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Hardy Spaces, Carleson Measures and
a Gradient Estimate for Harmonic Functions
on Negatively Curved Manifolds

Hitoshi Arai

Abstract.

In this paper we study Hardy spaces, BMO, Carleson measures,
Green potential and Bloch functions on a Cartan-Hadamard mani-
fold M of pinched negative curvature. Further, using our results on
Carleson measure and BMO, we give a gradient estimate for har-
monic functions on M. It is different from Yau’s gradient estimates,
and is applied to the existence problem of harmonic Bloch functions
described in §10. We deal also with boundary behavior of harmonic
Bloch functions on M.

81. Introduction

In their paper [22], C. Fefferman and E. Stein developed the theory
of Hardy spaces of harmonic functions on the upper-half spaces endowed
with the Euclidean metric. As is well known, their theory have played
crucial roles in the classical harmonic analysis. In 1981 and 1982, D. Jeri-
son, E. Fabes, C. Kenig and U. Neri extended some important parts of
the theory of Hardy spaces on the upper-half spaces to more general
Euclidean domains with non-smooth boundaries ([21], [20] and [26]).

On the other hand, after the work of A. Kordnyi on the boundary
behavior of harmonic functions on symmetric spaces ([28]), Hardy spaces
have been investigated also for symmetric spaces. In particular, D. Geller
([23]) and A. Debiard ([16}, [17]) studied Hardy spaces on Siegel upper-
half spaces of type II, and in somewhat later, P. Cifuentes extended the
classical theorems on the probabilistic characterization and area inte-
gral characterization of Hardy spaces to rank one symmetric spaces of
noncompact type ([12] and [13]).

Now in this paper we study Hardy spaces, BMO and Carleson mea-
sures on a complete, simply connected n-dimensional Riemannian man-
ifold (M, g) such that the sectional curvatures Kjs of M satisfy —x2 <
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Ky < —x2, for some constants x; and kg with 0 < ky < kg < +00.
A typical example of such a manifold is a rank one symmetric space of
noncompact type, but also many other examples are known.

For the manifold M, the boundary behavior of harmonic functions
has been studied by several authors: For instance, the solvability of the
Dirichlet problem for the manifold M was proved by Anderson [2] and
D. Sullivan [46], and moreover in Anderson and Schoen [3] it was proved
that the Eberlein-O’Neill compactification of M is homeomorphic to the
Martin compactification (see also Kifer [27], Ancona [1]). Then Ander-
son and Schoen [3], Ancona [1], Arai [5], Mouton [38], and Cifuentes and
Koranyi [14] studied boundary behavior of harmonic functions on M.

This paper consists of two parts. First part is concerned with the
Hardy spaces of harmonic functions on M, and the second part with
Carleson measures. Then we will give an application to Bloch functions
on M. ‘

We will begin in §2 with a quick review of some preliminaries about
harmonic functions on M. In §3 we will define analogues to the manifold
M of the classical Stoltz domain and of the classical Hardy spaces of
harmonic functions. Section 4 contains a review real analysis on the
sphere at infinity. In §5 we prove some elementary properties of Hardy
spaces HP, and then in §6 we prove that the Hardy space H'!, atomic
Hardy space H},, and probabilistic Hardy space H; are mutually
equivalent. Some results in this section were announced already in our
paper [5], but in the announcement we assumed an additional geometric
condition in order to show that every (1,00)-atom is in H'. In the
present paper we call it the condition (3). As pointed out in [5], there
are some examples of manifolds having the condition (8). However,
recently Cifuentes and Koranyi [14] proved that M possesses always the
condition. Therefore combining theorems announced in [5] with their
result, we gain the equivalence of the three different definitions of Hardy
spaces.

In the second part of this paper we study Carleson measure and its
application to Bloch functions on M. In §7 we are concerned with rela-
tionship between Carleson measures and LP boundedness of the Martin
integral, and in §8 we give a characterization of Carleson measure in
terms of a certain Green potential. Using it, in §9 we prove Carleson
measure characterization of BMO functions. In the classical Euclidean
case, this characterization was found by C. Fefferman and E. Stein ([22]),
and in the case of the complex unit ball endowed with the Bergman met-
ric, the characterization was proved by Jevtic [25]. However, his proof
is based on the nature of the ball. Our proof is different from it. In
§10 we will study harmonic Bloch functions defined on M. From our
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Harmonic Functions on Negatively Curved Manifolds 3

Carleson measure characterization of BMO functions, we give a gradient
estimate for harmonic functions on M (see (45)), and prove existence of
unbounded harmonic Bloch function on M. Moreover in §11 we study
boundary behavior of unbounded harmonic Bloch functions, and prove
a generalization of Lyons’ theorem on the law of iterated logarithm.

Notation: In this paper we fix a point o in M as a reference point.
The constants depending only on g, n, k1, kK2 and o will usually be
denoted by C, C" or C; (j = 1,2,...). But C and C’ may change in
value from one occurrence to the next, while constants C; (j =1,2,...)
retain a fixed value. For two nonnegative functions f and g defined on
a set U, the notation f < g indicate that f(z) < Cg(z) for all z € U,
and f ~ g means that f Tgand g 5 f.

Acknowledgement. The author would like to thank to Professor
Adam Korényi for his suggestion and encouragement. The author is
honored to be invited to the last Taniguchi conference on Mathematics,
and thanks to the organizing comittee of the conference.

§2. Preliminaries

In this section, we review Harnack type inequalities for positive har-
monic functions and some facts about the Martin compactification. Both
are very important for us.

A C? function f in an open set U of M is called harmonic in U if
Ay f = 0in U, where Ay is the Laplace-Beltrami operator of (M, g).
Forx € M and r > 0, let B(z,r) :={y € M : d(z,y) <r}, whered( , )
is the distance function with respect to the Riemannian metric g. Then
Moser’s Harnack inequality implies

Theorem H (Interior Harnack inequality). Let R > 0. Then for
every positive harmonic function u on a ball B(z,2R),

(1) Cr ru(y) <u(z) < Cy ruly),

for ally € B(z, R), where C1,r is a positive constant depending only on
M and R.

In this paper we will use the so-called boundary Harnack inequal-
ities. They were proved firstly by Anderson and Schoen [3] and then
also by Ancona [1]. To describe them we need some notation. De-
note by S(co) the sphere at infinity of M and by M the Eberlein and
O’Neill compactification M U S(co0) of M (see [19] for definitions). For
z € M and y € M (z # y), let v, be the unit speed geodesic such that
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Yoy (0) = = and 7y, (t) = y for some ¢t € (0, 400]. Since such a number ¢
is unique, we denote it by t,.

Forpe M, v € T,M and é > 0, let C(p,v,6) be the cone about the
tangent vector v of angle § defined by

C(p,v,8) == {x € M\ {p} : Zp(v,¥p=(0)) < 6},

where Z,, denotes the angle in T, M and ,,(t) is its tangent vector at .
The following is called boundary Harnack inequality:

Theorem BH1 (Anderson and Schoen [3]: see also [1], [27]). Let
p € M and v € T,M with g,(v,v) = 1. Denote C = C(p,v,7/4) and
T =C(p,v,7/8)\ B(p,1). Let u and h be positive harmonic functions
on CN M, continuous up to the closure C of C in M and vanishing on
C N S(c0). Then

u(z
(2) Cl eXP{—Czd(p,‘$)} < % < C’3 exp{—C4d(p, ‘T)}v
3 C—l U(po) < u(x) < C 'U:(p()),
@ " ko) = k@) = i)
for z € T, where py = exp,(v), and C, .. .‘, Ce are constants depending
only on M.

For z € M \ {o} and t € R, we denote
C(Z7 t) = C(ryoz(toz + t)‘) ;YOZ (tOZ + t)? 7r/4)7 a‘nd Z(t) = ’YOZ (tOZ + t)'
In this paper we will use the following variation of Theorem BH1:

Theorem BH2 (Ancona [1]). (1) Let u and h be positive har-
monic functions on a cone C(z,t) N M and vanishing continuously on

C(z,t) N S(c0). Then

qu{z(t+1))  u(z) u(z(t+ 1))
T hGE+D) S he) S ThGEED)

forall z € C(z,t+1) N M,

where C7 is a positive constant depending only on M.
(2) Let u and h be positive harmonic functions on M \ C(z,t + 1),
and vanishing continuously on (M \ C(z,t+ 1)) N S(co). Then

—1u(z() _ u(z) u(z(t))
C, ) Sh(m)gcsh(z(t))’ for all z € M\ C(z,t),
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where Cg is a positive constant depending only on M.

The second statement in Theorem BH2 seems to be a little different
from (1), but it is actually a special case of Theorem 5’ in [1]. For reader’s
convenience, we give a proof of Theorem BH2 (2) in Appendix 1.

The following theorem is an important consequence of boundary
Harnack inequalities:

Theorem AS (Anderson and Schoen [3]; [1], [27]). (1) The Mar-
tin compactification of M with respect to the Laplacian Aps is homeo-
morphic to Eberlein and O’Neill’s compactification M, and the Martin
boundary consists only of minimal points.

(2) For every z € M, there exists a unique function K,(z,Q) (Q €
S(00), z € M\ {Q}) such that for every Q € S(c0),

4
5
6
7

K,(-,Q) is positive harmonic on M,

K,(-,Q) is continuous on M \ {Q},

KZ(QI,Q) 0 for all @' € S(o0) \ {Q}, and
(

Kz 2, Q)

/\/\/\/—\
~— e~

(This function is called the Poisson kernel normalized at z.)
(3) For every z € M and for every positive harmonic function u on
M, there exists a unique Borel measure mZ on S(oo) such that

®) w@) = [ K.(0,Qdmi(@), weM.
S(o0)

(The measure mZ, is called a Martin representing measure relative to u
and z.)

Throughout this paper, we denote K(z,Q) = K,(z,Q), and write
simply w” the Martin representing measure relative to the constant func-
tion 1 and x € M. It is called the harmonic measure relative to z.
In particular, let w = w®. Note that w*(S(cc)) = 1 and dw*(Q) =
K(z,Q)dw(Q), for all z € M. ‘

Theorem H yields that for any compact sets E C M, there exists a
positive constant cg satisfying

) ¢5lw () < w(4) < cpw®(A)

for all z,y € F and for all Borel sets A C S(o0).
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§3. Approach regions and Hardy spaces

In order to study Hardy space H' and BMO on M, we begin with
recalling two analogues for M of the classical Stoltz region. First is the
following:

Definition 3.1 (Anderson and Schoen [3]). For @ € S(o0) and
d >0, let

(10) To(Q) = | B(roa(t), ).

>0
Following [3], we call such a set the nontangential region at @ € S(00).

In this paper we will be mainly concerned with another analogue of
the Stoltz region in some technical reasons: For x € M and t € R, let

(11) A(z,t) = C(z,t) N S(c0).
Definition 3.2 ([5]). For Q € S(o0) and « € R, let

(12) Ta(Q) = {z € M: Q€ Al )},

and we call this set an admissible region at Q.

This definition is motivated by the following consideration about
classical Stoltz domains in the upper half-plane Rﬁ_: Recall that the
Stoltz domain S,(z) at z € R with angle a > 0 is the set {(y,t) €
R x (0,400) : |y — z| < at}. For z(= (20,t)) € R3, let D(z,0) :=
{y € R : the angle at z between the segment zy and ZZp is less than
a}, where pg is the segment joining p and ¢ for p,q € ﬁi. Denote
Si(z) = {z € R} : z € D(z,)}. Then Sy(x) = S,(z). Now we can
easily see that our set A(z, ) corresponds to the domain D(z, a), and
T'w(z) to the set S’ (z).

We note that if we define Hardy spaces by using our admissible
domains, we may apply “tent” method to our case as we will show later.
By this reason, in this paper, we use the admissible regions instead of
nontangential regions in the sense of [3]. However, it should be noted
that both are closely related to each other:

Theorem CK1 (Cifuentes and Kordnyi [14]). Two families of ap-
proach regions {T4(Q)} and {T'o(Q)} are equivalent in the sense of [14],
that is, for all a € R, there exists d > 0 and R > 0 such that for all

Q € S(c0),
(13) T'o(Q) N (M \ B(o,R)) C Tu(Q) N (M \ B(o, R)),
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and vice versa.

For the notational convenience, for every f € L' (w) (= L!(S(c0),w)),
let
f"(x) _ { fS(oo) K(x, Q)f(Q) d(:.J(Q)7 z €M,

f(z), z € S(00).

Then f is harmonic on M. Now Hardy spaces H?(w,a) (1 < p < oo,
a € R) are defined as follows: For a function u on M, let

No(u)(@) := sup |u(z)|, Q€ S(c0),

z€ly (Q)

and let

HP(w,a) = {f € LP(w) : No(f) € LP(w)}.

Denote || f|lg1(w,a) = |Na(f)llze(w)-

Here we should note that when u is a continuous function on M,
then Ny (u) is lower semicontinuous on S(00). Indeed for every A > 0,
the set F :={Q € S(00) : No(u) > A} is open. For if Q € E, then there
exist € > 0 and z € I'4(Q) such that |u(z)| > A+ ¢. By the definition of
I, (Q), we have Q € A(z,«). We can take an open subset U of S(o0)
such that Q € U C A(z,a). Since z € T'o(Q’) for all Q' € U, we have
U C E. This implies that F is open.

As we will see in §5, these spaces HP(w, o) and H?(w, 8) are equiv-
alent for every o, 5 € R. We denote

HP(w) = H?(w,0), and ||fllgew) = IIfllarw,0)-

Remark 1. As in the classical case, another Hardy spaces of har-
monic functions-on M are defined by

HP(M) := {u : u is harmonic on M and Np(u) € IP(w)}, 1<p < oo.

See Appendix 3 for these Hardy spaces.

84. Real analysis at infinity — Quick Review —

Before going to the main body of this paper, we set down the basic
facts about real analysis on the sphere at infinity S{co) of M. All
theorems stated in this section follow immediately from results in [3] and,
in particular, from the abstract theory of real analysis due to Coifman
and Weiss [15]. For any Q € S(00) we define A;(Q) to be the “ball” in
S(o00) centered at @,

At(Q) = A('VOQ(t)7O) (: C(”YOQ(t)a;YoQ(t)aﬂ'/ll) N S(OO))’
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when ¢ > 0, and let A;(Q) = S(c0) when t is negative. Then we can see
that the family of the sets {A:(Q)} defines a quasi-distance p on S(c0)
which makes the triple (S(c0), p,w) is a space of homogeneous type in
the sense of Coifman and Weiss [15] as follows: By [3] the family of
“balls” {A;(Q)} satisfies the following properties:

(H1) For all s >0 and r >0

S(00) = lim_Au(Q) 3 An(Q) 22 Aris(@) D Jim A(Q) = {Q),

where A DD B means that A contains the closure of B. Furthermore,
{A,(Q) : 7 € R} is a fundamental system of neighborhoods of Q.

(H2) Let Q1,Q2 € S(00) and r € R. If A.(Q1) N A, (Q2) # 0, then
A, 1(Q1) D A(Q2), where k is a positive integer depending only on
the curvature bounds x; and ss.

(H3) 0 < w(A(Q)) < 1 for every Q € S(oco) and 7 € R.

(H4) For every A.(Q) and I > 0, w(Ar—4(Q)) < C(Nw(Ar(Q)),
where C(I) is a positive constant depending only on M, o and [.

Without loss of generality, we may assume k > 2. Note that the
function

p(@.Q) = int{e™: Q@ € M@}, Q.Q € S(x)

satisfies that
(D1) po(Q, Q") = 0 implies Q = Q’,
(D2) po(Q, Q") < €*po(Q’, Q), where k is the constant in (H2),
(D3) po(Q, Q") < e*(po(Q, Q") + p(Q',Q")),
(D4) {Q" : po(Q, Q") <1} = Atog(1/r)(Q) (r > 0) and

(14)  w{Q :p0(Q,Q) <2r}) < Cw({Q : po(Q,Q") < T}).

Consequently, the symmetrization

p(Q,Q') — pO(Q:Q ) ;— pO(Q aQ)

is a quasi-distance in the sense of [15] such that (S(c0), p,w) is a space
of homogeneous type, because there exists positive constants k; and ko
depending only on M such that

(15) Aiog(1/r)+k: (@) CH{Q: p(Q, Q") < T} C Alogr/r)—k, (Q)-

Therefore the abstract theory in [15] can be transplanted to our case.
For instance, some covering lemmas, theorems on atomic Hardy spaces
and BMO on spaces of homogeneous type hold true for (S(o0),w, p). We
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will sketch statements of some of them. As first, we deal with a covering
lemma of Vitali type. Since the family of balls defined by the quasi-
distance p and the family of sets {A;(Q)} are equivalent (see (15)), we
can state Vitali’s covering lemma in terms of {A(Q)}:

Lemma V (Vitali type covering lemma: see [3], [15]). Let E C
S(oc0). Suppose {A;)(Q) : Q € E} is a covering of E. Then there
exist Q1,Q2,... in E such that
(16) Ar@)(Qi) N Ar@(Q5) =0, i # j, and
(17) for every Q € S(o0), there ewists i with Arg)(Q) C Apq,)—k (Qi),
where k' is a positive constant depending only on M and o.

As known, from this lemma it follows the Hardy-Littlewood maxi-
mal theorem. To mention the theorem, we need the uncentered Hardy-
Littlewood maximal function of f € L'(w) defined as

1
m = L d S(c0).
(18) MAHQ) &(Q’):Sgre)m(@') w(A(Q)) /m(@f)m “ Q €5(c0)

Then we have

Theorem HL (see [15]). (1) There exists a positive constant Cq
such that

w({Q € S(c0) : M(F)(Q) > A}) < CoA™ I f |3 (w)

for all f € LY (w) and for all X\ > 0.
(2) For every 1 < p < oo, there exists a positive constant Ciop such
that

IM(H)lLrw) < Cropllfllzew)
for every f € LP(w).

Now let us mention the definition of atomic Hardy spaces on S(c0).
In [15], atomic Hardy spaces and BMO on a space of homogeneous type
are defined in terms of its quasi-distance. However in our case, as we
have seen, the family of balls defined by p is equivalent to {A¢(Q)}. For
this reason, one can define atomic Hardy spaces and BMO in terms of
{A+(Q)} which are equivalent to those defined by the quasi-distace p:
Let 0 < p<gandp <1< g < co. A function a on S(o0) is called (p, q)-
atom if the support of a is contained in a “ball” A,.(Q), /. S(o0y @ dw =0,

and lal|pe@) < w(AA(Q))Y97V/P. Since w(S(00)) = 1, we regard also
the constant function 1 as a (p, ¢)-atom.
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For a continuous function f on S(o0), let

= su |f(Q) N f(Ql)l . 7 wi / 7
|fla = p{—__w(A,(Q"))a :reR, Q" € S(o0) with Q,Q" € A (Q )}.

Let A® be the set of all continuous functions f with |f|, < oo. The
atomic Hardy spaces HP?(w) (= HP*9(S(00),w)) are defined as follows:

1) If0o<p<l<g< oo, then HP9(w) is the subspace of the
dual of A1/P~1 consisting of those linear functionals admitting an atomic
decomposition

(19) h=>"Naj,
j=1

where ); € R, and a;’s are (p,g)-atoms and )72, [X;|P < co.

(ii) If p=1 < g < 0o, then H19(w) is defined as the set of all func-
tions h in L'(S(0c0),w) such that h has an atomic decomposition (19),
where a;’s are (1, g)-atom and } 72, |A;] < co.

In any case we set

o0

o0
hP  =inf AP :h= Ajaj, a;’s are (p, g)-atoms
Pq J jAj, Aj
=1 j=1

for h € HP%(w). Then the function ¢(h, f) = |h — f|pq is defines a
complete metric on HP9(w).

By Coifman and Weiss [15], we obtain that H?%(w) is isomorphic
to HP*°(w), for 1 < ¢ < oo.

Let BMO(w) be the set of all functions f € L'(S(00),w) such that

1
| fleMO(W) = sup —
e QeS(oo),reRw(Ar(Q)) A (Q

< 00,

: If —ma @) fldw + || fll 1 (w)

where
1

ma,@f = w(A(Q)) Jar)

Moreover, since the definitions of H??(w) and BMO(w) are equivalent
to those by [15], we have the following:

fdw.
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Theorem CW ([15]). (1) H?9(w) = HP**(w), and moreover the
(quasi-) norms |- |pq and |- |p,co are equivalent (0 <p < 1,1 < g < 00).

(2) Ifp<l,a=1/p—1 and 1 < q < oo, then A® is isomorphic to
the dual of HP9(w).

(3) For every 1 < ¢ < oo, the dual of H“%(w) is regarded as the
space BMO(w) in the following sense: If h = > Aja; € HY%(w), then
for each £ € BMO(w)

m—r00

(h,£) == lim )\j/ la; dw
b's

is a well defined continuous linear functional and its norm is equivalent
to |€lsmo- Moreover, every linear continuous functional on HY4(w) has
this form.

In this paper we write

Haltom(w) = Hl,oo(w), and ” : Hl,atom = I ’ ll,oo~

§5. Some basic properties of Hardy spaces

This section is concerned with an elementary properties of Hardy
spaces. As first we prove the equivalence of HP(w,a) (o € R). From
now on, for z € M\ {0}, we denote 2o = 7o.(+00) and t(z) = t,,, where
to- i8 a unique positive number such that v,,(%,.) = 2.

Proposition 5.1. Suppose —0o < a < 3 < oo. For every 1 <
p < oo, HP(w,a) = HP(w,B). Moreover, the norms | f|mr. g and
| fll 7 (w,a) are equivalent.

Proof. This proposition is a direct consequence of the following
lemma:

Lemma 5.2. For every continuous function u on M,
w({Q € S(o0) : Np(u)(@) > A})

<w({Q € §(00) : No(u)(Q) > A})
< Ca,pw({Q € 5(c0) : Np(u)(Q) > A}),

or all A > O, where Ca is a pOSiti’UB constant dependmg O’ﬂly on o, ﬁ,
B
oand M.

Proof of Lemma 5.2. We adapt a standard argument (cf. {10]) to
our case. Since by definition, I'g(Q) C I'o(Q), it is sufficient to prove
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the second inequality. Let f be the characteristic function of the set
{Ng(u) > A}. For every Q € {Nq(u) > A}, there is a point z € M
such that |u(z)] > A and Q € A(z,a). Then since Q@ € A(z,a) =
Ay(z)4a(2e0), We have .

(20) M(H(Q) = | dw.

w(A(z,0)) Ja,a)
On the other hand, (H2) implies that
A(z,B) C A(z,a) = Ayz)ralZ00) C At(z)ta—k(Q)
C At(x)+a—2k(200) = At(2)4+8—(B+2k—a)(Zoo)-
Hence by (20),
1
(At(z)+8-(B+2k-a) (200)) A(z,8)

1 — (1), say).
206+ 2k —0) ! p s /A M (=0, )

Further, since for Q' € A(z, ), Ng(u)(Q') > X so we have that
|F(@")] > 1, and therefore (I) > C(8 + 2k — a)~! > 0. Consequently,
{Na(u) > A} C {9(f) > C(B+ 2k — a)~*}. Accordingly by Theo-
rem HL (1) we obtain that '
w({Na(u) > A}) < CoC (B + 2k — )| fllLr(w)
= CyC (B + 2k — a)w({Ns(u) > A}).

M@ > - |fldo

QED.

Next we prove some estimates for the Poisson kernel which will be
used in this paper:

Lemma 5.3. (i) Suppose r > 0. Then there exists a positive
constant Cy , such that

Cil < K(2,Q) < Cop, forall z € Blo,r) and Q € S(c0).

(ii) There exist positive constants C11, Ci2 and Cy3 satisfying the
following (a) and (b):

(a) For every x € M \ B(0,3) and for every positive integer j with
d(o,z) > j+1,

exp(—jCy)

sup{K(z,Q) : Q € Az, —j — 1) \ A(z, -} < Cllm-
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Let N be the largest positive integer N with d(o,xz) > N + 1. Then
sup{K(z,Q) : Q € S(c0) \ A(z,—N — 1)} < Ci2 exp(—Cud(0, T)).

(b) For every x € M \ {o},

1
K : A < —_—.
sup{ (.’IE, Q) Q € (.'II, 0)} = ClsLU(A(JI, O))
(iii) Suppose r > 0 and Q € S(o0). There exists a positive constants
Ch4 depending only on M such that for allt > r and Q' € S(c0)\Ar(Q),

K(7(t), Q") < C14Co,r exp(—Cy(t —)).

Proof. (i) This is proved easily by Harnack inequality: Let z €
B(o,7). Then Theorem H implies that for all y € M \ B(o,r + 1),
G(z,y) < C.G(o,y), where C, is a positive constant depending only on
M and r. Hence the construction of the Martin kernel (see [3]),

G(z,y)
K(z,Q)<  sup
yEM\B(o,7+1) G(O, y)

IA

c,,

and 1 = K(0,Q) < K(z,Q). Consequently we have (i).

(i1) Suppose z € M \ B(o,3), and let j be a positive integer such
that d(o,z) > 7 + 1. For simplicity, let z(—j) = voz(t(z) — j). Let
F be an arbitrary Borel subset of A(z,—j — 1) \ A(z,—j). Then by
Theorem BH2, we have that

w*(F) w3t (F) N w9 (F)
G(&C,O) ~ G(x(—] + 1),0) - G(JI(—_]),O)

On the other hand, Theorems BH1 and BH2 imply that
Gloz) . G(=j—1))

Glo,z(—5)) ~ G(z(—j —1),z(—%))
S exp(—Cad(z(—j — 1), 7).

~ Gla(—j — 1),2)

Combining these inequalities we have
W (F) § exp(=Caf)w™ 7V (F) = exp(—Cyj)w™ 7D (F).
Since there exists a positive constant ¢ such that for every z € M \ {o},

(21) w?*(A(2,0)) > ¢, (see the proof of [3, Lemma 7.4]),
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we have by Theorem BH2 (2) that

(ie w=(=i=1)(F) - w(F)
WIVE) & w* D (A, —j — 1))~ w(A(z,—j— 1))
Hence 2 '
ww((F)) < exp(—Caj)w(A(—j — 1))

Therefore for Q € A(z,—j — 1) \ A(z, —7), we have the first inequality
in (a):

K(2.Q) = lim 2L < Cexp(-Cuio(a(-5 - 1)

The second inequality in (a) is a direct consequence of Theorems BH2
and BH1: From (i) and Theorem BH2 it follows that for Q € S(o0) \
A(.’E, -N - 1)7
G(x, 0) G(QZ‘(—N),O)
and consequently K(z,Q) ~ G(z,0) 5 exp(—Cad(o, )).
To prove (b) we use (21). For Q € A(z,0),
K(z,Q) K(0,Q) 1

Ko@)~ G ~ o) ~ o@@o)

L

This yields (b).
We prove (iii). Let t > 7 + 1. Then by Theorem BH2 we have
K(1a®.Q) _  K(ualr+1),Q)
G(’YOQ (t)7 YoQ (7')) G(’YOQ ('r + 1)7 'YoQ("'))
~ K(7q(r), Q") < Co,r-

Hence K(7,q(t), Q") < CorG(Yoq(t), Yoo (r)), and this implies (iii).
QED.

~ K(Yq(r+1),Q)

Using Lemma 5.3, we have

Lemma 5.4. There ezxists a positive constant C15 such that for
every f € L*(w),

No(F)(Q) < CisM(f)(Q), Q € S(o0).

We can prove this lemma by combining [3, Theorem 7.3] with The-
orem CK1. However here we give a direct proof using Lemma 5.3:
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Proof. Let z be an arbitrary point in I'g(Q) \ B(0,3). Then Q €
A(z,0). Let N be the largest positive integer with d(o,z) > N + 1.

N

F(@)] < / + /
S(OO)\A(.’Z:,—N—].) 7=0 A(m,—j—l)\A(m,—j)

+ / K(z,Q)£(Q)] dw(Q)
A(x,0)
(= (D) + (II) + (III), say).

Then by Lemma 5.3,

@ < Cra /S Wl < Cm(p)(@),  and

N .

exp(—JC4)

(II) < Cn1 ]Z:% w(A(z,—j — 1) /A(z7_j—1) | f| dw
N

<Cn ZeXP(‘jCOm(f)(Q) S M(F)(Q)-

=0
Further,

013
(I11) < ENEXO)) /A o |fldw < C139M(£)(Q).

Consequently, we have |f(z)] S M(f)(Q).
Now we consider the case of z € B{o,3). By Lemma 5.3 (i),

fol< [ K@olfQlde()
S(o0)
<Coa [ IO]dw(0) < CoamN(@.
S(o0)
Thus we obtain the desired inequality. Q.E.D.

Now we have the following theorem as known in the classical case.

Theorem 5.5. (i) For 1 < p < oo, ||fllrrw) < | fllap(w), for all
f € HY(w).
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(i) Suppose 1 < p < co. Then HP(w) = LP(w), and there exists
a positwe constant Cig(p) such that || f|l gew) < Ci6(@)fllLr(w) for all
f e H?P(w).

Proof. Note that for a given function f € L'(w) and for a Lebesgue
point @ of f,
Jim f(v0q(t)) = £(Q)-

Indeed by Lemma 5.4 and Lemma 5.3 (iii), we can prove this assertion
by a similar way as the classical case (see [44, p.244]). Accordingly (i)
is obvious.

Theorem HL and Lemma 5.4 guarantee (ii). Q.E.D.

We close this section with making some remarks on truncated max-
imal functions. For r > 0, let

No-(f)(Q) :=sup{| ()| : 2 € To(Q) N (M \ B(o, 7))}

By the same way as in the case of Ny(f), we have that the function
No(f) is lower semicontinuous on S(co0). Using Lemma 5.3 (ii) we
obtain that

(22) No,r(N)(Q) < No(F)(Q) < Crllfllprw)+Nor (M)Q),  Q € S(o0).

Therefore for every r > 0,

(23) [ fllz» = [INo,r (F)ll e w)-

§6. Hardy spaces, atoms and Brownian motion

In this section we prove the equivalence of the spaces H'(w), Hl,n
and probabilistic analogues of Hardy spaces which will be mentioned
later. To describe the analogues we recall some facts and notions in
probability theory: '

Let W be the set of all continuous maps from [0, c0) to M, and let
Zy(w) = w(t), w € W. Since by Yau [50] the life time of Brownian
motion on M is equal to 400, so there exists a system of probability
measures { Py },cp on W such that (P, Z;) is a Brownian motion start-
ing at . From Sullivan [46] or Kifer [27] it follows the following (A)
and (B):

(A) There exists a limit Zo(w) := limy_, o Zi(w) for almost sure
w € W with respect to Py, z € M. Moreover, Zy(w) € S(c0) for
P-as. weW.
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(B) For every x € M and for every Borel subset F' of S(00),
WH(F) = P,({w e W : Z(w) € F}).

Since for every f € L'(w), we have f € L'(w®) for all z € M by (9).
Therefore for every f € L'(w), f(z) = Ez[f(Zo)] for all z € M and
limy o0 f(Z:) = f(Zoo) Ps-a.s., where E.[ ] denotes the expectation
with respect to P, (z € M).

We denote P = P, and E[ | = E,[ |. First we describe a probabilis-

tic analogue of Hardy spaces:
i/p
] <00,

1<p<oo.

-] i

ob

HEop = {fGL”(W) [ fll ez,

Next we will deal with another probabilistic analogue of Hardy
spaces. To define it, we recall some facts on Markov properties of
{Pp}een: Let B (resp. B;) be the smallest o-field for which all ran-
dom variables Zg, s > 0 (resp. Zs, 0 < s < t) are measurable. For
a probability Borel measure p on M, let P,(A) = fS(oo) P.(A)du(x),
A C W. We denote by (W, Fr , Fi', P,) the usual P, augmentation of
(W, B, B, P,) in the sense of [43, III 9]. In partlcular (W, F=*, FF, Py)
denotes the P,-augmentation of (W, B, B, P,). Put F := F* and
F, := (| F¥, where the intersection is taken over all probability Borel
measures p on M. Then (Z;, W, F, F;, P, : © € M) is a strong Markov
process. If fact, considering that M is diffeomorphic to R™, it is a honest
FD diffusion in the sense of [43, IIT 3, IIT 13].

It is known that the usual P,-augmentation (W, F*, FF, P,) satisfies
the so-called usual condition (see [43, III 9]). Moreover, for every har-
monic function v on M, the process u(Z;) is a continuous local (P, FF)-
martingale. Denote by (W, F, F;, P) the usual P,-augmentation (W, F°,
F?, P,). As usual, Hardy spaces of martingales are defined as follows:

1/p
MP = {X € L*(W,F,P):|| X||pm» :=E | sup IE[let]lp] < oo} ,
0<t<0

(1 < p < 00), where and always E[-|C] denotes the conditional expec-
tation with respect to P and a sub o-field C of . Note that Meyer’s
previsibility theorem ([43, VI 15, Theorem 15.4]) implies that for every
X € LY(W, P), the process (E[X/Ft])t>0 is an (F;)-continuous martin-
gale.
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For X € LY(W,F,P), let N'(X) := E[X|0(Zx)], where 0(Z) is
the sub o-field of F generated by the random variable Zo,. Then by (A)
there exists a unique element f € L'(w) such that N"(X) = f(Zwo),
P-a.s. Denote the function f by N X. Now we can mention the second
probabilistic analogue of Hardy spaces:

Pt = IN(X): X e MP}, 1<p<oo,
and WXz o= inf{[¥ [ - N (V) = N(X), ¥ € MP}.

To describe our results, we use the following notation: For two
normed spaces (A4,]| ||la) and (B,]| ||B), we denote by A < B that
A C B and ||z||p € C||z|la for every z € A, where C is a constant
independent of x. Further we set A~ B if A < B and B < A.

HP

Theorem 6.1.
HY(w) ~ H}

atom

1 1
(w) = Hprob = Hma.rt'

Before proving this theorem, we would like to refer to both a work
of Cifuentes and Kordnyi ([14]) and our previous announcement [5]. As
pointed out briefly in Introduction, we announced in [5] the following
two theorems:

Theorem 6.2.

Hl(w) = HI b j Hrlnart = H;tom(w)'

pro

Theorem 6.3. Consider the following geometric condition:
(B) For every Q € S(o0), t > 0 and z € C(,¢(t),0),

At (Yoz (+00)) N AL(Q) # 0.

If our manifold M satisfies the condition (3), we have HY  (w) <
HY(w).

It is easy to see that when M is rotationally symmetric at o or the
dimension of M is two, the condition (3) is satisfied. However recently,
Cifuentes and Koranyi proved the following

Theorem CK2 ([14]). The manifold M satisfies always the con-
dition (B).

Therefore combining our Theorems 6.2 and 6.3 with Theorem CK2,
we gain finally Theorem 6.1. For this reason, in order to get Theorem 6.1,
we prove in this section Theorems 6.2 and 6.3.

First we prove the following
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Proposition 6.4. For every continuous function u on M, and for
every A > 0,

P ({w eW: suwp |u(Z)| > )\}) < w(No(u) > A).

0<t<oo

In particular, we have H'(w) < H;mb.

Proof. We adapt to our case of an idea of Burkholder, Gundy and
Silverstein [10]. Let F = {No(u) > A}. By the definition of admissible
regions, when |u(z)| > A, then A(z,0) C F. Hence by (21) w?(F) >
w?(A(z,0)) > ¢ > 0. Denote by xr the characteristic function of F.
From Doob’s maximal theorem it follows that

P({Slip [u(Z:)| > A}) < P({Sltlpwzt (F) > c}) = P({sup Elxr/F] > c})

< SltIPE[XF/]:t]||2L2(v;/,P) < CE[xr(Z)] = Cw(F).

Q.E.D.

For f € H} ., we have that Nf(Z.) = f and E[f(Ze0)/Fi] =
f(Z). Accordingly Hl b = Hyare-
Next we prove HL . < HL .. For this aim, we need to recall a

probabilistic version of BMO: For f € L'(w), let

1730y, = sup [[B[17(Z0) = FZO/| L,y + 1T,

and let BMOpyop := {f € L'(w) : I fIBMO oy, < 00}
As in the classical case, one can consider the following version of
BMO norm called “Garsia norm”:

1]l = sup / 1£(@Q) — F(@)] dw® (Q) + 1| 2wy (< 00),
zeM JM

for f € L(w).
Before proving H} ... < H. .(w), we show the following relation
among these variants of BMO norms by using ideas in [48]:

Proposition 6.5. Let f € L*(w). Then

(24) I 1lBMO,as = [Iflle £ 1flBMO-
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Proof. Let Fy(w) := |f(w(s)) — f(w(0))|, w € W, and let 6, be the
shift operator, i:e., 8;(w)(s) := w(s + t). Then the Markov property of
Brownian motion on M, we have that E[F; o 6,/F;] = Ex,[Fs]. Hence
E(f(Xe+s) = F(Xo)|/ Fi] = Ex,[|f(Xs) — f(Xo)l] P-as. Letting s — oo,

we have

E[lf(Xoo) — FOXD)|/F = Ex.[1f(Xoo) — F(Xo)]
| - /M 1£(Q) = F(X)| dw™(Q),

P-a.s. Consequently, we obtain the first inequality of (24).
For z € M \ B(o,3), we set A(z) = A(z,0). Then

/ @ - fE@l @
< [ 15@ - mawldr(@ + [ mawf - fo)ldor
S(o0) S(o0)
-/ Q) = ma f147(Q) +17@) ~mao
2 — o f| dw®
< /S(Oo)lf MA(z) f]
2 — g fldw® + 2 — macg fl dw®
< /S(oo)\A(m) Ilf — ma(e) f] dw® + /A(Z) If —maz)f]
(== (1) + (ID))
By Lemma 5.3 (ii) (b), we have

1
In < Cm @ |f —ma(e) fldw < C| fllBMoO-

To estimate (I), we use Lemma 5.3 (ii) (a): Let N be the largest positive
integer with d(o,z) > N + 1, and let A(j) = A(z, —j). Then

N

0= </s<oo)\A(N+1> *2

) = maldo”
j=1YAG+\A®G)
=: (I1I) + (IV).
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From Lemma 5.3 it follows that

vy <3 SP(iC) _ d
( ) ~ Z . ) /A(j+1) |f mA(w).ﬂ w

=1 w(A(] + 1)
N .
<y exp(=jC4) / o
- ; w(AG+1) | Jag+n |/ AG+1)f]
+ Imag4+1)f — mag)fldw
A(G+1)

+-t / lmA(1)f—mA(0)f|dw}-
A+

Since (H4) implies |maj+1)f — mag)fl £ | fllBMo, we have

N
(V) £ exp(—5C4) {lI fllzmo + il flBmo} S I llBMO-

Jj=1

Moreover, by Lemma 5.3 (ii) (a),

(III) é eXp(-—C4d(O, "1")) |f - mA(z)l dw
S(co)\A(N+1)

< 2exp(—Cad(0, )| fll L1 (w)-

When z € B(o, 3), applying Theorem H we have

/ - flaw® S / = Fldw < 2l
M M

Consequently we gain || f|l¢ < || fllBmo- Q.ED.

As a consequence of this proposition and of a probabilistic version
of Fefferman’s inequality ([24]), we have
Proposition 6.6. For X ¢ M1,

”NX 1l,atom < CHXHM1

Therefore HY . = HX .-
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Proof. Suppose X € L?(W,P). Then from H},,-BMO duality
theorem in [15] it follows that

INX 1 at0m = sup { [ FNX)| : ¥ € (Haeom), ¥, <1}

ésup{

=: (I).

Now using a martingale version of Fefferman’s inequality ([24]), we have
that

[, x| - € BUOG), ¥l < 1}
S (o0

(1) = sup {|E[$(Zoo)N X (Zc0)]| - ¥ € BMO(w), [[¢]lBMo < 1}

= sup {|E[(Ze0) X]| : ¥ € BMO(w), [[¢]lBmo < 1}

< 1 X llae sup {ll¥llBpo, .0 ¥ € BMO(w), [[¥]lBMo < 1}

S X
where the last inequality is proved by Proposition 6.5.

Now suppose X € M. It is well known that for X € M!, there

exist X* € M? (k = 1,2,...) such that || X* — X[y — 0 as k — oo.
From what we have proved it follows that [N X* — NV X!|| . ~ X b

XY a2 — O (k,1 — o). Since H}, _ is complete ([15]), there exists

h € H}m such that ||h — N X*||1 atom — 0 as k — oco. Therefore

WX = Bl < INX = NXHga) + INXS — Bllzago
<X - Xk“Ll(W,P) + INX* = hll1 atom
<X = X*|lae + IV X® = hllsatom — 0, (k — 00).
Hence N'X = h w-a.e. Therefore
INX s stom = [Pl e = Jim AKX o S B [ X[
= 1 X[

Q.E.D.

When M is the open unit disc, this proposition for BMO was proved
in [48]. See also [51] for balls.

What we have proved implies Theorem 6.2.

In order to prove Theorem 6.3, we need the following estimate:
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Lemma 6.7. Suppose Qo € S(c0), r > 3k and Q € A (Qp). Let
N be the biggest positive integer such that v > (N + 2)k. Let C(j) =
C(Yoqo(r — jk),0) (j = 0,1,...,N). Then for every j € {0,1,...,N}
and for every x € M \ C(3),

|K (z,Q) — K(z,Q0)| § ¢ K (2, Qo),

where ¢ is a positive constant such that ¢ < 1 and is depending only on

M.

Proof. The following proof is based on an idea in Anderson and
Schoen {3, p.449]. Let D(j) = M \ C(j), and let

K:Q o _ o K(Q)

O, = sup , .= 1n B
Vi i K(2,Qo) i e K(2, Qo)

Let u;(z) = K(z,Q) — fj_lK(z’QO)‘ Then u; is harmonic on M and
positive on D(j — 1). Hence by Theorem BH2 (2),

u;(z) <Cy inf u;(2)

25 su —t
(25) v zeD(5) K(z,Qo)

2€D(4) K(z7 QO)
(Note that Cs > 1.) By (25), we have
(26) (25 fj_1 < Cs (fj - fj_1)‘

On the other hand, if we consider the function v;(z) = %;_;K(z,Qo) —
K(z,Q) in stead of u;, we obtain the following estimate:

(27) @j—l - fj < Cy (@j—1 - @j)-
Let osc(j) = @; — @, Then by (26) and (27), we have

osc(y) < gz _T_ i osc(j — 1).

Hence when z € M \ C(j), then
Ked) | |KEQ) Koo
K(:l?, QO) K(Ov QO)

K(vaO)
Cy — 1)
< (CZ‘I—I) osc(1).

< osc(j)
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Moreover, since
K(Q) _ K©Q) _
K(z,Q0) K(o,Qo)
for all z € M\ C(j —1) by Theorem BH2 (2), we have that osc(1) is
bounded by a positive constant depending only on M. Now what we
have obtained implies the desired inequality. Q.E.D.

L,

To prove the following lemma, we need the condition (8) stated in
Theorem 6.3:

Lemma 6.8. For every Q € S(o0), t > k and Q' € S(o0) \
Ay (Q), we have T'o(Q") N C(v,0(t),0) = 0.
Proof. Suppose that there exists a point z € I'o(Q") NC(voq(t),0).

Then @' € A(z,0) and d(o,2) > t. Further by the condition (3), we
have A¢(Vo2(4+00)) N A(Q) # 0. Therefore from (H3) it follows that

At—k(Q) D) At(’Yoz('l'oo)) D) Ad(o,z) (702(+OO)) = A(Z, 0) > Q,'
This contradicts to that Q" € S(c0) \ At—r(Q). QE.D.

Now we are ready to prove Theorem 6.3:

Proof of Theorem 6.3. It is sufficient to prove that for every (1, co)-
atom a, ||a||g:. < C, where C is a positive constant depending only on
M. Let a be a (1, 00)-atom, that is, there exists a ball A,.(Qo) such that

suppa C An(Qo), Aﬂw=QIMmSUM&QM-

Suppose r > 3k. For simplicity, let A = A, (Qo), A(J) = C(Vogo(r —
k), 0) N 5(00) (= Ar_;k(Q0)), and A(j) = Yoqo (r — jk). Then

N

INo(@llzrcy = [ No(a)dw + 3"

/ No(a) dw
S(o0)\A(N+2) =17 A0G+2\AG+)

+ [ No(a)dw (= (1) + (11) + (11D)),
A(2)

where N is the biggest integer with r > (N +2)k. First we estimate (II).
Let p € A(7+2)\ A(j +1). Then by Lemma 6.8, I'o(p) N C(7oq, (7 —
jk),0) = 0. For z € M \ C(vo0,(r — jk),0),

K(z,Qo) ~ K (o0,Qo) _ 1
w (A7) wo(AG)  w(AG))

K(:I}, QO) S
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Hence by Lemma 6.7, for every z € T'y(p),

(o) = | [ 6 QK (@ Q) - K, Qo) do

< Jlallz /A K (2, Q) — K(, Qo)| do
1

< dK(z,Qo) sém

Using this estimate, we have that

No(a) dw < cj/ W(AG)) e S &

/A(j-l—?)\A(j-i-l) A(3+2)

Accordingly (II) < C. To estimate (I), let p € S(c0) \ A(N + 2).
Then T'o(p) N C(vo0,(r — Nk),0) = 0. Note that dist (8C(voq,(r —
Nk),0),0C (Yogo(r — (N — 1)k),0)) > ¢ for some positive constant de-
pending only on the curvature bounds k; and k2 (see [6, pp.310-311] for
a related estimate). Therefore for every x € T'o(p) and Q € A,(Qo),

K(z,Q = KAWN),Q)
G(z,A(N —1)) ~ G(A(N), A(N — 1))
~ K(A(N),Q) < C,

K(z,Q)<C

where the last inequality is proved by Lemma 5.3 (ii). Hence |a(z)| < C,
and therefore Np(a)(p) < C. Consequently we have (I) < C.
Next we estimate (III). For z € M,

(28) la()| < /A K(2,Q)|a(Q)] dw(Q)

T(QO)

< llallpe= dw® <

_ 1
S(o0) T w(Ar(Qo))

This implies that (III) < C.
Lastly we consider the case r < 3k. By Theorem H and (21),

w(Ar(Qo)) > w(A3k(Qo)) = w® (A3k(Qo)) = ¢

for some positive constant ¢ depending only on M. Therefore (28) yields
that No(a) < ¢!, and that ||a||g1(w) < 7t Q.E.D.
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Now we have proved Theorems 6.2 and 6.3. Therefore by combining
these theorems with Theorem CK2, we gain Theorem 6.1.

As an immediate consequence of Theorem 6.1, we have the equiva-
lence of BMO norm, Garsia norm and probabilistic BMO norm.

Corollary 6.9. Let f € L'(w). Then

I fllBMo ~ || flle = || fllBMOpron -

Proof. By Proposition 6.5, it is sufficient to prove | f|smo <

|| fllBMO,on- Note that if f € BMOpob, then f € L?(w). Moreover,
L*(w) is dense in HL, ... Therefore by HL  -BMO duality theorem
(cf. [15]) and Theorem 6.1, we have that

Il fllBmo = sup{\/s( )fhdw} :h € L3w), ||h|l1.at0m = 1}

~ sup {|E[f(Zoo)M(Zoo)]| : b € L (), |[Rl|1,prob = 1}
S 1 fIBMOvon s

where for the last inequality, a probabilistic version of Fefferman’s in-
equality is used. Q.E.D.

Remark 2. For f € L'(w), let

1
Iflsvop = sup  mayq) (If = mav@(H)IP) " + 1l zow),
teR, QeS(o0)

- 1/p
Il 5= sup ( [ - f(Z)I”de) 1l

1/p
] + 11 fllzo -
L>(W,P)

Flr00np = 0| (|72 - 2P

0<t<o0

It is known that if f € BMO(w), then f € LP(w) and | f||Bmo,p =
I fllemo (cf. [15]). The same is true for probabilistic BMO, that is, if
fe BMOprobv then f(Zoo) € LP(VV, P) and ||f||BMOpr0b7p ~ ||f||BMOprob
(cf. [36]). Now by a similar way as the proof of Proposition 6.5 we can
prove that || f|BMOon,p < Cllfllap < CllfllBMO,p, for every f € LP(w).
Therefore what we have noted guarantees that

(29) Ifllep = Il
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§7. Carleson measures and Martin integrals

In this section we study a condition on a measure p on M in order
that the Martin integral operator,

K[f](z) = » )K(z,Q)f(Q)dw(Q) (=7(=), zeM,

is bounded from LP(w) to LP(M,u). This problem was studied by
L. Carleson in the classical Euclidean case, and he found a necessary
and sufficient condition called now “Carleson condition”. We will study
a version to M of “Carleson condition”:

Definition 7.1. For a set A C S(c0) and r > 0, let
Sp[A] :={z € M\ B(o,7) : A(2,0) C A}.

A given complex Borel measure y on M is said to be a Carleson measure
on M if for every r > 0,

N M EATN(e))
e = o AQ)

where |u| is the total variation of u. We wirte ||l = ||ulle1-

+ |pl(M) < oo,

As an analogue of the classical Carleson-H6rmander’s theorem, we
will prove the following by using Stein’s idea:

Theorem 7.1. Let i be a complex Borel measure on M. Then
the following are equivalent:

(i) 1 is a Carleson measure on M.

(i) ||ulle,r < 0o for some r > 0.

(iii) For every 1 < p < oo, the Martin integral operator K is bounded
from HP(w) to LP(M,|ul).

(iv) For every 1 < p < oo, the operator K is bounded from LP(w) to
LP(M, |p])-

(v) For some 1 < p < oo, the operator K is bounded from LP(w) to
12(M] ).

Furthermore, for every r > 0, there is a constant C}. depending only
on M, o and r such that

M luller < Nulle < Chllpller-

Proof. We begin with proving “(ii) = (iii)”. We may assume that
r > k' 4+ 1, where k' is the positive constant in Lemma V. Suppose
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f € HP(w) and A > 0. Let E := {Q € S(o0) : No,(f) > A}, and
G := {z € M\ B(o,7) : |f(z)] > A}. Since {A(2,0) : z € S.(E)}
is a covering of the bounded open set E, Vitali type covering lemma
(Lemma V) guarantees that there exist z1,22,... € S.(E) satisfying
that A(z;,0) N A(z;,0) = 0@ (¢ # j), and that for every z € S.(F),
A(z,0) C A(z;,—Fk') for some 3.

Now let z € G, and Q € A(z,0). Then z € To(Q) N (M \ B(o, 7)),
and therefore Np ,(f)(Q) > A. Hence A(z,0) C E. Hence there exists
i such that A(z,0) C A(z;,—k’). This implies that z € S.[A(z,0)] C
Sr[A(zi, —k')]. Consequently, G C |J; Sr-[A(zj, —k’)]. Using this we
have

lul(G) < Z I.u|(ST[A(Zj’ —k,)]) <|lu cr ZW(A(Zﬁ —k,))

J J

< CElullesr D w(A(2,0)) < CK) ale,reo(B).

Accordingly by these estimates, Lemma 5.3 (1) and (23) we have that

/ (Fi? dlp| = / (7l dipal + / P dll
M B(o,r) M\ B(o,r)

< s [F@PIOD) + luler / No(f)P duw
z€B(o,r) S(o0)

< Colul (M) Fllzr @) + lsller i Nos (F)ll Lo w)
< (Cr+ Dl

Fllar@w)-

Ic,r

The part “(iii) = (iv)” and “(iv) = (v)” are obvious. We prove “(v) =
(i)”. Let f be the characteristic function of A¢(Q) (t > 1, Q € S(c0)).
Suppose r > 0. If z € S.[AQ)], then A(z,0) C A4(Q). Hence for
every z € S,[A+(Q)], f(2) > w*(A(z,0)) > ¢/2, where c is the positive
constant in (21). Denote by C), the operator norm of K from LP(w) to
L?(|p|). Therefore,

(S 18(Q)) < [ul({z € M : f(2) > ¢/2}) < (¢/2) /M 7 du
< (/D PCE e, = (¢/2)PCR(A(Q)).

Moreover, [p|(M) < CP||1|trwy < CB. Thus we have |p|ler <
((c/2)7P +1)CE. Q.E.D.
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§8. Carleson measures and Green potentials

For a Borel measure p on M, the function

Glul(z) = /M G(z,y) duly), =€ M

is called the Green potential of . In this section we study boundary
behavior of the Green potentials of the following weighted measures: for
a nonnegative Borel measure pu on M, let

o(4) = /A a(%;)d“(w)’ ACM.

A nonnegative function f on M is said to be asymptotically bounded
if there exists a positive constant R > 0 such that sup,c s\ p(o,r) f(2) <
00. Then we have the following

Theorem 8.1. Let y be a nonnegative Borel measure on M. Sup-
pose that u(H) < oo for every compact set H in M. Then the following
are equivalent:

(i) Gluo] is asymptotically bounded on M.

(ii) p is a Carleson measure and satisfies the following condition

(F):

(F) There exist positive constants r and C such that

(30) / G(z,w)du(w) < CG(o,z) for every z € M \ B(o,r).
B(z,1)

We denote by C,.,, the infimum of constants C in the condition (F).

This theorem is used in order to prove a Carleson measure charac-
terization of BMO stated in the next section.

Proof. First we prove “(ii) = (i)”. In order to prove this we need
the following lemma:

Lemma 8.2. ForQ € S(00) andt > 0, let C(Q,t) = C(7.0(t),0).
Then for 0 <7’ <t+k,

CQt+k) CSv[A(Q)], (Q€ S(ex)).

Proof of Lemma 8.2. Let w € C(Q,t + k). By the condition (3)
in Theorem 6.3 (see also Theorem CK2), we have that Ay g(w(+00)) N
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A 1(Q) # 0. Hence (H3) implies that A, x(w(+00)) C A(Q). Since
A(w,0) C Apyi{w(+00)), we have w € S,/ [A(Q)].
End of the proof of Lemma 8.2.

We proceed to prove Theorem 8.1 “(ii) = (i)”. By Lemma 8.2, we
have

p(Sr[A(Q)])
w(A(Q))

pC(Q,t+k)) o p(C(Q,t+k))
w(At+£(Q)) w(A(Q))

where r’ is a positive number with r’ < t + k.

We may assume that the number r in the condition (F) is greater
than 100k. Now let z € M\ B(o,7+2). Denote ¢(z) = d(o0, z) and z(t) =
Yoz (t(z) +t). Let N be the biggest positive integer with ¢(z) > N + 2.
Let

(31)

RA

< S llelles

Ey = C(z(+00),t(z)) and
Ej = C(2(+00),t(2) = j) \ C(2(+0),8(2) — j + 1),
(1=1,2,...,N). Then u(Ej;) 3 ||pllcw(Dy(z)—j(2(+00))).
We estimate each integral || E, G(z,w)dp(w). Let w € E;. Note that

when w € M \ B(2(—j),3), then G(z(—j + 2),w) = G(z{—j — 1), w).
Suppose N > j > 4. By [1, Theorem 1] we have that

(32) G(w,2) § G(2(—j +1),2)G(w, 2(—j + 2))
~ G(Z(_j + 1)7 Z)G(w’ Z(_J - 1))

Hence for w € E; \ B(2(—j),3)

W(Ay(r)—j(2(+00))) W T D (A, _;(2(+00)))

G(o, w) - G(z(=j — 1), w)
DAy ()G +1),2) _ Gleya(—+ 1)
~ G(w, z) G(w, 2)
_G(z,2(=j +2))

S exp(—Cad(z, 2(—j + 2)))

G(w, 2) G(w,z)

N
< exp(—Cuf) -

G(w, 2)
Accordingly, for w € E; \ B(z(—j), 3),

(33) g—gﬁj—; < Cexp(—Cyj)

w(Ag(z)—j(2(+00)))”
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Suppose w € E; N B(z(—j),3). In this case, we have G(z,w) ~
G(z,z(—3)) and G(o,w) = G(o, 2(—j)). Moreover,
WAz (2(+00))) _ w(Biz)—5(2(+00)))
G(o,w) G(o,2(—7))
I (A a(a(400))
G(z(—=7 = 1),2(=3))

~ 1.

Therefore
G(z,w)  G(z2(=7) Gz 2(=))) G(o,w)
G(o,w) G(o,w) G(o,w) w(Ayz)—j(2(+00)))

1
w(Ay(z)—j(2(+00)))”

Consequently for 4 < j < N and for w € E; we have

~ exp(—Cyj)

AL Iy !
(34) G(o,w) < Cexp( CU)W(At(z)—j(Z(‘*‘OO))).
Using (34),

w(E;)
Ay(z)—j(2(+00)))

S exp(—Cag)llplle-

(35) /E G diio() 5 exp(~Ca) ¢

Next we consider the case of w € Ej = Eg U ---U E3. Suppose
w € E§\ B(z,r), where 7 is a constant in the condition (F'). Then by
Theorem BH2 and (21),

o(B) | whE)
Glo,w) G(2(-1),w) G(z,w)’

Hence for 0 <t < t(z) — 3

p(C(z(400),t(2) — 3))
/E;)\B(z,r) Gz w)duolw) 3 = 0K 7 o (ro0))
< B(St[An)—3-k(2(+00))])
W(Ag(zy—3—k(2(400)))

< Cllplle-

From (F) it follows that

C,
(0,2)

Q

[ Gewdnw s gz [ Geu)diw) 50,
B(z,r) B(z,r)



32 H. Arai

We consider the case of w € M \ C(2(+00),t(z) — N). By Theo-
rem BH2 we have that

G(w,z) G(w,2(=N

G(o,z)  Glo,z(—N

+1)) 3
1) ~ G(w,z(—N +1)) <C.

Therefore

/ Gz, w) dpo(w) < C / di < Cllu..
M\C(2(+00),t(z)—N) M »

Summing up, we have that
(36)  Glupol(2) < C(llpllc + Crp), whenever z € M\ B(o,r +2).

Next we prove (i) = (ii). Suppose H := sup,can p(o,r) Gliol(2) <
oo for a positive number R. It is easy to see that S.[A:(Q)] C C(Q,t)
for all 7 > 0. Suppose ¢t > R+ 2. For w € Sr[A(Q)], z = Yoo (t — 1/4),
and 2’ = v,0(t —1/2),

G(z,w) ~ G(#',w) ~ G(7,z2) ~ 1
G(o,w)  Go,w)  G(o,z)  G(o,2)’

On the other hand, for every z € M \ B(o,1/2),
(37) G(0,7) = w(Ag(o,)(2(+00))),
because for ©’ = Yoz (d(0, ) — 1/2), Theorem BH2 implies that

G(o’ q;) ~ G(.’El, .’L‘)
w(Ad(o,0) (2(+00))) W (Dao,m)(z(+00)))

Therefore G(o, z) ~ w(A;(Q)). Accordingly,

~

G(z,w) 1
Glo,w) ~ w(A(Q))’

From this estimates it follows that
G(z,w)

_ M(SrR[A(Q)])
snia.(@) Glo,w) '

W) > =5 @))

To prove u(M) < o0, let z be a point in M with d(o,2) = R + 1/2.
Then

H> /M Gz w) du(w)+/B Gl w) dp(w).

\B(o,r+1) G(0,w) (0,R+1)\B(o,R) G(0, W)

H>
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Note that
G(z,w)
> M 1
o >, we M\Blo,R+1),
G(z,w)
> >
Glow) = c2G(z,w) > ¢c3, w € B(o,R+1)\ B(o, R),

where ¢; (i = 1,2,3) are positive constants depending only on M and

R. Using this we have that u(M \ B(o,R)) < H, and consequently by

the assumption, u(M) < H + pu(B(o, R)) < co. Therefore ||p|lc,r < oo.
For z € M \ B(o,R+2),

e T e 0
B

M G(07 ’LU) (z,1) G(07 w)
1
~— G(z,w) du(w).
G(O> Z) B(z,1) ( ) )
Thus p satisfies the condition (F). Q.E.D.

89. Littlewood-Paley measures and BMO

In this section we prove a Carleson measure characterization of BMO
functions. To state our theorem, we consider Littlewood-Paly type mea-
sure on M: for f € L'(w), let

dug(w) = G(o,w)|Vf(w)[* dV (w),

where dV is the volume measure with respect to the metric g, and
|V f(w)| is the norm of the gradient of f with respect to g, that is,
in a local coordinate neighborhood,

VF) = 3 o ) 2L 20,

ij

where (g"(w)) is the inverse matrix of the metric (g;;(w)). This is an
analogue to M of the classical Littlewood-Paley measure.
First we prove the following theorem

Theorem 9.1. Let f € L?(w). Then

g (M) = [S @~ el an@) <o
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Proof. This is an immediate consequence of Dynkin’s formula:
By (9), f € L?*(w®). Let h = f — f(z). Then M} := h(Z;) is an
L? bounded martingale with respect to (W, F?, F7, P?). Note that

G(z,w):/ plt, z,w) dt,
0

where p(t,z,w) is the minimal fundamental solution of the equation
8/0t — A4. Hence by Ito’s formula we have that

(38)
L(m) Q)P dw™(Q) = E*[[h(Zoo)[?] = B [/0"" d(Mh,Mh)]

= FE* U [Vh(Z,)? dt] = / E*[|VA(Z,)[?] dt
0 0
- / / p(t, 2, w)|VA(w)[2 AV (w) dt
o Jm
- / Gz, w)| Vh(w)[2 dV (z).
M
Taking z = o, the theorem was proved. Q.E.D.
We can characterize BMO functions in terms of Carleson measures

and Green potentials:

Theorem 9.2. Let f € L?(w). Then the following are equivalent:
(i) f € BMO(w).

(ii) py is a Carleson measure on M.

(iii) The Green potential

Gy(z) = /M G, w) |V F(w) > dV (w)

18 asymptotically bounded.
(iv) The potential G¢ defined in (iii) is bounded on M.

Proof. First we prove “(i) = (ii)”. Let f € BMO(w). Then by
Corollary 6.9, f € BMOp,ob. Therefore M, := f(Z;) — f(Zo) is a BMO-
martingale with respect to (W, F, ¥, P). Hence by [36, p.333], we have
that for every (F;)-stopping time T',

(39) B [ [, M>] < | flano,. P(T < o).
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Using this inequality we will prove the desired part. For this aim
we need the following variant of (38):

Lemma 9.3. Let h € L*(w) with h(0) = 0, and let M = h(Z,).
Then for every nonnegative Borel function F' on M,

B [ /{; ” F(Zt)d(Mh,M”)] - /M F(2)G(0,2)| Vi) dV ().

Since this is proved by the same way as (38), we omit the proof of
this lemma. We proceed to prove Theorem 9.2. We will prove that pr
satisfies the condition (v) in Theorem 7.1 with p = 2. Let ¢ € L?(w).
For A > 0, let Ty = inf{t > 0 : [¢)(Z:)| > A}. Since {w € W : |¢(Z,)| >
A} C{w e W : T)(w) < s}, we have

L :={(s,w) € [0,00) x W : |$(Z,)| > A} C [T}, 0],

where [T}, oo is the usual stochastic interval, i.e., {(s,w) : Th(w) <t <
oo}. Denote dv(s,w) = d{M, M)(dw). By (39) we have the following
inequalities:

v(L) < v([Tx,o0[) < [[fl1BMO o P(Tr < 20)
< ||f||BMOPmbP({SltlpIJJ(Zt)l > A}).

Therefore we have by Lemma 9.3 and Doob’s maximal inequality that

[ WP dug(w) = B[ [ 10207 de] < 1lmo, o Blsup 2P
M 0 t
< A F1BMO o El1$(Zo0) 1] = 41| FI1BMO pros 19117 2() -
By the proof of Theorem 7.1 (v) = (i), we have

(40) lllle S 1l fllBMO-

Next we prove “(ii) = (iii)”. By Theorem 8.1, we need to prove only
that ps satisfies the condition (F). To prove (F), we use the following
inequality due to Mouton (see [38, p.502 and p.501]): there exists a
positive constant C such that for every harmonic function u on M, and
for every z € M,

(41) |Vu(2)|? < C/ |Vu(w) | dV (w).

(2,1
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Suppose z € M\ B(o,r) for a sufficient large number r to be chosen later.
Then G(o,z) = G(o,y) (y € B(z,1)). By (37), G(o,2) = w(A(z,0)).

Hence
r3 G(07 y)
Vi) <C /
l ( )l B(z,1) G(O7 Z)

s o Flar)|2
w(A(z;0)) /B(z,l) G0, y)IVf ()" dV(y)
C

< _ -
N w(A(zaO)) C(z(+00),d(0,z)—c)

IVFw)I* av (y)

IA

G(o,9)|VfW)I* dV(y),

where ¢ is a positive constant depending only on k; and k9 such that
B(z,1) C C(2(o0),d(0,2) —c). We suppose r > ¢+ 1. Then that py is
a Carleson measure implies that
=
wW(A(2,0)) Jo(z(+00),d(0,2)—c)
that is,

(42) sup  |VF(2)|* < Cllugl..
zEM\B(o,r)

G(o,y)IVF(w)I* dV (y) < Clluglle,

Therefore for z € M \ Blo,7 + 1),

/ Gz, w) dpuy (w) = / Gz, w)G(o, w)|V F(w)|? dV (w)
B(z,1)

B(z,1)

< CllpuslleGlo, 2) /B( )G(Z,w) dV(w) < C'llpslcG(o, 2).
z,1

This implies that p; satisfies the condition (F) with r + 1.
Now we prove “(iii) = (i)”. By (38) we have
(43) / If — f(2))?dw® = / G(z,w)|V f(w)|? dV (w).
S(o0) M
Hence the Holder inequality and the condition (iii) yield that for some
r >0,

sup / |f = F(2)] dw® < 0.
2€M\B(o,r) J S(o0)

However, (9) implies that for every z € B(o,r),
[ u-felas <o [ -l
S(c0) S(o0)

< Crll fllprwy + C2IF I 2 w)-
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Consequently || f||¢ < oo, and by Corollary 6.9 we have f € BMO(w).
Lastly, we prove (i) = (iv). By (43), Corollary 6.9 and Remark 2
we have

11,2 > sup Gy (z).
TEM

The part of “(iv) =>(iii)” is obvious. Thus the theorem was proved.
QED.

Remark 3. (1) In the classical Euclidean case, the part “(i)
(if)” was proved by C. Fefferman and E. Stein ([22]), and in the case
of the complex unit ball endowed with the Bergman metric, the similar
reseult to Theorem 9.2 was proved by Jevtic [25]. However, his proof is
based on the nature of the ball, and our proof is different from it. See
also [26] and [31] for related results.

(2) The proof of the part “(i) = (ii)” is based on an idea in Arai [4].
However this part can be proved also by using Theorem 8.1. Indeed, we
have (i) = (iv) and (iv) = (ii) by Theorem 8.1.

§10. Bloch functions on manifolds and a gradient estimate for
harmonic functions

In this section we study Bloch functions on M and give an applica-
tion of Theorem 9.2.

Bloch functions were defined originally on the open unit disc D in C:
a holomorphic function f on D is said to be a Bloch function on D if

(44) sup (1 — [2])|f'(2)| < oo.
zeD

In other word, f is a Bloch function if and only if the norm of gradient
|V f| with respect to the Poincére metric is bounded. Taking this fact
into account, Bloch functions on an n-dimensional Riemannian manifold
(R, h) are defined as follows:

Definition 10.1. Let f be a harmonic function on R. Then fis
said to be a harmonic Bloch function on M if

I fllB := sup |V f(z)| < oo,
TER

where |V f] is the norm of gradient of f with respect to the metric A, i.e.,
IVi(@)? = 3, ; h¥(2)(8f(x)/0x:)(0f (z)/0z;), where (hV(x)) is the
inverse matrix of the Riemannian metric (h;j(z)). Denote by B(R,h)
the linear space consisting of all harmonic Bloch functions on R.
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In particular, if (R,k) is a Kéhler manifold, then a function u is
said to be a holomorphic Bloch function on M if u is a harmonic Bloch
function and holomorphic on R.

. The first question we have to ask is whether there exists a noncon-

stant harmonic Bloch function. As known, existence problem for non-
constant bounded harmonic functions is a crucial theme in geometric
analysis. Indeed, this problem has been a motivation of analysis on neg-
atively curved manifold, and M. T. Anderson ([2]) and D. Sullivan ([46])
proved existence of a lot of nonconstant bounded harmonic functions on
M. Fortunately, their result implies also existence of nonconstant Bloch
functions on M, because a gradient estimate of harmonic functions due
to S.-T. Yau ([45, Corollary 3.1], [49]) tells us the following

Proposition Y. Suppose (R, h) is a complete Riemannian man-
ifold such that its Ricci curvature is bounded below by a constant. Then
a bounded harmonic function on M is a harmonic Bloch function on M.

Therefore if the manifold R has a nonconstant bounded harmonic
function, then it possesses a nonconstant harmonic Bloch function. How-
ever, the converse is not true because of the following easy fact:

Proposition 10.1. Suppose that R = R"™ and h is the Euclidean
metric. Then B(R,h) is an (n + 1)-dimensional linear space.

Proof. Since h is the Euclidean metric, we have for u € C'(R"),
[ullz = supgern >-5—; [(Qu(z)/dx;)|*. Therefore the coordinate func-
tions u;(x) = z; and the constant function uwe(z) = 1 are harmonic
Bloch functions on R™. Now let u be a harmonic Bloch function R™.
Then du/dz; is also harmonic on R™ (j = 1,...,n), and by definition it
is bounded on R™. By Liouville’s theorem du/8z; must be a constant.
Consequently © must be an affine function on R™. Q.E.D.

Since by Liouville’s theorem there is no nonconstant bounded har-
monic functions on R™, it is interested to find a geometric condition in
order that a unbounded harmonic or holomorphic Bloch function exists,
but it is beyond the scope of this paper to study the problem. (See
Remark 4 (1) and Li and Tam [32].)

However it might be worthwhile to point out that in the case of
our manifold M, Theorem 9.2 guarantees that harmonic extensions of
unbounded BMO functions are unbounded harmonic Bloch functions:
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Theorem 10.2. Suppose f € BMO(w). Then f is a harmonic
Bloch function on M. Indeed

(45) sup |V f(z)| < C|fllmmo,
TEM

where C' is a positive constant depending only on M and o.
In particular, there exists a unbounded BMO function b, and b is a
unbounded harmonic Bloch function on M.

Proof. We begin with proving the first assertion: By Theorem 9.2
we have that the Littlewood-Paley measure ¢ is a Carleson measure on
M. Hence from (42) it follows that

1713 S s [VIEP+lusle s sw (VP +1flEmo < oo,
~z€B(o,r) z€B(0,r)

where 7 is a positive constant in (42). In addition, by [45, Corollary 3.2]
and Lemma 5.3 (i) we have

sup [VF(:)| S sup |f(z)|< sup )K(Z,Q)lf(Q)ldw(Q)

z€B(o,r) z€B(0,27) z€B(0,2r) J S(c0
S Ifllzrw)y < lIfllBmo-
Hence ||f||B S I fllBmo-
The second assertion is an immediate consequence of the first one.

For if u is a bounded harmonic function on M, then by Fatou’s theorem

for M ([3]), we have that there exists f € L (w) satisfying u = f on M.
However, L (w) C BMO(w) (see Appendix 2). Therefore, a unbounded
harmonic Bloch function exists. Q.E.D.

Suppose u is a bounded harmonic function on M. Then there exists
f € L*(S(c0),w) such that f = u. From Yau [45, Corollary 3.1] it
follows that

(46) sup |Vu(z)| S |l (w)-
zEM
On the other hand our inequality (45) implies that

Sélz\% |Vu(z)| £ | fllsmo (<31 fllpew))

which refines (46).
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Remark 4. (1) Suppose R is a complete manifold with nonneg-
ative Ricci curvature and v is a harmonic function on R. Then it is
known that by Yau’s estimate u is a linear growth harmonic function if
and only if |Vu| is bounded (see [32]).

(2) Let T = {z € C: |z| = 1}, and BMOA(T) the set of all functions
f in BMO(T) such that the Poisson integral of f is holomorphic in D.
Then it is known that if f € BMOA(T), then its Poisson integral is a
holomorphic Bloch function on D = {z € C : |z| < 1} (cf. [41]). This
was extended to bounded, strongly pseudoconvex domain with smooth
boundary by Krantz and Ma [30]. Our proof of Theorem 10.2 is different
from their proofs. We note that the inequality (45) is an analogue to M
of Jerison and Kenig [26, Lemma 9.9].

§11. Boundary behavior of harmonic Bloch functions

In the classical case of the unit disc in C, a lot of unbounded holo-
morphic Bloch functions are known. For instance, u(z) = > 5o 215
(z € D) is a holomorphic Bloch function, and it is known that for large

m,

. Ju(re®)]
lim sup
r—1  4/log(1 —r)~!logloglog(1l —r)~1

> 0.685||ul|p a.e. 8 €[0,2m)

(see [41, p.194]). This means that u is not only unbounded, but also it
has no boundary limits at almost every boundary point. On the other
hand, Makarov proved the following

Theorem M (Makarov [34]; see also Pommerenke [41, p.186]).
Let u be a holomorphic Bloch function on D. Then for almost every
0 €[0,2m),

i6
lim sup [ulre™)]
r—1 \/log(l —r)~llogloglog(1 —

< lul|B.
— <1l

Somewhat later a probabilistic version of Theorem M was proved
in [33]:

Theorem L (Lyons [33]). Letu be a holomorphic Bloch function
on D. Let X; be hyperbolic Brownian motion on D. Then

lim sup [u(Xo)|

i — < lulls.
t—oo y/log(1l —|X;|)~!logloglog(1l — | X¢|)
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In the higher dimensional case, little is known about unbounded
Bloch functions. Recently, D. Ullrich constructed a holomorphic Bloch
function on the open unit ball in C™ which has no finite radial lim-
its ([47]).

In the rest of this section, we study boundary behavior of harmonic
Bloch functions on M, and generalize Theorem L to the manifold M.
As first we characterize Bloch functions in terms of Brownian motion:

Theorem 11.1. For a harmonic function u on M, the following
(i) and (ii) are equivalent:

(i) u is @ harmonic Bloch function on M.

(i) The stochastic process {u(Z;)}: satisfies that

s ot = sup { EEHMZZ[;]MZON ]

:Te?;,Ez[T]>O}<oo,

where T, is the set of all (FF)-stopping times. Furthermore, |u|lp <
llull B,prob < V2|ulp.

In the case of the open unit disc in C, a martingale characterization
of holomorphic Bloch functions was given in Muramoto [39]. We will
prove Theorem 11.1 by simplifying and exploiting the method in [39] by
combining an idea in Lyons [33].

Proof. (i) = (ii). Let u be a harmonic Bloch function on M. By
Ito’s formula we have that

T
Eqlu(Zr) — u(Zo)|*] = 2E: VO IVU(Zs)IQdS] < 2||ullf B [T,

for every € M and T € T,,. Therefore ||u|| 5 prob < V2 ||u] B-

(ii) = (i). Suppose ||u|lB,prob < o©. Let o be an arbitrary number
with 0 < a < |lu]|g. Then there exists a geodesic ball B(z,&) such that
a < |Vu(z)| for all z € B(z,e). Let z € B(z,e) and T = inf{t > 0 :
Z, € B(z,€)}. By the definition of ||u||B,prob We have

< B

o?E,[T] = E, { /O ' o*ds /O ' [Vu(Z:)|?

= Eullu(Zr) — w(Zo)l*] < |1l pron B [T-

Therefore a < ||u|| B prob- Thus ||ul|p < || f]| B,prob- Q.E.D.
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Now we discuss on boundary behavior along Brownian paths of
Bloch functions w on M. Since M* := {u(Z:) — u(Zo)}+ is a continuous
local (F;, P)-martingale, it is known that the sets {{M", M"),, < oo}
and {lim;_, ., M} exists} are almost surely equal. Therefore we are in-
terested to the behavior of M on the set {(M™, M™)o, = 00}:

Theorem 11.2. Letu be a harmonic Bloch functions on M. Then

lim sup [u(Z0)]

<Cllu P-ass.
t—oo +/d(0, Z;)loglogd(o, Zy) ~ Il

Proof. By virtue of Theorem 11.1 we can apply an idea in [33] to
our setting: Let My = w(Z;) — u(Zp) and T'(¢) := inf{s : (M, M), > t}.
By [42, Theorem 1.7, p.182], there exists an enlargement (W, ;, P) and
a Brownian motion B on W independent of M* such that the process

B MT(t)> t < (M,M)Oo,
t = ~
Moo + Bi— (s, MYy t 2> (M, M),

is a standard linear Brownian motion. Therefore by the classical law of
the iterated logarithm we have

(47) lim sup | B =1 P-as.

t—oo +/tloglogt

Now on the set A = {(M, M), = oo}, we have M; = By ar),, and
S
(M, M), = 2/ |Vu(Z,)|? dr < 2||ulks.
0

Consequently, we have

lim sup [4(Z) — u(0)]

t—oo  +tloglogt

P-a.s. on {{(M, M) = co}. On the other hand ¢t ~ d(o, Z;) as t — oo
(see [35, (3.2), p.254]). Therefore we have the desired inequality P-
a.s. on {{M, M), = co}. Thus the theorem was proved. Q.ED.

< Cllulls

As an immediate consequence of Theorem 11.2 we have the following
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Corollary 11.3. Let M = {z € R" : |z| < 1} and let g be the
hyperbolic metric on M. Then for a harmonic Bloch function u on

(M, g),

lim sup [u(Z:) — ulo)| < Clullp a.s. P°.
t—oo 1/log(1 — |Z:])~1logloglog(l — [Z¢])~!

§12. Appendix 1 (A proof of Theorem BH2 (2))

Proof of Theorem BH2 (2). Let Cy (resp. C) be the cone with ver-
tex z(t) (resp. z(t+1)), direction tangent to dC(z,t) (resp. 9C(z,t+1))
of sufficiently small angle 0 defined as in [1, p.518]. Consider sequences
of cones Cy,...,C, and Cf,...,C] obtained by iterated 1-shift of Cy and
C|, respectively. Then by our curvature condition, there exists a positive
number £ depending only on k; and k2 such that for an angle § > ¢ the
sequence of cones Cg, . ..,C§, C(z,t+1/2), Cf, ..., C] together with their
vertices is a ®-chain through z(t+1/2) in the sense of Ancona [1], where
® is depending only on k; and k2. Moreover, by the remark after Propo-
sition 15 in [1], we have that the sequence (C;)¢, ..., (Cy)¢, C(z,t+1/2)°,
Co, - - -,Ck together with their vertices is a W-chian through z(¢ + 1/2)
where ¥ depends only on ®. Therefore from this observation it follows
that the sets MNC(z,t+1)¢, MNC(z,t+1/2)¢ and M NC(z,t)° satisfy
the assumption of [1, p.519, Theorem 5']. Q.E.D.

Remark 5. It is easy to see that also Theorem BH1 for cones
with more general aperture implies Theorem BH2.

§13. Appendix 2 (Unbounded BMO functions)

As is well known, the function log |z — 1| on the unit sphere is un-
bounded but belongs to the classical BMO space. However, it seems to
be difficult to construct a unbounded BMO function on the sphere at
infinity. In this section we give a nonconstructive proof of existence of
unbounded BMO function:

Proposition 13.1. Suppose that (X, p, ) is a space of homoge-
neous type in the sense of Coifman and Weiss [15], and that u(X) = 1.
Forze X andr >0, let B(z,r) ={y € X : p(z,y) < r}. Assume that
w(B(z,r)) >0 for allz € X and r > 0, and that lim,_,o u(B(z,r)) =0
for every x € X. Then L*°(X) # BMO(X).
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Proof. Suppose L (X) = BMO(X). Then it is easy to see that
the norms || - ||r= and || - Mo must be equivalent. Therefore by Hxop.-
BMO duality and L'-L* duality, we have that the norms || - || £1(,) and
| - Iz, are equivalent on L?. Since L? is dense in L! and H},,, we
have Hl .. = L'. By [15], HL,,, is isomorphic to the dual space of
the Banach space VMO. Therefore L' also is isomorphic to the dual
of VMO. However this is not the case as we will prove below (see
Remark 6 after the proof). Using this isomorphism we can define on
the space L' the topology induced from the weak * topology of the
dual of VMO. Moreover, with this topology, L' is a locally convex
topological linear space. From Banach-Alaoglu theorem it follows that
the closed unit ball B(L!) of L' is compact convex set in the induced
topology. Therefore by Krein-Milman’s theorem B(L!) must have at
least one extreme point. However L' has no extreme points. For if
f € B(L'), then we can consider the following two cases: (Case 1)
There exists a Borel set E C X such that [ |f|du € (0,1). (Case 2)
For every Borel set £ C X, fE |fldp = 1 or = 0. In the first case, f
is not an extreme point of B(L!), because f = af; + (1 — ) f2, where
a= [,|flde € (0,1), fi = a ' fxp, and fo = (1 — o) ' fxx\p (X4
is the characteristic function of A). The second case does not happen:
Let ||f|lzx > 0. Then we have u({0 < |f|] < oo}) > 0. By Lebesgue’s
differential theorem, for almost every z € {0 <|f] < oo},

1

(48) lim————/ fldu = |f(z)] € (0, 00).

P (B o 1M TS O00)
However, in the second case,

1 1

—_— fldy = ————— or O,

WB@n) Jom T WBE )
and 1/u(B(z,r)) — oo as r — 0. This contradicts (48). Q.E.D.

Remark 6. A. Pelczynski proved that for a o-finite and non
purely atomic measure space (X, ), the space L1 (%, u) is not isomorphic
to any conjugate Banach spaces ([40]).

§14. Appendix 3 (Local Fatou-Doob theorem revisited)

In this section we study local version of Doob-Fatou type theorem
on boundary behavior of harmonic functions, and yet another definition
of Hardy spaces.
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For t > 0, let TA(Q) = Ty(Q) N (M \ B(o,t)) (d > 0) and I't,(Q) =
To(Q)N(M\ B(o,t)) (o € R). We say a function f converges admissibly
(resp. nontangentially) to [ at Q € S(c0) or has an admissible limit
(resp. a nontangential limit) [ if limg o f(zr) = | for every @ € R
(resp. d > 0) and for every sequence {zy}r C ['o(Q) (resp. T4(Q)) with
zr — Q as k — oo. We wirte the admissible limit (resp. nontangential
limit) by ad-lim,_.¢g f(z) (resp. K-lim,_,¢ f(Q))-

In 1989 we proved a local version of Fatou-Doob theorem under a
technical assumption on admissible regions (see [5, Theorem 5.1]). How-
ever, by virtue of results in Cifuentes and Kordnyi [14] we can remove
the assumption, and obtain the following theorem by the same way as
in [5, Theorem 5.1]:

Theorem 14.1. Let h be a positive harmonic function on M. Let
E be a Borel subset of S(00), and u a harmonic function on M. Assume
that for each Q € E, there exist t > 0 and o € R such that u/h is
bounded below on T'%(Q). Then there exist F1,Fy C S(00) such that
w(Fy) = pp(Fy) = 0, where py, is the Martin representing measure for
h, and that u/h converges admissibly at every point in E \ (F1 U F3).

Recently, F. Mouton [38] proved local versions of Fatou theorem and
of Calderén-Stein type theorem. We note that the former follows also
from Theorem 14.1 with h = 1.

As an application of Theorem 14.1 we prove the equivalence of
H?(w) and HP(M) which is defined in §3:

Theorem 14.2. Suppose 1 < p < co. Let u € HP(M). Then
there exists f € HP(w) such that f=uonM.

Proof. Here we prove only the case of p = 1. We can apply the
following proof to other p € (1,00). Because of Theorem 14.1 (or 38,
Theorem 5.1] and Theorem CK1), for w-a.e. @ € S(00), the admissible
limit f(Q) = ad-lim,_,¢ u(z) exists. Furthermore, u;(Q) = u(v,q(t)) is
continuous on S(oo) and f(Q) = limy 0o w(Q) w-a.e. @ € S(o0) and
lut(Q)| < No(u)(Q). Therefore we have that the function f: Q — f(Q)
is measurable and f € L'(w).

It remains to prove that u = f. Let z € M. By (9), No(f) € L*(w?).
Since Theorem 6.2 holds true also for w?, we have that supg«;.q. [u(Z:)|
€ LY(W, P,). Therefore by the martingale convergence theorem there
exists F, € LY(W,P,) such that lim; .o, u(Z;) = F, and u(Z;) =
E.[F,/F?] (P.-as.). For Q € S(c0), let (P2, Z;) be the conditioned
Brownian motion to exit M at @ (see [38, 3.3] for the definition and
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basic properties). Then
/ PR({ lim u(Z) = F.}) dw(Q) = P.({ Jim u(Z,) = F.}) = 1.
5(c0) —00 —00

Hence for w*-a.e. Q € S(c0), P2 ({lim;_, o u(Z;) = F,}) = 1. From this
we prove the following assertion:

Assertion. There exists a constant Gg , such thatlim,_,o, u(Z;) =
Gq,» P2-a.e.

Proof of Assertion. Let I; = [§,7 + 1), and L; = {limy— oo u(Zs)
exists in I;} (j € Z). Then L; is asymptotic in the sense of [38, p.482],
and therefore the 0-1 law implies that P¢(L;) = 1 or 0. Therefore there
exists a unique number j € Z such that P2(L;) = 1 and P2(L;) = 0 for
i # j. We write the interval I; by H;. Consider the dyadic decompo-
sition of Hy, namely Hyy = [j,7 + 1/2) and Hy2 = [j +1/2,5 + 1).
Let Ly; = {lim;,o0 u(Zy) exists in Hy;} (¢ = 1,2). Then again by
0-1 law we have either P@(L;;) = 1 or P?(Liz) = 1. We denote
by H, the interval Hy; with P2(Ly;) = 1. Continuing this proce-
dure we get a decreasing sequence of intervals {Hj}g=1,2, .. such that
P2 ({limy—,00 u(Z;) exists in Hy}) = 1. Since there exists a point Gg , €
R such that {Gg .} =, Hk, the assertion is proved.

End of the proof of Assertion.

Because of (9) and Theorem CK1, K-lim,_,q u(z) = f(Q) for w?-
a.e. @ € S(o0). Hence by [38, Corollary 4.4] we have that f(Q) = Gg,.
for w?*-a.e. Q € S(c0).

Since Zoo = lims—oo Zt = Q a.s. P2 for every Q € S(co), we have
that for w*-a.e. Q € S(oc0),

1= P2({lim u(Z) = Go..}) = P2({ lim u(Z:) = f(Q)})
= P2({ lim u(Z,) = f(Zeo)})-

Therefore P,({lim¢—oo w(Z:) = f(Zx)}) = 1. This implies that F, =
f(Zs) P;-a.s. Thus

w(z) = E.[u(Z0)] = E:[E:[F./F5]] = E.[f(Zx)] = /S( ) fdw®.

Q.E.D.
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From this theorem it follows that H?(M) is naturally identified with
H? (w).
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