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Recent Progress on the Finiteness of Torsion 

Algebraic Cycles 

Noriyuki Otsubo 

In this article we review recent results on the finiteness of torsion 
algebraic cycles on certain surfaces over number fields. 

1. Let X be an algebraic variety over a field k. For an integer i ?: 0, 

let Xi be the set of schematic points of codimension i ( equivalently, the 

set of integral closed subvarieties of codimension i of X). The Chow 
group of algebraic cycles of codimension d modulo rational equivalence 
is defined by 

where "'(x) denotes the residue field at x. Chow groups are natural 
generalization of Picard group, but little is known on their structure in 

general. 
Bloch was the first to study the close relation between algebraic 

cycles and algebraic K-theory. Let Kn(X) be the algebraic K-group 

defined by Quillen. Let Kn be the Zariski sheaf on X which is associated 
to the presheaf U ~ Kn(f(U,Ox)). Define similarly Hn(z/zm(r)) by 
the sheafification of the etale cohomology functor U ~ H~(U, µlf:) for 

a prime number l #- ch(k). Then, if X is smooth we have the following 
isomorphisms called Bloch's formula: 

CHd(X) ~ Hiar(X,Kd), 

CHd(X)/zm ~ Hiar(X, 'Hd(z/zm(d))). 
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On the other hand we have the Riemann-Roch theorem: 

Ko(X) 0 (Q c::- E9 CHd(X) 0 Q. 
d~O 

As to the structure of higher K-groups we have 

Conjecture 1.1 (Bass). Let X be a regular scheme of finite type 
over Z. Then Ki(X) is a finitely generated abelian group for i ~ 0. 

As a corollary of higher dimensional class field theory we have 

Theorem 1.2 (Bloch[B13], Kato-Saito[K-S]). For a scheme X of 
finite type over Z, the Chow group of zero-cycles CH0 (X) is a finitely 
generated abelian group. 

From now on, we mainly consider a projective smooth variety X over 
a number field k. Let X be a proper smooth model of X over Ok[l/N] 
for some N. Then the natural maps 

are surjective, and we expect CHd(X) to be finitely generated. 

Conjecture 1.3 (Tate[T], Beilinson[Be], Bloch[B14], Bloch-Kato 
[B-K]). 
(i) Ford~ O, CHd(X) is a finitely generated abelian group. 
(ii) rank(CHd(X)/CHd(X)hom) = dim(H;td(X, Qp(d))Gal(k/k)) 

= -ords=d+1L(H2d(X), s). 
(iii) rank(CHd(X)hom) = dim(H}(k, H';td- 1(X, Qp(d))) 

= ords=dL(H2d-l(X), s). 
Here, CHd(X)hom is the kernel of the cycle map CHd(X) ---, H;t(X, 
(Qp(d)), and H}(k, -) c H 1 (k, -) is a vector-space analog of the Selmer 
group defined by Bloch-Kato[B-K] (see §4). 

Remark 1.4. If d = 1, tlfen CH1(X) = Pic(X) and (i) follows from 
the Neron-Severi theorem and the Mordell-Weil theorem. 

If X is an elliptic curve and d = 1, (iii) is a part of the Birch­
Swinnerton-Dyer conjecture. 

2. On the finiteness of torsion part of Chow group of codimension two, 
there has been considerable progress for varieties over various fields not 
only number fields. In particular, for varieties with Hlar(X, Ox) = 0, 
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we have many general results (see [CT2] and [CT3] for much more). The 
first example was the following: 

Theorem 2.1 (Bloch[B12]). Let X be a rational surface over a 

number field which is a conic bundle over IP'1 . Then, Ker(CH2(X) ~ Z) 
is finite. 

This was generalized: 

Theorem 2.2 ([Colliot-Thelene[CTl]]). The same holds for every 
rational surf ace. 

While Bloch used the theory of quadratic forms, Collio.t-Thelene 
proved rather simply using the following significant theorem of Merkur­
jev and Suslin called Hilbert 90 for K 2. 

Theorem 2.3 ([Merkurjev-Suslin[M-S]). For a field k and a prime 
number l /:- ch(k), we have an isomorphism K 2 (k)/ln ~ H 2 (k, µ~?). 

With this theorem and the Bloch-Ogus theory[B-O], Bloch gave the 
following exact sequence[Bll] (cf. [CT2]): 

(2.1) 0 - Hi.a,(X,K2) ®Qp/Zp - NH!t(X,Qp/Zp(2)) 
-cH2(X){p}-o 

where 

N H;t (X, Qp/Zp(2)) 

:= Ker(H;t(X,Qp/Zp(2)) - H;t(k(X),Qp/Zp(2))). 

Therefore, to show the finiteness of torsion of CH2(X), we are to 
show that the first group Hia,(X, K2) is sufficiently large. The most 
general result known so far is the following: 

Theorem 2.4 (Colliot-Thelene-Raskind[CT-R], Salberger[Sa]). Let 
X be a projective smooth variety over a number field. If H~ar(X, Ox) 
= 0, then CH2 (X)tor is finite. 

3. One of the crucial difficulties in the situation H~a,(X, Ox) /:- 0 is that 
we need essentially new elements in Hi.a,(X, K2) called indecomposable 
in the sense that they are not contained in the image of the product map 
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(even after any finite extension of the base field). 
Importance of the group Hiar(X, JC2) can also be seen from the 

following localization sequence in K-theory. Let X be a proper smooth 
model of X over Ok[l/N] and Xv be its closed fiber over a prime v. 
Then we have an exact sequence: 
(3.1) 

- Hiar(X, JC2) ~ E9Pic(Xv) - CH2 (X) - CH2 (X) - 0. 
vfN 

It is known by [CT-R] that the p-primary torsion subgroup CH2(X){p} 
is a cofinitely generated Zp-module (i.e. a direct sum of finite copies of 
Qp/Zp and a finite p-group). Therefore, if Ker(CH2(X) -----t CH2 (X)) = 
Coker( 8) is torsion then C H 2 ( X){p} is also cofinitely generated as a 
Zp-module and hence then-torsion of CH2 (X) is finite for any n. 

For the self-product X = Ex E of a modular elliptic curve over Q, 
we have the following elements in H,;,ar(X, JC2) constructed by Flach[Fl2] 
and Mildenhall[M] using the theory of modular curves and modular 
units. For a prime p where E has good reduction there is an element of 
H,;,ar(X,JC2) whose image by the boundary map 8 of (3.1) is trivial at 
l =/= p, and a non-zero constant multiple of the class of the graph of the 
Frobenius endomorphism of E (mod p) at l = p. Mildenhall used them 
to show the torsionness of Ker(CH2(X) -----t CH2(X)), and Flach used 
them to detect the Selmer group associated to the Galois representation 
Sym2(Tp(E)). 

Based on their results Langer and Saito proved 

Theorem 3.1 ([Langer-Saito[L-S]). Let E be a semi-stable elliptic 
curve over Q with conductor N. Then CH2 (ExE){p} is finite for pf 
6N, and trivial for almost all primes. 

When E has complex multiplication we have 

Theorem 3.2 ([Langer[Ll], Langer-Raskind[L-R], [01]). Let E 
be an elliptic curve over Q with complex multiplication by the ring of 
integers in an imaginary quadratic field K. Let N be its conductor and 
p f 6N be a prime number. Then, under some assumption which is 
satisfied if N is a power of a prime, CH2 (ExE){p} and CH2 (EK x 
EK ){p} are finite, where EK := E ®Q K. Moreover, the same holds for 
the associated Kummer surfaces Km( Ex E) and Km( EK x EK). 
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Remark 3.3. For an abelian surface A over a field with character­
istic =/=- 2, the Kummer surface Km(A) associated to A is a K3-surface 
obtained by blowing up sixteen singularities of the quotient A/ { ±1} cor­
responding to the points of order 2 on A. Also in the semi-stable case, 
we can show in the same manner the finiteness of CH2 (Km(ExE)){p} 
for E and p as in Theorem 3.1. 

Finally we introduce 

Theorem 3.4 ([01]). Let F be the Fermat quartic surface over Q 
defined by 

Put K = Q( A), FK = F ®Q K, an<j, let pf 6 be a prime number. 
Then, CH2 (F){p} and CH2 (FK){P} are finite. 

Remark 3.5. Let Y be a projective smooth variety over a p-adic field 
k' (i.e. [k': Qp] < oo) which has a projective smooth model~ over the 
integer ring. Then, if H~ar(Y, Oy) = 0, CH2 (Y)t0 r is known to be finite 
(cf. [CT2]) 

If Ker(CH2 (~) ----+ CH2 (Y)) is torsion, then this is finite, and the 
prime-to-p part of CH2 (Y)tor is finite because CH2 (~)tor has the prop­
erty [Ra]. For X and p as in Theorems 3.1, 3.2 and 3.4, the first 
step of their proofs show the finiteness of Ker(CH2 (~) ----+ CH2 (Y)) 

for Y = X ®Q k'. 
Other examples over p-adic fields are the product of two (possibly 

different) elliptic curves [Sp] and a class of Hilbert-Blumenthal surfaces 
[L2]. 

4. Now let us recall the outline of the method of Langer-Saito[L-S] 
which is also used in [Ll] and [01]. Let X be one of the surfaces of 
Theorems 3.1, 3.2 or 3.4 over Q, and p be a prime number satisfying the 
assumption. The proof for XK is parallel. By (2.1), since CH2 (X){p} 
is cofinitely generated by the above result of Mildenhall and the corre­
sponding results for the Kummer surface [Ll] [01], and for the Fermat 
quartic surface [01], it is enough to show that Hiar(X, /C2) 0 Qp/Zp 
is the maximal divisible subgroup of NH!t(X,Qp/Zp(2)). We modify 
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KN H!t (X, Qv/Zv(2)) 

:=Ker(N H!t (X, Qv/Zv(2)) - H!t (X, Qv/Zv(2)) ), 

and reduce to prove 

Then these groups are embedded by using Hochschild-Serre spectral se­
quence into the Galois cohomology group H 1 (Q,A) where A := 
H;t ( X, Qp /Zv ( 2)). Taking further the localizations with local condi­
tions we obtain 

where H}(Q1, A) is the unramified part for l =/- p, and defined by using 
the Fontaine ring Bcris for l = p ( see [B-K]). The Selmer group of A is 
defined by 

S(Q, A) := Ker(a), 

and its analogue 

1 ( 1 ffi H 1 (Q1, V)) 
H1(Q, V) := Ker H (Q, V) - W Hl(Q V) 

all! f l, 

is similarly defined. 
Then we are to prove: 

(i) In (4.1), the image of the first group in the final direct sum coin­
cides with that of the second one; 

(ii) The Selmer group S(Q, A) is finite. 

The key to show (i) is the following commutative diagram with the 

vertical isomorphism for l f N. Define V := H;t(X, Qp(2)), and let the 
subspace H:(Q1, V) C H 1 (Q1, V) be the whole space for l =/- p and the 
one defined in [B-K) using the Fontaine ring BdR for l = p. Then we 



Torsion Algebraic Cycles 319 

have 

Hiar(X, K2) 0 Qp --+ HJ(Q1, V)/ H}(Q1, V) 

8i \;, 11 
Pic(X1) 0 Qp 

where 81 is the l-part of the boundary map of (3.1) tensored with QP. 
The proof of its l = p part requires recent results in p-adic Hodge the­
ory. Since we know that 81 is surjective for l f N, the composition of 
( 4.1) is "almost" surjective modulo many delicate arguments such as 
the difference between Qp-coeffi.cients and Qp/Zp-coeffi.cients or the bad 
reduction primes. 

The part (ii) is more arithmetic in nature. When X = Ex E for a 
semi-stable E, the Selmer group is studied in [Fl2]. When E has CM, 
there are results [Fll], [W], [D], all of which are based on the two-variable 
Iwasawa main conjecture proved by Rubin[Ru]. 

5. Once the result for ExE (or EK x EK) is obtained, it is not so 
difficult to prove the statement for the associated Kummer surface. One 
should notice, however, that the proof will be more complicated if the 
2-torsion points of Eis not defined over Q (or the CM field K), in which 
case we have possibly infinite Selmer group and we need some tricks as 
in [01]. 

Finally, we consider the Fermat quartic surface F. The key is a 
geometric construction connecting F to a Kummer surface which enables 
us to use the results on Ex E. It is known [Ka-Sh] that F is constructed 
from the product of two copies of the Fermat quartic curve C, by taking 
blowing-up, quotient by a finite group and blowing-down. We can find 
a finite morphism C --+ E where E is an elliptic curve, such that 
it induces a finite morphism F --+ Km(ExE) of degree 2 where F 
is the blowing-up of F at certain eight points. This E has complex 
multiplication by Z[A]. · 

Pull-backs of this morphism faduce a commutative diagram: 

Pic(Km(ExE)) 0 QP 

l 
H;t (Km(E x E), Qp(l)) 

<--+ Pie( F) 0 Qp 
l 

'--+ H;t(F,Qp(l)) 

where the vertical maps are the cycle maps. We can define explicitly 
eight divisors on F whose divisor (resp. cohomology) classes generate 
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the cokernel of the upper (resp. lower) map. This means that both the 
Picard group and the second cohomology group of F ( then, of F) are 
described by those of Km(E x E) and the classes of the explicit divisors. 

The crucial difference from the other cases is the fact that the Selmer 
group for For FK is not finite. 

Theorem 5.1 ([01]). Let A= H;t(F,Qv/Zv(2)). Then we have 

corankzv(S(Q,A)) = 2, corankzv(S(K,A)) = 4. 

This breaks the part (ii), but we can separate from A = H;t(F, 
IJJ.v/Zv(2)) a part which causes the infinite Selmer groups and treat 
this directly without taking localizations. This part is controlled by 
the classes of the eight divisors mentioned above and the multiplicative 
group of Q( (8 ) because the divisors are defined only over Q( ( 8 ). In view 
of the exact sequence 

for a number field k, this explains why our Selmer groups are infinite. 
By a conjecture of Bloch-Kato[B-K], the Zv-corank of the Selmer 

group of a general motive should coincide with the rank of a certain 
motivic cohomology group defined by K-theory, and then with the or­
der of vanishing at an integer point of the L-function by Beilinson's 
conjecture [Be]. These are wide generalization of Conjecture 1.3. Note 
that for a Qp-representation V of Gal(k/k) of geometric origin, its Ga­
lois stable Zv-lattice T and A = V/T, we have corankzv(S(k,A)) 
dimQv(H}(k, V)). 

In our situation the desired equalities are 

corankzv(S(Q,A)) = rank(H1(F,Q(2))z) = ords=1L(H2 (F),s), 

corankzv(S(K, A))= rank(Hlt(FK, Q(2))z) = ords=1L(H2 (FK ), s). 

Remark 5.2. We have H1(-,Q(2)) ~ Ht,(-,K2 ) ®Q. The sub­
script Z means the integral part, that is, the elements extending to an 
integral model over the whole integer ring. 

We have in fact 

Theorem 5.3 ([01]). 
(i) ords=1L(H2 (F), s) = 2, ords=1L(H2 (FK), s) = 4. 
(ii) There exist two (resp. four) elements in H1(F,Q(2))z (resp. 
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H1 (FK, Q(2) )z) whose image by the Chern class inap generate the max­
imal divisible subgroup of the Selmer group. 

Since we have explicit description of the Picard group, (i) follows 
from the functional equation and the Tate conjecture ([Fal] using 
[Ka-Sh]). The elements of (ii) are constructed using the eight specific 
divisors mentioned above and certain units of Q( (8 ). These are decom­
posable over Q((8 ), but not over Q nor K. 

Remark 5.4. This method is generalized in [02] to construct ele­
ments in Ht'+l(X,Q(m+r))z (r ~ 1), for any projective smooth vari­
ety X over a number field. The image of these elements under the Chern 

class map generate the Selmer group of V'(r) C H;tm(X,Qp(m + r)) 
where V' is the sub-representation of H;tm(X, Qp(m)) generated by the 
classes of cycles on X of codimension m. 
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Added in Proof After the first manuscript was written, Langer [L3] 
axiomatized the method for the finiteness of CH2 (X)t0 r including the 
case where the Selmer group is not finite, in which case the generalization 
of Theorem 5.3 (see Remark 5.4) should be useful. 
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