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Hilbert's 12th Problem, Complex 
Multiplication and Shimura Reciprocity 

Peter Stevenhagen 

Abstract. 

We indicate the place of Shimura's reciprocity law in class field 
theory and give a formulation of the law that reduces the techni­
cal prerequisites to a minimum. We then illustrate its practical use 
by dealing with a number of classical problems from the theory of 
complex multiplication that have been the subject of recent research. 
Among them are the construction of class invariants and the explicit 
generation of ring class fields. 

§1. Hilbert's 12th problem 

All variants of class field theory can be said to 'classify' in some 
way the abelian extensions of a given field K. The classical examples are 
those where K is a number field, a function field in one variable over a 
finite field, or a local field, but the second half of this century has seen 
the birth of higher dimensional analogues as well [12]. 

In the classical cases, the main theorem of class field theory provides 
an anti-equivalence 

'I/; : AbK ------+ Subx 

between the category AbK of finite abelian extensions of K (inside some 
algebraic closure K of K) and the category Subx of open subgroups of 
a locally compact abelian group X = X(K), which is entirely defined 
'in terms of K'. Here the morphisms in both categories are simply the 
inclusions between fields and subgroups, respectively. In the three stan­
dard examples mentioned above, X(K) can be taken to be equal to the 
idele class group of K in the first two cases, which constitute the global 
case, and to the multiplicative group K* in the local case. 
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The definition of the anti-equivalence 'ljJ is entirely explicit: it maps 
a finite abelian extension L of K to the norm image NL;KX(L). The 
'surjectivity on objects' of 'ljJ is the existence theorem of class field theory, 
which guarantees that every open subgroup H C XK is of the form 
NL I K X ( L) for some finite abelian extension L of K, the class field of H. 
The problem of finding a 'direct description' of the extension L = 'ljJ-1 [H] 
in terms of His known as Hilbert's 12th problem. Hilbert originally posed 
the problem for number fields, but it occurs in the other variants of class 
field theory as well. 

Already for number fields, Hilbert's problem is not entirely well­
posed, as one cannot say that the construction of class fields in the proof 
of the existence theorem is not 'explicit' or 'constructive'. However, the 
proof is not 'direct' in the sense that it does not generate the class fields 
over K itself, but over large auxiliary extensions of K. What Hilbert 
had in mind was an analogue for arbitrary number fields of the following 
theorem over Q. 

1.1. Kronecker-Weber theorem. The abelian extensions of Q 
are generated by the values of the exponential function exp : T 1---+ e21riT 

at rational arguments T. 

Even though the theorem exhibits the generators of the abelian exten­
sions as values of a transcendental function, it is relatively easy to find 
the corresponding algebraic data, i.e., the irreducible polynomials in 
Z[X] corresponding to these generators. As exp[Q] ~ Q/Z is the sub­
group of roots of unity in C*, these are the cyclotomic polynomials. 
Moreover, the action of Gal(Q/Q) on the roots of unity generating the 
maximal abelian extension Qab of Q yields an isomorphism 

Gal(Qab/Q) ~ Aut(Q/Z) = Z*. 

For local fields and for function fields over finite fields, there is an ana­
logue of the statement in 1.1 that there is a module C* over the ring of 
integers Z of Q with the property that the torsion points of the Z-action 
on C* generate the abelian extensions of Q. In both cases, the abelian 
extensions are generated by the torsion points of a suitable module over 
a 'ring of integers' A C K. In the local case, A is the valuation ring 
and the module is provided by the Lubin-Tate theory of formal groups 
[10]. In the function field case, there is some choice for A which has 
to be taken care of, and the modules one needs are rank-one Drinfeld 
A-modules [8]. 

As far as finding an analogue of the Kronecker-Weber theorem for 
number fields K -/= Q is concerned, Hilbert's problem is outstanding in 
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all but the special case of imaginary quadratic K. It is one of the main 
open problems in class field theory. 

§2. Complex multiplication 

The theory that generalizes 1.1 for imaginary quadratic fields goes 
under the name of complex multiplication. We let K further be imagi­
nary quadratic, and use the unique infinite prime of K to view C as the 
archimedean completion of K. This enables us to evaluate complex ana­
lytic functions in the 'K-valued points' of either C itself or the complex 
upper half plane H = { T E C : Im( T) > 0}. It is our aim to generate the 
maximal abelian extension Kab of K using such values. 

The maximal abelian extension Qab of Q, which contains K, is 
clearly a subfield of Kab· Weber tried to generate Kab over Qab us­
ing the values of the modular function j : H ----+ C. This is the unique 
holomorphic function on H that is invariant under the action of the 
modular group SL2 (Z) and has a Fourier expansion of the form j(q) = 
q- 1 + 744 + O(q) for q = e21rir tending to 0. Weber thought incorrectly 
[18, §169] that Kab is the compositum of Qab and the field K 1 obtained 
by adjoining to K the values j(T) of the j-function at TE Kn H. One 
does however come close. 

2.1. Theorem. The maximal abelian extension Kab of K is an 
infinite abelian extension of K1Qab with Galois group of exponent 2. 

Other functions are needed if one wants the full extension Kab rather 
than the approximation 'up to quadratic extensions' from 1.2. There are 
two ways to proceed, and they appear to be rather different at first sight. 

The first method goes back to Theter, Takagi and Hasse. Fueter, 
who discovered the need of additional quadratic extensions, showed [4, 
Hauptsatz, p. 253] that Kab is contained in the extension of K1Qab 
generated by the division values ('Teilwerte') of the Weber function hK 
associated to K. This function, which is not a modular but an elliptic 
function, is the 'normalized' x-coordinate on a Weierstrass model of the 
elliptic curve E = C/OK associated to the ring of integers OK of K. It 
can be viewed as a meromorphic function on C with period lattice OK, 
The precise definition, which depends on the number of roots of unity 
in K, can be found in [18, §153], [9, Ch. 1, §5] or [3, §6]. 

Incomplete knowledge of the arithmetic nature of the division values 
of the Weber functions prevented Weber himself [18, §155] from making 
extensive use of hK in the theory of complex multiplication, and he uses 
Jacobi's elliptic function sn(z) as a substitute. Takagi, who devotes the 
final sections of his famous article on general class field theory to the 



164 P. Stevenhagen 

special case of imaginary quadratic K, follows this detour and provides 
explicit generators for Kab using Jacobi functions [17, Satz 37]. A com­
plete description of Kab using Weber functions is finally obtained by 
Hasse [7]. It reads as follows. 

2.2. Theorem. Let K be imaginary quadratic with ring of integers 
OK= Z[To]. Then Kab is generated over K(j(To)) by the values hK(T) 
of the Weber function hK at TE K \ OK. 

The second method, which plays a central role in Shimura's version of 
complex multiplication, sticks to modular functions, but uses infinitely 
many of them. More precisely, one needs modular functions of higher 
level as defined in [9, Ch. 6, §3]. These functions form a field F, the 
modular function field over Q. The algebraic closure of Q in F is the 
maximal cyclotomic extension Qab of Q. 

2.3. Theorem. Let K be imaginary quadratic, and pick T E Kn 
H. Then Kab is generated by the finite function values f(T), with f 
ranging over the modular function field F. 

Theorems 2.2 and 2.3 are not as different as they may look. One can use 
Fricke functions to generate F over Q as in [9, Ch. 9, §3], and take T in 
2.3 equal to the value To from 2.2. Then the values of the various Fricke 
functions evaluated at To coincide with the values of the Weber function 
hK on K\ OK. 

When comparing theorem 2.3, which fixes the argument but not the 
function, to the Kronecker-Weber theorem 1.1, one may wonder naively 
whether it is possible to replace the j-function in 2.1 by some other 
modular function f E F such that the simplicity of 1.1 is regained. 
Heinz Sohngen, a student of Emil Artin, showed in his thesis [15, Satz 
IV] that this is not possible. 

2.4. Theorem. Let f E F be any modular function, and let Kt 
be the extension of K that is obtained by adjoining the finite function 
values f(T) for TE Kn H to K. Then Kab has infinite degree over the 
compositum KJQab· 

In order to be useful in practice, the theorems 2.2 and 2.3 need to be 
complemented by a description of the Galois theoretic properties of the 
generators of Kab• We will focus on Shimura's formulation [14], which 
has a reputation of being the most 'abstract' approach to complex mul­
tiplication. This is partly due to the heavy notation in which it is often 
couched. In addition, most expositions first go through a somewhat cum­
bersome description of the multiplication of complex lattices by ideles. 
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In the next section, we furnish a concise description of Shimura's 
main results. It reduces notation to a minimum and avoids the usual 
'componentwise' operations on ideles by a systematic use of profinite 
completions. The final three sections of the paper illustrate that this 
'abstract' version is both an ideal instrument to obtain smooth concep­
tual proofs and a powerful algorithmic tool. In section 4, we prove a 
general result (4.4) that readily implies theorems 2.1 and 2.4. It encom­
passes most of Sohngen's results [15] on ray class fields for orders in 
a rather painless way. Sections 5 and 6, which extend the recent work 
of Alice Gee and the author [5, 6] to arbitrary orders, deal with the 
construction of class invariants and the explicit generation of ring class 
fields. They show that Shimura reciprocity not only completely removes 
the mystery that long surrounded Weber's claims on class invariants, 
but also yields the Galois theoretic properties of such invariants that are 
needed for their use in computational settings. 

§3. Shimura reciprocity 

Shimura 's reciprocity law for K gives the action of the absolute 
abelian Galois group Gal(Kab/ K) of K on the 'singular value' f(r) of 
a modular function f E Fat r EK n H. It combines Arlin's reciprocity 
law from class field theory, which describes Gal(Kab/ K) as a quotient 
of the idele group of K, with the Galois theory of the field F of modular 
functions. It defines, for a fixed singular modulus r E Kn H, an action 
of the idele group of K on the modular function field F such that we 
have for every idele x the innocuously looking identity 

(3.1) 

In this 'minimal notation version' of Shimura's reciprocity law the action 
of x on the value f(r) is via its Artin symbol, and the action of x on 
f E F is explained in this section. We avoid explicit multiplication of 
lattices by ideles by defining the action first for suitable subgroups. 

A large subgroup of Aut(F) is obtained by considering Fas an ex­
tension of the field F 1 = Q(j) of modular functions of level 1 over Q. 
One has F = LJN>l FN, where FN is the field of modular functions of 
level N over Q. O°"iie can view FN as the function field of the modular 
curve X(N) over the cyclotomic field Q((N)- Over the complex num­
bers, the curve X(N) is a Galois cover with group SL2(Z/NZ)/ ± 1 of 
the j-line X(l) = P 1 . When working over Q, one has an isomorphism 
Gal(FN/Fi) ~ GL2(Z/NZ)/ ± 1. It may be obtained by combining the 
'geometric action' of the subgroup SL2(Z/NZ)/ ± 1 with the 'arithmetic 
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action' via the determinant map on the N-th roots of unity, cf. [9, Ch. 
6, §3]. The restriction maps between the fields FN correspond to the 
natural maps between the groups GL2 (Z/NZ)/ ± 1, and one finds the 
subgroup 

Gal(F/Q(j)) = GL2 (Z)/ ± 1 

of Aut(F) by taking the projective limit. 
We now pick an element T E Kn H, and write AX2 +BX+ C 

with A E Z>o for the irreducible polynomial of T in Z[X]. Clearly, we 

have K = Q( v'IJ) with D = B 2 - 4AC. One easily checks that the 
lattice Lr = Z · T + Z corresponding to T is an invertible 0-ideal for the 
quadratic order O = Z[AT] of discriminant D. 

Corresponding to the subgroup Gal(F/Q(j)) C Aut(F), there is the 
subgroup Gal(Kab/K(j(T)) C Gal(Kab/K). It is well-known that Ho= 
K (j ( T)) is the ring class field of K corresponding to the order O. It is a 
finite abelian extension of K whose Galois group over K is isomorphic 
to the class group of the order O. If T generates the ring of integers OK 
of K over Z, then K (j ( T)) is the Hilbert class field H = K (j (To)) of K 
occurring in theorem 2.2. 

It follows from class field theory that we may describe Gal(Kab/ K) 
by an exact sequence 

1 -----+ K* -----+ K* __!_, Gal(Kab/ K) -----+ 1. 

Here W denotes the Artin map on the group of finite K-ideles K* 
(K @z Z)*. Note that K = K @z Z is the ring of finite adeles of K, 

and that K* is the quotient of the full idele group of K obtained by 
'forgetting' the infinite component C*. For imaginary quadratic K, this 
amounts to dividing out the connected component of the identity ele­

ment. Inside K we have the profinite completion 

0 = lim(O/NO) = 0 0z Z = Z + Z · AT 
+-N 

of the order 0. Its unit group O* CK* maps under the Artin map unto 
Gal(Kab/Ho), so we have a diagram with exact rows 
(3.2) 

1 O* 

1 {±1} 

Gal(Kab/Ho) 

Gal(F/Q(j)) 

1 

1. 

The connecting homomorphism gr : 0* -, GL2 (Z) sends the idele x E 

O* to the transpose of the matrix representing the multiplication by 
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x on the free Z-module Z · T + Z with respect to the basis [T, 1]. The 
defining identity for 9r ( x), which is often written as 9r ( x) (D = C;), 
may be expanded into the explicit formula 

(3.3) ( t-Bs 
x = sAT + t f----, sA -Cs) 

t . 

The map g = 9r yields an action of O* on F, and the Galois conjugate 

(j(T)? of f(T) under the Artin symbol \J!(x) E Gal(Kab/Ha) of x E O* 
can be computed from the reciprocity relation 

(3.4) 

Whenever Fis Galois over Q(f), we have the fundamental equivalence 

(3.5) 

Note that only the implication-¢= is immediate from (3.4), the implica­
tion=} requires an additional argument [14, prop. 6.33]. 

The content of Shimura's reciprocity law is that the natural Q-linear 
extension of the map 9r in (3.3), which is a homomorphism 

9r: K* = (0 0z Q)* - GL2(Q), 

connects the exact rows in the diagram 

1 K* K* 
\]i 

Gal(Kab/K) 1 - - - -(3.6) l9r 
1 - Q* - GL2(Q) - Aut(F) - 1 

extending (3.2) in such a way that (3.4) and (3.5) hold unchanged for 
this map. 

The statement above is not complete without a description of the 

action of the group GL2 ( Q) of of invertible 2 x 2-matrices over the finite 

adele ring Q = Q 0z Z of Q on F. It is obtained as in [9, Ch. 7] by 

writing the elements of this group in the form u · a, with u E GL2 (Z) in 
the subgroup for which we know already how it acts, and a E GL2 (Q)+ 
a rational 2 x 2-matrix of positive determinant. Note that u and a are 
not uniquely determined by the product u · a, since we have 

Nevertheless, the natural action of GL2 (Q)+ on H via fractional linear 
transformations induces a right action of GL2 (Q)+ on F that can be 
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combined with the action of GL2 (Z) on F. A well-defined action of 

GL2(Q) on Fis obtained by putting 

§4. Ray class fields for orders 

As our presentation in the previous section indicates, one can gen­
erate Kah over Kin two steps. One first picks a quadratic order O CK, 
and considers the ring class field Ho of 0. This is the finite abelian ex­
tension of K generated by the j-invariant j ( 0) of the order. The Galois 
group Gal(H0 /K) is isomorphic to the class group Cl(O) of the order 
0, with the ideal class [ a] E CJ( 0) acting on j ( 0) by 

( 4.1) 

The top row of (3.2) shows that the Galois group of Kah over Ho has 
a rather uncomplicated structure: as O* is a finite group consisting of 
the roots of unity in 0, the group Gal(Kab/ Ho) is essentially the unit 

group of the profinite completion 8 of 0. This means that Kah can be 
obtained as the union of the finite extensions HN,O of Ho corresponding 
to the finite quotients 

(4.2) 8*---» (0/NO)* = (0/NO)* 

of O* for NE Z2:1- We call HN,o the ray class field of conductor N for 
the order 0. Its Galois group over Ho is isomorphic to (0/NO)* /im[O*]. 
If O is the maximal order of K, then HN,O is the ray class field of con­
ductor N of K. We clearly have H 1,o = Ho. 

Let T E K n H be as in the previous section, and O the order 
corresponding to the lattice [T, 1]. For any N E Z2:1, we obtain from 
(3.2) a diagram with exact rows 

O* --+ (0/NO)* --+ Gal(HN,o/Ho) --+ 1 
(4.3) l!ir 

{±1} --+ GL2(Z/NZ) --+ Gal(FN/Q(j)) --+ 1 

in which all groups are finite. Here gT is the natural reduction modulo N 
of the map gT in (3.2) and (3.3), and FN is the field of modular functions 
of level N. 

It is clear from (3.4) that for every modular function f E FN of level 
N, the value f ( T) is contained in the ray class field H N,O of conductor 
N for the order O corresponding to T. In fact, a standard argument as 
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in [9, p. 128] shows that the extension of Ho generated by the values 
f(T) for all f E FN is equal to HN,O· In fact, it suffices to adjoin the 
value of the Weber function for the elliptic curve C / Lr at a generator 
of the cyclic 0-module t[Lr/ Lr-

Let LN C Kah be the field obtained by adjoining to K all the finite 
function values f(T), with f ranging over FN and T ranging over KnH. 
As all orders O C K occur as the multiplyer ring of a lattice Lr, we 
have 

where the injective limit is taken over all orders O C K. 

Writing OP = 0 ®z Zp, we have O* = TIP o; C K*. The kernel of 

the natural map 0* _., (0/NO)* in (4.2) equals 

so an inclusion of orders yields an inclusion of kernels and we find 

For N = l this is the Anordnungssatz for ring class fields [3, §19]. 
The field L N is the infinite extension of K corresponding to the 

subgroup 

n 8(N) = z(N) = {x E Z* : x = 1 mod* N} 
OCK 

= II Zp* x II (1 + NZp)-
ptN PIN 

By class field theory, the Artin symbol of an idele x E O* acts trivially 
on the maximal cyclotomic extension Qah of Q if and only if its image 

under the norm map O* -, Z* 9" Gal(Qah/Q) is trivial. As the norm 

of an element x E Z* C O* is simply its square, we find the following 
Galois theoretic description of the compositum LNQah C Kah· 

4.4. Theorem. Let LN C Kah be the field obtained by adjoining 
the finite values of the modular functions of level N at the points T E 

KnH to K. Then the restriction of the Artin map K* ~ Gal(Kah/K) 

to the subgroup Z* C K* induces a surjection 
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with kernel z(N)[2] n {±1}. In particular, Kab/ LNQab is an infinite 

abelian extension of exponent 2. 

The map in 4.4 is an isomorphism for N 2': 3 and has a kernel of order 
2 for N '.S 2. 

For N = 1 we have FN = Q(j), so L1 = Kj is the field occurring in 
theorem 2.1. This yields the following precise version of theorem 2.1. 

4.5. Corollary. Let Kj be as in 2.1. Then there is a natural exact 
sequence 

1-----+ {±1}-----+ EB {±1}-----+ Gal(Kab/KjQab)-----+ 1. 
p prime 

It follows from 4.4 that theorem 2.1 cannot be improved in a substan­
tial way by replacing j by some other modular function f E F. In fact, 
by employing finitely many modular functions one always generates a 
subfield of the field LN for some N E Z?: 1 , and LNQab is a finite exten­
sion of KjQab• In particular, we see that Sohngen's theorem 2.4 is an 
immediate corollary of 4.4. 

§5. Class invariants 

We have seen that the ring class field Ha corresponding to a quad­
ratic order O C K is obtained by adjoining the value j(O) to K. The 
irreducible polynomial c/>o of j(O) over K, which is known to be a 
polynomial in Z[X] with highest coefficient 1, is the class polynomial 
of the order 0. The zeroes of c/>o are the j-values j(n) of the ideal 
classes [ n] E CJ( 0), and we can numerically determine c/>o from the 
complex approximations of its zeroes. This is much faster than the al­
gebraic determination of c/>o as the divisor of some modular polynomial 
<I>m(X, X) E Z[X] as in [2, p. 297], which is only computationally feasible 
for a few very small O. 

Weber noticed already that class polynomials have huge coefficients. 
In fact, they are so large that they are never useful in actually computing 
Hilbert class fields. For instance, for the quadratic field of discriminant 
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-95 the maximal order O has class polynomial 

<Po = X 8 + 19874477919500 X 7 - 688170786018119250 X 6 

+ 395013575867144519258203125 x 5 

- 13089776536501963407329479984375 X 4 

+ 352163322858664726762725228294921875 X 3 

- 1437415939871573574572839010971248046875 x 2 

+ 2110631639116675267953915424 764056884 765625 X 

+107789694576540010002976771996177148681640625. 

171 

It was discovered by Weber that in some cases, 'small' elliptic functions f 
of level N > 1 can be used to generate Ho as well. In the example above, 

one can take for f the Weber function ../2~[;/ of level 48 or the function 

~ (71<<~1;r5) ) 2 oflevel 120. When evaluated at suitable r E KnH, these 

f yield elements f(r) E Ho with irreducible polynomials 

X 8 - x 7 + X 5 - 2x4 - X 3 + 2x2 + 2x - 1 

X 8 - 3X7 + X 6 - 8X5 - X 4 - 8X3 + X 2 - 3X + 1 

over K. In such cases f(r) is said to be a class invariant of 0. 
Weber used several modular functions of higher level in a rather 

ad hoc manner to compute by hand a number of class invariants. His 
computations of class invariants in [18] are a mix of theorems, tricks, 
numerical observations, conjectures and open questions. Among them is 
the famous class number one problem, which already goes back to Gauss. 
Heegner's 1954 solution of the problem, which proved the completeness 
of Gauss's list of class number one discriminants, was not accepted be­
cause it relied heavily on the observations of Weber, which were not in 
all cases theorems. Only when Baker and Stark gave independent proofs 
in 1968 of the same result, it was realized that Heegner's proof was es­
sentially correct [16]. The renewed interest in Weber's class invariants 
resulting from this led to new proofs and additional results [1, 16], but 
not to a systematic way to deal with such questions. 

Shimura reciprocity enables us to determine in a rather mechanical 
way, for any given modular function f E F, the set of orders O = Z[r] 
for which the value f ( T) lies in the ring class field Ho- As O determines 
T only up to an additive constant k E Zand the value f(r) may depend 
on k for functions f E F of higher level, we fix T to be the 'standard 
generator' of O CK having trace TrK/Q(r) E {O, 1}. We will show that 



172 P. Stevenhagen 

with this normalization, the set of orders O for which f ( T) is a class 
invariant for O can be described in terms of congruence conditions on 
the discriminant D = disc(O) modulo some integer n(f). In fact, n(f) 
divides 4N if f has level N. 

Suppose we are given a modular function f in the field FN of 
modular functions of level N, together with the explicit GL2(Z/NZ)­
action on f. In practice, this means that we know the action of the 
standard generators S, T E SL2 (Z)/ ± 1 on f and the action of the 
Galois group Gal(Q((N)/Q) = (Z/NZ)* on the Fourier coefficients of 
f. We let O = Z[T] be the quadratic order of discriminant D, and 
X 2 +BX+ CE Z[X] the irreducible polynomial of T, and impose the 
mild restriction that Q(f) CF be Galois. 

From the top row of (4.3) we see that the value f(T), which a priori 
only is known to lie in the ray class field HN,O of conductor N for 0, is 
a class invariant for O if and only if the Artin symbols of all elements of 
(0/NO)* leave f(T) fixed. Shimura's equivalence (3,5) shows that this 
is equivalent to the requirement that gr(x) fixes f for all x E (0/NO)*. 
Thus, we only need to compute a set of generators Xi for the finite 
abelian group ( 0 /NO)*, compute their gr-images 

9r(xi) E GL2(Z/NZ) 

using (3.3), and check whether these elements of GL2(Z/NZ) fix f E FN. 
If one finds that f is not left invariant by all 9r(xi), a look at the 

9r[(O /NO)*]-orbit off often suffices to see which modification off does 
have this property. There are many examples in [5] where a small power 
off, if necessary multiplied by a well chosen root of unity, turns out to 
have the desired property. We refer to [5J and [6] for a large number of 
examples. 

The computation of generators Xi of (0/NO)* and their gr-images 
in the group GL2(Z/NZ) only depends on the residue class modulo N of 
the coefficients of the irreducible polynomial X 2 + BX +C of T. Thus, if T 

is the standard generator of O having B = -'IrKjQ(To) E {O, 1}, the pair 
(B mod N, C mod N) only depends on the residue class of D = B 2 -4C 
modulo 4N. This proves our claim for n(f) made above. 

There is a large supply of classical modular functions f of higher 
level that are, in a sense that can be made precise, 'smaller' than the 
j-function, and to which the 'algorithm' above can be applied. The func­
tions ')'3 = J j - 1728 and ')'2 = .ifJ of level 2 and 3 are the simplest and 
most classical examples. The Weber functions f, fi, fa of level 48 ana­
lyzed in [13] and, more generally, the normalized quotients of Dedekind 
ry-functions in [5, 6], are other examples of small modular functions. They 
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give rise to integral class invariants for which the irreducible polynomials 
are much smaller than the class polynomials. 

§6. Computation of ring class fields 

The method in the preceding section enables us to prove in a sys­
tematic way that certain singular values f(T) lie in the ring class field 
Ho corresponding to the order O = Z[T]. It does not tell us how to find 
the conjugates of f(T) over K. This is indispensable in computational 
class field theory, where one wants to compute the irreducible polyno­
mial of f(T) over Kin order to obtain an explicit generating polynomial 
for H0 . The need for explicit conjugates also arises in other situations, 
e.g. in primality proving [11, p. 119]. 

By class field theory, the Galois group Gal(Ho/ K) is isomorphic to 
the class group Cl(O) of 0, and the elements of this group can conve­
niently be listed as reduced primitive binary quadratic forms [a, b, c] 
of discriminant D = disc( 0). For our purposes, it suffices to know 
that these are triples [a, b, c] of integers satisfying gcd(a, b, c) = 1 and 
b2 -4ac = D. They are reduced if they satisfy the inequalities I bl ~ a ~ c 
and, in case we have lbl = a or a = c, also b 2: 0. For any given dis­
criminant D < 0, there are only finitely many such triples, and they are 
easily enumerated if D is not too large. The correspondence between 
reduced forms and elements of the class group is obtained by associat-

ing to [a, b, c] the class of the ideal with Z-basis [-b--i;v'D, a]. Note that 
[a, b, c] and [a, -b, c] correspond to inverse ideal classes. 

The classical formula (4.1) for the action of the class group of O = 
Z[T] on the canonical generator j(T) of Ho over K can be rewritten as 

j ( T) [a,-b,c] = j ( -btav'fl). 

For a general modular function f E F with f(T) E Ho, Shimura reci­

procity enables us to determine the conjugate j off over Q(j) for which 
we have 

(6.1) f(T)[a,-b,c] = l(-btfl5). 

This is done by picking for every class [a] E CJ(O) an idele x E K* 
that generates the 8-ideal a ®z Z. Such an element x exists since ev­
ery invertible 0-ideal is locally principal. It is only determined up to 

multiplication by elements of 8*. As in the case of (3.3), this abstract 
description of x may be translated into a simple explicit recipe. If a is 
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the invertible 0-ideal with Z-basis [-b1;ffi, a] corresponding to [a, b, cl, 

one has a= x8 for the idele x = (xp)p EK* with components 

(6.2) { 

a ifpfa 

Xp = -b-i;ffi if p I a and pf c 

-b-i;ffi - a if p I a and p I c 

for each rational prime p. The Artin symbol of the idele x acts on Ho 
as the ideal class [a] E Cl(O), so we have f(T)[a,b,c] = j(T)X for this x. 
Applying the reciprocity relation (3.4) for x-1 and g = gn we find 

(6.3) f(T)[a,-b,c] = (!9-r(x))(T). 

The element g,,.(x) E GL2 (Q) is only determined by [a, -b, c] up to left 

multiplication by elements u E g,,.[O*] C GL2(Z). However, the fact that 
j(T) is a class invariant exactly means that we have Ju= f for such u, 
so (3.7) shows that the right hand side of (6.3) does not depend on the 
choice of the generator X of a. 

Let ME GL2(Q)+ C GL2(Q) be the transpose of the Q-linear map 

on K = Q • T + Q • 1 that maps the basis [T, 1] to [-b-i;ffi, a]. Then the 

action of Mon H satisfies M(T) = -bt:'15. Putting Ux = g,,.(x) ·M-1 E 

GL2(Q), we can rewrite (6.3) as 

(6.4) f(T)[a,-b,c] = J9-h)•M- 1 (-btaffi) = J:t•(-btfD). 

Comparing the defining identity MG) = (<-H'f75)!2) for M to that for 

g,,.(x), we see that both elements are transposes of Q-linear maps on 

R = Q. T + Q · 1 that map the Z-lattice 8 = z. T + z · 1 onto a= x8. 
It follows that Ux = g,,.(x) • M-1 , being the transpose of an element that 

stabilizes the Z-lattice 8 CK spanned by the basis [T, 1], is actually in 

GL2(Z). This means that r"' = j is a conjugate off over Q(j). Thus 
(6.4) tells us which conjugate J off we have to take in (6.1). 

Computing the function J = fu"' from f is another instance of the 
problem considered in the previous section. Choosing x as in (6.2), it is 
straightforward to write down an explicit formula for the components of 
Ux E GL2 (Z) at each Zp as in [5]. As before, all we really need is the 
image of Ux in the finite group GL2(Z/NZ), with N the level off. 
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