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Hecke Module Structure of Quaternions 

David R. Kohel 

Abstract. 

The arithmetic of quaternions is recalled from a constructive 
point of view. A Hecke module is introduced, defined as a free abelian 
group on right ideal classes of a quaternion order, together with a nat­
ural action of Hecke operators. An equivalent construction in terms of 
Shimura curves is then introduced, and the quaternion construction 
is applied to the analysis of specific modular and Shimura curves. 

§1. Introduction 

The arithmetic of quaternion algebras underlies a number of areas 
of modern mathematics, from number theory and algebraic geometry 
to graph theory. A motivation for the present article, in particular, 
is the interplay with the arithmetic of Shimura curves. Thus in this 
article we present the arithmetic of quaternion algebras and describe 
the construction of the associated Hecke modules. Then we discuss 
the geometric relation with modular curves and Shimura curves and 
conclude with some calculations. In order to motivate what follows we 
begin here with an overview of the algebraic and geometric facets of the 
theory. 

The Hecke modules of this study are defined alternatively as divisor 
groups on right ideal classes of a level m order O for a definite quaternion 
algebra of discriminant Dp, or as the monodromy group at p of a Neron 
model for the Jacobian of a Shimura curve X/? (mp). The curve X/?(mp) 
parameterizes abelian surfaces whose endomorphism rings admit a fixed. 
embedding of a level mp order R in an indefinite quaternion algebra 
of discriminant D. The supersingular points of reduction modulo p 
correspond, by definition, to those abelian surfaces which split into a 
product of supersingular elliptic curves. By results of Buzzard [2], the 
singular points of the reduction modulo pare the supersingular points. 
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The monodromy group, measuring winding numbers about these points, 
can be identified with the supersingular divisor group. The enhanced 
supersingular surfaces are functorially equivalent to the right ideals over 
the quaternion order O. Moreover the Hecke operators, as with classical 
modular curves, are determined by the morphisms in the supersingular 
category. Thus the monodromy group can be formally replaced with 
a free abelian group on a basis of right ideals classes for O, allowing 
one to work with a Hecke module of quaternions as a proxy for the 
supersingular divisor subgroup. 

This paper is organized as follows. Section 2 contains the back­
ground machinery for quaternion algebras from a constructive point of 
view, with explicit examples given. In Section 3 we define Hecke mod­
ules in terms of supersingular elliptic curves as in Mestre [10] and its 
generalization in terms of quaternions. Section 4 recalls the definition 
of Shimura curves as well as relevant theorems which establish the con­
nection with the quaternion algebras. The final section is devoted to 
the analysis of specific Shimura curves using the corresponding Hecke 
modules. By demonstration, we show that the arithmetic of quaternion 
algebras is effective for computation, in contrast to the difficulty of com­
puting Shimura curves and their Jacobians (see Elkies [6]). Moreover, 
by means of the geometric interpretation, Hecke modules of quaternions 
provide a means of elucidating the theory of Shimura curves. 

§2. Quaternion algebras 

A finite dimensional algebra H over a field K is simple if it has no 
proper, nontrivial left or right ideals. If the center of H is K, then H 
is said to be centml over K. With these prior definitions, we make the 
following definition of a quaternion algebra. 

Definition 2.1. A quaternion algebra Hover K is a central sim­
ple algebra of dimension four over K. 

Since K is the center of H, it is clear that H must be a noncommu­
tative ring. Throughout this work, the field K will be Q or one of its 
completions Qp or R 

Quaternion algebras are the simplest of noncommutative rings, and 
in this realm, are the analogues of quadratic field extensions. As in 
the case of number fields, the principle questions of arithmetic interest 
regard the orders in a quaternion algebra and the left and right ideal 
theory of such orders. 
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Example 2.2. The following three algebras are examples of quat­
ernion algebras over Ql. 

1. The matrix algebra M2(Ql) is the split quaternion algebra over Ql. 
2. The Ql-algebra defined by generators i and j with relations 

i2 =P = -1, 
ij + ji = 0. 

3. The Q-algebra defined by generators x and y with relations 

x 2 + 2 = y 2 + y + 5 = 0, 
xy + yx + x + 1 = 0. 

2.1. Trace, norm, and involutions 
Let H be a quaternion algebra over K. Every x in His contained 

in a quadratic extension of K. Conversely every maximal commutative 
extension of K in H is quadratic. It follows that every x in H satisfies 
an equation 

x 2 - Tr(x)x + Nr(x) = 0, 

where Tr(x) and Nr(x) are elements of K which we call the reduced trace 
and reduced norm respectively. The conjugate of x is defined to be the 
element 

x = Tr(x) - x, 

and x 1---+ xis an involution of H. 
Now suppose that K = Q. We define an order in H to be a sub­

ring which is a Z-module of rank four. Let R be any such order, let 
{ x1, x2, x3, x4} be a basis, and set 

(x, y) = Nr(x + y) - Nr(x) - Nr(y). 

Then the determinant of the matrix ( (Xi, x j)) is the square of an integer. 
We define the discriminant of R to the positive integer disc(R) such that 

det ((xi, Xj)) = disc(R)2. 

The discriminant of H is defined to be the discriminant of a maximal 
order in H, which is well-defined by Theorem 2.6 below. 

2.2. Completions, ramification, and splitting 
Let MQ denote the set of finite and infinite places of Ql. For each 

place v in MQ, we define 
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where Dv is the unique central division algebra of dimension 4 over 
(Q)v. In the former case v is said to split in H and in the latter v is 
said to ramify. Quaternion algebras can be classified in terms of their 
ramification by means of the Brauer group. 

The Brauer group Br(K) of a field K is an abelian group defined 
on a set of classes [A] of central simple K-algebras A. The equivalence 
relation is defined such that [A] = [B] if and only if 

for positive integers rands. The group operation in Br(K) is the tensor 
product, and for any central division algebra, the opposite algebra lies 
in the inverse class of the Brauer group. 

By the Wedderburn theorem every central simple K-algebra is iso­
morphic to an algebra of the form Mn(D) for a unique central division 
algebra D / K and positive integer n. It follows that the classes in Br(K) 
are in bijection with the isomorphism classes of central division alge­
bras. From the description of the inverse operation, it follows that the 
2-torsion subgroup Br(K)[2] is in bijection with the isomorphism classes 
of central division algebras with involution. 

Theorem 2.3. The Hasse invariant defines canonical isomorphi­
sms 

1 
(ii) inv 00 : Br(JR) _____, 2 Z,/'L 

for all finite places p and the infinite place, respectively, such that the 
sequence 

0 _____, Br((QJ) --':...-; E9 Br((QJv) ~ (QJ/Z-------, 0, 
vEMQ 

defined by i([A]) = ([A® Qv])v and inv( ([Av])v) = I:v invv(Av), is 
exact. 

In fact the 2-torsion group Br((QJ)[2] has representatives among the 
quaternion algebras over (QJ, giving the following classification theorem 
(see Vigneras [20] II.3 Theorem 3.1). 

Theorem 2.4. Every quaternion algebra over (QJ ramifies at an 
even number of places. Conversely for every finite set consisting of an 
even number of places of (QJ, there exists a unique quaternion algebra 
H/(QJ ramifying at exactly this set. 
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Example 2.5. As noted, the quaternion algebras lie in the 2-
torsion subgroup of the Brauer group. From Theorem 2.3 and 2.4 we 
note that in particular that there exists a unique quaternion division 
algebra over R This algebra is the classical Hamilton quaternions 

IHI= JR+ !Ri + !Rj + !Rk, 

where i2 = j2 = -1 and k = ij = -ji. 

If a quaternion algebra ramifies at infinity, we say that it is positive 
definite, otherwise we say it is indefinite. It follows that a quaternion 
algebra is positive definite if and only if it embeds in the Hamilton 
quaternion algebra. 

The following theorem, together with the definition of the discrimi­
nant, serves to determine the primes ramifying in a quaternion algebra 
H. 

Theorem 2.6. Let H be a quaternion algebra over (Q). The dis­
criminant of an order R in H is mdisc(O), where O is any maximal 
order containing R and m is the index [O : R]. The discriminant of 0 
is equal to the product of the finite primes ramifying in H. 

Proof. This is the content of Vigneras [20], Chapitre I, Lemme 4.7 
and Chapitre III, Corollaire 5.3 and the discussion following. • 

Example 2.7. In Example 2.2 we see that by definition the split 
quaternion algebra (1) ramifies nowhere. The discriminant of the order 
R = Z(i, j) of the quaternion algebra (2) is 4, so has index two in a 
maximal order in the algebra ramified at 2 and oo. The order gener­
ated by x and y in the algebra (3) is maximal. Indeed for the basis 
{x1,x2,x3,x4} = {l,x,y,xy} we have 

0 -1 
4 1 
1 10 

-2 0 

-1 l -2 
0 ' 
20 

which has determinant 372 • Therefore R is maximal and the algebra 
ramifies at 37 and oo. 

· 2.3. Orders and ideals 

An order in a finite dimensional algebra H /(Q) is a subring containing 
a basis for H and which is finitely generated as a Z-module. In mim­
ber fields there exists a unique maximal order. For noncommutative 
algebras this uniqueness property fails. In the split quaternion algebra 
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M2((Q)) for example, the order M 2(Z) is maximal, but the same is true 
for x-1M2(Z)x for all x in GL2((Q)). 

Let H be definite, and let R ~ea maximal order in H. Define ij to 
be the finite adele ring of (Q) and Z to be the subring of integral adeles, 
then set 

As with number fields, we have a local-global principle for ideals. Under 
the inverse maps 

I----IR 
HnxR xR 

every nonzero right ideal J corresponds to a subset IR of of ii of the 
form xR for an element x of H*. 

Every fractional right ideal of R is a locally free, rank one module 
over R, and conversely every such module embeds in H. Thus the iso­
morphism classes of locally free, right modules of rank one over R are 
in bijection with the set 

H*\H* /R*. 
Since H*\H* is compact in the topology on the idele group H*, and R* 
is open, the set of isomorphism classes is finite. 

Definition 2.8. Let I be a right ideal for R. The left order of I 
is defined to be the subring S = {x EH I xI s;;; J} of H. 

It is clear that S is an order of H. Locally it is conjugate to R at 
all finite primes, so in fact S is also maximal. 

Proposition 2.9. Every maximal order of H appears up to iso­
morphism as the left order of a right ideal for R. 

Proof. Let S be another maximal order in H, and set 

I= {x EH I Sx s;;; R}. 

Then I is a right ideal for R and a left ideal for S. • 

Corollary 2.10. The number of maximal orders of H, up to iso­
morphism, is bounded above by the number of right ideals of R, up to 
isomorphism. 

Definition 2.11. The norm of a right R-ideal I, denoted N(J), is 
the positive integer generating the ideal {Nr(x) Ix E J}Z. 
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Lemma 2.12. Let R and S be maximal orders in H. Then the 
ideals I = { x E H I Sx ~ R} and J = { x E H I Rx ~ S} satisfy 
N(I) = N(J) = m and JI= mR and IJ = mS. 

Proof. From the definition of I it is clear that I is a right ideal for 
Rand a left ideal for S, and that moreover I~ R. Set 1 = {x Ix EI}. 
Locally at each prime l we have Iz = S1xz = yzRz for xz and Yz in Hz*. 
Then 

Izlz = SzxzxzSz = Nr(xz)Sz and l1I1 = Rzy1yzRz = Nr(yz)Rz. 

But the norm of an ideal is locally defined, so we have Nr(x1)Z1 
Nr(yz)Zz = mZz. Thus globally we have II= mS and JI= mR. 

It remains only to show that J = 1. Combining the equalities 
II= mS and JI= mR with the inclusion I~ R, we obtain mR C 1. 
Continuing similarly, we have ml~ mS, so I~ S. But then 1 ~ S = S. 
Moreover 1 is a left R-ideal, so RY= 1 ~ S, and by the definition of J 
we have 1 ~ J. By symmetry we conclude that]~ I, hence J ~ 1, so 
the desired equality J = 1 holds. • 

Proposition 2.13. The number of right ideal classes for a maxi­
mal order of H is independent of the maximal order and is the same for 
left ideals. 

Proof. For two maximal orders Rand S, set I= {x EH I Sx ~ R} 
and J = { x E H I Rx ~ S} as above, and let Ii, ... , h be a collection of 
representatives for the distinct right ideal classes of R. Then Ii J, ... , h J 
is a collection of distinct right ideals for S. Since JI = mR and I J = 
mS, for m = N(I), the maps Ii f---+ IiJ and Ji f---+ JiI compose to give 
Ii f---+ mii ~ h Thus the ideals I and J determine bijections of the ideal 
classes for Rand S. The second statement follows by taking conjugates. 

• 
Let I a right ideal for a maximal order R, with left order S, then 

R n S is the left order of the pair (R,I) of right R-modules. This 
motivates the following definition. 

Definition 2.14. An Eichler order R in H is defined to be the 
intersection of two maximal orders in H. The level m of R is the index 
of R in any maximal order containing it. 

Example 2.15. Returning again to the quaternion algebras of 
Example 2.2, we have the following examples of maximal orders and 
ideals. 
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1. Let H = M 2 (Z) be the split quaternion algebra, and set R = 

M2 (Z). Then every right ideal is principle, and R is conjugate to 
every maximal order in H. 

2. Let H = Q+Qi+Qj +Qij, where i2 = j 2 = -1 and ij + ji = 0, 
and set R = Z(i,j,w), where 

1 + i + j + ij 
w=------

2 

Then R is a right principle ideal ring, and up to isomorphism, 
the unique maximal order in H. 

It is also known that the order Z(i,j) is a principle ideal ring, 
and up to isomorphism, the unique order of level 2 in H. It is not, 
however, an Eichler order since locally there is a unique maximal 
order at a ramifying prime, so the intersection of two maximal 
orders is always maximal at the ramifying primes. 

3. Let R = Z(x, y) where 

x 2 + 2 = 0 
y2 +y+5=0 
xy + yx +"x + 1 = 0 

in the previously defined quaternion algebra ramified at 37 and 
oo. Then there are three ideal classes, with representatives: 

li=R, 12 = (2,1-x+y)R, J3 = (2,x - y)R. 

Set z = 1 - x + y. We note that z = x - y, and the subring Z[z] 
is a maximal order of discriminant - 23 in a quadratic imaginary 
extension of Q of class number 3. The ideals Ii, ]z, and h are 
generated by the ideal representatives (1), (2, z), and (2, z) of this 
subring. 

§3. Hecke modules 

Let 1f be the infinite dimensional Hecke algebra Z[ ... , Tn, ... ] gener­
ated by commuting indeterminates Tn2 indexed by the positive integers. 
We define a Hecke module to be a 11'-module M, which is free of fi­
nite rank over Z. We set T(N) equal to the subalgebra of 1f generated 
by Tn for all n relatively prime to N. We say that a homomorphism 
M1 -------, M 2 is compatible wit~ Hecke operators Tn relatively prime to 
N if it is a homomorphism of ']['(NJ-modules. 

In this section we describe two constructions of Hecke modules. The 
first construction, due to Mestre and Oesterle [10], is defined in terms 
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of supersingular points on classical modular curves. The second is a 
generalization in terms of quaternion algebras. We conclude the section 
by recalling a map of these modules to the standard Hecke module of 
classical modular forms. 

3.1. Hecke modules on supersingular points 

Let k be an algebraic closure of a finite field of characteristic p, 
let E / k be a supersingular elliptic curve over k, and let C be a cyclic 
subgroup of order m. We denoted by Ethe pair (E, C), which we will 
call an enhanced elliptic curve. Then the endomorphism ring Endk (E) of 
the pair is an Eichler order of level m in the quaternion algebra ramified 
at p and oo. 

We define S to be a set of representatives of the isomorphism classes 
of enhanced elliptic curves of level mover k. Then an element E of S 
determines a point on X 0 (mp)/ k, in fact a double point of the reduction 
to k, so we can form the divisor group 

M = EB Z-[E] ~ Divk(Xo(mp)), 
EES 

and let X be the subgroup of degree zero divisors in M. The Hecke 
operators act on M and X by: 

Tn([E]) = L [F] = L an(E, F) [F], 
'P FES 

for all (n, mp) = 1, where the first sum is over the cyclic isogenies 
cp : E -----+ F of degree n, up to isomorphism of the image curve F. 

For two enhanced elliptic curves E and F let Isom(E, F) be the set 
of isomorphisms from E to F. We define an inner product on M by 

1 
([El, [Fl)= 2 iisom(E,F)I, 

extending ( , ) bilinearly to M x M. The Hecke operators Tn are Her­
mitian with respect to the inner product: 

([El, Tn([F])) = (Tn([E]), [Fl). 

The orthogonal complement to X in M is the rank one space generated 
over (Q by the element 

Eis= L ([E], [E])- 1 [E] 
EES 

of M ®;z (Q, which we call the Eisenstein subspace of M. 
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3.2. Hecke modules on quaternion ideals 

Let ell be the category of enhanced supersingular elliptic curves 
over k, let E be a fixed object, and set R = Endk(E). Then R is an 
Eichler order in the definite quaternion algebra H = R ®z (Q ramified 
at p and oo. Define ModR to be the category of right locally free rank 
one modules over R. Then Homk(E, -) : t:ll --+ ModR is a functor 
and determines an equivalence of categories. The previous construction 
of Hecke modules was functorially defined hence carries over in terms of 
objects and maps in ModR. 

We thus present the following construction as a generalization of the 
previous one. For a definite quaternion algebra H of discriminant D and 
an Eichler order R of level m, define S to be a set of representatives for 
the isomorphism classes of locally free, rank one right modules over R. 
Define the formal divisor group M to be the free abelian group 

M=E9Z-[J], 
IES 

on the basis S. As before, we set X equal to the subgroup of formal 
degree zero elements. We say that a nonzero homomorphism cp : J --+ J 
is cyclic of degree n if 

J/cp(I) ~ Z/nZ x Z/nZ. 

We note that with this definition J/cp(I) is a principle R-module. Based 
on the analysis of the torsion structure of supersingular elliptic curves 
by Lenstra [9], when R is the endomorphism ring of an enhanced super­
singular elliptic curve E, this agrees, under the equivalence of categories 
with ModR, with the definition of a cyclic isogeny in t:ll. 

The Hecke operators Tn are defined as before as the operators 

Tn([I]) = L [J] = L an(I, J) [J], 
'P JES 

for (n, Dm) = I where the first sum is over cyclic R-module homomor­
phisms cp : J --+ J of degree n, up to isomorphism of J. In practice, I 
and J can be embedded in H as fractional right R-ideals such that the 
homomorphism cp is an inclusion, which gives 

and we can equivalently sum over the inclusions of cyclic submodules 
J--+ n-11. 
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As in the supersingular elliptic curve construction, we define an inner 
product on M by 

1 
([J], [J]) = 2 IIsom(J, J)I, 

extending ( , ) bilinearly to M x M. One verifies as before that the 
Hecke operators Tn satisfy: 

([J], Tn([J])) = (Tn([J]), [J]), 

and the orthogonal complement to X in M is the rank one subgroup E 
generated by a constant multiple of the element 

£is= L ([11, [JJ)-1 [Jl 
JES 

of M ®z Q, defining the Eisenstein subspace of M. 

3.3. Hecke modules of classical modular forms 
The relation between Hecke modules of quaternions and modular 

forms is given by the theory of the classical Brandt matrices developed 
by Eichler [5]. Further aspects of the theory and computation were de­
veloped by Pizer [11]. The present formulation follows that of Kohel [8]. 
In this theory, there exists a Hecke-bilinear pairing with image in the 
space of modular forms: 

8 : M X M ---+ M2(ro(N), Z), 

where M is the Hecke module defined relative to an Eichler order of 
level m and discriminant D and N = Dm. In defining the pairing 8, 
one first defines operators 

such that Ans = AnAs for relatively prime n and s, and otherwise 
Anr2 = Ar Arn - r An for primes r not dividing N. Then 8 is defined by 

CX) 

8([J], [J]) = 1 + 2 L (An([J]), [J]) qn, 
n=l 

extended bilinearly to M x M. This pairing takes M x X and Xx M 
to the space of cusp forms and takes E x M and M x E into the space 
of Eisenstein series. 

For each pair of elements I and J in the basis S, the coefficients of 
8([J]), [J]) are obtained as the representation numbers of the degree map 
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on the rank four Z-module HomR(J, J), a quaternary quadratic form 
over Z. By standard results for theta functions ( see for instance Chapter 
IX of Schoeneberg [17]), the series 8([J], [J]) lies in M2 (r0 (N), Z). 

In terms of the basis S, the matrices of the operators An are the 
classical Brandt matrices, Bn, and the matrices (e([J], [J])n) of n-th 
coefficients equal 2WBn, where W = (([J], [J])) is the diagonal Gram 
matrix of the inner product on M. Since the representation numbers are 
well-defined, we obtain operators An for all n, and in particular define 
Hecke operators Tp = Av also for p dividing N. By the recursions for 
An, for all p not dividing N we have 

Tv(8([J], [J])) = 8(Tv([J]), [J]) = 8([I], Tv([J])), 

where we denote also by Tp the p-th Hecke operator on M2 (r0 (N), Z). 

§4. Shimura curves 

Shimura curves provide a generalization of modular curves on which 
the previous construction has a natural interpretation. For an Eichler or­
der R in an indefinite quaternion algebra, there is an associated Shimura 
curve which is the moduli space of abelian surfaces with a prescribed 
embedding of R in the endomorphism ring. For the present purpose we 
define a Shimura curve as a quotient of the upper half plane and discuss 
arithmetic constructions on the Jacobian varieties of these curves. 

4.1. Construction of Shimura curves 

Let B/Q be an indefinite quaternion algebra over (Q of discriminant 
D, and let R be an Eichler order of level m in B. We fix once and for 
all an isomorphism 

Under this isomorphism there exists a well-defined left action of B* ~ 
GL(JR) on the upper half plane H. We set 

r{?(m) = {x ER* I Nr(x) = 1}, 

and define the Shimura curve to be a model for the quotient 

Xf (m) = r{l(m)\H, 

where the bar indicates the compactification. When D = 1, then r5(m) 
= r 0 (m), so this generalizes the standard definition of the modular 
curve Xo(m). When Dis greater than one, then the quotient r{l(m)\H 
is already compact. 
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4.2. Semistable reduction and monodromy groups 

For the construction of analogous Hecke modules on the Jacobians of 
Shimura curves, we recall some general constructions of Grothendieck [7] 
on abelian varieties. 

Let A/Q be an abelian variety with semistable reduction at a prime 
p, and let k be an algebraic closure of IFP. We define a finite subgroup 
q> = fJ>(A, p) as the component group of the fiber at p of the Neron model 
for A, and let T = T(A,p) be the toric part of the same fiber. We define 
the monodromy group of A at p to be 

X(A,p) = Homk(T, Gm)-

We note that T /k is isomorphic to a finite product of copies of Gm, and 
thus X(A,p) is a free abelian group. 

Let Av be the dual abelian variety of A, and suppose that there 
exists a canonical principal polarization ~ : A ---+ Av. Such is the case, 
for instance, if A is the Jacobian of a curve. There exists a canonical 
bilinear pairing, 

u: X(A,p) x X(Av,p)---+ Z, 

such that (x, y) = u(x, ~(y)) defines a symmetric positive definite pairing 
on X(A,p). By the following result, Theorem 11.5 of Grothendieck [7], 
the monodromy pairing permits the determination of the component 
group fJ>(A,p) of an abelian variety A. 

Theorem 4.1. There exists a natural exact sequence 

0---+ X(A,p) ---+ Hom(X(A,p), Z) ---+ fJ>---+ 0, 

taking x E X(A,p) to u(-,~(x)). 

4.3. Hecke modules on Shimura curves 
We now apply the previous constructions to the Jacobians of Shi­

mura curves. As for classical modular curves, the Jacobian of a Shimura 
curve Xf (m) is naturally equipped with Hecke operators Tn for all n 
relatively prime to the level N = Dm. As defined by correspondences 
on divisor groups (see §7.4 of Shimura [16]), the Hecke operators embed 
naturally in the endomorphism ring of the Jacobian Jf (m). Following 
the exposition of Takahashi [18], we summarize here results of Ribet [13], 
by which we can interpret the previous constructions of Hecke modules. 

Theorem 4.2. Let D be a product of an even number of primes, 
and let p and q be distinct primes coprime to D. Then there exists a 
canonical exact sequence 

0---+ X(A',p) ~ X(A,q)---+ X(A",q) x X(A",q)---+ 0 
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where 

A= J/?(mpq), A"= J/?(mq). 

The homomorphisms are compatible with the Hecke operators Tn for all 
n relatively prime to Dpqm. With respect to the monodromy pairings on 
X (A', p) and X ( A, q), the map i is an isometry with its image. 

Proof. This exact sequence was proved by Ribet for D = 1 in [13], 
and the general case holds following the work of Buzzard [2]. • 

By means of the following theorem we may interpret the construction 
of Hecke modules of quaternions in terms of the monodromy groups of 
the Jacobians of Shimura curves. 

Theorem .4.3. Let H be a positive definite quaternion algebra of 
discriminant Dp, and let X(Dp, m) be the Hecke module for an Eichler 
order R of level m. Then there exists a canonical isomorphism 

X(Dp, m) ~ X(J/?(mp),p). 

The isomorphism is compatible with Hecke operators Tn for all n rela­
tively prime to Dpm, and is an isometry with respect to the respective 
inner products. In particular, X(J{;qr(mp),p), X(Jfj'pr(mq),q), and 
X(J{;pq(mr), r) are canonically isomorphic for distinct primes p, q, and 
r relatively prime to D. 

Proof. This is a consequence of Theorem 4. 7 and Theorem 4.10 of 
Buzzard [2], which prove the results analogous to Deligne and Rapoport 
[4]. The present formulation appears in Takahashi [18]. • 

§5. Examples and computations 

Let X(Dp, m) denote the Hecke module constructed for an Eichler 
order of level m in the definite quaternion algebra of discriminant Dp. 
As in Theorem 7.14 of Shimura [16], the decomposition of the Hecke 
modules X(Dp, m) into its Hecke-stable subspaces give isogeny factors 
of the Jacobian J/?(m). Of particular interest are the rank one factors, 
corresponding to elliptic curves covered by the curve X/?(m). 

We consider in this section those Hecke modules X(Dp, m), for 
which Dpm divides 30. Under the isomorphism of Theorem 4.3, we 
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identify X(Dp, m) with X(Jf (mp),p). Then from Theorem 4.2 we ob­
tain the following six exact sequences: 

(1) 0 ---+ X(JJ5 (2), 3) --+ X(5, 6) --+ X(5, 2) x X(5, 2) ---+ 0 

(2) 0 ---+ X(JJ5 (2), 5) ---+ X(3, 10) ---+ X(3, 2) x X(3, 2) ---+ 0 

(3) 0---+ X(Jg(5), 2) --+ X(3, 10) ---+ X(3, 5) x X(3, 5) ---+ 0 

(4) 0---+ x(Jg(5), 3) --+ X(2, 15) ---+ X(2, 5) x X(2, 5) ---+ 0 

(5) 0 ---+ X(JJ0 (3), 2) --+ X(5, 6) --+ X(5, 3) x X(5, 3) ---+ 0 

(6) 0---+ X(JJ0 (3), 5) ---+ X(2, 15) ---+ X(2, 3) x X(2, 3) ---+ 0 

The Hecke modules X(Jfpq(m),q)) can then be identified as the kernel 
of the corresponding projections, once the Hecke modules X(Dp, mq) 
and X(Dp, m) are determined. 

By means of the quaternion algebra arithmetic described in Section 2 
and the Hecke module construction in Section 3, it is possible to com­
pute the Hecke modules X(Dp, m). Implementing this arithmetic in the 
computer algebra system Magma [1], the author determined bases for 
the modules X(Dp, m), together with the representations of the Hecke 
algebras on these modules. 

Since the curves X0 (2), Xo(3), and Xo(5) have genus zero, the cor­
responding Hecke modules X(2, 1), X(3, 1), and X(5, 1) are zero. Like­
wise the curves Xo(6) and Xo(lO) have genus zero, so X(2, 3), X(3, 2), 
X(2, 5), and X(5, 2) are zero. Each of the remaining modules: 

X(3, 5), X(5, 3), X(2, 15), X(3, 10), X(5, 6), and X(30, 1) 

are nontrivial, and the Hecke-invariant subspaces are all of rank one. 
The table below summarizes the arithmetic data. The column de­

noted class refers to the isogeny class of corresponding isogeny factor in 
Cremona [3]; the column (v,v) gives the self inner product of a gener­
ator v of the rank one eigenspace over Z, and an is the eigenvalue of 
the Hecke operator Tn. We also note that the eigenspace generators 
need not generate X(Dp, m). In the case of X(3, 10) and X(5, 6) they 
generate a submodule of index two. 
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Invariants of X(Dp, m) 

X(Dp,m) rank class (v,v) a2 a3 as a7 
X(3,5) 1 15A 4 -1 -1 1 0 
X(5,3) 1 15A 4 -1 -1 1 0 
X(2, 15) 1 30A 2 -1 1 -1 -4 

30A 6 -1 1 -1 -4 
X(3, 10) 3 15A 4 1 -1 1 0 

15A 2 -3 -1 1 0 
30A 2 -1 1 -1 -4 

X(5,6) 3 15A 4 1 -1 1 0 
15A 2 -3 -1 1 0 

X(30, 1) 1 30A 6 -1 1 -1 -4 

From the previous exact sequences it is possible to identify kernel 
submodules of these Hecke modules. The modules X(JJ5 (2), 3) and 
X(JJ5 (2), 5) are isomorphic to X(5, 6) and X(3, 10), respectively. The 
module X(J8(5), 2) can be identified as the rank one kernel of T2 + 
1 in X(3, 10), and both X(J8(5), 3) and X(JJ 0 (3), 5) are canonically 
isomorphic to X(2, 15). The module X(JJ0 (3), 2) can be identified with 
the rank one kernel ofT2+l in X(5, 6). While the Hecke module X(30, 1) 
does not enter into the exact sequences, by Theorem 4.3 it is canonically 
isomorphic to each of X(JJ5 (2), 2), X(JJ0 (3), 3), and X(J8(5), 5), by 
which we can identify again the common isogeny factor 30A of JJ 5 (2), 
JJ0 (3), and J8(5). 

It is also possible to analyze the kernel of the maps of X(J/? (mp), q) 
to X(J/?(m),q) induced by the quotients J/?(mq) ==: J/?(m) when q 
divides D. First, to have a concise representation of the above exacts 
sequences, we express a short exact sequence of the form O -----+ M' -----+ 

M -----+ M" x M" -----+ 0 in the nonstandard manner 

0 ---+- M' --+- M --+ M'' · · ,.__ 0 --+ ------, ' 

where the double arrows are the projections to the factors. Note that 
in this notation M' is the intersection of the kernels of the two maps, 
and the condition of surjectivity is stronger than surjectivity on each of 
the components M". By the naturality of these exact sequences with 
respect to the two projections of J/?(mp) to J/?(m), we observe that 
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there exist exact sequences of sequences of the form: 

0 0 0 

+ + + 
0 w X(JJ0 (3), 2) =+: X(JJ0 (1), 2) --+ 0 

+ + + 
0--+ X(JJ5 (2),3) X(5,6) X(5, 2) 0 

++ ++ ++ 
0--+ X(JJ5 (1),3) X(5,3) X(5,1) 0 

+ + + 
0 0 0 

in which Wis isomorphic to X(JJ0 (3), 2) and identified in X(JJ5 (2), 3) ~ 
X(5, 6) as the kernel of the projection to X(5, 3) x X(5, 3), corresponding 
again to the isogeny factor 30A. 

§6. Further considerations 

The above analysis gives a breakdown of the isogeny factors of the 
Jacobians of Shimura and classical modular curves, but ignores more 
subtle details omitted by a characterization only up to isogeny. For 
instance, the isogeny class of elliptic curves of conductor 30 consists of 
one isogeny class of eight curves, denoted 30Al - 8 in the notation of 
Cremona [3], and which we denote by E 1 through E8 . The curves in 
this isogeny class are connected by isogenies over QI of degree 2 and 3 as 
indicated in the diagram below. 

One defines an optimal quotient of an abelian variety to be a quotient 
with connected kernel, which is unique in its isogeny class, up to iso­
morphism. For instance, the optimal quotient of J0 (30) is the curve E 1 . 
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Roberts [15] finds the elliptic curves J/](5) and JJ0 (3) to be E6 and E2, 
respectively, and the optimal quotient of JJ 5 (2) in the isogeny class 30A 
to be E3. 

Other arithmetic invariants of Shimura curves may be studied in 
the setting of quaternions. The component group of a special fiber of 
the Neron model for J(?(m); congruence primes, as in Ribet [12]; and 
the degree of a parameterization of a modular elliptic curve may also be 
studied in this context. Theorem 4.1 provides the means for studying 
component groups. Congruence primes are defined as prime divisors of 
the index of the subgroup generated by eigenvectors in the Hecke module; 
it was noted in particular that 2 is a congruence prime for X(3, 10) and 
X(5, 6). For classical modular curves the methods for computing degree 
of modular parameterizations are well-developed, and Cremona [3] has 
compiled extensive computations. The problem for Shimura curves has 
been studies by Ribet and Takahashi [14] and Takahashi [18], and this 
work can be applied in the analysis of the quaternion Hecke modules. 
Finally, in cases when the level is not square-free, it may be possible to 
extend the understanding of modular and Shimura curves by computa­
tion or proving results for Hecke modules of quaternions. 
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