wz(~(z,O)) > c/2, where cis the positive 
constant in (21). Denote by Cp the operator norm of K from LP(w) to 
LP(IJLI). Therefore, 

IJLI(Sr[~t(Q)]):::; IJLI( {z EM: J(z) > c/2}):::; (c/2)-P JM jP dJL 

:::; (c/2)-PC:II!IIiv(w) = (c/2)-PC:w(~t(Q)). 

Moreover, IJLI(M) :::; c:ll1lb(w) :::; cr Thus we have 11~-LIIc,r :::; 
((c/2)-P + 1)c:. Q.E.D. 
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§8. Carleson measures and Green potentials 

For a Borel measure J.L on M, the function 

G[J.L](x) = JM G(x, y) dJ.L(y), x EM 

is called the Green potential of J.L· In this section we study boundary 
behavior of the Green potentials of the following weighted measures: for 
a nonnegative Borel measure J.L on M, let 

J.Lo(A) = L G(:, w) dJ.L(w), A c M. 

A nonnegative function f on M is said to be asymptotically bounded 
if there exists a positive constant R > 0 such that sup:z:EM\B(o,R) f(x) < 
oo. Then we have the following 

Theorem 8.1. Let J.L be a nonnegative Borel measure on M. Sup­
pose that J.L(H) < oo for every compact setH in M. Then the following 
are equivalent: 

(i) G[J.Lo] is asymptotically bounded on M. 
(ii) J.L is a Carleson measure and satisfies the following condition 

(F): 

(F) There exist positive constants r and C such that 

(30) f G(z, w) dJ.L(w) ~ CG(o, z) for every z EM\ B(o, r). 
JB(z,l) 

We denote by Cr,!L the infimum of constants C in the condition (F). 

This theorem is used in order to prove a Carleson measure charac­
terization of BMO stated in the next section. 

Proof. First we prove "(ii) '* (i)". In order to prove this we need 
the following lemma: 

Lemma 8.2. For Q E S(oo) andt > 0, let C(Q, t) = C(1'0 q(t), 0). 
Then for 0 < r' < t + k, 

C(Q, t + k) c Sr'[~t(Q)], (Q E S(oo)). 

Proof of Lemma 8.2. Let w E C(Q, t + k). By the condition ((3) 
in Theorem 6.3 (see also Theorem CK2), we have that ~t+k(w(+oo)) n 
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Llt+k(Q) =f. 0. Hence (H3) implies that Llt+k(w(+oo)) C Llt(Q). Since 
Ll(w,O) C Llt+k(w(+oo)), we have wE Sr'[Llt(Q)). 

End of the proof of Lemma 8.2. 

We proceed to prove Theorem 8.1 "(ii) =? (i)". By Lemma 8.2, we 
have 

(31) 

where r' is a positive number with r' < t + k. 
We may assume that the number r in the condition (F) is greater 

than lOOk. Now let z E M\B(o, r+2). Denote t(z) = d(o, z) and z(t) = 
'Yoz(t(z) + t). Let N be the biggest positive integer with t(z) > N + 2. 
Let 

E0 = C(z(+oo), t(z)) and 

Ej = C(z(+oo), t(z)- j) \ C(z( +oo), t(z)- j + 1), 

(j = 1, 2, ... , N). Then f.L(Ej) ~ llt-LIIcw(Llt(z)-j(z( +oo))). 
We estimate each integral JE· G(z, w) df.L(w). Let wE Ej. Note that 

3 

when wE M \ B(z(-j),3), then G(z(-j + 2),w) ~ G(z(-j -1),w). 
Suppose N ~ j ~ 4. By [1, Theorem 1) we have that 

(32) G(w,z) ~ G(z(-j + 1),z)G(w,z(-j + 2)) 

~ G(z(-j + 1),z)G(w,z(-j -1)). 

Hence for w E Ej \ B(z( -j), 3) 

w(Llt(z)-j(z(+oo))) ~ wz(-j-l)(Llt(z)-j(z(+oo))) 
G(o,w) ~ G(z(-j-1),w) 

< wz(-j-l)(Llt(z)-j(z(+oo)))G(z(-j + 1),z) ~ G(z,z(-j + 1)) 
~ G(w, z) ~ G(w, z) 

~ G(z, z( -j + 2)) < . 1 
~ G(w, z) ~ exp( -C4d(z, z( -J + 2))) G(w, z) 

~ exp(-C4j) G(~, z). 

Accordingly, for wE Ej \ B(z( -j), 3), 

(33) G(z,w) <C (C.) 1 exp- 4J . 
G(o,w) - w(Llt(z)-j(z(+oo))) 
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Suppose w E Ej n B(z(-j),3). In this case, we havEl G(z,w) ~ 
G(z, z( -j)) and G(o, w) ~ G(o, z( -j)). Moreover, 

w(~t(z)-j(z(+oo))) ~ w(~t(z)-j(z(+oo))) 
G(o,w) ~ G(o,z(-j)) 

wz( -j-1) (~t(z)-1 (z( +oo))) 
~ G(z(-j-1),z(-j)) ~1. 

Therefore 

G(z,w) ~ G(z,z(-j)) ~ G(z,z(-j)) G(o,w) 
G(o,w) G(o,w) G(o,w) w(~t(z)-j(z(+oo))) 

. 1 
~ exp( -C4]) . 

w(~t(z)-j(z( +oo ))) 

Consequently for 4:::; j:::; Nand for wE Ei we have 

(34) G(z, w) < C ( C .) 1 
G(o,w) - exp- 41 w(~t(z)-j(z(+oo)))" 

Using (34), 

(35) { G(z,w)dJ-Lo(w)~exp(-C4j) (~ J-L(?~ ))) 
} Ej w t(z)-J z +oo 

~ exp( -C4j) liM lie· 
Next we consider the case of w E E~ = Eo U · · · U E3. Suppose 

w E E~ \ B(z, r), where r is a constant in the condition (F). Then by 
Theorem BH2 and (21), 

w(E~) ~ wz(- 1)(E~) ~ 1 
G(o, w) ~ G(z( -1), w) ~ G(z, w)" 

Hence for 0 < t < t(z)- 3 

{ G( )d ()<J-L(C(z(+oo),t(z)-3)) 
}Eb\B(z,r) z,w J-Lo w ~ w(~t(z)-3(z(+oo))) 

From (F) it follows that 

~ J-L(St[~t(z)-3-k(z(+oo))]) < CIIMIIc­
~ w(~t(z)-3-k(z(+oo))) -

{ G(z,w)dJ-Lo(w) ~ G(~r z) { G(z,w)dJ-L(w) ~ CrCr,w J B(z,r) ' } B(z,r) . 
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We consider the case of w E M \ C(z( +oo ), t(z) - N). By Theo­
rem BH2 we have that 

G(w,z) ~ G(w,z(-N + 1)) ~ G(w,z(-N + 1)) <C. 
G(o,z) G(o,z(-N+1)) -

Therefore 

{ G(z, w) dp,o( w) ~ C { dp, ~ Cllt-tllc· 
jM\C(z(+oo),t(z)-N) jM · 

Summing up, we have that 

(36) G[p,o](z) ~ C(llt-tllc + Cr,JL), whenever z E M \ B(o, r + 2). 

Next we prove (i) ::::} (ii). Suppose H := supzEM\B(o,R) G[t-to](z) < 
oo for a positive number R. It is easy to see that Sr[~t(Q)] C C(Q, t) 
for all r > 0. Suppose t > R + 2. For wE SR[~t(Q)], z = 'YoQ(t- 1/4), 
and z' = 'Yoq(t- 1/2), 

G(z,w) G(z',w) G(z',z) 1 
G(o,w) ~ G(o,w) ~ G(o,z) ~ G(o,z)' 

On the other hand, for every x E M \ B(o, 1/2), 

(37) G(o,x) ~ w(~d(o,x)(x(+oo))), 

because for x' = 'Yox(d(o,x) -1/2), Theorem BH2 implies that 

G(o,x) ~ G(x',x) · ~ 1 
W0 (~d(o,x)(x(+oo))) ~ wx'(~d(o,x)(x(+oo))) ~ . 

Therefore G(o, z) ~ w(~t(Q)). Accordingly, 

G(z,w) 1 
G(o,w) ~ w(~t(Q)) · 

From this estimates it follows that 

To prove p,(M) < oo, let z be a point in M with d(o, z) = R + 1/2. 
Then 

H > { G(z, w) dp,(w) + { G(z, w) dp,(w). 
- JM\B(o,R+l) G(o,w) JB(o,R+l)\B(o,R) G(o,w) 
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Note that 
G(z,w) 
G(o,w) ~ell wEM\B(o,R+1), 

G(z,w) 
G(o, w) ~ c2G(z, w) ~ c3, wE B(o, R + 1) \ B(o, R), 

where ci (i = 1, 2, 3) are positive constants depending only on M and 
R. Using this we have that JL(M \ B(o, R)) ~ H, and consequently by 
the assumption, JL(M) ~ H + JL(B(o, R)) < oo. Therefore IIJLIIc,R < oo. 

ForzEM\B(o,R+2), 

H ~ { G(z,w) df.L(w) ~ { G(z,w) dJL(w) 
}M G(o,w) }B(z,l) G(o,w) 

~ G( 1 ) { G(z,w)df.L(w). 
o, Z }B(z,l) 

Thus f.L satisfies the condition (F). Q.E.D. 

§9. Littlewood-Paley measures and BMO 

In this section we prove a Carleson measure characterization of BMO 
functions. To state our theorem, we consider Littlewood-Paly type mea­
sure on M: for f E L 1(w), let 

where dV is the volume measure with respect to the metric g, and 
IV' j( w) I is the norm of the gradient of j with respect to g, that is, 
in a local coordinate neighborhood, 

where (gii(w)) is the inverse matrix of the metric (gij(w)). This is an 
analogue toM of the classical Littlewood-Paley measure. 

First we prove the following theorem 

Theorem 9.1. Let f E L2 (w). Then 

JLJ(M) = { lf(Q)- ](oW dw(Q) < oo. 
Js(oo) 
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Proof. This is an immediate consequence of Dynkin's formula: 
By (9), f E L2(wz). Let h = f - }(z). Then Mth := h(Zt) is an 
L2 bounded martingale with respect to (W, Fz, :Ff, pz). Note that 

G(z,w) = 100 p(t,z,w)dt, 

where p( t, z, w) is the minimal fundamental solution of the equation 
8j8t- D.9 . Hence by Ito's formula we have that 

(38) 

{ lh(Q)I2dwz(Q) = Ez[lh(Zoo)l2] = Ez [ {oo d(Mh,Mh)] 
k~ h 

= Ez [1oo 1Vh(Zt)l2 dt] = 1oo Ez[l\7h(ZtWl dt 

= 100 
JMp(t,z,w)l\7h(wWdV(w)dt 

= JM G(z,w)IVh(wWdV(x). 

Taking z = o, the theorem was proved. Q.E.D. 

We can characterize BMO functions in terms of Carleson measures 
and Green potentials: 

Theorem 9.2. Let f E L 2 (w). Then the following are equivalent: 
(i) f E BMO(w). 
(ii) J.LJ is a Carleson measure on M. 
(iii) The Green potential 

is asymptotically bounded. 
(iv) The potential Gt defined in (iii) is bounded on M. 

Proof. First we prove "(i) ::::} (ii)". Let f E BMO(w). Then by 

Corollary 6.9, f E BMOprob· Therefore Mt := }(Zt)- }(Zo) is a BMO­
Iilartingale with respect to (W, F, Ft, P). Hence by [36, p.333], we have 
that for every (Ft)-stopping timeT, 
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Using this inequality we will prove the desired part. For this aim 
we need the following variant of (38): 

Lemma 9.3. Let h E L1(w) with h(O) = 0, and let Mth = h(Zt). 
Then for every nonnegative Borel function F on M, 

Since this is proved by the same way as (38), we omit the proof of 
this lemma. We proceed to prove Theorem 9.2. We will prove that /Lf 

satisfies the condition (v) in Theorem 7.1 with p = 2. Let 'lj; E L 2 (w). 
For A> 0, letT>.= inf{t > 0: I~(Zt)l >.A}. Since {wE W: I~(Zs)l > 
.A} C {wE W: T>.(w):::; s}, we have 

L := {(s,w) E [O,oo) X W: I~(Zs)l >.A} C [T>.,oo[, 

where [T>.,oo[ is the usual stochastic interval, i.e., {(s,w): T>.(w):::; t < 
oo }. Denote dv(s, w) = d(M, M)(dw). By (39) we have the following 
inequalities: 

v(L):::; v([T>., oo[):::; llfiiBMOprobP(T>. < oo) 

:::; llfiiBMOprobP( {sup I~(Zt)l >.A}). 
t 

Therefore we have by Lemma 9.3 and Doob's maximal inequality that 

JM l~(w)l 2 dp,J(w) = E [1"" I~(ZtW dt] :::; llfJIBMOprobE[s~p I~(ZtW] 
:::; 4llfiiBMOprobE[I1f;(ZooWJ = 4llfiiBMoprob 111f;lll2(w)· 

By the proof of Theorem 7.1 (v) => (i), we have 

(40) IIMIIc ~ llfiiBMO· 

Next we prove "(ii) => (iii)". By Theorem 8.1, we need to prove only 
that JLJ satisfies the condition (F). To prove (F), we use the following 
inequality due to Mouton (see [38, p.502 and p.501]): there exists a 
positive constant C such that for every harmonic function u on M, and 
for every z EM, 

(41) 1Vu(z)l2 :::; c r IVu(wW dV(w). 
}B(z,l) 
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Suppose z E M\B(o, r) for a sufficient large number r to be chosen later. 
Then G(o,z);:::;; G(o,y) (y E B(z,1)). By (37), G(o,z);:::;; w(~(z,O)). 
Hence 

IV ](z)l 2 :::; c r G((o, y)) IV j(y)l 2 dV(y) 
} B(z,l) G o, Z 

:::; (~f O)) { G(o, y)IV j(y)l 2 dV(y) 
W z, } B(z,l) 

:::; (~f O)) { G(o, y)IV ](y)l 2 dV(y), 
W Z, Jc(z(+oo),d(o,z)-c) 

where c is a positive constant depending only on ~>: 1 and ~>: 2 such that 
B(z, 1) C C(z(oo), d(o, z)- c). We suppose r > c + 1. Then that /Lf is 
a Carleson measure implies that 

(~t 0)) r G(o,y)IVf(y)l 2 dV(y):::; CIIMtllc, 
W z, }C(z(+oo),d(o,z)-c) 

that is, 

(42) sup IV J(zW :S CIIMtllc· 
zEM\B(o,r) 

Therefore for z EM\ B(o, r + 1), 

{ G(z,w)dJLJ(w) = { G(z,w)G(o,w)IVf(w)l 2 dV(w) 
} B(z,l) } B(z,l) 

:::; CIIMtllcG(o, z) r G(z, w) dV(w):::; C'IIMtllcG(o, z). 
}B(z,l) 

This implies that 1-LJ satisfies the condition (F) with r + 1. 
Now we prove "(iii) =} (i)". By (38) we have 

(43) r If- j(zW dwz = r G(z, w)IV j(wW dV(w). 
Js(oo) JM 

Hence the Holder inequality and the condition (iii) yield that for some 
r > 0, 

sup f If- i(z)l dwz < oo. 
zEM\B(o,r) Js(oo) 

However, (9) implies that for every z E B(o, r), 

r If- j(z)l dwz :::; Cr r If- ](z)l dw 
Js(oo) Js(oo) 

:S CrllfllucwJ + c;llfllucwJ· 
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Consequently I!JIIa < oo, and by Corollary 6.9 we have f E BMO(w). 
Lastly, we prove (i) =} (iv). By (43), Corollary 6.9 and Remark 2 

we have 
11!11&,2 2: sup Gt(x). 

xEM 

The part of "(iv) *(iii)" is obvious. Thus the theorem was proved. 
Q.E.D. 

Remark 3. (1) In the classical Euclidean case, the part "(i) {:} 
(ii)" was proved by C. Fefferman and E. Stein ([22]), and in the case 
of the complex unit ball endowed with the Bergman metric, the similar 
reseult to Theorem 9.2 was proved by Jevtic [25]. However, his proof is 
based on the nature of the ball, and our proof is different from it. See 
also [26] and [31] for related results. 

(2) The proof of the part "(i) =} (ii)" is based on an idea in Arai [4]. 
However this part can be proved also by using Theorem 8.1. Indeed, we 
have (i) =} (iv) and (iv) =} (ii) by Theorem 8.1. 

§10. Bloch functions on manifolds and a gradient estimate for 
harmonic functions 

In this section we study Bloch functions on M and give an applica­
tion of Theorem 9.2. 

Bloch functions were defined originally on the open unit disc Din C: 
a holomorphic function f on D is said to be a Bloch function on D if 

(44) sup(1-lzl)lf'(z)l < oo. 
zED 

In other word, f is a Bloch function if and only if the norm of gradient 
IV fl with respect to the Poincare metric is bounded. Taking this fact 
into account, Bloch functions on an n-dimensional Riemannian manifold 
(R, h) are defined as follows: 

Definition 10.1. Let f be a harmonic function on R. Then f is 
said to be a harmonic Bloch function on M if 

II fils :=sup IV f(x)l < oo, 
xE'R 

where IV Jl is the norm of gradient off with respect to the metric h, i.e., 
IV f(x) 12 = L:i,j hij (x)( 8 f(x )/ 8xi)( 8 f(x )/ OXj ), where (hij (x)) is the 
inverse matrix of the Riemannian metric (hij(x)). Denote by B(R, h) 
the linear space consisting of all harmonic Bloch functions on R. 
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In particular, if (R, h) is a Kahler manifold, then a fm:iction u is 
said to be a holomorphic Bloch function on M if u is a harmonic Bloch 
function and holomorphic on R. 

The first question we have to ask is whether there exists a noncon­
stant harmonic Bloch function. As known, existence problem for non­
constant bounded harmonic functions is a crucial theme in geometric 
analysis. Indeed, this problem has been a motivation of analysis on neg­
atively curved manifold, and M. T. Anderson ([2]) and D. Sullivan ([46]) 
proved existence of a lot of nonconstant bounded harmonic functions on 
M. Fortunately, their result implies also existence of nonconstant Bloch 
functions on M, because a gradient estimate of harmonic functions due 
to S.-T. Yau ([45, Corollary 3.1], [49]) tells us the following 

Proposition Y. Suppose (R, h) is a complete Riemannian man­
ifold such that its Ricci curvature is bounded below by a constant. Then 
a bounded harmonic function on M is a harmonic Bloch function on M. 

Therefore if the manifold R has a nonconstant bounded harmonic 
function, then it possesses a nonconstant harmonic Bloch function. How­
ever, the converse is not true because of the following easy fact: 

Proposition 10.1. Suppose that R = Rn and h is the Euclidean 
metric. Then B(R, h) is an (n + 1)-dimensionallinear space. 

Proof. Since h is the Euclidean metric, we have for u E C 1 (Rn), 
llull~ = supxERn "L-7=1 1(8u(x)j8xjW· Therefore the coordinate func­
tions Uj ( x) = x j and the constant function u0 ( x) = 1 are harmonic 
Bloch functions on Rn. Now let u be a harmonic Bloch function Rn. 
Then 8uj8xj is also harmonic on Rn (j = 1, ... , n), and by definition it 
is bounded on Rn. By Liouville's theorem 8uj8xj must be a constant. 
Consequently u must be an affine function on Rn. Q.E.D. 

Since by Liouville's theorem there is no nonconstant bounded har­
monic functions on Rn, it is interested to find a geometric condition in 
order that a unbounded harmonic or holomorphic Bloch function exists, 
but it is beyond the scope of this paper to study the problem. (See 
Remark 4 (1) and Li and Tam [32].) 

However it might be worthwhile to point out that in the case of 
our manifold M, Theorem 9.2 guarantees that harmonic extensions of 
unbounded BMO functions are unbounded harmonic Bloch functions: 
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Theorem 10.2. Suppose f E BMO(w). Then f is a harmonic 
Bloch function on M. Indeed 

(45) sup l\7 J(x)l 'S CllfliBMO, 
xEM 

where C is a positive constant depending only on M and o. 
In particular, there exists a unbounded BMO function b, and b is a 

unbounded harmonic Bloch function on M. 

Proof. We begin with proving the first assertion: By Theorem 9.2 
we have that the Littlewood-Paley measure P,f is a Carleson measure on 
M. Hence from (42) it follows that 

llfll~ ~ sup IY'f(zW + lllktllc ~ sup IV'f(zW + llfii~MO < oo, 
zEB(o,r) zEB(O,r) 

where r is a positive constant in (42). In addition, by [45, Corollary 3.2] 
and Lemma 5.3 (i) we have 

sup j\7 J(z)l ~ sup lf(z)l 'S sup { K(z, Q)if(Q)I dw(Q) 
zEB(o,r) zEB(o,2r) zEB(o,2r) Js(=) 

~ llfllucw) 'S llfliBMO· 

Hence llfiiB ~ llfliBMO· 
The second assertion is an immediate consequence of the first one. 

For if u is a bounded harmonic function on M, then by Fatou's theorem 
forM ([3]), we have that there exists f E L=(w) satisfying u =jon M. 
However, L=(w) £;: BMO(w) (see Appendix 2). Therefore, a unbounded 
harmonic Bloch function exists. Q.E.D. 

Suppose u is a bounded harmonic function on M. Then there exists 
f E L=(S(oo),w) such that j = u. From Yau [45, Corollary 3.1] it 
follows that 

(46) sup IY'u(x)l ~ llfliL=(wl· 
xEM 

On the other hand our inequality ( 45) implies that 

sup j\7u(x)l ~ llfliBMO ('S 3llfll£=(w)), 
xEM 

which refines (46). 
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Remark 4. · (1) Suppose R is a complete manifold with nonneg­
ative Ricci curvature and u is a harmonic function on R. Then it is 
known that by Yau's estimate u is a linear growth harmonic function if 
and only if IY'ul is bounded (see [32]). 

(2) LetT = { z E C : lzl = 1 }, and BMOA(T) the set of all functions 
fin BMO(T) such that the Poisson integral off is holomorphic in D. 
Then it is known that if f E BMOA(T), then its Poisson integral is a 
holomorphic Bloch function on D = {z E C : lzl < 1} (cf. [41]). This 
was extended to bounded, strongly pseudoconvex domain with smooth 
boundary by Krantz and Ma [30]. Our proof of Theorem 10.2 is different 
from their proofs. We note that the inequality ( 45) is an analogue to M 
of Jerison and Kenig [26, Lemma 9.9]. 

§11. Boundary behavior of harmonic Bloch functions 

In the classical case of the unit disc in C, a lot of unbounded holo­

morphic Bloch functions are known. For instance, u(z) = I:~=m z 15 k 

(z E D) is a holomorphic Bloch function, and it is known that for large 
m, 

lu(rei&) I 
lim sup > 0.685lluiiB a.e. () E [0, 21r) 

r->1 Jlog(1- r)- 1 logloglog(1- r)- 1 

(see [41, p.194]). This means that u is not only unbounded, but also it 
has no boundary limits at almost every boundary point. On the other 
hand, Makarov proved the following 

Theorem M (Makarov [34]; see also Pommerenke [41, p.186]). 
Let u be a holomorphic Bloch function on D. Then for almost every 
() E [0, 27r), 

lu( rei&) I 
limsup :::; lluiiB· 

r->1 Jlog(1- r)- 1 1ogloglog(1- r)- 1 

Somewhat later a probabilistic version of Theorem M was proved 
in [33]: 

Theorem L (Lyons [33]). Let u be a holomorphic Bloch function 
on D. Let Xt be hyperbolic Brownian motion on D. Then 

limsup lu(Xt)l < lluiiB· 
t->= Jlog(1-IXtl)- 1 logloglog(1-IXtl)- 1 -
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In the higher dimensional case, little is known about unbounded 
Bloch functions. Recently, D. Ullrich constructed a holomorphic Bloch 
function on the open unit ball in en which has no finite radial lim­
its ([47]). 

In the rest of this section, we study boundary behavior of harmonic 
Bloch functions on M, and generalize Theorem L to the manifold M. 
As first we characterize Bloch functions in terms of Brownian motion: 

Theorem 11.1. For a harmonic function u on M, the following 
(i) and (ii) are equivalent: 

(i) u is a harmonic Bloch function on M. 
(ii) The stochastic process { u(Zt) }t satisfies that 

2 { Ex[lu(Zr)- u(Zo)l 2] } lluiiB,prob := :~~ Ex[T] : T E 7;;, Ex[T] > 0 < oo, 

where Tx is the set of all (Ff)-stopping times. Furthermore, lluiiB :::; 
lluiiB,prob :=:; J211uiiB· 

In the case of the open unit disc inC, a martingale characterization 
of holomorphic Bloch functions was given in Muramoto [39]. We will 
prove Theorem 11.1 by simplifying and exploiting the method in [39] by 
combining an idea in Lyons [33]. 

Proof. (i) =? (ii). Let u be a harmonic Bloch function on M. By 
Ito's formula we have that 

for every x E M and T E 7;;. Therefore lluiiB,prob :::; v'211uiiB· 
(ii) =? (i). Suppose lluiiB,prob < oo. Let a be an arbitrary number 

with 0 <a< lluiiB· Then there exists a geodesic ball B(z,e) such that 
a:::; IY'u(x)l for all x E B(z,e). Let x E B(z,e) and T = inf{t > 0: 
Zt rf. B(z, e)}. By the definition of lluiiB,prob we have 

a2Ex[T] =Ex .[1T a2 ds] :=:;Ex [1T IY'u(Zt)l 2] 

= Ex[lu(Zr)- u(ZoWJ :=:; llfll~,probEx[T]. 

Therefore a :=:; lluiiB,prob· Thus lluiiB :=:; llfiiB,prob· Q.E.D. 
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Now we discuss on boundary behavior along Brownian paths of 
Bloch functions u on M. Since Mu := {u(Zt)- u(Z0 )}t is a continuous 
local (Ft, F)-martingale, it is known that the sets { (Mu, Mu)oo < oo} 
and {limt_,00 Mt exists} are almost surely equal. Therefore we are in­
terested to the behavior of Mu on the set { ( Mu, Mu) 00 = oo}: 

Theorem 11.2. Let u be a harmonic Bloch functions on M. Then 

limsup lu(Zt)l < ClluiiB P-a.s. 
t-->oo Jd(o, Zt) loglogd(o, Zt) -

Proof. By virtue of Theorem 11.1 we can apply an idea in [33] to 
our setting: Let Mt = u(Zt)- u(Zo) and T(t) := inf{s: (M, M)s > t}. 
By [42, Theorem 1.7, p.182], there exists an enlargement (W, Ft, F) and 

a Brownian motion ~ on W independent of Mu such that the process 

Bt .- -·- { Mr(t), 

Moo + f3t-(M,M)=' 

t < (M,M) 00 , 

t ~ (M,M)oo, 

is a standard linear Brownian motion. Therefore by the classical law of 
the iterated logarithm we have 

(47) limsup IBtl = 1 P-a.s. 
t-->oo ,jt log log t 

Now on the set A= {(M,M)oo = oo}, we have Mt = B(M,M),, and 

Consequently, we have 

1. lu(Zt)- u(o)l Cll II Imsup < U B 
t-->oo -Jt log log t -

P-a.s. on { (M, M)oo = oo }. On the other hand t ~ d(o, Zt) as t ---+ oo 
(see [35, (3.2), p.254]). Therefore we have the desired inequality P­
a.s. on { (M, M)oo = oo }. Thus the theorem was proved. Q.E.D. 

As an immediate conseque_nce of Theorem 11.2 we have the following 
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Corollary 11.3. Let M = {x E Rn : lxl < 1} and let g be the 
hyperbolic metric on M. Then for a harmonic Bloch function u on 
(M,g), 

lim sup lu(Zt)- u(o)l ~ ClluiiB a.s. Po. 
t--+oo Jlog(1-IZtl)- 1 logloglog(1-IZtl)-l 

§12. Appendix 1 (A proof of Theorem BH2 (2)) 

Proof of Theorem BH2 (2). Let Co (resp. Cb) be the cone with ver­
tex z(t) (resp. z(t+ 1)), direction tangent to 8C(z, t) (resp. 8C(z, t+ 1)) 
of sufficiently small angle e defined as in [1, p.518]. Consider sequences 
of cones C1 , ... , Ck and Ci, ... , Cf obtained by iterated 1-shift of C0 and 
Cb respectively. Then by our curvature condition, there exists a positive 
number E: depending only on K 1 and Kz such that for an angle e > E: the 
sequence of cones q, ... , C0, C(z, t + 1/2), Cb, ... , Cf together with their 
vertices is a <f>-chain through z(t+1/2) in the sense of Ancona [1], where 
<f> is depending only on K 1 and K2. Moreover, by the remark after Propo­
sition 15 in [1], we have that the sequence (CW, ... , (Cb)c, C(z, t + 1/2)c, 
C0, ... , Ck together with their vertices is a '1!-chian through z(t + 1/2) 
where \]! depends only on <f>. Therefore from this observation it follows 
that the sets MnC(z, t+ 1)c, MnC(z, t+ 1/2)c and MnC(z, t)c satisfy 
the assumption of [1, p.519, Theorem 5']. Q.E.D. 

Remark 5. It is easy to see that also Theorem BH1 for cones 
with more general aperture implies Theorem BH2. 

§13. Appendix 2 (Unbounded BMO functions) 

As is well known, the function log lx- 11 on the unit sphere is un­
bounded but belongs to the classical BMO space. However, it seems to 
be difficult to construct a unbounded BMO function on the sphere at 
infinity. In this section we give a nonconstructive proof of existence of 
unbounded BMO function: 

Proposition 13.1. Suppose that (X, p, 11) is a space of homoge­
neous type in the sense of Coifman and Weiss [15], and that 11(X) = 1. 
For x EX and r > 0, let B(x, r) = {y EX: p(x, y) < r }. Assume that 
11(B(x, r)) > 0 for all x EX and r > 0, and that limr--+0 f.1(B(x, r)) = 0 
for every x EX. Then L 00 (X) -1- BMO(X). 
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Proof. Suppose L00 (X) = BMO(X). Then it is easy to see that 

the norms II·IIL= and II·IIBMO must be equivalent. Therefore by Hltom­
BMO duality and L 1-L00 duality, we have that the norms II · llu(w) and 

II· IIHl are equivalent on L 2 . Since L 2 is dense in L 1 and Hltom' we 
atom 

have Hltom = L1 . By [15], Hltom is isomorphic to the dual space of 
the Banach space VMO. Therefore L 1 also is isomorphic to the dual 
of VMO. However this is not the case as we will prove below (see 
Remark 6 after the proof). Using this isomorphism we can define on 
the space L 1 the topology induced from the weak * topology of the 
dual of VMO. Moreover, with this topology, L 1 is a locally convex 
topological linear space. From Banach-Alaoglu theorem it follows that 
the closed unit ball B(L1 ) of L 1 is compact convex set in the induced 
topology. Therefore by Krein-Milman's theorem B(L1 ) must have at 
least one extreme point. However L 1 has no extreme points. For if 
f E B(L1 ), then we can consider the following two cases: (Case 1) 
There exists a Borel set E C X such that IE III df.L E (0, 1). (Case 2) 

For every Borel set E C X, IE lfl df.L = 1 or = 0. In the first case, f 
is not an extreme point of B(L1 ), because f = ah + (1- a)h, where 

a = IE lfl df.L E (0, 1), h = a- 1 fXE, and h = (1- a)- 1 fXX\E (XA 
is the characteristic function of A). The second case does not happen: 
Let llfllu > 0. Then we have f.L({O < lfl < oo}) > 0. By Lebesgue's 
differential theorem, for almost every x E {0 < III < oo }, 

(48) . 1 1 hm (B( )) lfl df.L = lf(x)l E (0, oo). 
r->0 f.L X, r B(x,r) 

However, in the second case, 

1 { III df.L = 1 
f.L(B(x, r)) }B(x,r) f.L(B(x, r)) or O, 

and 1/f.L(B(x,r))---+ oo as r---> 0. This contradicts (48). Q.E.D. 

Remark 6. A. Pelczynski proved that for a O"-finite and non 
purely atomic measure space (~, f.L), the space L 1 (~, f.L) is not isomorphic 
to any conjugate Banach spaces ([40]). 

§14. Appendix 3 (Local Fatou-Doob theorem revisited) 

In this section we study local version of Doob-Fatou type theorem 
on boundary behavior of harmonic functions, and yet another definition 
of Hardy spaces. 
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Fort> 0, let Tj(Q) = Td(Q) n (M \ B(o, t)) (d > 0) and r~(Q) = 
r a(Q)n(M\B(o, t)) (a E R). We say a function f converges admissibly 
( resp. nontangentially) to l at Q E S ( oo) or has an admissible limit 
(resp. a nontangential limit) l if limk--+= f(xk) = l for every a E R 
(resp. d > 0) and for every sequence {xk}k C r a(Q) (resp. Td(Q)) with 
Xk --+ Q as k --+ oo. We wirte the admissible limit (resp. nontangential 
limit) by ad-limx--+Q f(x) (resp. K-limx->Q f(Q)). 

In 1989 we proved a local version of Fatou-Doob theorem under a 
technical assumption on admissible regions (see [5, Theorem 5.1]). How­
ever, by virtue of results in Cifuentes and Koninyi [14] we can remove 
the assumption, and obtain the following theorem by the same way as 
in [5, Theorem 5.1]: 

Theorem 14.1. Let h be a positive harmonic function on M. Let 
E be a Borel subset of S ( oo), and u a harmonic function on M. Assume 
that for each Q E E, there exist t > 0 and a E R such that u/h is 
bounded below on r~ ( Q). Then there exist F1 , F2 C S ( oo) such that 
w(F1 ) = JLh(F2 ) = 0, where /Lh is the Martin representing measure for 
h, and that u/h converges admissibly at every point in E \ (F1 U F2). 

Recently, F. Mouton [38] proved local versions ofFatou theorem and 
of Calderon-Stein type theorem. We note that the former follows also 
from Theorem 14.1 with h = 1. 

As an application of Theorem 14.1 we prove the equivalence of 
HP(w) and HP(M) which is defined in §3: 

Theorem 14.2. Suppose 1 ~ p ~ oo. Let u E HP(M). Then 

there exists f E HP ( w) such that f = u on M. 

Proof. Here we prove only the case of p = 1. We can apply the 
following proof to other p E (1, oo). Because of Theorem 14.1 (or [38, 
Theorem 5.1] and Theorem CK1), for w-a.e. Q E S(oo), the admissible 
limit f(Q) = ad-limx--+Q u(x) exists. Furthermore, Ut(Q) = u(ToQ(t)) is 
continuous on S(oo) and f(Q) = limt_,= Ut(Q) w-a.e. Q E S(oo) and 
\ut(Q)\ ~ N0 (u)(Q). Therefore we have that the function f: Q f---* f(Q) 
is measurable and f E L 1 (w). 

It remains to prove that u =f. Let z EM. By (9), N0 (!) E L 1 (wz). 
Since Theorem 6.2 holds true also for wz, we have that SUPo::;t<= \u(Zt) \ 
E L 1 (W, Pz)· Therefore by the martingale convergence theorem there 
exists Fz E L 1 (W, Pz) such that limt--+= u(Zt) = Fz and u(Zt) = 
Ez[Fz/Ft] (Pz-a.s.). For Q E S(oo), let (PzQ, Zt) be the conditioned 
Brownian motion to exit M at Q (see [38, 3.3] for the definition and 
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basic properties). Then 

Hence for wz -a. e. Q E S ( oo), P~ ( {limt---.00 u( Zt) = Fz}) = 1. From this 
we prove the following assertion: 

Assertion. There exists a constant Gq ,z such that limt_.00 u( Zt) = 

Gq,z P~ -a. e. 

Proof of Assertion. Let Ij = [j,j + 1), and Lj = {limt_.00 u(Zt) 
exists in Ij} (j E Z). Then Lj is asymptotic in the sense of [38, p.482], 
and therefore the 0-1law implies that P~(Lj) = 1 or 0. Therefore there 
exists a unique number j E Z such that P~(Lj) = 1 and P~(Li) = 0 for 
i ::/= j. We write the interval Ij by H 1 . Consider the dyadic decompo­
sition of H1 , namely H11 = [.i,j + 1/2) and H12 = [j + 1/2,j + 1). 
Let L1i = {limt-->oo u(Zt) exists in Hli} (i = 1, 2). Then again by 
0-1 law we have either P~(£11 ) = 1 or P~(£12 ) = 1. We denote 
by H 2 the interval H 1i with P~(L1i) = 1. Continuing this proce­
dure we get a decreasing sequence of intervals {Hk}k=l,2 , ... such that 
P~({limt_.00 u(Zt) exists in Hk}) = 1. Sincethereexistsapoint Gq,z E 
R such that {Gq,z} = nk Hk, the assertion is proved. 

End of the proof of Assertion. 

Because of (9) and Theorem CK1, K-limx-->Q u(x) = f(Q) for wz­
a.e. Q E S(oo). Hence by [38, Corollary 4.4] we have that f(Q) = Gq,z 
for wz-a.e. Q E S(oo). 

Since Zoo= limt_.00 Zt = Q a.s. P~ for every Q E S(oo), we have 
that for wz-a.e. Q E S(oo), 

1 = pzQ({ lim u(Zt) = Gq,z}) = P~({ lim u(Zt) = f(Q)}) 
t~oo t---too 

= P~({ lim u(Zt) = f(Z00 )}). t-->oo 

Therefore Pz( {limt---.00 u(Zt) = f(Zoo)}) = 1. This implies that Fz = 
f(Zoo) Pz-a.s. Thus 

u(z) = Ez[u(Zo)] = Ez[Ez[Fz/F0]] = Ez[f(Zoo)] = {. f dwz. 
Js(oo) 

Q.E.D. 
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From this theorem it follows that HP(M) is naturally identified with 
HP(w). 
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