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Crystal Bases for Quantum Superalgebras 

Georgia Benkart1 and Seok-Jin Kang2 

§1. Introduction 

Associated with each integrable module M for the quantized en­
veloping algebra Uq(g) of a symmetrizable Kac-Moody Lie algebra g, 
there is a remarkable basis at q = 0, the crystal base, which was intro­
duced by Kashiwara [Kal]. If A denotes the local ring of all rational 
functions f jg E Q(q) with g(O) -:/=- 0, then M contains an A-lattice 
L, called the crystal lattice. The crystal base is a certain basis B for 
the Q-vector space L/qL, which possesses many noteworthy features. 
It is well-behaved with respect to tensor products; it is preserved un­
der the action of the modified root vector operators ei and i (what 
are often called Kashiwara operators); and it has important connections 
with combinatorial bases of tableaux (see [MM], [KN], [KM], and [L]). 
Crystal bases play a prominent role in two-dimensional solvable lattice 
models, where the parameter q corresponds to the temperature in the 
lattice model. Since q = 0 corresponds to absolute zero temperature, 
one expects special behavior at this particular value, and the crystal 
base reflects this exceptional behavior. 

In this work we describe a crystal base theory for quantum super­
algebras. Basic definitions and general results on crystal bases for Kac­
Moody superalgebras are presented in Sections 2, 3, and 4. Section 5 de­
scribes crystal bases for the orthosymplectic Lie superalgebra o.sp(l, 2n), 
and Section 6, for affine Kac-Moody superalgebras. Sections 7, 8, and 
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9 discuss crystal bases for the general linear Lie superalgebra g[(m, n). 
More details on crystal bases for gl(m, n) can be found in [BKK] where 
the theory is developed, in [MZ] and [C] for osp(l, 2n), and in [Je] for 
Kac-Moody Lie superalgebras. 

§2. Quantized Universal Enveloping Algebras for Kac-Moody 
Superalgebras 

We first recall the definition of the quantized universal enveloping 
algebra for a Kac-Moody superalgebra (cf. [BKM]). Let I be a finite 
index set, and assume A = (ai,j)i,jEI is a generalized Cartan matrix. 
Thus A satisfies: (i) ai,i = 2 for all i EI, (ii) ai,j E Z5o for i-:/- j, (iii) 
ai,j = 0 if and only if aj,i = 0 (i,j E J). In this paper, we assume that 
A is symmetrizable; i.e., there exists an invertible diagonal matrix D = 
diag(t'il i E J) with t'i E Z>o such that DA is symmetric. 

Let Jodd be a subset of J and set Jeven = I\ Jodd_ The elements 
of Jodd (resp. Jeven) are called the odd (resp. even) indices. The parity 
function p is defined by p( i) = 1 if i E Jodd and p( i) = O if i E Jeven. We 
say that the generalized Cartan matrix A is colored by Jodd if ai,j E 2Z 
for all i E Jodd, j E J. 

Let 1J be a vector space of dimension 2III - rankA. Let IT = { ad i E 
I} C IJ* and rrv = {hil i E I} C 1J be linearly independent sets such 
that aj(hi) = ai,j for all i, j E J. Then the triple (IJ, IT, rrv) forms a 
realization of A in the sense of [K4, Chap. 1]. 

Definition 2.1. Assume A = (ai,j)i,jEI is a generalized Cartan 
matrix colored by Jodd c I, and let (IJ, IT, rrv) be a realization of A. 
The Kac-Moody superalgebra g = g(A, Jodd) is the Lie superalgebra 
generated by ei, Ji (i E J) and 1J with defining relations 

(2.2) 

[h, h'] = 0 for all h, h' E IJ, 
[h, ei] = ai(h)ei, [h, /i] = -ai(h)/i, 

[ei, Ji] = 8i,ihi, 

(adei)l-a;,i(ej) = (adli)l-a;,i (fj) = 0 (i-:/- j). 

The free abelian group Q = EBiEI Zai is the root lattice associated 
with the data (A, IT, rrv). For an element a= :Ei kiai E Q, the parity 
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of o: is defined to be p(o:) = Li kip(i) E Z2. We say that o: is even 
(resp. odd) if p(o:) = 0 (resp. p(o:) = 1). Let Q+ = E0iEJ Ze".oo:i and 
Q_ = -Q+. There is a partial ordering ~ on IJ* defined by .X. ~ µ if 
and only if .X. - µ E Q+ (.X., µEI)*). Since A is symmetrizable there is a 
nondegenerate symmetric bilinear form ( I ) on IJ* satisfying (o:i/o:j) = 
fl.iai,j for i,j E J. For each i E J, let ri E GL(IJ*) be the simple reflection 
defined by ri(.X.) = .X. - .X.(hi)o:i (.X. E IJ*). The subgroup of GL(IJ*) 
generated by r;'s is the Weyl group of the data (A, II, nv). 

Let q be an indeterminate and set qi = qe; ( i E J). For nonnegative 
integers n and N, we define the q-binomial coefficients as follows: 

(2.3) 

Let pv be a Z-lattice of 1J containing all h/s and satisfying o:i(h) E Z 
for all i E J and h E pv. The lattice pv is referred to as the dual weight 
lattice, and P = {.X. E IJ*I .X.(Pv) CZ} is the weight lattice. 

Definition 2.4. Let A = (ai,J )i,JEI be a generalized Cartan ma­
trix colored by Jodd c I, and let g = g(A, Jodd) be the corresponding 
Kac-Moody superalgebra. The quantized universal enveloping al­
gebra Uq(g) is the associative algebra over Q(q) with 1 generated by the 
elements qh (h E pv), ei, Ji (i E J) with defining relations 

(2.5) 

q° = 1, lqh' = l+h' for all h, h' E Pv, 

qheiq-h = qa;(h)ei, qh fiq-h = q-a;(h) fi, 

Cl (") Ki - K-:- 1 
ed1 - (-l)P 'P 1 f1ei = oi,J ~ 1 , 

qi - qi 

(adqei)l-a;, 3 (e1) = (adqfi)l-a;,; (Ji)= 0 (i =/= j), 

where Ki= ql;h; Jori E J and adqx(y) = xy-q<al/3l(-l)P(a)p(/9)yx for 

x E 9a, YE 9/9· 

Proposition 2.6. ([BKM]) The algebra Uq(g) has a Hopf su­
peralgebra structure with comultiplication D., counit c, and antipode S 
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defined by 

(2.7) 

(2.8) 

(2.9) 
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~(qh) = qh 0 qh for h E pv' 

~(ei) = ei 0 Ki-l + 10 ei, 

~(Ji) = Ji 0 1 + Ki 0 Ji for i E J, 

t:(qh)=l forhEPv, 

c:(ei) = c:(Ji) = 0 for i E J, 

S(qh)=q-h forhEPv, 

S(ei) = -eiKi, S(Ji) = -Ki- 1fi Jori E J. 

The Q(q)-subalgebra ug of Uq(g) generated by the elements qh (h E 

pv) is isomorphic to the group algebra Q(q)[Pv]. Let u: (resp. uq-) 
be the Q(q)-subalgebra of Uq(g) with 1 generated by the elements ei 
(resp. Ji) for i E J. Then we have the following triangular decomposition 
which can be regarded as a quantum analogue of Poincare-Birkhoff-Witt 
Theorem. 

Proposition 2.10. ([BKM]) There is a Q(q)-linear isomorphism 

(2.11) Uq(g) ~ uq- 0 u~ 0 u:. 

Example 2.12. The simplest example of a quantized universal envelop­
ing algebra associated with a Kac-Moody superalgebra is the orthosym­
plectic quantum superalgebra Uq(o.sp(l, 2)), which is generated by the 
elements e, f, and K±l and has defining relations 

(2.13) 
K-K- 1 

ef + fe = 1 q-q-

§3. Integrable Representations 

In this section, we introduce the notion of integrable Uq(g)-modules 
in category 0. Let g = g(A, J0rld ) be a Kac-Moody superalgebra associ­
ated with a generalized Cartan matrix A= (ai,j )i,jEI colored by the set 
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of odd indices Jodd_ Let Uq(g) be the corresponding quantized universal 
enveloping algebra. 

A Uq(g)-module M is a weight module if it admits a weight space 
decomposition 

M = EB M>., where M>. = {v E Ml qhv = q>.(h)v for all h E Pv}. 
>.EP 

The category O consists of the weight modules with finite dimensional 
weight spaces such that there exist µ 1 , • • • , µ 8 in P satisfying 

wt(M) c D(µ1) U · · · U D(µs), 

where wt(M) = {>,. E Pl M>. =f. O} and D(µ) ={TE Pl T ~ µ}. The 
morphisms are Uq(g)-module homomorphisms. 

Among the Uq(g)-modules in category 0, the most interesting ones 
are highest weight modules. A Uq(g)-module M is a highest weight 
module with highest weight>. E P if there exists a nonzero vector V>. EM 
such that (i) qhv>. = q>-(h)V>. for all h E pv, (ii) eiV>. = 0 for all i E J, 
(iii) M = Uq(g)v>.. The vector V>., which is called a highest weight vector 
of M, is unique up to a constant multiple. 

Let .>. E P and let J(.>.) be the left ideal of Uq(g) generated by ei 
(i E J) and qh-q>.(h)1 (h E pv). Then the quotient M(.>.) = Uq(g)/J(.>.) 
is given a Uq(g)-module structure by left multiplication. It is easy to see 
that M(.>.) is a highest weight module with highest weight.>. and highest 
weight vector V>. = l + J(.>.). The Uq(g)-module M(.>.) is the Verma 
module with highest weight .>.. As a u;;-module, M(.>.) is free of rank 1 
generated by the highest weight vector V>. = l + J(.>.), and every highest 
weight Uq(g)-module with highest weight .>. is a homomorphic image of 
M(.>.). The module M(.>.) has a unique maximal submodule N(.>.), and 
its unique irreducible quotient V(.>.) = M(.>.)/N(.>.) is again a highest 
weight Uq(g)-module with highest weight .>.. 

A Uq(g)-module M is said to be integmble if all ei and /; (i E I) 
are locally nilpotent on M. We denote by Oint the subcategory of 0 
consisting of integrable Uq(g)-modules in category 0. For each i E J, 
let Uq(g)i be the subalgebra of Uq(g) generated by ei, /;, K;1 . Then it 
is easy to verify that 

(3.1) 
if i Erven, 

if i E JOdd_ 
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A Uq(g)-module M is in category Oint if and only if it has a weight 
space decomposition with finite dimensional weight spaces, and for each 
i E J, Mis locally Uq(g)i-finite, i.e., for each v EM, dimUq(g)iv < oo. 
In particular, a Uq(g)-module in category Oint is a direct sum of finite 
dimensional irreducible Uq(g)i-modules for all i E J. 

The category Oint is semisimple, and its irreducible objects can be 
characterized as follows. 

Proposition 3.2. ([Je]) The irreducible highest weight Uq(g)­
module V(>.) is integrable if and only if>. E p+, where 

p+ = {>. E Pl >.(hi) 2::: 0 for all i E J, >.(hi) E 2Z for all i E J0rld }. 

The irreducible integrable highest weight modules over Uq(g) are 
quantum deformations of those over the Kac-Moody superalgebra g. 

Proposition 3.3. ([BKM]) If>. E p+, then the irreducible high­
est weight module V(>.) over the quantized universal enveloping algebra 
Uq(g) is a quantum deformation of the irreducible highest weight mod­

ule V(>.) over the Kac-Moody superalgebra g. The character of V(>.) is 
given by the Weyl-Kac character formula: 

'°' (-l)l(w)ew(,\+p)-p 
chV(>.) = L.,wEW 

flaEQ+ (1 _ (-l)P(ct)e-a)1-2p(a) dimg,.' 
(3.4) 

where p E P is a linear functional satisfying p(hi) = 1 for all i E J, the 
parity function pis as in Section 2, and W is the Weyl group. 

§4. Crystal Bases for Kac-Moody Superalgebras 

Let M = EBAEP MA be a Uq(g)-module in category Oint• Fix i E J 
and for any k E Z~o define 

Then every element u EMA can be uniquely expressed as 

N 

(4.1) u = "I:,ft)uk, where NE Z~o and Uk E MA+ka; nkerei. 
k=O 
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We define the Kashiwara operators ei and Ji by 

N 

(4.2) eiu = L f?- 1>uk, 
k=l 

Let A= {f(q)/g(q) E Q(q)I f,g E Q[q], g(0) =/ 0} be the localiza­
tion of Q[q] at q = 0. Thus A consists of all rational functions that are 
regular at q = 0. 

Definition 4.3. Let M be a Uq(g)-module in the category C'.\nt· A 
free A-submodule L of M is a crystal lattice if 

(i) L generates M as a vector space over Q(q). 
(ii) L has a weight decomposition L = EB.xEP L.x, where L.x = L n 

M_x. 
(iii) eiL c L and h,L c L for any i E J. 

Definition 4.4. Let M be a Uq(g)-module in the category Oint· 
A crystal base of M is a pair (L, B) such that 

(i) L is a crystal lattice of M, 
(ii) B is a pseudo-basis of L/qL, that is, B = B' U (-B') for some 

Q-basis B' of L/qL, 
(iii) B has a weight decomposition B = LJ.xEP B>., where B.x = B n 

(L.x/qL.x), 
(iv) ii;B c BU {0} and fiB CB U {0} for all i E J, 
(v) for any b, b' E B and i E J, we have b = Jib' if and only if 

b' = eib. 

The set B / { ± 1} is given a colored oriented graph structure with the 

i-arrow defined by b ~ b' if and only if jib = b' for b, b' E B / { ±1 }. We 
call B / { ± 1} the crystal graph of M. 

For b E B/{±1} and i E J, let 

(4.5) 
ci(b) = max{n E Z?:o I efb =IO}, 

<pi(b) = max{n E Z?:o I f?b =/ O}. 

Then it follows from the representation theory of Uq; (sb) and Uq;(osp(l, 2)) 
that 

(hi, wt(b)) = <pi(b) - ci(b) for i E J, 
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where wt(b) is the weight of b. 

As in the case of Kac-Moody algebras, the crystal graphs for Kac­
Moody superalgebras exhibit nice behavior with respect to tensor prod­
ucts. 

Theorem 4.6. Let Mv be a Uq(g)-module in category Oint, and 
let (Lv, Bv) be a crystal base of Mv for v = 1, 2. Set L = Li 0A L2 and 
B = Bi 0 B2 = Bi x B2. Then (L,B) is a crystal base of Mi 0 M2, 
and the crystal graph structure of Bi 0 B2 is given by 

(4.7) 

if 'Pi(bi) 2'. Ci(b2), 

if 'Pi(bi) < 1oi(b2), 

if 'Pi(bi) > 1oi(b2) 

if 'Pi(bi) ~ 1oi(b2). 

Hence the tensor product rule for crystal graphs of Kac-Moody su­
peralgebras is the same as the one for Kac-Moody algebras (cf. [Ka2]). 

For a dominant integral weight A E p+, let V (A) be the irre­
ducible highest weight Uq(g)-module with highest weight A, and let L(A) 
be the free A-submodule of V(A) spanned by the vectors of the form 
fiJi 2 ···kV>., where V>. is the highest weight vector of V(A). Set 

Then, just as in the case of Kac-Moody algebras, we have the existence 
theorem for the crystal base for Kac-Moody superalgebras. 

Theorem 4.9. ([Je]) The pair (L(A),B(A)) is a crystal base of 
V(A). 

Although the proof of Theorem 4.9 is rather long and complicated, 
it is still a straightforward generalization of Kashiwara's grand loop ar­
gument ([Ka2]) once we define the super-version of the q-analogue of 
bosons. See [Je] for more details. The uniqueness theorem for the crys­
tal base for Kac-Moody superalgebras can be proved in the same manner 
as for Kac-Moody algebras. 
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Theorem 4.10. (cf. [Je), [Ka2]) Let M be a Uq(g)-module in cat­
egory Oint and let M ~ EB>.EP+ V(,~) be the decomposition of M into a 
direct sum of irreducible highest weight modules. Then for any crystal 
base (L, B) of M, there exists an isomorphism 4> : M -+ EB>.EP+ V(>.) 

such that <I>(L) ~ EB>.EP+ L(>.) and '1.>(B) ~ LJ>.EP+ B(>.), where 'I> : 
L-+ EB>.EP+ L(>.)/qL(>.) is the Q-linear isomorphism induced by 4>. In 
particular, if>. E p+, any crystal base (L, B) of V(>.) is isomorphic to 
(L(>.), B(>.)). 

§5. Crystal Graphs for the Quantum Superalgebra Uq(osp(l, 2n)) 

In this section, we present an explicit description of the crystal graph 
of a finite dimensional irreducible module for the quantum superalgebra 
Uq(osp(l, 2n)). Among the finite dimensional simple Lie superalgebras, 
the superalgebras osp(l, 2n) are distinguished as the only ones that are 
Kac-Moody superalgebras as defined in Section 2. We apply the crystal 
base theory for Kac-Moody superalgebras described in Section 4 to the 
superalgebras osp(l, 2n) and obtain a realization of the crystal graphs in 
terms of certain semistandard Young tableaux. The basic technique used 
here originated in [KN], where the crystal graphs for finite dimensional 
irreducible modules over classical Lie algebras were realized in terms of 
certain semistandard Young tableaux. Our presentation follows that in 
[CJ, which was based on the approach of [KN]. Musson and Zou [MZ] 
have also developed a crystal base theory for osp(l, 2n). Their methods 
derive from those in [J] and [Kall, and they work only for osp(l, 2n). 
Our method is based on the general crystal base theory for arbitrary 
Kac-Moody superalgebras, which includes some affine cases. Moreover, 
it yields an explicit tableau description of crystal graphs. 

The representation theory of the Lie superalgebra osp(l, 2n) is known 
to closely resemble the representation theory of the Lie algebra so(2n+ 1) 
(see for example, (RS]). As a result, the crystal graphs of finite dimen­
sional irreducible representations of Uq(osp(l,2n)) have virtually the 
same description as the crystal graphs for Uq (so (2n+ 1) )-modules. There 
exist finite dimensional irreducible representations of Uq ( osp ( 1, 2n)) that 
are not quantum deformations of osp(l, 2n)-modules (these can be found 
in [Zl]). Since in this paper we focus only on the Uq(osp(l, 2n))-modules 
that are quantum deformations of osp(l, 2n)-modules, we don't have to 
consider ones that correspond to the so-called spinor representations of 
so(2n + 1). 

The index set for osp(l, 2n) is I= {1, 2, • • •, n }, and there is just one 
odd index, Jodd = { n}. The associated Cartan matrix is a generalized 
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Cartan matrix of type B(O, n): 

(5.1) A = ( aij )i,jEI = 

2 -1 
-1 2 

2 -1 
-1 2 -1 

-2 2 

which corresponds to the Dynkin diagram 

0----0---0--··········-<>-----<>====M 
1 2 3 n-2 n-1 n 

Definition 5.2. The quantum superalgebra Uq{osp(l, 2n)) is 
the quantized universal enveloping algebra of the Kac-Moody superalgebra 
associated with the data (A,Iodd), where A= (aij)i,jEI is given in (5.1} 
and Jodd = {n}. 

Thus, Uq(osp(l, 2n)) is the associative algebra over Q(q) generated 
by the elements ei, Ii, Kf1 (i = 1, • • •, n) with defining relations given 
by (2.5). Let (~, II, nv) denote a realization of the generalized Cartan 
matrix of type B (0, n), and assume Ei ( i = 1, 2, • • • , n) is an orthonormal 
basis of~*. Then the simple roots of the Lie superalgebra osp(l, 2n) are 
given by 

The basic representation of Uq(osp(l, 2n)) is its vector representa­
tion, which is the (2n + !)-dimensional space 

over Q(q) with basis {vi, ~Ii= 1, 2, · · ·, n}U{vo} and with Uq{osp(l, 2n))-
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action defined by 

{""' 
if j = i, i + 1, 

KiVj = q- 1vj if j = i + 1, t, 
Vj otherwise, 

(5.3) { Vj-1 if j = i + 1, t, 
eiVj = O 

otherwise, 

{ Vj+l if j = i,i + 1, 
fiVj = O 

otherwise 

for i = 1, 2, • • • , n - 1, and 

{ q'v, if j =n, 
-- -2 if j =fi, KnVj -- q Vj 

Vj otherwise, 

r if j = fi, 

(5.4) enVj = ~2]nvn if j = 0, 

otherwise, 

r if j = n, 

fnVj = ~2]nvn if j = 0, 

otherwise. 

In these expressions it is understood that t±l = i =i= 1 for i = 1, 2, • • •, n-
1. 

Let 

(5.5) 
L = (Pi Av) ffi Avo ffi (PiAq) 

and B={vj,v1\j=l,···,n}U{vo}. 

Then (L, B) is a crystal base of V with crystal graph given by 

'17 1 l"'iil 2 n- 1 r,;:;1 __ ~ __ .Jnl______.,,___ r.a,~ 2 I'm 1 [I) w-i.1.i-· · ·-1..!!J-&.i-Lfl.r---· · ·-12..r- 1 

Here we identify Vj = [II for j = 1, · · · ,n,0,n,n -1, ·•·,I. 
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The fundamental weights of osµ(l, 2n) are defined by wi(hj) = i5i,j 
(i,j = 1, 2, · · ·, n). Alternately, Wi = E1 + · · · + Ei, (1 :S i :S n - 1), 

and Wn = !(E1 +•••+En)- The finite dimensional irreducible osµ(l, 2n)-
2 

modules are parametrized by their highest weights A, which have the 
form 

A= a1w1 + · · · + lln-1Wn-l + 2anWn with ai E Z;::::o, 

= A1E1 + · · · + An-lEn-1 + AnEn, 

where Ai= a 1 + • • • + ai (i = 1, 2, · • •, n) ([K3]). Hence A corresponds to 
a partition (A1 ~ A2 ~ · · · ~ An ~ 0) of N = a1 + 2a2 +···+nan having 
at most n parts, and the finite dimensional irreducible Uq(osµ(l, 2n))­
module V(A) can be embedded into V®N_ Therefore the crystal graph 
B(A) of V(A) is isomorphic to the connected component ofB®N contain­
ing a highest weight vector U>. of weight A (i.e., wtu>. = A and eiU>. = 0 
for all i = 1, 2, • • • , n). 

The methods in [KN] allow us to identify the crystal graph B(A) 
with a certain set of Young tableaux which are semistandard relative to 
the ordering 

l<2<···<n<0<n<···<I 

on the elements of B in the following way. 

Suppose first that A= E1 +•••+Ek (1 :S k :Sn). Then A = Wk if k = 
1,··•,n-1 and A= 2wn if k = n. Let U>. = [TI®[]J®···®[k]E B®k_ 

Then it is easy to see that wtu>. =A= E1 +···+Ek and eiu>. = 0 for all 
i = 1, • • •, n. The explicit description of the crystal graph B(E1 +·••+Ek) 
is given in the next result. 

Proposition 5.6. ([KN]) Let B(Yk) be the set of all vectors in 

B®' of the form ~ - ll:i]0· · ·01lfil EB®' ,ati,Jying the following con­

ditions: 

(a) 1 :S J1 :S · · · :S jk :S I, but O is the only entry that can be 
repeated. 

(b) if Jr = p and Js = p (l :Sp :Sn), then r - s + k + l :Sp. 

Then B(Ei +···+Ek) 9'! B(Yk)-
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l ~ :::::~; ~ ~,,~ ~· 7 :); :1 +000+~1~w:h.l: ~: 
k k w k 

l l 
B(Yk) ® B(Yi) C B®(k+l), it is easy to see that wtuA = >. = (<=1 + • • • + 
<=k) + (<=1 + · · · + <=1) and eiuA = 0 for all i = 1, 2, • • •, n. 

To describe the connected component of B®(k+l) containing uA, we 
need to introduce some terminology. 

Definition 5.7. For 

(a) w is in the (a,b)-configuration for 1 ::; a :=:; b < n, if there 
exist positive integers 1 ::; p :=:; q < r :=:; s :=:; k such that ip = a, 

Jq = b, Jr = b, Js = a or ip = a, iq = b, ir = b, Js = a. 
(b) w is in the ( a, n )-configuration for 1 ::; a < n if there exist 

positive integers 1 ::; p :=:; q < r = q + I ::; k such that ip = a, 
Js = a, and iq, iq+l E {n, o, n} or ip = a, Js = a, and Jq,Jq+l E 
{n,O,n}. 

(c) w is in the (n, n)-configuration if there exist positive integers 
1 ::; p < q :=:; r = s = k such that ip = n or 0, and Jq = 0 or n. 

Then the crystal graph B(>.) with >. = ( <=1 + · · · + <=k) + ( <=1 + · · · + <=1) 
for the finite dimensional irreducible Uq(osp(l, 2n) )-module V(>.) can be 
described as follows: 

Proposition 5.8. Let B(Yk,1) (k :=:; l) be the set of vectors in 

B(Y,) 0 B(Y,) of th, form w ~ u 0 v ~ ~ 0 ii ; ,atisfying th, 

conditions: 

(i) ir :=:; Jr for 1 ::; r :=:; k and ir and Jr cannot be O simultaneously. 
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(ii) whenever w is in the (a, b)-configumtion for some a, b with l S 
a S b S n, then · 

(q - p) + (s - r) < b - a, 

where p, q, r, s correspond to a, b as in Definition 5. 1. 

Then for>.= (t:1 +···+Ek)+ (t:1 + · · · + t:1), 

B(>.) ~ B(Yk,1). 

Now for an arbitrary dominant integral weight >. of Uq(osp(l, 2n)) 
with 

>. = a1w1 + · · · + an-lWn-1 + 2anWn 

= (t:1 + · · · + fi1) + · · · + (t:1 + · · · + t:d, 

1 1 1 
2 · · · 2 2 

ir ir 
Then U>. is a highest weight vector of weight>. in B®N whose connected 
component of B®N is described in the following theorem. 

Theorem 5.9. Let B(Y) be the set of vectors of the form 

such that Vk@ Vk+1 E B(~k,ik+i) for all k = l, • · ·, r - 1. Then 

B(>.) ~ B(Y). 

It is helpful to illlustrate these results with some examples. 

Example 5.10. 
(a) The crystal graph B(2t:1) over Uq(osp(l,4)). 
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(b) The crystal graph B(E1 + E2) over Uq(osp(l, 4)). 

a) b) 

§6. Quantum Affine Superalgebras 

The only families of affine Lie superalgebras that belong to the class 
of Kac-Moody superalgebras are B(1)(o, n), A(2) (0, 2n - 1), c<2) (n + 1) 
and A(4)(o, 2n). Their Dynkin diagrams are 
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A<2l(o, 2n - 1) (n 2: 3) 

c<2l(n+l) (n2:2) 

c<2l (2) 

A<4l(o, 2n) (n 2: 2) 

A<4l(o, 2) 

C>===«)- ... ~ 
0 1 n-1 n 

0 

o-L-.. -~ 
1 2 n-1 n 

o=::::::;i; ••~, ==-o 

~ ... ---o====-
0 1 n-1 n 

I( ;1 

~---~ 
0 1 n-1 n 

For simplicity, we restrict our considerations to B(1l(0,n) (n 2: 2), 
A(2) (0, 2n -1) (n 2: 3), and A(4) (0, 2n) (n 2: 2) only. For these classes of 
affine Kac-Moody superalgebras, tableaux bases are not known. How­
ever, we can take a different tack and develop the theory of perfect crys­
tals as in [KMNl]. To define the notion of perfect crystals, we require 
some preliminaries. 

Let {I be an affine Kac-Moody superalgebra corresponding to one of 
these diagrams, and let I= {0, 1, • • •, n} be the index set for the simple 
roots. We denote by u;(g) the quantum superalgebra corresponding to 

the derived subalgebra g' = [g, g]. Let P' = EB~o ZAi be the weight 
lattice of g' with dominant integral weights (P')+, and let (P')Y = 
EB~=O Zhi be the dual weight lattice of g'. For an element b in a crystal 
graph B of a u;(g)-module V, set 

n n 

(6.1) c(b) = L>i(b)Ai, and cp(b) = L 'Pi(b)Ai. 
i=O i=O 

Definition 6.2. Assume B is a crystal graph of a finite dimen-
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sional u;(g)-module and let l > 0 be a positive integer. Then B is a 
perfect crystal of level l > 0 if 

(i) BIS) B is connected, 
(ii) there exists a weight Ao E P' such that IB,\0 I = 1 and wt(B) C 

Ao + I:i#o Z::;oai, 
(iii) (c, c:(b)) 2: l for all b E B, where c denotes the canonical central 

element for the affine Kac-Moody superalgebra g, 
(iv) for each dominant integral weight A E (P')+ of level l, there exist 

unique elements b,\ and b,\ in B such that c:(b.\) = A, cp(h) = A. 

Perfect crystals play a crucial role in realizing the crystal graphs of 
irreducible highest weight modules over quantum affine superalgebras. 
We first present some illustrative examples. 

Example 6. 3. 

( a) Level 1 perfect crystal for A <2) (0, 2n - 1) 

0 

m 1 r,;, 2 · n-1 ~~ ~ 2 ro, 1 rn l..!.J-i.1J-·. ·-L!!J-&.i--ill.r--·. ·-i.1.t- 1 

0 

(b) Level 1 perfect crystal for A<4l(0,4) 

( c) Level 2 perfect crystal for A< 4) ( 0, 4) 
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Perfect crystals give rise to the following important crystal isomor­
phism. 

Theorem 6.4. ([KMN2]) Assume A E (P')t = {µ E (P')+ I 
(c, µ) = l} is a dominant integral weight of level l, and let B(A) be the 
crystal graph of the irreducible highest weight module V(A) over U~(g). 
Then for any perfect crystal B of level l, there is an isomorphism of 
crystals 

B(A) 0 B ~ B(A'), 

where b>.. is the unique element in B such that c(b>..) = A and N 
A+ wt(b>..). 

Thanks to Theorem 6.4, the crystal graph B(A) has a path realiza­
tion. Start with A = Ao a dominant integral weight of U~(g) of level l, 
and let B be a perfect crystal of level l. By repeating the isomorphism 
of crystal graphs given in Theorem 6.4, we obtain 

B(A) ® B ~ B(A1), U>.. 0 ho f--+ U>..1 , 

B(A1) 0 B ~ B(A2), U>..1 0 b1 f-+ U>..2' 

B(A2) 0 B ~ B(A3), U>..2 0 b2 f--+ U)..3, 

where bk = b>..k for k = 0, l, 2, • • •. Since there are only finitely many 
dominant integral weights of U~(g) of a given level, we must have AN= 
Ao = A for some N > 0. Thus, there is a chain of crystal isomorphisms 

B(A) ~ B(AN-1) 0 B ~ B(AN-2) 0 B 0 B 

~ · · · ~ B(Ao) @B® · ·· ®B 
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U).. ~ U)..N-1 0 bN-1 ~ U)..N-2 0 bN-2 0 bN-1 

~ ·--~u>,.0bo0···0bN-1-

The sequence 

P>. = (P>.(k))k~1 = · · · 0 P>.(k) 0 · · · 0 P>.(2) 0 P>.(1) 

= · · · 0 bo 0 · · · 0 bN-1 0 bo 0 · · · 0 bN-1 
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is called the ground-state path of weight >.. A >.-path is a sequence p = 
(p(k))k~l = · · · 0 p(k) 0 · · · 0 p(2) 0 p(l) with p(k) E B such that 
p(k) = P>.(k) for all k sufficiently large. Let P(>.,B) be the set of all>.­
paths in B and define the crystal structure on P(>., B) using the tensor 
product rule to obtain the following. 

Theorem 6.5. 

B(>.) ~ P(>., B). 

Because the structure of perfect crystals for quantum affine Kac­
Moody superalgebras is the same as for perfect crystals for quantum 
affine Kac-Moody algebras, their description can be found in [KMN2] 
and [KK]. We close this section by giving an example of path realization. 

Example 6. 6. Let B be a perfect crystal of level 1 given in Example 
6.3 (b). By Theorem 6.4, there is an isomorphism of crystal graphs 

B(Ao) 0 B ~ B(Ao), 

Hence the ground-state path PAo is given by 

PAo = · · · 0 ¢ 0 c/J 0 c/J = (· · · ¢, ¢, ¢), 

and the path realization of B(Ao) is 
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(". ,<p,q;,q;) 
0, 

(···,<p,<p,1) 

~ 
( ... ,q;,q;,2) 

0, ~ 
(· .. , <p, 1, 2) (00 

·, <p, <p, 0) 

~ 0, ~ 
( .. ·, <p, 1, 0) (00 

·, <p, <p, 2) 

~ X 0, 
(· .. , <p, 2, 0) (00 

·, <p, <p, i) (00 
·, <p, 1, 2) 

§7. The Quantum Superalgebra Uq(g[(m, n)) 

In this section we focus on the q-analogue of one of the basic Lie 
superalgebras - the general linear Lie superalgebra g[( m, n). 

Suppose V = Vo EB Vi is a Z2-graded complex vector space such 
that dim V0 = m and dim Vi = n. For i = 0, 1, let End(V)i = {x E 

End(V) Ix½ ~ ¼+i} (subscripts are read mod 2). Then g[(m,n) is 
End(V) = End(V)o EB End(V)i regarded as a Lie superalgebra under 
the supercommutator product 

[x, y] = xy - (-l)iiyx, x E End(V)i, y E End(V)j. 

Set B = B+ u B_, where B+ = {m, ... , I}, and B_ = {1, ... , n}. 
We can think of V0 (resp. Vi) as having a basis indexed by the elements 
of B+ (resp. B_), so that g[(m,n) can be viewed as matrices having 
rows and columns indexed by B. The diagonal matrices in g[(m,n) can 
be taken to be a Cartan subalgebra for g[(m, n). Let P = ffibEB Zf.b be 
the lattice of integral weights and pv = EBbEB ZEb,b the dual weight 
lattice of g[(m, n), where f.b denotes the projection of a matrix onto its 
(b, b)-entry, and Eb,b is the standard matrix unit. Then the symmetric 
bilinear form on P is given by 
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if a= a' EB+, 

if a= a' EB_, 

otherwise. 
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We assume that the index set for the simple roots of {I= g((m, n) is 
I= rven u JOdd where 

1even = { m - 1, ... , I, 1, ... , n - l}, 

I°dd = {0}, 

and the simple roots are given by 

{ 

Ea+l - Ea 

lti = ty- El 

Ei - Ei+l 

if i = a and a = m - l, ... , 1, 

if i = 0, 

if i = 1, ... , n - l. 

The coroot corresponding to ai is the unique hi E pv satisfying 

where 

fi(hi, >..) = (ai, >..) for any>.. E P, 

fi = { l 
-1 

if i = m - 1, ... , I or 0, 

if i = 1, ... , n - l. 

Relative to this indexing of simple roots, the Dynkin diagram is given 
by 

m-1 I 0 1 n-1 

o----------·---0--®---0--------------o . 

This diagram corresponds to the matrix 

(7.1) 

A = ( lli,j )i,jEJ = 

2 -1 0 
-1 2 -1 

0 -1 
2 -1 

-1 0 1 
-1 2 -1 

-1 2 -1 

-1 
-1 2 
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with rows and columns indexed by the elements of I= {m - 1, ... , I, 0, 1, 
... , n- l }. Note that ao,o = 0 and ao,1 = 1 so that A is not a generalized 
Cartan matrix of the type considered in Section 2. 

As in (Kl], we can construct the contragredient Lie superalgebra 
g = g(A, Jodd), 1odd = {0}, associated with the Cartan data (A, 1odd). 

The Lie superalgebra g = g(A, Jodd) is isomorphic to the special linear 
Lie superalgebra of matrices of supertrace zero: 

s[(m,n) = {x E g[(m,n)I str(x) = 0}, 

where for an (m + n) x (m + n) matrix x = (xb,b' )b,b'EB, its supertrace 
is given by 

str(x) = L Xb,b - L Xb,b· 

bEB+ bEB-

The general linear Lie superalgebra g[(m, n) is a I-dimensional central 
extension of s[(m, n). 

Definition 7.2. ((KT], [Y]) The quantum superalgebra 
Uq(g[(m, n)) is the associative algebra over Q(q) with 1 generated by 
the elements ei, Ji i E J = 1even U Jodd and qh (h E pv) with defining 
relations 

(7.3) 
q° = 1, qhqh' = qh+h' for h, h' E pv' 

leiq-h = qo.,(h)ei, qh fiq-h = q-o.,(h) Ji for h E pv, i EI, 

edj - (-l)P(i)p(j) Jjei = <\j(Ki - Ki- 1)/(qi - q;- 1 ) for i,j EI, 

(adqei)l-a;,;(ej) = (adqfi)l-a;,;(Jj) = 0 

if i -/- j E rven, or if i E rven and j = 0, 

e~ = JJ = 0, 

eoeyeoe1 + eyeoe1eo + eoe1eoe1 

+ e1eoe1eo - (q + q-1)eoe1e1eo = 0, 

fohfofi + hfofdo + fofdoh 

+ fdofyfo - (q + q- 1)fohfdo = 0. 

Here, p denotes the parity map with p(i) = 0 if i-/- 0 and p(0) = 1, 
qi = qf', and Ki = qf,h, for i E J. 
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The Hopf superalgebra structure on Uq{g[(m, n)) has comultiplica­
tion ~, counit E, and antipode S specified by the formulas in (2.7)-(2.9). 

It follows from (7.3) that the subalgebra Uq(g[(m, n))i generated 
by ei, Ii, K;-1 is isomorphic to Uq{s[2 ) for i -=/- 0 and to the quantum 
superalgebra Uq(s[(l, 1)) for i = 0. 

We now define the category of Uq(g[(m, n))-modules for which the 
crystal base theory is developed in [BKK]. 

Definition 7 .4. The category O;nt is the category of Z 2 -graded fi­
nite dimensional Uq(g[(m, n))-modules M and Uq(g[(m, n))-module ho­
momorphisms which satisfy the following constraints: 

(i) M has a weight decomposition M = EB.xEP M,x, where 
M,x = {u EM I qhu = q<h,>-}u for all h E Pv}. 

(ii) if Mµ -=/- 0, then µ(ho) :::: 0. 
(iii) if µ(ho) = 0, then eoMµ = foMµ = 0. Thus M is a direct 

sum of 1-dimensional or 2-dimensional irreducible modules over 
Uq(g[(m, n))o ~ Uq(s[(l, 1)). 

The category Oint is stable under taking subquotients and tensor 
products. In [BKK] it is conjectured that the modules in Oint are com­
pletely reducible. 

Proposition 7.5. ([BKK]) Let V(A) be an irreducible highest weight 
Uq(g[(m, n))-module with highest weight A = I:bEB AbEb E P, where 

B = { m < m - 1 < · · · < 2 < I < 1 < 2 < · · · < n - 1 < n}. If V (A) 
belongs to category Oint, then we have 

(i) Ab :::: Ab' for b < b'. 
(ii) if Ab > 0 for some b = 1, · · ·, n, then Ao :::: b. 

§8. Crystal bases for Uq(g[(m, n)) 

Whenever Mis in the category Oint for Uq(g[(m,n)) and i E 1even, 

then for any u EM of weight A E P, there is a unique expression 

U= f (k) 
i Uk 

k~O,-(h;,.\) 

with eiuk = 0 for each k. For Uq(g[(m, n)) (and other contragredient 
Lie superalgebras) we use the divided powers 
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where 

[k]i = (qf - t;k)/(qi - q; 1 ), 

k (8.1) 
[k]i! = IT [n]i fork 2=': 1, and [OJ!= 1. 

n=l 

It is convenient to adopt the convention that t?) = 0 for k < 0. 

Then the Kashiwara operators are defined by 

Case (1): for i = m - 1, •••,I, 

(8.2) eiu = L t?- 1luk, 
k 

Case (2): for i = 1, · · ·, n - 1, 

(8.3) - ~ .X(h;)+lf(k-l) 
eiu= Lqi i Uk, 

k 

Case (3): for i = 0, 

(8.4) 

Jiu= Et?+1)uk. 
k 

f- ~ -.X(h;)+lf(k+l) 
iU = Lqi i Uk. 

k 

As before, let A denote the subring of Q(q) consisting of all ra­
tional functions f /g E Q(q) such that g(O) -/- 0. Assume M is a 
Uq(g((m, n))-module in the category Oint· A free A-submodule L of 
M is a crystal lattice if it satisfies the conditions in Definition 2.10 
(but using the Kashiwara operators in (8.4)). A crystal base of Mis a 
pair (L, B), where Bis a subset of L/qL for which (i)-(v) of Definition 
2.11 hold. The associated crystal of (L,B) consists of B/{±1} with the 
structure of a colored oriented graph where b, b' E B/{±1} are joined 

by the i-arrow, b ~ b', if fib= b'. 

Lemma 8.5. (See Lemma 2.7 of [BKK].) Let M be a Uq(g((m, n))­
module in Oint with a crystal base (L, B). Assume that 

(a) the associated crystal is connected, and 
(b) there is a weight A such that dim M .x = 1. 
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Then 

(i) L/qL is an irreducible module over the algebra generated by the 

i\ 's and the f; 's. 
(ii) M is an irreducible Uq(g)-module. 
(iii) L~ = L>,. for L' a crystal lattice implies L' = L. 
(iv) The crystal base of M is unique up to a constant multiple. 

The antiautomorphism 'T} of Uq(g((m,n)) defined by 

rJ(qh) = qh 

rJ(ei) = Qi/iKi-i 

rJ(fi) = q:; 1 Kiei 

satisfies 'f/2 = id. We say that a symmetric bilinear form (·, •) on a 
Uq(g((m, n))-module Mis a polarization if (au, v) = (u, rJ(a)v) holds for 
any u,v EM and a E Uq(g((m,n)). 

It is an easy consequence of the relation A o 'T/ = ( 'T/ 0 'T/) o A that 
the following holds: 

Lemma 8.6. ([BKK]) Let M1 and M2 be two Uq(g((m, n))-modules 
with polarizations. Then the symmetric bilinear form(·,·) on M1 0 M2 
defined by ( u1 0 u2, v1 0 v2) = ( u1, v1)( u2, v2) is a polarization. 

The Kashiwara operators ei and Ji on the modules M in Oint are 
defined so that ei and f; are adjoints of each other at q = 0 with respect 
to a polarization. More precisely: 

Proposition 8.7. ([BKK]) Let M be a Uq(g((m, n))-module in 
Oint with a crystal lattice L, and let ( ·, ·) be a polarization of M. As­
sume (L, L) C A. Then the induced Q-valued symmetric bilinear form 

( •, · )o on L/qL satisfies (eiu, v)o = (u, f;v)o for any u, v E L/qL. 

Definition 8.8. ([BKK]) A crystal base (L, B) for a Uq(g((m, n))­
module M is said to be polarizable if there is a polarization (·, •) of M 
such that (L, L) CA, and the induced Q-valued symmetric bilinear form 
(·, ·)o on L/qL satisfies 
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/ { ±1 (b, b )o = 0 
if b' = ±b, 

otherwise 

for all b, b' E B. 

Assume M 1 and M2 are Uq(g[(m, n))-modules in the category Oint, 

and let (Li, B 1) and (L2, B2) be their crystal bases. Proposition 8.9 
below, which is proved in (BKK], says that M1 0 M2 has a crystal base 
given by L = L1©AL2 and B = B1©B2 C (LifqLi)©(L2/qL2) = L/qL. 
To describe the action of the Kashiwara operators on B we require Ei 

and 'Pi, which are defined exactly as in (4.5). 

Proposition 8.9. Suppose (Lv, Bv) is a crystal base of Mv, v = 
1, 2. Then 

(i) (L, B) is a crystal base of M1 0 M2. 
(ii) The actions of ei and Ji on b1 0 b2 {b1 E B1 and b2 E B2) are 

as follows: 

(a) If i = m - 1, · · · , I, then 

ei(b1 0 b2) = { ei(b1~ 0 b2 
b1 0 ei(b2) 

fi(b1 0 b2) = { fi(b1)_0 b2 
b1 0 /i(b2) 

(b) If i = 1, · · • , n - 1, then 

ei(b1 0 b2) = { ~1 © ei(b2) 
ei(bi) 0 b2 

h(b1 0 b2) = { b: 0 ii(b2) 
/i(bi) 0 b2 

if 'Pi(b1) ~ c:i(b2), 

if 'Pi(b1) < c:i(b2), 

if 'Pi(bi) > ci(b2), 

if 'Pi(b1) :S c:i(b2). 

if 'Pi(b2) ~ c:i(b1), 

if 'Pi(b2) < c:i(b1), 

if 'Pi(b2) > c:i(b1), 

if 'Pi(b2) :S ci(b1). 

if (hi, wt(b1)) > 0, 

if (hi, wt(b1)) = 0, 

if (hi, wt(b1)) > 0, 

if (hi, wt(b1)) = 0. 
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The sign in part ( c) depends on the parity of b1 and i. 

Part (i) of the next theorem is an immediate consequence of Defini­
tion 8.8 and Proposition 8.9. Part (ii) uses the polarization on a module 
M to show that the orthogonal subspace N 1- of any submodule N of M 
forms a complement. Part (iii) then follows directly from (i) and (ii). 

Theorem 8.10. 

(i) Let (Lv, Bv) be a polarizable crystal base of Mv E Oint (v = 
1, 2). Then (L1 0A L2, B1 0 B2) is a polarizable crystal base of 
M1®M2. 

(ii) If Mis a Uq(g((m, n))-module in Oint with a polarizable crystal 
base, then M is completely reducible. 

(iii) If Mv (v = l, ... ,k) is a Uq(g((m,n))-module in Oint with a 
polarizable crystal base, then M1 0 · · · 0 Mk is completely re­
ducible. 

§9. Young Tableaux and Crystal Graphs for Uq(g((m, n)) 

The result in (ii) of Theorem 8.10 is particularly striking because 
most modules for contragredient Lie superalgebras and their quantized 
enveloping algebras are not completely reducible. In this section we 
study the natural ( m + n )-dimensional module V of Uq (g(( m, n)) and its 
tensor powers. Critical to the discussion will be the fact that V belongs 
to Oint and has a polarizable crystal base. Then its tensor powers V®k 

have a polarizable crystal base and are completely reducible by (iii). 
In the nonquantum setting Berele and Regev [BR] have studied the 
tensor powers V®k of the (m + n)-dimensional module V for g((m, n). 
They have shown that V®k is completely reducible, and its summands 
have a combinatorial basis indexed by certain tableaux. Our idea in 
[BKK] was to exploit that tableau basis to describe a crystal base for 
the summands of V. This line of attack follows the papers [KN], [KM], 
[L], and [MM], which construct crystal bases for the finite dimensional 
simple Lie algebras of types An, Bn, Cn, Dn, EG, and G2, and for the 
fundamental representation of the affine Lie algebra _;j:( n) using tableaux. 
In earlier work (not using tableaux) Zou introduced a crystal base for 
the Lie superalgebra s((2, 1) and studied its properties. However, Zou's 
notion of a crystal base in [Z2] differs from the one in Definition 2 .11 since 
his base is invariant under some but not all of the Kashiwara operators. 
Zou's recent paper [Z3] has followed the approach of [BKK] to produce 
crystal bases for the family of simple Lie superalgebras f(o-1, o-2, 0-3). 
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The simplest representation of Uq(g(( m, n)) is its ( m+n )-dimensional 
vector representation V = V + EB V _, where V ± = EBbEB± Q(q)vb, 

(where B± is as in Section 6), and the action is specified by 

if i = k and b = k with k = 1, ... ,m -1 

if i = 0 and b = 1, 

if i = k and b = k + 1 with k = 1, ... , n - 1, 

otherwise, 

if i = k and b = k + 1 with k = 1, ... , m - 1, 

if i = 0 and b = I, 
if i = k and b = k with k = 1, ... , n - 1, 

otherwise. 

The Uq(g((m, n))-module V belongs to the category (')int, and L = 
EBbEB Avb is a crystal lattice. The set {±vb mod qL I b EB} deter­
mines a crystal base of V with associated crystal: 

2 1 O 1 2 
···-~-ITJ-ITJ-0-··· 

n-2 n-1 ···-ln-11-~ 

With respect to the symmetric bilinear form on V which has { vb I 
b EB} as an orthonormal basis, (L,B LJ (-B)) is a polarizable crystal 
base. As we have mentioned before, Theorem 8.10 (iii) says that V®k 
is completely reducible for all k 2: 1. Moreover, (L®k, (B LJ (-B))®k) is 
a polarizable crystal base for V®k. 

A Young diagram is a collection of boxes arranged in left-justified 
rows with a weakly decreasing number of box:es in each row. A diagram 
obtained by removing a smaller Young diagram from a larger one con­
taining it is a skew Young diagram. We say that a Young diagram is 
an (m, n)-hook Young diagram if the number of boxes in the (m + l)st 
row is less than or equal ton. Thus, an (m, n)-hook Young diagram fits 
inside the (m, n)-hook as displayed below. 
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We assign an order to the elements of B by saying 

m < m - 1 < • • • < 2 < I < 1 < 2 < • • • < n - l < n. 

Then a semistandard tableau is obtained by filling a skew Young diagram 
with elements of B such that 

(i) the entries in each row are increasing, allowing repetition of the 
elements of B+ = {m, m - 1, ... , 2, I} but not of the elements 
ofB_ = {1,2, ... ,n-1,n}. 

(ii) the entries in each column are increasing, permitting repetition 
of the elements of B_ but not of B+. 

It is not difficult to see that a Young diagram can be made into a semi­
standard tableau with entries in B if and only if it is an ( m, n )-hook 
Young diagram. These semistandard tableaux were introduced by Berele 
and Regev. In [BR] they show that the irreducible summands of the ten­
sor powers V®k of the (m+n)-dimensional module V for g[(m, n) can be 
indexed by the (m, n)-hook Young diagrams. A basis for the summand 
indexed by Y is in one-to-one correspondence with the semistandard 
tableaux of shape Y. The weight of a tableau is LbEB WbEb where Wb is 
the number of its entries which are equal to b. 

If N is the number of boxes contained in a Young diagram Y, then 
we can embed the set B(Y) of semistandard tableaux of shape Y into 
B ®N by reading the entries { b1, ... , b N} of the tableau and identifying 
the tableau with b1 ® · · · ®b N. There are many different ways this reading 
can be done, and we single out certain special ones. 

Suppose /3 and /3' are boxes in a skew Young diagram with /3 lying in 
position (i,j) (row i and column j) and /3' in position (i',j'). Then we 
say /3 is strictly higher than /31 if /3 =I- /31 and i :S i' and j 2". j'. This just 
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amounts to saying that /3 lies northeast of /3'. In an admissible reading, 
box f3 is read before box /3' whenever /3 is strictly higher than /3'. For 
example, if we start with the rightmost column and read the entries from 
top to bottom, and then read the next column from top to bottom, and 
continue until the bottom entry in the leftmost column is read, we obtain 
an admissible reading, which we term a Japanese (or Chinese} reading. 
Similarly, reading the rows from right to left starting with the rightmost 
entry in the top row and proceeding to the bottommost row gives an 
admissible reading, which we call an Arabic (or Hebrew) reading. These 
particular admissible readings are illustrated in the following figure. 

, 3 

2 
Japanese reading 

, 3 

2 
Arabic reading 

Theorem 9.1. (Compare Thm. 4.4 of [BKK].) Let Y be a skew 
Young diagram and B(Y) be the set of semistandard tableaux of shape 
Y. Then 

(i) For any admissible reading 'ljJ : B(Y) ---+ B®N of Y, the image 

'1/J(B(Y)) is stable under the operators ei and Ji for all i E J. 
(ii) The induced crystal structure on B(Y) does not depend on the 

admissible reading. 

For a crystal base (L, B) of a Uq(g[(m, n))-module, we say that an 
element b EB>. is a genuine highest weight vector of B if B>. = {b} and 
Wt(B) c A-Q+, where Wt(B) is the set of weights of the crystal Band 
Q+ = 1:aeA+ Z~oa. Analogously, b E Bµ is a genuine lowest weight 
vector of B if Bµ = {b} and Wt(B) C µ+Q+- A genuine highest (resp. 
lowest) weight vector is unique whenever it exists. Moreover a genuine 
highest (resp. lowest) weight vector satisfies eib = 0 (resp. fib = 0) 
for all i E J. It is possible for an element b E B to satisfy one of these 
properties without being a genuine highest or lowest weight vector. Such 
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vectors we term fake highest (or lowest) weight vectors. The existence of 
fake highest ( or lowest) weight vectors complicates the question of the 
connectedness of the crystal graph. However, we have 

Proposition 9.2. ([BKK]) The crystal B(Y) associated with any 
(m,n}-hook Young diagram Y is connected. 

Suppose Yo is an (m, n)-hook Young diagram. In [BKK] we have 
developed a combinatorial procedure for decomposing the tensor product 
B(Yo) ® B into connected components B(Y) corresponding to diagrams 
Y obtained from Yo by adding a box. A box in a diagram is a corner 
if there are no boxes in the diagram to its right or beneath it. A place 
where a box can be adjoined to a diagram to create a corner of a larger 
diagram is said to be a co-corner. 

Theorem 9.3. ([BKK]) Assume Yo is an (m, n)-hook Young di­
agram, and let B(Yo) be the set of all semistandard tableaux of shape 
Yo endowed with a crystal structure by an admissible reading. Then the 
tensor product of crystals B(Yo) ® B has the following decomposition 
into connected components: 

B(Yo) ® B ~ ffiB(Y), 
y 

where Y runs over the set of all (m, n)-hook Young diagrams obtained 
from Yo by adding a box to a co-corner of Yo. 

As an immediate consequence we obtain 

Corollary 9.4. Any connected component of B®k of k copies of 
B is isomorphic (as a crystal) to B(Y) for some (m, n)-hook Young 
diagram Y having k-boxes. Moreover, for any skew Young diagrams 
Y1 and Y2 , the connected components of the tensor product of crystals 
B(Y1 ) ® B(Y2 ) have the form B(Y), where Y is an (m, n)-hook Young 
diagram. 

Consider the set P of weights >. E ffibEB Zfb satisfying 

(i) (hi,>.) ~ 0 for all i E I, 
(ii) (ho - h1 - · · · - hk, >.) ~ k for all k E {1, ... , n - I} such that 

(hk, >.) > 0. 
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These conditions exactly translate to the ones encountered in Propo­
sition 7.5. The weights in P play a distinguished role because of the 
following. 

Proposition 9.5. ([BKK]) IfV(>..) is an irreducible U9 (g[(m,n))­

module in Oint with highest weight>.., then>.. E P. 

Suppose that ).. E p+ = p n EBbEB Z::::oEb and write ).. = a1 Em + 
a2Em-l +···+am ET+ d1E1 + · · · + dnEn· Then we can create an (m, n)­
hook tableau H>. by this procedure: 

(1) row i has ai boxes all filled with the entry I for i = 1, ... , m, 
(2) starting below row m, column j has dj boxes that are filled with 

j for j = 1, ... , n. 

The weight of the tableau H>. is>.., and its shape is the Young diagram 
that we denote by Y>,.. Any semistandard tableau with shape Y>. has 
weight in >..-Q+. Thus, H>. is a genuine highest weight vector in B(Y>.)-

Theorem 9.6. ([BKK]) If>.. E P, then the irreducible Uq(g((m, n))­
module V(>..) with highest weight >.. is in Oint, and it has a polarizable 

crystal base. If >.. E p+, then the associated crystal is isomorphic to 
B(Y>.), 
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