Advanced Studies in Pure Mathematics 26, 2000 Analysis on Homogeneous Spaces and Representation Theory of Lie Groups pp. 235–263

Hypergeometric Systems and Radon Transforms for Hermitian Symmetric Spaces

Toshiyuki Tanisaki

Abstract.

Generalizing the Gelfand hypergeometric system on the Grassmann manifold we introduce certain differential equations on compact Hermitian symmetric spaces and investigate their properties. Especially, we give a criterion for their holonomicity, and show the existence of integral representations of their solutions. We also study properties of certain Radon transforms.

§0. Introduction

0.1 Let V be a finite dimensional vector space over the complex number field \mathbb{C} , and let X be the Grassmann manifold consisting of k-dimensional subspaces of V. We denote by L the rank one subbundle of the product bundle $X \times \wedge^k V$ on X whose fiber at $W \in X$ is $\wedge^k W$. Note that the group G = SL(V) acts on X transitively and that L is a G-equivariant line bundle on X. Let $D_{X,L}$ be the sheaf of differential operators acting on the sections of L. By differentiating the action of G on L we get a Lie algebra homomorphism $\mathfrak{g} = \mathrm{Lie}(G) \to \Gamma(X, D_{X,L}) \quad (a \mapsto \partial_a^L)$. Fix a maximal torus K of G and set $\mathfrak{k} = \mathrm{Lie}(K)$. The hypergeometric equation investigated in Gelfand [6] and Gelfand-Gelfand [7] is a differential equation whose unknown function is a section of L, i.e. a left $D_{X,L}$ -module. It is of the form

$$(0.1) M_{\xi} = D_{X,L}/(\mathcal{J} + \sum_{a \in \mathfrak{k}} D_{X,L}(\partial_a^L - \xi(a))),$$

where ξ is any fixed character of \mathfrak{k} , and \mathcal{J} is a certain G-stable left ideal of $D_{X,L}$.

0.2 Our starting point is the fact that G-stable left ideals of $D_{X,L}$ correspond to submodules of a certain \mathfrak{g} -module called the generalized

Received February 9, 1998.

Verma module, and that the above \mathcal{J} actually corresponds to the maximal proper submodule. By this observation we can formally generalize the above construction of M_{ξ} as follows.

Let G be a connected simply-connected semisimple algebraic group over \mathbb{C} . Let P be a parabolic subgroup of G and consider the generalized flag manifold X = G/P. Set $\mathfrak{g} = \operatorname{Lie}(G)$ and $\mathfrak{p} = \operatorname{Lie}(P)$. To each character λ of \mathfrak{p} one can associate a sheaf of rings of twisted differential operators $D_{X,\lambda}$ on X, and a natural Lie algebra homomorphism $\mathfrak{g} \to$ $\Gamma(X,D_{X,\lambda})$ $(a\mapsto \partial_a^\lambda)$ (see [2], [3], [14]). Then G-stable left ideals of $D_{X,\lambda}$ correspond to submodules of the right \mathfrak{g} -module $M(\lambda)$ which is induced from the one-dimensional \mathfrak{p} -module corresponding to λ . Let \mathcal{J}_λ be the G-stable left ideal of $D_{X,\lambda}$ corresponding to the maximal proper submodule of $M(\lambda)$. Take a closed subgroup K of G with Lie algebra \mathfrak{k} and a character ξ of \mathfrak{k} . Then the left $D_{X,\lambda}$ -module

(0.2)
$$M_{\lambda,K,\xi} = D_{X,\lambda}/(\mathcal{J}_{\lambda} + \sum_{a \in \mathfrak{k}} D_{X,\lambda}(\partial_a^{\lambda} - \xi(a)))$$

is an obvious generalization of (0.1). However, we have to specify the choices of G, P, λ , K, and ξ in order that (0.2) is an interesting system. In fact we have $\mathcal{J}_{\lambda} = 0$ if λ is generic.

We restrict our attention to the case where the unipotent radical of P is commutative. In this case we have a finite set \mathcal{A} of characters of \mathfrak{p} such that \mathcal{J}_{λ} for $\lambda \in \mathcal{A}$ is nontrivial and is explicitly described in a geometric manner, and we take λ from this set \mathcal{A} . The subgroup K may be chosen freely as long as the system $M_{\lambda,K,\xi}$ is holonomic. We shall give a criterion for $M_{\lambda,K,\xi}$ to be holonomic in §3.

For certain λ 's in \mathcal{A} one can associate another parabolic subgroup $Q = Q_{\lambda}$ of G and a character $\mu = \mu_{\lambda}$ of Lie(Q) satisfying the following properties. Let $D_{Y,\mu}$ be the sheaf of twisted differential operators on Y = G/Q corresponding to μ . For each $D_{Y,\mu}$ -module N one can define its Radon transform R(N) as a complex of $D_{X,\lambda}$ -modules (see §3 below). Set $N_{\mu,K,\xi} = D_{Y,\mu}/\sum_{a \in \mathfrak{k}} D_{Y,\mu}(\partial_a^{\mu} - \xi(a))$. Then one has a canonical morphism $M_{\lambda,K,\xi} \to R(N_{\mu,K,\xi})$. This gives integral representations of solutions to the differential equation corresponding to $M_{\lambda,K,\xi}$.

We remark that the *D*-module considered in Gelfand-Zelevinsky-Kapranov [9, §3.3] is a quotient of the restriction of $M_{\lambda,K,\xi}$ to an open subset of X, where λ is some particular element of A and K is a maximal torus.

0.3 We can define Radon transforms in a more general context. Let P and Q be parabolic subgroups of G and set X = G/P, Y = G/Q as above. Let Z be a G-orbit on $X \times Y$, and let $p_1 : Z \to X$, $p_2 : Z \to Y$ be the canonical morphisms. Let λ be a character of Lie(P), and let μ

be a character of Lie(Q). If λ and μ satisfy a certain condition, then we can define, for a $D_{Y,\mu}$ -module N, a complex R(N) of $D_{X,\lambda}$ -modules by

(0.3)
$$R(N) = \int_{p_1} (\Omega_{p_1}^{\otimes -1} \otimes p_2^* N).$$

We call this R(N) the Radon transform of N. Several properties of this functor R are investigated recently by a number of people (see D'Agnolo-Schapira [4], Marastoni [17], Kashiwara-Tanisaki [15]). In this paper we deal with the case where P and Q are certain special maximal parabolic subgroups and Z is the closed orbit.

A conclusion of our analysis is an explicit description of $R(D_{Y,\mu})$ for the case $G = SL_n(\mathbb{C})$. It is a complex version of results in Kakehi [13], Oshima [21] and Sekiguchi [23].

0.4 I would like to thank Professors Paul Smith, Akihiko Gyoja, Toshio Oshima, Takeshi Sasaki for stimulated discussions and comments.

§1. Twisted differential operators on generalized flag manifolds

1.1 Let \mathfrak{g} be a simple Lie algebra over the complex number field \mathbb{C} , \mathfrak{h} a Cartan subalgebra of \mathfrak{g} , $\Delta \subset \mathfrak{h}^*$ the set of roots, and W its Weyl group. For $\alpha \in \Delta$ we denote the corresponding root space by \mathfrak{g}_{α} . We fix a set of simple roots $\{\alpha_i\}_{i\in I_0}$, and set $\Delta^{\pm}=\pm(\Delta\cap\sum_{i\in I_0}\mathbb{Z}_{\geq 0}\alpha_i)$. For $i\in I_0$ let $h_i\in\mathfrak{h}$ and $\varpi_i\in\mathfrak{h}^*$ be the simple coroot and the fundamental weight corresponding to α_i , respectively. For a subset I of I_0 set $\Delta_I=\sum_{i\in I}\mathbb{Z}\alpha_i\cap\Delta$, and let W_I be its Weyl group. Define subalgebras $\mathfrak{l}_I,\mathfrak{n}_I^+,\mathfrak{n}_I^-,\mathfrak{p}_I^+,\mathfrak{p}_I^-$ of \mathfrak{g} by

$$(1.1) \quad \mathfrak{l}_I=\mathfrak{h}\oplus (\oplus_{\alpha\in\Delta_I}\mathfrak{g}_\alpha), \qquad \mathfrak{n}_I^\pm=\oplus_{\alpha\in\Delta^\pm\backslash\Delta_I}\mathfrak{g}_\alpha, \qquad \mathfrak{p}_I^\pm=\mathfrak{l}_I\oplus \mathfrak{n}_I^\pm.$$

Let G be a connected simply-connected simple algebraic group with Lie algebra \mathfrak{g} , and let H, L_I, N_I^\pm, P_I^\pm be the connected closed subgroups of G corresponding to $\mathfrak{h}, \mathfrak{l}_I, \mathfrak{n}_I^\pm, \mathfrak{p}_I^\pm$, respectively. Let $\operatorname{Hom}(\mathfrak{p}_I^+, \mathbb{C})$ (resp. $\operatorname{Hom}(P_I^+, \mathbb{C}^\times)$) be the set of homomorphisms of Lie algebras (resp. algebraic groups) from \mathfrak{p}_I^+ (resp. P_I^+) to \mathbb{C} (resp. \mathbb{C}^\times). Since the natural linear map $\mathfrak{h} \to \mathfrak{p}_I^+/[\mathfrak{p}_I^+,\mathfrak{p}_I^+]$ is surjective with kernel $\sum_{i\in I} \mathbb{C}h_i$, $\operatorname{Hom}(\mathfrak{p}_I^+,\mathbb{C})$ is naturally identified with $\sum_{i\in I_0\setminus I} a_i\varpi_i$ is integrated to a character of P_I^+ if and only if $a_i\in \mathbb{Z}$ for any $i\in I_0\setminus I$, and hence $\operatorname{Hom}(P_I^+,\mathbb{C}^\times)$ is naturally identified with $\sum_{i\in I_0\setminus I} \mathbb{Z}\varpi_i \subset \mathfrak{h}^*$.

- 1.2 For a smooth algebraic variety over \mathbb{C} , we denote by $\mathcal{O}_X, \Omega_X, D_X$ the structure sheaf, the canonical sheaf, and the sheaf of differential operators on X. A sheaf of rings on X is called a sheaf of twisted differential operators (a TDO-ring) if it is locally isomorphic to D_X (see Kashiwara [14] for more precise definition).
- 1.3 We shall consider TDO-rings on the generalized flag manifolds

$$(1.2) X_I = G/P_I^+$$

in the following. For $\lambda \in \operatorname{Hom}(P_I^+, \mathbb{C}^\times)$ let L_λ be the G-equivariant line bundle over X_I such that the action of P_I^+ on the fiber of L_λ at eP_I^+ is given by λ , and let $\mathcal{O}_{X_I}(\lambda)$ be the rank one locally free \mathcal{O}_{X_I} -module consisting of sections of L_λ . We denote by $D_{X_I,\lambda}$ the sheaf of rings on X_I consisting of differential operators acting on sections of L_λ . Then $D_{X_I,\lambda}$ is apparently a TDO-ring, and we have $D_{X_I,\lambda} \simeq \mathcal{O}_{X_I}(\lambda) \otimes_{\mathcal{O}_{X_I}} D_{X_I} \otimes_{\mathcal{O}_{X_I}} \mathcal{O}_{X_I}(-\lambda)$.

More generally, we can construct TDO-rings $D_{X_I,\lambda}$ for any $\lambda \in \operatorname{Hom}(\mathfrak{p}_I^+,\mathbb{C})$. We recall its construction following Beilinson-Bernstein [2]. Let $U(\mathfrak{g})$ be the enveloping algebra of \mathfrak{g} . Define a \mathbb{C} -algebra homomorphism $U(\mathfrak{g}) \to \operatorname{End}_{\mathbb{C}}(\mathcal{O}_{X_I})$ $(u \mapsto \partial_u)$ by

$$(1.3) \quad \partial_a(f)(x) = \frac{d}{dt} f(\exp(-ta)x)|t = 0 \quad (a \in \mathfrak{g}, f \in \mathcal{O}_{X_I}, x \in X_I).$$

Set $U_{X_I}(\mathfrak{g}) = \mathcal{O}_{X_I} \otimes_{\mathbb{C}} U(\mathfrak{g})$. A \mathbb{C} -algebra structure on $U_{X_I}(\mathfrak{g})$ is uniquely determined by the following properties:

- $(1.4) \quad \mathcal{O}_{X_I} \to U_{X_I}(\mathfrak{g}) \quad (f \mapsto f \otimes 1) \text{ is an algebra homomorphism},$
- (1.5) $U(\mathfrak{g}) \to U_{X_I}(\mathfrak{g})$ $(u \mapsto 1 \otimes u)$ is an algebra homomorphism,
- $(1.6) (f \otimes 1)(1 \otimes u) = f \otimes u (f \in \mathcal{O}_{X_I}, u \in U(\mathfrak{g})),$
- $(1.7) \quad [1 \otimes a, f \otimes 1] = \partial_a(f) \otimes 1 \qquad (f \in \mathcal{O}_{X_I}, a \in \mathfrak{g}).$

We shall identify \mathcal{O}_{X_I} and $U(\mathfrak{g})$ with subalgebras of $U_{X_I}(\mathfrak{g})$ via (1.4) and (1.5). For $x \in X_I$ let $U_{X_I}(\mathfrak{g})_x \to U(\mathfrak{g})$ $(R \mapsto R(x))$ be the natural map given by $f \otimes u \mapsto f(x)u$. For an $\mathrm{ad}(\mathfrak{p}_I^+)$ -stable subspace D of $U(\mathfrak{g})$ we denote by $\mathcal{L}_{X_I}^0(D)$ the subsheaf of $U_{X_I}(\mathfrak{g})$ consisting of $R \in U_{X_I}(\mathfrak{g})$ such that $R(gP_I^+) \in \mathrm{Ad}(g)D$ for any $gP_I^+ \in X_I$.

Lemma 1.1. Let D be an $ad(\mathfrak{p}_I^+)$ -stable subspace of $U(\mathfrak{g})$.

- (i) $\mathcal{O}_{X_I} \mathcal{L}_{X_I}^0(D) = \mathcal{L}_{X_I}^0(D)$.
- (ii) $[\mathfrak{g}, \mathcal{L}_{X_I}^0(D)] \subset \mathcal{L}_{X_I}^0(D)$.
- (iii) $\mathcal{L}_{X_I}^0(DU(\mathfrak{g})) = U_{X_I}(\mathfrak{g})\mathcal{L}_{X_I}^0(D).$

Proof. (i) This is clear by the definition.

(ii) Let $\pi: G \to X_I$ be the natural map. Let $Q \in \Gamma(U, U_{X_I}(\mathfrak{g}))$, and define a $U(\mathfrak{g})$ -valued function v on $\pi^{-1}(U)$ by $v(g) = \mathrm{Ad}(g^{-1})(Q(gP_I^+))$. It is sufficient to show

$$[a,Q](gP_I^+) = \operatorname{Ad}(g)\left(\frac{d}{dt}v(\exp(-ta)g)|t=0\right)$$

for any $a \in \mathfrak{g}$. Write $Q = \sum_i f_i u_i$ where $f_i \in \mathcal{O}_{X_I}$ and $u_i \in U(\mathfrak{g})$. Then we have

$$[a,Q] = \sum_i (\partial_a(f_i) + f_i a) u_i - \sum_i f_i u_i a = \sum_i \partial_a(f_i) u_i + \sum_i f_i [a,u_i],$$

and hence

$$[a,Q](gP_I^+) = \sum_i (\partial_a(f_i))(gP_I^+)u_i + \sum_i f_i(gP_I^+)[a,u_i].$$

On the other hand we have

$$\begin{split} &\frac{d}{dt}v(\exp(-ta)g)|t=0\\ &= \left.\frac{d}{dt}\left(\mathrm{Ad}(g^{-1}\exp{ta})(\sum_{i}f_{i}(\exp(-ta)gP_{I}^{+})u_{i})\right)\right|t=0\\ &= \left.\mathrm{Ad}(g^{-1})\left(\mathrm{ad}(a)(\sum_{i}f_{i}(gP_{I}^{+})u_{i}) + \sum_{i}(\partial_{a}(f_{i}))(gP_{I}^{+})u_{i}\right)\\ &= \left.\mathrm{Ad}(g^{-1})\left(\sum_{i}f_{i}(gP_{I}^{+})[a,u_{i}] + \sum_{i}(\partial_{a}(f_{i}))(gP_{I}^{+})u_{i}\right). \end{split}$$

The statement (ii) is proved.

(iii) Set $D_1 = DU(\mathfrak{g})$. We have

$$\mathfrak{g}\mathcal{L}_{X_I}^0(D_1) \subset [\mathfrak{g},\mathcal{L}_{X_I}^0(D_1)] + \mathcal{L}_{X_I}^0(D_1)\mathfrak{g} \subset \mathcal{L}_{X_I}^0(D_1) + \mathcal{L}_{X_I}^0(D_1)\mathfrak{g}$$

by (ii), and

$$\mathcal{L}_{X_I}^0(D_1)\mathfrak{g}\subset\mathcal{L}_{X_I}^0(D_1\mathfrak{g})\subset\mathcal{L}_{X_I}^0(D_1)$$

by the definition of $\mathcal{L}_{X_I}^0$. Hence $\mathcal{L}_{X_I}^0(D_1)$ is a left ideal of $U_{X_I}(\mathfrak{g})$ by (i). Since $\mathcal{L}_{X_I}^0(D_1)$ is a left ideal containing $\mathcal{L}_{X_I}^0(D)$, we have

$$\mathcal{L}_{X_I}^0(DU(\mathfrak{g})) = \mathcal{L}_{X_I}^0(D_1) \supset U_{X_I}(\mathfrak{g})\mathcal{L}_{X_I}^0(D).$$

240 T. Tanisaki

It remains to show $\mathcal{L}_{X_I}^0(D_1) \subset U_{X_I}(\mathfrak{g})\mathcal{L}_{X_I}^0(D)$. Since the question is local, it is sufficient to show it on the open subset $gN_I^-P_I^+/P_I^+(\simeq N_I^-)$ for any $g \in G$. We can assume that g=1 without loss of generality. Let $Q \in \mathcal{L}_{X_I}^0(D_1)$. For $x \in N_I^-$ we have $\mathrm{Ad}(x)^{-1}Q(xP_I^+) = \sum_i f_i(x)u_iv_i$ for $u_i \in D$, $v_i \in U(\mathfrak{g})$, and some locally defined functions f_i on N_I^- . Write

$$\mathrm{Ad}(x)u_i = \sum_k \varphi_i^k(x)u_i^k, \qquad \mathrm{Ad}(x)v_i = \sum_\ell \psi_i^\ell(x)v_i^\ell,$$

where $u_i^k, v_i^\ell \in U(\mathfrak{g})$ and φ_i^k, ψ_i^ℓ are functions on N_I^- . For a locally defined function f on N_I^- denote the corresponding locally defined function on $N_I^-P_I^+/P_I^+$ by F_f . We have

$$Q(xP_I^+) = \sum_{i,\ell} f_i(x)\psi_i^{\ell}(x) (\sum_k \varphi_i^k(x)u_i^k) v_i^{\ell},$$

and hence

$$Q = \sum_{i,\ell} F_{f_i \psi_i^\ell} (\sum_k F_{\varphi_i^k} u_i^k) v_i^\ell.$$

Since

$$\mathrm{Ad}(x)^{-1}((\sum_{k}F_{\varphi_{i}^{k}}u_{i}^{k})(xP_{I}^{+}))=\mathrm{Ad}(x)^{-1}(\sum_{k}\varphi_{i}^{k}(x)u_{i}^{k})=u_{i}\in D,$$

we have $Q \in \mathcal{O}_{X_I} \mathcal{L}^0_{X_I}(D) U(\mathfrak{g})$. By (i) and (ii) we see easily that $\mathcal{O}_{X_I} \mathcal{L}^0_{X_I}(D) U(\mathfrak{g}) \subset U_{X_I}(\mathfrak{g}) \mathcal{L}^0_{X_I}(D)$. Hence (iii) is proved. Q.E.D.

1.4 For $\lambda \in \operatorname{Hom}(\mathfrak{p}_I^+, \mathbb{C})$ set

(1.8)
$$\mathfrak{p}_{I,\lambda}^+ = \{ a - \lambda(a) \mid a \in \mathfrak{p}_I^+ \}, \qquad \mathfrak{r}_{I,\lambda} = \mathfrak{p}_{I,\lambda}^+ U(\mathfrak{g}).$$

Lemma 1.2. We have $[\mathcal{O}_{X_I}, \mathcal{L}_{X_I}^0(\mathfrak{p}_{I,\lambda}^+)] = 0$.

Proof. Let $Q \in \mathcal{L}_{X_I}^0(\mathfrak{p}_{I,\lambda}^+)$ and $f \in \mathcal{O}_{X_I}$. We can write $Q = \sum_i f_i a_i - h$, where $f_i, h \in \mathcal{O}_{X_I}$ and $a_i \in \mathfrak{g}$ satisfy

$$a(g) := \operatorname{Ad}(g)^{-1} (\sum_{i} f_{i}(gP_{I}^{+})a_{i}) \in \mathfrak{p}_{I}^{+}, \quad \lambda(a(g)) = h(gP_{I}^{+}).$$

Then we have

$$\begin{split} [Q,f](gP_I^+) &= (\sum_i f_i \partial_{a_i}(f))(gP_I^+) \\ &= (\partial_{\sum_i f_i(gP_I^+)a_i}(f))(gP_I^+) \\ &= \frac{d}{dt} f(\exp(-t\sum_i f_i(gP_I^+)a_i)gP_I^+)|t = 0 \\ &= \frac{d}{dt} f(g\exp(-ta(g))P_I^+)|t = 0 \\ &= \frac{d}{dt} f(gP_I^+)|t = 0 \\ &= 0 \end{split}$$

Q.E.D.

By Lemma 1.1 and Lemma 1.2 we see that $\mathcal{L}_{X_I}^0(\mathfrak{r}_{I,\lambda})$ is a two-sided ideal of $U_{X_I}(\mathfrak{g})$. Set

$$(1.9) D_{X_I,\lambda} = U_{X_I}(\mathfrak{g})/\mathcal{L}_{X_I}^0(\mathfrak{r}_{I,\lambda}).$$

Define a \mathbb{C} -algebra homomorphism $U(\mathfrak{g}) \to \Gamma(X_I, D_{X_I, \lambda}) (u \mapsto \partial_u^{\lambda})$ by $\partial_u^{\lambda} = \overline{1 \otimes u}$. For the sake of completeness we give a proof of the following.

Lemma 1.3. $D_{X_I,\lambda}$ is a TDO-ring on X_I .

Proof. We shall show that $D_{X_I,\lambda}|(gN_I^-P_I^+/P_I^+)$ is isomorphic to the sheaf of ordinary differential operators $D_{gN_I^-P_I^+/P_I^+}$ for any $g\in G$. We may assume that g=1 without loss of generality. We shall identify $N_I^-P_I^+/P_I^+$ with N_I^- . We have $D_{N_I^-}\simeq \mathcal{O}_{N_I^-}\otimes U(\mathfrak{n}_I^-)$ via the ring homomorphism $R:U(\mathfrak{n}_I^-)\to D_{N_I^-}$ given by

$$((R(a))(f))(x) = \frac{d}{dt}f(\exp(-ta)x)|t = 0 \quad (a \in \mathfrak{n}_I^-, f \in \mathcal{O}_{N_I^-}, x \in N_I^-).$$

This gives an embedding of the ring

$$D_{N_I^-} \simeq \mathcal{O}_{N_I^-} \otimes U(\mathfrak{n}_I^-) \subset \mathcal{O}_{N_I^-} \otimes U(\mathfrak{g}) = U_{X_I}(\mathfrak{g})|N_I^-.$$

In other words $D_{N_I^-}$ is identified with the subring of $U_{X_I}(\mathfrak{g})|N_I^-$ consisting of $Q \in U_{X_I}(\mathfrak{g})|N_I^-$ satisfying $Q(xP_I^+) \in U(\mathfrak{n}_I^-)$ for any $x \in N_I^-$. By the definition $\mathcal{L}_{X_I}^0(\mathfrak{r}_{I,\lambda})|N_I^-$ consists of $Q \in U_{X_I}(\mathfrak{g})|N_I^-$ satisfying $Q(xP_I^+) \in \mathrm{Ad}(x)(\mathfrak{r}_{I,\lambda})$ for any $x \in N_I^-$. Since

$$U(\mathfrak{g}) = U(\mathfrak{n}_I^-) \oplus \mathfrak{r}_{I,\lambda}, \qquad \operatorname{Ad}(x)U(\mathfrak{n}_I^-) = U(\mathfrak{n}_I^-) \quad (x \in N_I^-),$$

we have $U_{X_I}(\mathfrak{g})|N_I^- = \mathcal{L}_{X_I}^0(\mathfrak{r}_{I,\lambda})|N_I^- \oplus D_{N_I^-}$, and hence $D_{X_I,\lambda}|N_I^- \simeq D_{N_I^-}$. Q.E.D.

We define an increasing filtration F of $D_{X_I,\lambda}$ by

$$(1.10) \quad F_p(D_{X_I,\lambda}) = \operatorname{Image}(\mathcal{O}_{X_I} \otimes F_p(U(\mathfrak{g})) \to D_{X_I,\lambda}) \qquad (p \in \mathbb{Z}_{\geq 0}),$$

where $F_p(U(\mathfrak{g}))$ denotes the subspace of $U(\mathfrak{g})$ consisting of elements with order $\leq p$.

Let $\delta: U_{X_I}(\mathfrak{g}) \to U_{X_I}(\mathfrak{g})$ be the anti-automorphism given by

(1.11)
$$\delta(f) = f \quad (f \in \mathcal{O}_{X_I}), \qquad \delta(a) = -a \quad (a \in \mathfrak{g}).$$

Set

(1.12)
$$\rho_I = \frac{1}{2} \sum_{\alpha \in \Delta^+ \backslash \Delta_I} \alpha \in \operatorname{Hom}(\mathfrak{p}_I^+, \mathbb{C}).$$

Then we see easily that $\delta(\mathcal{L}_{X_I}^0(\mathfrak{r}_{I,\lambda})) = \mathcal{L}_{X_I}^0(\mathfrak{r}_{I,-\lambda+2\rho_I})$, and hence we have

$$(1.13) D_{X_I,\lambda}^{op} \simeq D_{X_I,-\lambda+2\rho_I},$$

where $D_{X_I,\lambda}^{op}$ denotes the opposite ring of $D_{X_I,\lambda}$.

1.5 Define a right $U(\mathfrak{g})$ -module $M_I(\lambda)$ by

(1.14)
$$M_I(\lambda) = U(\mathfrak{g})/\mathfrak{r}_{I,\lambda}.$$

If we regard $M_I(\lambda)$ as a left $U(\mathfrak{g})$ -module via the anti-automorphism of $U(\mathfrak{g})$ given by $a \mapsto -a$ for $a \in \mathfrak{g}$, it is a highest weight module with highest weight $-\lambda$ called a generalized Verma module. Especially it contains a unique maximal proper submodule J_{λ} . Let $V = \tilde{V}/\mathfrak{r}_{I,\lambda}$ be a $U(\mathfrak{g})$ -submodule of $M_I(\lambda)$. For any $a \in \mathfrak{p}_I^+, b \in \tilde{V}$ we have

$$[a,b] = (a-\lambda(a))b - b(a-\lambda(a)) \subset \mathfrak{r}_{I,\lambda} + \tilde{V} \subset \tilde{V}$$

and hence \tilde{V} is $\mathrm{ad}(\mathfrak{p}_I^+)$ -stable. Therefore, we have obtained a G-stable left ideal

(1.15)
$$\mathcal{L}_{X_I}(V) = \mathcal{L}_{X_I}^0(\tilde{V}) \bmod \mathcal{L}_{X_I}^0(\mathfrak{r}_{I,\lambda})$$

of $D_{X_I,\lambda}$ for a $U(\mathfrak{g})$ -submodule V of $M_I(\lambda)$.

Theorem 1.4. The map \mathcal{L}_{X_I} gives a one-to-one correspondence between the set of $U(\mathfrak{g})$ -submodules of $M_I(\lambda)$ and that of G-stable left ideals of $D_{X_I,\lambda}$.

Proof. For an \mathcal{O}_{X_I} -submodule J of $D_{X_I,\lambda}$ and $gP_I^+ \in X_I$ we denote the image of $J_{gP_I^+}$ under $(D_{X_I,\lambda})_{gP_I^+} \to \mathbb{C} \otimes_{\mathcal{O}_{X_I,gP_I^+}} (D_{X_I,\lambda})_{gP_I^+}$ by $J(gP_I^+)$. We see from the proof of Lemma 1.3 that $\mathbb{C} \otimes_{\mathcal{O}_{X_I,eP_I^+}}$ $(D_{X_I,\lambda})_{eP_I^+}$ is naturally identified with $M_I(\lambda)$. Then we see easily that $(\mathcal{L}_{X_I}(V))(eP_I^+) = V$ for any $U(\mathfrak{g})$ -submodule V of $M_I(\lambda)$ under the above identification. It remains to show that $J = \mathcal{L}_{X_I}(J(eP_I^+))$ for any G-stable left ideal J of $D_{X_I,\lambda}$. Set $F_p(J) = J \cap F_p(D_{X_I,\lambda})$. Since $F_p(J)$ and $F_p(D_{X_I,\lambda})/F_p(J)$ are coherent \mathcal{O}_{X_I} -modules, they are locally free on an open subset of X_I (see [20, lecture 8]). Moreover, they are actually locally free on whole X_I by the G-equivariance. Set $J' = \mathcal{L}_{X_I}(J(eP_I^+))$. Then $F_p(J')$ and $F_p(D_{X_I,\lambda})/F_p(J')$ are also locally free by the same reason (or by the definition of \mathcal{L}_{X_I}). It follows that $F_p(J)$ and $F_p(J')$ coincide if $(F_p(J))(gP_I^+) = (F_p(J'))(gP_I^+)$ for any $gP_I^+ \in X_I$. By the definition we have $(F_p(J))(eP_I^+) = (F_p(J'))(eP_I^+)$, and by the G-equivariance we have $(F_p(J))(gP_I^+) = (F_p(J'))(gP_I^+)$ for any $gP_I^+ \in X_I$. Hence we have $F_p(J) = F_p(J')$. Since this holds for any p we have J = J'. Q.E.D.

§2. Highest weight modules associated to Hermitian symmetric spaces

2.1 In this section we shall deal with the case:

(2.1)
$$\mathfrak{n}_I^{\pm}$$
 is nonzero and commutative.

Let $\theta = \sum_{i \in I_0} m_i \alpha_i$ be the highest root of \mathfrak{g} . It is well known that the condition (2.1) is equivalent to the following:

(2.2)
$$I = I_0 \setminus \{i_0\} \text{ with } m_{i_0} = 1.$$

We have the following list of (\mathfrak{g}, I) satisfying (2.1).

T. Tanisaki

244

Here, $I = I_0 \setminus \{i_0\}$, where i_0 corresponds to the white vertex of the Dynkin diagram.

2.2 Let us identify \mathfrak{n}_I^+ with an open subset U of G/P_I^- via the embedding $a \mapsto \exp(a)P_I^-$. Note that U is stable under the left multiplication by L_I and that the induced action of L_I on \mathfrak{n}_I^+ is the adjoint action. Let $\tilde{\mathcal{C}}$ denote the set of L_I -orbits on \mathfrak{n}_I^+ .

Proposition 2.1 (see Richardson-Röhrle-Steinberg [22]). (i) For any P_I^- -orbit D on G/P_I^- the intersection $D \cap U$ consists of a single L_I -orbit. (ii) The correspondence $D \mapsto D \cap U$ gives a bijection

$$(2.3) P_I^- \backslash G/P_I^- \simeq \tilde{\mathcal{C}}.$$

In particular, \mathfrak{n}_I^+ consists of only finitely many L_I -orbits.

By a well known result on the Bruhat decomposition we have the following natural one-to-one correspondence:

$$(2.4) W_I \backslash W/W_I \simeq \tilde{\mathcal{C}}.$$

Proposition 2.2. Let $C \in \tilde{\mathcal{C}}$, and set $O = \operatorname{Ad}(G)(C) \subset \mathfrak{g}$. Then we have $O \cap \mathfrak{n}_{L}^{+} = C$, and dim $C = \dim O/2$.

Proof. Let \mathcal{N} be the set of nilpotent orbits on \mathfrak{g} which intersects with \mathfrak{n}_I^+ . In order to show that $\mathrm{Ad}(G)(C) \cap \mathfrak{n}_I^+ = C$ for any $C \in \tilde{\mathcal{C}}$, it is sufficient to show that the map $\mathcal{C} \to \mathcal{N}$ given by $C \mapsto \mathrm{Ad}(G)(C)$ is injective. Since it is apparently surjective, it is sufficient to show $\sharp(\tilde{\mathcal{C}}) = \sharp(\mathcal{N})$. We can calculate $\sharp(\tilde{\mathcal{C}})$ in each individual case by using (2.4). Let $O_0 \in \mathcal{N}$ be the nilpotent orbit such that $O_0 \cap \mathfrak{n}_I^+$ is open dense in \mathfrak{n}_I^+ . Since the moment map $T^*(G/P_I^+) \to \mathfrak{g}$ is a projective morphism, its image $\mathrm{Ad}(G)(\mathfrak{n}_I^+)$ is a closed subset of \mathfrak{g} . Hence \mathcal{N} consists of nilpotent orbits O contained in \overline{O}_0 . It follows that we can also determine $\sharp(\mathcal{N})$ using explicit description of the closure relations of the nilpotent orbits (see [12], [19]), and we conclude that $\sharp(\tilde{\mathcal{C}}) = \sharp(\mathcal{N})$. The latter half of our

statement is also verified using case-by-case consideration. Details are omitted. Q.E.D.

Let \mathcal{A}_0 be the set of zeros of the *b*-function of the prehomogeneous vector space (L_I, \mathfrak{n}_I^+) , and set $\mathcal{A} = \{-a-1 \mid a \in \mathcal{A}_0\}$. The following explicit description of \mathcal{A} is given in Gyoja [11].

$$\begin{array}{lll} \text{(I)} & \mathcal{A} = \{0,1,2,\ldots,k-1\} & \text{(II)} & \mathcal{A} = \{0,\frac{1}{2},1,\frac{3}{2},\ldots,\frac{n-1}{2}\} \\ \text{(III)} & \mathcal{A} = \{0,\frac{2n-3}{2}\} & \text{(IV)} & \mathcal{A} = \{0,n-2\} \\ \text{(V)} & \mathcal{A} = \{0,2,4,\ldots,2([\frac{n-2}{2}])\} & \text{(VI)} & \mathcal{A} = \{0,3\} \\ \text{(VII)} & \mathcal{A} = \{0,4,8\} & \end{array}$$

Here, $n = \sharp(I_0)$.

Let \mathcal{C} be the set of non-open L_I -orbits on \mathfrak{n}_I^+ . By a case-by-case check we see that $\sharp(\mathcal{C}) = \sharp(\mathcal{A})$ and that \mathcal{C} is a totally ordered set with respect to the closure relation. Hence there exists a unique bijection $\mathcal{A} \to \mathcal{C} (r \mapsto C_r)$ satisfying

$$(2.5) C_r \subset \overline{C_s} if r \le s.$$

2.3 We shall give an explicit description of the maximal proper submodule $J_{r\varpi_{i_0}}$ of $M_I(r\varpi_{i_0})$ for $r \in \mathcal{A}$.

Let $\lambda \in \operatorname{Hom}(\mathfrak{p}_I^+,\mathbb{C})$. By the Poincaré-Birkhoff-Witt theorem the natural linear map $U(\mathfrak{n}_I^-) \to M_I(\lambda) = U(\mathfrak{g})/\mathfrak{r}_{I,\lambda}$ is an isomorphism. By the condition (2.1) $U(\mathfrak{n}_I^-)$ is isomorphic to the symmetric algebra $S(\mathfrak{n}_I^-)$. Via the Killing form of \mathfrak{g} $S(\mathfrak{n}_I^-)$ is identified with the algebra $\mathbb{C}[\mathfrak{n}_I^+]$ consisting of polynomial functions on \mathfrak{n}_I^+ . Hence we have a natural bijective linear map

(2.6)
$$F_{\lambda}: \mathbb{C}[\mathfrak{n}_I^+] \to M_I(\lambda).$$

For $C \in \mathcal{C}$ let $I(\overline{C})$ be the defining ideal of the closure \overline{C} of C in \mathfrak{n}_I^+ .

Proposition 2.3 (see [5], [26], and their references). We have

$$(2.7) J_{r\varpi_{i_0}} = F_{r\varpi_{i_0}}(I(\overline{C}_r))$$

for any $r \in A$.

Remark 2.4. For $r_0 = \min(\mathcal{A} \setminus \{0\})$ the ideal $J_{r_0 \varpi_{i_0}}$ is generated by polynomials with degree 2 by [10].

§3. Radon transforms

3.1 Let $f: X \to Y$ be a morphism of smooth algebraic varieties. For a TDO-ring A on Y one can associate a TDO-ring $f^{\sharp}A$ on X, a $(f^{\sharp}A, f^{-1}A)$ -bimodule $A_{X \to Y}$, and a $(f^{-1}A, f^{\sharp}A)$ -bimodule $A_{Y \leftarrow X}$ (see [3], [15]). If \mathcal{L} is an invertible \mathcal{O}_Y -module and $A = \mathcal{L} \otimes_{\mathcal{O}_Y} D_Y \otimes_{\mathcal{O}_Y} \mathcal{L}^{\otimes -1}$, then we have

$$f^{\sharp}A = f^*\mathcal{L} \otimes_{\mathcal{O}_X} D_X \otimes_{\mathcal{O}_X} f^*\mathcal{L}^{\otimes -1},$$

$$A_{X \to Y} = \mathcal{O}_X \otimes_{f^{-1}\mathcal{O}_Y} f^{-1}A, \quad A_{Y \leftarrow X} = f^{-1}A \otimes_{f^{-1}\mathcal{O}_Y} \Omega_f.$$

Here, $\mathcal{L}^{\otimes -1} = Hom_{\mathcal{O}_Y}(\mathcal{L}, \mathcal{O}_Y)$, $f^*\mathcal{L} = \mathcal{O}_X \otimes_{f^{-1}\mathcal{O}_Y} f^{-1}\mathcal{L}$, and $\Omega_f = \Omega_X \otimes_{f^{-1}\mathcal{O}_Y} f^{-1}\Omega_Y^{\otimes -1}$.

For an A-module M set

(3.1)
$$\mathbb{L}f^*M = A_{X \to Y} \otimes_{f^{-1}A}^{\mathbb{L}} f^{-1}M.$$

It is a complex of $f^{\sharp}A$ -modules. If f is smooth, we have $H^{i}(\mathbb{L}f^{*}M)=0$ for $i\neq 0$, and in this case we simply write $f^{*}M$ for $H^{0}(\mathbb{L}f^{*}M)$.

For an $f^{\sharp}A$ -module M set

(3.2)
$$\int_{f} M = \mathbb{R} f_{*}(A_{Y \leftarrow X} \otimes^{\mathbb{L}}_{f^{\sharp}A} M).$$

It is a complex of A-modules.

3.2 Let I and J be subsets of I_0 . Let

$$(3.3) p_1: X_{I\cap J} \to X_I, p_2: X_{I\cap J} \to X_J$$

be the canonical projections. Set

(3.4)
$$\gamma_{IJ} = \sum_{\alpha \in (\Delta^+ \setminus \Delta_J) \cap \Delta_I} \alpha \in \mathfrak{h}^*.$$

Let $\lambda \in \operatorname{Hom}(\mathfrak{p}_I, \mathbb{C}) \subset \mathfrak{h}^*$ and $\mu \in \operatorname{Hom}(\mathfrak{p}_J, \mathbb{C}) \subset \mathfrak{h}^*$ satisfying

$$(3.5) \lambda = \mu - \gamma_{IJ}.$$

Then for a $D_{X_J,\mu}$ -module N we can define a complex $R_{IJ}(N)$ of $D_{X_I,\lambda}$ -module called the Radon transform of N by

(3.6)
$$R_{IJ}(N) = \int_{p_1} (\Omega_{p_1}^{\otimes -1} \otimes p_2^* N).$$

Indeed, $\Omega_{p_1}^{\otimes -1} \otimes p_2^* N$ is a $D_{X_{I \cap J}, \lambda}$ -module since $p_2^* N$ is a $D_{X_{I \cap J}, \mu}$ -module and we have $\Omega_{p_1} \simeq \mathcal{O}_{X_{I \cap J}}(\gamma_{IJ})$.

3.3 By the definition we have

(3.7)
$$R_{IJ}(N) = \mathbb{R}p_{1*}(A_{IJ} \otimes_{p_2^{-1}D_{X_{I,H}}}^{\mathbb{L}} p_2^{-1}N)$$

with

$$(3.8) A_{IJ} = (p_1^{-1} D_{X_I,\lambda} \otimes_{p_1^{-1} \mathcal{O}_{X_I}} \mathcal{O}_{X_{I\cap J}}) \otimes_{D_{X_{I\cap J},\mu}}^{\mathbb{L}}$$

$$(\mathcal{O}_{X_{I\cap J}} \otimes_{p_2^{-1} \mathcal{O}_{X_J}} p_2^{-1} D_{X_J,\mu}).$$

Lemma 3.1. Set $i = (p_1, p_2) : X_{I \cap J} \to X_I \times X_J$. Then we have

(3.9)
$$H^k(A_{IJ}) = 0 \text{ for } k \neq 0,$$

(3.10)
$$H^0(A_{IJ})$$

= $(i^{-1}(D_{X_I,\lambda} \boxtimes D_{X_J,\mu}^{op}) \otimes_{i^{-1}\mathcal{O}_{X_I \times X_J}} \mathcal{O}_{X_{I\cap J}}) \otimes_{D_{X_{I\cap J}}} \mathcal{O}_{X_{I\cap J}}.$

This follows from the following general result.

Lemma 3.2. Let $f: S \to X$ and $g: S \to Y$ be morphisms of smooth varieties, and let A_S , A_X , A_Y be TDO-rings on S, X, Y respectively such that $A_S = g^{\sharp}A_Y = (f^{\sharp}A_X^{op})^{op}$. Set $\varphi = (f,g): S \to X \times Y$. Then we have

$$(f^{-1}A_X \otimes_{f^{-1}\mathcal{O}_X} \mathcal{O}_S) \otimes_{A_S}^{\mathbb{L}} (\mathcal{O}_S \otimes_{g^{-1}\mathcal{O}_Y} g^{-1}A_Y)$$

$$\simeq (\varphi^{-1}(A_X \boxtimes A_Y^{op}) \otimes_{\varphi^{-1}\mathcal{O}_{X \times Y}} \mathcal{O}_S) \otimes_{D_S}^{\mathbb{L}} \mathcal{O}_S.$$

In particular, if φ is a closed embedding, then we have

$$H^{k}((f^{-1}A_{X}\otimes_{f^{-1}\mathcal{O}_{X}}\mathcal{O}_{S})\otimes^{\mathbb{L}}_{A_{S}}(\mathcal{O}_{S}\otimes_{g^{-1}\mathcal{O}_{Y}}g^{-1}A_{Y}))=0 \qquad (k\neq 0).$$

Proof. Let $\Delta: S \to S \times S$ be the diagonal embedding. In general, for a left A_S -module M and a right A_S -module N we have

$$\begin{split} N \otimes_{A_S}^{\mathbb{L}} M &= (N \otimes_{\mathcal{O}_S}^{\mathbb{L}} M) \otimes_{D_S}^{\mathbb{L}} \mathcal{O}_S \\ &= (\Delta^{-1}(N \boxtimes M) \otimes_{\Delta^{-1}\mathcal{O}_{S \times S}}^{\mathbb{L}} \mathcal{O}_S) \otimes_{D_S}^{\mathbb{L}} \mathcal{O}_S. \end{split}$$

Hence we have

$$(f^{-1}A_X \otimes_{f^{-1}\mathcal{O}_X} \mathcal{O}_S) \otimes_{A_S}^{\mathbb{L}} (\mathcal{O}_S \otimes_{g^{-1}\mathcal{O}_Y} g^{-1}A_Y)$$

$$= (\Delta^{-1}((f^{-1}A_X \otimes_{f^{-1}\mathcal{O}_X} \mathcal{O}_S) \boxtimes (g^{-1}A_Y^{op} \otimes_{g^{-1}\mathcal{O}_Y} \mathcal{O}_S))$$

$$\otimes_{\Delta^{-1}\mathcal{O}_S \times S}^{\mathbb{L}} \mathcal{O}_S) \otimes_{D_S}^{\mathbb{L}} \mathcal{O}_S$$

$$= (\varphi^{-1}(A_X \boxtimes A_Y^{op}) \otimes_{\varphi^{-1}\mathcal{O}_X \times Y} \mathcal{O}_S) \otimes_{D_S}^{\mathbb{L}} \mathcal{O}_S.$$

If φ is a closed immersion, then $\varphi^{-1}(A_X\boxtimes A_Y^{op})\otimes_{\varphi^{-1}\mathcal{O}_{X\times Y}}\mathcal{O}_S$ is a locally free D_S -module. Hence $H^k((\varphi^{-1}(A_X\boxtimes A_Y^{op})\otimes_{\varphi^{-1}\mathcal{O}_{X\times Y}}\mathcal{O}_S)\otimes_{D_S}^{\mathbb{L}}\mathcal{O}_S)=0$ for $k\neq 0$. Q.E.D.

By the definition we see easily that

$$(3.11) D_{X_{I \cap J}, \mu} = U_{X_{I \cap J}}(\mathfrak{g})/\mathcal{I},$$

$$(3.12) p_1^{-1} D_{X_I,\lambda} \otimes_{p_1^{-1} \mathcal{O}_{X_I}} \mathcal{O}_{X_{I \cap J}} = U_{X_{I \cap J}}(\mathfrak{g})/\mathcal{J},$$

(3.13)
$$\mathcal{O}_{X_{I\cap J}} \otimes_{p_2^{-1}\mathcal{O}_{X_J}} p_2^{-1} D_{X_J,\mu} = U_{X_{I\cap J}}(\mathfrak{g})/\mathcal{K},$$

where

$$(3.14) \quad \mathcal{I} = \mathcal{L}_{X_{I\cap J}}^0(\mathfrak{r}_{I\cap J,\mu}),$$

$$(3.15) \quad \mathcal{J} = \delta(\mathcal{L}_{X_{I\cap J}}^{0}(\mathfrak{r}_{I,-\lambda+2\rho_{I}})) = p_{1}^{-1}\mathcal{L}_{X_{I}}^{0}(\mathfrak{r}_{I,\lambda})U_{X_{I\cap J}}(\mathfrak{g}),$$

$$(3.16) \quad \mathcal{K} = \mathcal{L}_{X_{I\cap J}}^0(\mathfrak{r}_{J,\mu}) = U_{X_{I\cap J}}(\mathfrak{g})p_2^{-1}\mathcal{L}_{X_J}^0(\mathfrak{r}_{J,\mu}).$$

Here, δ is as in (1.11). Hence we have

(3.17)
$$A_{IJ} = U_{X_{I\cap J}}(\mathfrak{g})/(\mathcal{J} + \mathcal{K}).$$

Let $n \in \Gamma(X_J, N)$. Since A_{IJ} has a canonical section $\overline{1}$, we have a morphism

$$\mathbb{C} \to A_{IJ} \otimes_{\mathbb{C}} p_2^{-1} N \to A_{IJ} \otimes_{p_2^{-1} D_{X,I,I}}^{\mathbb{L}} p_2^{-1} N$$

given by $1 \to \overline{1} \otimes n$. Hence the composition of

$$\mathbb{C} \to \mathbb{R} p_{1*}(p_1^{-1}\mathbb{C}) = \mathbb{R} p_{1*}(\mathbb{C}) \to \mathbb{R} p_{1*}(A_{IJ} \otimes_{p_2^{-1}D_{X_{I,I,I}}}^{\mathbb{L}} p_2^{-1}N) = R_{IJ}(N)$$

induces a section

(3.18)
$$R_{IJ}(n) \in \Gamma(X_I, H^0(R_{IJ}(N))).$$

3.4 In the rest of this section we fix a subset I of I_0 satisfying (2.1) and $r \in \mathcal{A}$. We set

$$(3.19) \lambda = r \varpi_{i_0}.$$

Let J be a subset of I_0 and set $\mu = \lambda + \gamma_{IJ}$. We have $\mu \in \text{Hom}(\mathfrak{p}_J^+, \mathbb{C})$ if and only if

$$(3.20) \gamma_{IJ}(h_{i_0}) = -r,$$

where $I = I_0 \setminus \{i_0\}$. In this case we can define, for a $D_{X_J,\mu}$ -module N, its Radon transform $R_{IJ}(N)$ as a complex of $D_{X_J,\lambda}$ -modules.

Lemma 3.3. Let J be a subset of I_0 satisfying (3.20), and set $\mu = \lambda + \gamma_{IJ}$. Let $\varphi : D_{X_I,\lambda} \to H^0(R_{IJ}(D_{X_J,\mu}))$ be the canonical morphism given by $1 \mapsto R_{IJ}(1)$ (see (3.18)). Assume that $\mathfrak{n}_I^+ \cap \mathfrak{n}_J^+ \subset \overline{C}_r$. Then we have $\mathcal{L}_{X_I}(J_\lambda) \subset \operatorname{Ker} \varphi$.

Proof. By (3.17) we have

$$R_{IJ}(D_{X_J,\mu}) = \mathbb{R}p_{1*}(U_{X_{I\cap J}}(\mathfrak{g})/(\mathcal{J}+\mathcal{K})),$$

where \mathcal{J} and \mathcal{K} are as in (3.15) and (3.16). Let $\overline{1}$ be the canonical section of the left $p_1^{-1}D_{X_I,\lambda}$ -module $U_{X_{I\cap J}}(\mathfrak{g})/(\mathcal{J}+\mathcal{K})$. Let m be the canonical generator of the right \mathfrak{g} -module $M_I(\lambda)$, and set $\tilde{J}_{\lambda} = \{u \in U(\mathfrak{g}) \mid um \in J_{\lambda}\}$. It is sufficient to show $p_1^{-1}(\mathcal{L}_{X_I}(J_{\lambda})) \cdot \overline{1} = 0$, or equivalently,

$$(3.21) p_1^{-1}(\mathcal{L}_{X_I}^0(\tilde{J}_{\lambda})) \subset \mathcal{J} + \mathcal{K}.$$

Since the problem is local, we have only to show (3.21) on the open subsets $gN_{I\cap J}^-P_{I\cap J}^+/P_{I\cap J}^+$ of $X_{I\cap J}$. We may assume g=1 without loss of generality. We can identify $N_{I\cap J}^-P_{I\cap J}^+/P_{I\cap J}^+$ with $N_{I\cap J}^-$ via $x\mapsto xP_{I\cap J}^+$. Note that $N_{I\cap J}^-\simeq N_I^-\times (N_J^-\cap L_I)$ via the multiplication. Define $\varphi_1:N_{I\cap J}^-\to N_I^-$ and $\varphi_2:N_{I\cap J}^-\to N_J^-\cap L_I$ by $g=\varphi_1(g)\varphi_2(g)$ for $g\in N_{I\cap J}^-$. Let $R\in p_1^{-1}(\mathcal{L}_{X_I}^0(\tilde{J}_\lambda))$. Then there exists a (locally defined) $U(\mathfrak{g})$ -valued function \overline{R} on N_I^- such that

$$\overline{R}(x) \in \operatorname{Ad}(x)(\widetilde{J}_{\lambda}) \quad (x \in N_{I}^{-}), \qquad R(gP_{I \cap I}^{+}) = \overline{R}(\varphi_{1}(g)) \quad (g \in N_{I \cap I}^{-}).$$

Set $V = \tilde{J}_{\lambda} \cap U(\mathfrak{n}_{I}^{-})$. Then we have $\tilde{J}_{\lambda} = V \oplus \mathfrak{r}_{I,\lambda}$. Since \mathfrak{n}_{I}^{-} is commutative, we have $\mathrm{Ad}(x)\tilde{J}_{\lambda} = V \oplus \mathrm{Ad}(x)\mathfrak{r}_{I,\lambda}$ for $x \in N_{I}^{-}$. Hence we can decompose \overline{R} into the form $\overline{R} = \overline{R}_{1} + \overline{R}_{2}$ with

$$\overline{R}_1(x) \in V, \quad \overline{R}_2(x) \in \operatorname{Ad}(x)\mathfrak{r}_{I,\lambda} \quad (x \in N_I^-).$$

Correspondingly, we have $R = R_1 + R_2$ with

$$R_1(gP_I^+) = \overline{R}_1(\varphi_1(g)) \in V \quad (g \in N_{I \cap J}^-), \quad R_2 \in p_1^{-1}(\mathcal{L}_{X_I}^0(\mathfrak{r}_{I,\lambda})) \subset \mathcal{J}.$$

Then we have only to show $R_1 \in \mathcal{K}$. This is equivalent to showing $V \subset \operatorname{Ad}(g)\mathfrak{r}_{J,\mu}$ for any $g \in N_{I\cap J}^-$. Let us show that V is $\operatorname{ad}(\mathfrak{n}_{I\cap J}^-)$ -stable. Since $\mathfrak{n}_{I\cap J}^- = \mathfrak{n}_I^- \oplus (\mathfrak{n}_J^- \cap \mathfrak{l}_I)$, we have only to show that V is stable under the adjoint actions of \mathfrak{n}_I^- and $\mathfrak{n}_J^- \cap \mathfrak{l}_I$. Since \mathfrak{n}_I^- is commutative, we have $[\mathfrak{n}_I^-, V] = 0$. Let $x \in \mathfrak{n}_J^- \cap \mathfrak{l}_I$. By the definition of \tilde{J}_λ we see easily that \tilde{J}_λ is $\operatorname{ad}(\mathfrak{l}_I)$ -stable. In particular, we have $[x, V] \subset \tilde{J}_\lambda$. On the other hand, since \mathfrak{n}_I^- is $\operatorname{ad}(\mathfrak{l}_I)$ -stable we have $[x, V] \subset U(\mathfrak{n}_I^-)$. Hence, V is $\operatorname{ad}(\mathfrak{n}_{I\cap J}^-)$ -stable. Therefore, we have only to show $V \subset \mathfrak{r}_{J,\mu}$. Since

 $\mathfrak{r}_{J,\mu}\supset [\mathfrak{p}_J^+,\mathfrak{p}_J^+]U(\mathfrak{g})\supset (\mathfrak{p}_J^+\cap\mathfrak{n}_I^-)U(\mathfrak{n}_I^-), \text{ it is sufficient to show }V\subset (\mathfrak{p}_J^+\cap\mathfrak{n}_I^-)U(\mathfrak{n}_I^-).$ Since V corresponds to $I(\overline{C}_r)$ under $U(\mathfrak{n}_I^-)\simeq \mathbb{C}[\mathfrak{n}_I^+],$ this follows from our assumption $\mathfrak{n}_I^+\cap\mathfrak{n}_I^+\subset\overline{C}_r.$ Q.E.D.

3.5 In the rest of this section we fix a subset J of I_0 satisfying the conditions (3.20) and

$$(3.22) \overline{\mathrm{Ad}(L_I)(\mathfrak{n}_I^+ \cap \mathfrak{n}_J^+)} = \overline{C}_r.$$

We set

By Proposition 2.2 the condition (3.22) is equivalent to

$$(3.24) \overline{\mathrm{Ad}(G)(\mathfrak{n}_I^+ \cap \mathfrak{n}_J^+)} = \overline{\mathrm{Ad}(G)(C_r)}.$$

We note that such J does not necessarily exist. If r = 0, then (3.20) and (3.22) obviously hold for $J = I_0$. In the case where \mathfrak{g} is a classical Lie algebra, there exists such J if and only if $r \in \mathbb{Z}$. We list below possible choices for J when \mathfrak{g} is a classical Lie algebra and $r \in \mathbb{Z}_{>0}$.

(I)
$$I \longleftrightarrow \underbrace{ k-1 \atop r \in \{1, 2, \dots, k-1\}, \quad k-1 \le n-k \}}_{r \in \{1, 2, \dots, k-1\}, \quad k-1 \le n-k \}$$

$$J \longleftrightarrow \underbrace{ r-1 \atop \mu = k \varpi_{j_0} \text{ with } J = I_0 \setminus \{j_0\} \}}_{r-1}$$

$$J \longleftrightarrow \underbrace{ \mu = (n+1-k)\varpi_{j_0} \text{ with } J = I_0 \setminus \{j_0\} \}}_{r \in \{1, 2, \dots, \left[\frac{n-1}{2}\right]\}}$$
(II) $I \longleftrightarrow \underbrace{ r-1 \atop \mu = n \varpi_{j_0} \text{ with } J = I_0 \setminus \{j_0\} }_{r-1}$

(IV)
$$I \longleftrightarrow \circ - \bullet \cdots \circ - \bullet \circ - \bullet$$

3.6 By Lemma 3.3 we have a canonical morphism

(3.25)
$$\varphi: D_{X_I,\lambda}/\mathcal{L}_{X_I}(J_\lambda) \to H^0(R_{IJ}(D_{X_J,\mu})).$$

Let

(3.26)
$$i_0: V = P_I^+ P_J^+ / P_J^+ \to X_J$$

be the natural embedding. We see easily by (3.23) that $i_0^{\sharp}D_{X_J,\mu}^{op} \simeq \Omega_{i_0}^{\otimes -1} \otimes D_V \otimes \Omega_{i_0}$, and hence we can consider a $D_{X_J,\mu}^{op}$ -module $\int_{i_0} \Omega_{i_0}^{\otimes -1} \otimes D_V \otimes \Omega_{i_0}$, and hence we can consider a $D_{X_J,\mu}^{op}$ -module of X_J , with a canonical section m_0 . Let T^*X_J be the cotangent bundle of X_J , and let $T_V^*X_J$ be the conormal bundle of V. Let $\gamma: T^*X_J \to \mathfrak{g}$ be the moment map. Here we identify \mathfrak{g} with \mathfrak{g}^* via the Killing form. By (3.22) we have $\gamma(T_V^*X_J) = \overline{C}_r$. Let

$$(3.27) \overline{\gamma}: T_V^* X_J \to \overline{C}_r$$

be the induced morphism.

Theorem 3.4. (i) We have

(3.28)
$$H^{k}(R_{IJ}(D_{X_{J},\mu})) = 0 \qquad (k \neq 0),$$

(3.29)
$$\varphi: D_{X_I,\lambda}/\mathcal{L}_{X_I}(J_\lambda) \simeq H^0(R_{IJ}(D_{X_J,\mu}))$$

if and only if

(3.30)
$$H^{k}(Y, \int_{i_{0}} \Omega_{i_{0}}^{\otimes -1}) = 0 \qquad (k \neq 0),$$

(3.31)
$$\Gamma(Y, \int_{i_0} \Omega_{i_0}^{\otimes -1}) = U(\mathfrak{n}_I^-) m_0.$$

(ii) The conditions (3.30) and (3.31) are satisfied if

(3.32)
$$H^{k}(T_{V}^{*}X_{J}, \mathcal{O}_{T_{V}^{*}X_{J}}) = 0 \qquad (k \neq 0),$$

$$\overline{\gamma}$$
 has connected fibers.

Proof. (i) Set $X = X_I$, $Y = X_J$, $Z = X_{I \cap J}$. Let $p_1 : Z \to X$ and $p_2 : Z \to Y$ be the canonical morphisms, and set $i = (p_1, p_2) : Z \to X \times Y$. Let $\pi_1 : X \times Y \to X$ and $\pi_2 : X \times Y \to Y$ be the projections. Since i is a closed embedding, we have

$$R_{IJ}(D_{X_I,\mu}) = \mathbb{R}p_{1*}(A_{IJ}) = \mathbb{R}\pi_{1*}(i_*A_{IJ}).$$

By the definition of A_{IJ} we see easily that $i_*A_{IJ} \simeq \int_i \Omega_i^{\otimes -1}$ as a $D_{X,\lambda} \boxtimes D_{Y,\mu}^{op}$ -module. Note that we have $i^{\sharp}(D_{X,\lambda} \boxtimes D_{Y,\mu}^{op}) \simeq \Omega_i^{\otimes -1} \otimes D_Z \otimes \Omega_i$ by (3.23). Hence we have

$$R_{IJ}(D_{X_J,\mu}) \simeq \mathbb{R}\pi_{1*}(M) \quad \text{with} \quad M = \int_i \Omega_i^{\otimes -1}.$$

We have a canonical section m of M, and we see easily that the morphism $\varphi: D_{X_I,\lambda}/\mathcal{L}_{X_I}(J_{\lambda}) \to \pi_{1*}(M)$ is given by $\overline{1} \mapsto \pi_{1*}(m)$. Since $\pi_{1*}(m) \neq 0$, we have $\varphi \neq 0$. Since φ is G-equivariant, and since $\mathcal{L}_{X_I}(J_{\lambda})$ is the unique maximal G-stable left ideal, we see that φ is injective. Hence the conditions (3.28) and (3.29) hold if and only if

$$(3.34) R^k \pi_{1*}(M) = 0 (k \neq 0),$$

(3.35)
$$\pi_{1*}(M) = D_{X,\lambda}\pi_{1*}(m).$$

Set $N=N_I^-$, and identify N with an open subset of X via the embedding $j:N\to X$ $(x\mapsto xP_I^+)$. Since M is G-equivariant, it is sufficient to consider (3.34) and (3.35) on N. Consider the following Cartesian diagrams.

Here $\overline{\pi}_1$ is the projection, and $\overline{i}(x,yP_J^+)=(x,xyP_J^+),\ \overline{j}(x,yP_J^+)=xyP_{I\cap J}^+$ for $x\in N,\ y\in P_I^+$. Then we have

$$R^k \pi_{1*}(M) | N = R^k \overline{\pi}_{1*}((j \times 1)^* \int_i \Omega_i^{\otimes -1}) = R^k \overline{\pi}_{1*} \int_{\overline{i}} \Omega_{\overline{i}}^{\otimes -1}.$$

Let $f: N \times Y \to N \times Y$ be the isomorphism given by $f(x, yP_J^+) = (x, xyP_J^+)$ for $x \in N$ and $y \in G$. Then we have $\bar{i} = f \circ (1 \times i_0)$ and $\overline{\pi}_{1*} = \overline{\pi}_{1*} \circ f$. Hence we have

$$R^{k}\overline{\pi}_{1*} \int_{\overline{i}} \Omega_{\overline{i}}^{\otimes -1} = R^{k}\overline{\pi}_{1*} \int_{1 \times i_{0}} \Omega_{1 \times i_{0}}^{\otimes -1} = R^{k}\overline{\pi}_{1*} (\mathcal{O}_{N} \boxtimes \int_{i_{0}} \Omega_{i_{0}}^{\otimes -1})$$
$$= \mathcal{O}_{N} \otimes_{\mathbb{C}} H^{k}(Y, \int_{i_{0}} \Omega_{i_{0}}^{\otimes -1}).$$

Therefore we have obtained

$$(3.36) R^k \pi_{1*}(M) | N \simeq \mathcal{O}_N \otimes_{\mathbb{C}} H^k(Y, \overline{M}) \text{with} \overline{M} = \int_{i_0} \Omega_{i_0}^{\otimes -1}.$$

In order to consider the condition (3.35) let us examine the action of $D_{X,\lambda}|N \simeq D_N$ on $\pi_{1*}(M)|N \simeq \mathcal{O}_N \otimes_{\mathbb{C}} \Gamma(Y,\overline{M})$. Define a ring homomorphism $L: U(\mathfrak{n}_I^-) \to \Gamma(N,D_N)$ by

$$((L(a)(f))(x) = \frac{d}{dt}f(x\exp(ta))|t = 0 \qquad (a \in \mathfrak{n}_I^-, f \in \mathcal{O}_N, x \in N).$$

This induces an isomorphism $\mathcal{O}_N \otimes_{\mathbb{C}} U(\mathfrak{n}_I^-) \simeq D_N$. Let $\Phi: D_N \to D_N \otimes_{\mathbb{C}} U(\mathfrak{g})$ be the ring homomorphism given by

$$\Phi(f) = f \otimes 1 \quad (f \in \mathcal{O}_N), \qquad \Phi(L(a)) = L(a) \otimes 1 + 1 \otimes a \quad (a \in \mathfrak{n}_I^-).$$

Regard $\Gamma(Y, \overline{M})$ as a $U(\mathfrak{g})$ -module via $U(\mathfrak{g}) \to D_{Y,\mu} \quad (u \mapsto \partial_u^{\mu} = \overline{1 \otimes u})$. Then we have

$$Pv = \Phi(P)v \qquad (P \in D_N, v \in \mathcal{O}_N \otimes_{\mathbb{C}} \Gamma(Y, \overline{M})).$$

Since $\pi_{1*}(m)|N=1\otimes m_0\in\mathcal{O}_N\otimes_{\mathbb{C}}\Gamma(Y,\overline{M})$, we have $D_{X,\lambda}\pi_{1*}(m)|N=\mathcal{O}_N\otimes U(\mathfrak{n}_I^-)m_0$. The statement (i) is proved.

(ii) Define a good filtration of \overline{M} by $F_p(\overline{M}) = F_p(D_{Y,\mu})\overline{m}$. Then we have

$$\overline{M} = \cup_p F_p(\overline{M}), \qquad \operatorname{gr}_F \overline{M} := \oplus_p F_p(\overline{M}) / F_{p-1}(\overline{M}) \simeq \pi_* \mathcal{O}_{T_V^*Y},$$

where $\pi:T_V^*Y\to Y$ is the canonical map. Since π is an affine morphism, we have

$$H^{k}(Y, \pi_{*}\mathcal{O}_{T_{V}^{*}Y}) = H^{k}(T_{V}^{*}Y, \mathcal{O}_{T_{V}^{*}Y}) = 0 \qquad (k \neq 0)$$

by (3.32). Hence $H^k(Y, F_p(\overline{M})/F_{p-1}(\overline{M}))=0$ for any $k\neq 0$ and any p. By the exact sequence

$$H^k(Y,F_{p-1}(\overline{M})) \longrightarrow H^k(Y,F_p(\overline{M})) \longrightarrow H^k(Y,F_p(\overline{M})/F_{p-1}(\overline{M})) = 0$$

we see by induction on p that $H^k(Y, F_p(\overline{M})) = 0$ for any $k \neq 0$ and any p. Hence $H^k(Y, \overline{M}) = 0$ for any $k \neq 0$, and (3.30) holds.

Define a filtration of $\Gamma(Y, \overline{M})$ by

$$F_p(\Gamma(Y, \overline{M})) = \Gamma(Y, F_p(\overline{M})) \subset \Gamma(Y, \overline{M}).$$

Then we have

$$F_p(U(\mathfrak{n}_I^-))F_q(\Gamma(Y,\overline{M})) \subset F_{p+q}(\Gamma(Y,\overline{M})),$$

where $F_p(U(\mathfrak{n}_I^-))$ denotes the subspace of $U(\mathfrak{n}_I^-)$ consisting of elements with order $\leq p$. Hence in order to show (3.31) it is sufficient to show that

$$\operatorname{gr}_F \Gamma(Y,\overline{M}) := \oplus_p F_p(\Gamma(Y,\overline{M}))/F_{p-1}(\Gamma(Y,\overline{M}))$$

is generated by the canonical element $[m_0] \in F_0(\Gamma(Y, \overline{M}))/F_{-1}(\Gamma(Y, \overline{M}))$ as a module over $\operatorname{gr}_F U(\mathfrak{n}_I^-) = S(\mathfrak{n}_I^-) = \mathbb{C}[\mathfrak{n}_I^+]$. On the other hand by the exact sequence

$$\begin{split} 0 &\to \Gamma(Y, F_{p-1}(\overline{M})) \to \Gamma(Y, F_p(\overline{M})) \\ &\to \Gamma(Y, F_p(\overline{M})/F_{p-1}(\overline{M})) \to H^1(Y, F_{p-1}(\overline{M})) = 0 \end{split}$$

we have

$$\begin{split} \operatorname{gr}_F \Gamma(Y, \overline{M}) &= & \Gamma(Y, \operatorname{gr}_F \overline{M}) = \Gamma(Y, \pi_* \mathcal{O}_{T_V^*Y}) = \Gamma(T_V^* Y, \mathcal{O}_{T_V^*Y}) \\ &= & \Gamma(\overline{C}_r, \gamma_* (\mathcal{O}_{T_V^*Y})). \end{split}$$

Let $\psi: \mathcal{O}_{\overline{C}_r} \to \overline{\gamma}_*(\mathcal{O}_{T_V^*Y})$ be the canonical morphism. Since $[m_0]$ corresponds to $\psi(1)$, it is sufficient to show that ψ is an isomorphism. Since $\overline{\gamma}$ is a proper morphism, we have the Stein factorization $\overline{\gamma} = \gamma_1 \circ \gamma_2$ of γ , where $\gamma_2: T_V^*Y \to \operatorname{Spec}(\overline{\gamma}_*(\mathcal{O}_{T_V^*Y}))$ is a projective morphism, and $\gamma_1: \operatorname{Spec}(\overline{\gamma}_*(\mathcal{O}_{T_V^*Y})) \to \overline{C}_r$ is a finite morphism. By (3.33) γ_1 is bijective. Moreover, by Lemma 2.1 and the normality of the Schubert varieties the variety \overline{C}_r is normal. Since we are working in characteristic 0, we see that γ_1 is an isomorphism of algebraic varieties, and hence ψ is an isomorphism.

Proposition 3.5. The conditions (3.32) and (3.33) are satisfied for $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$.

Proof. The condition (3.33) is easily checked by a direct calculation. Let us show (3.32). Since the projection $p: T_V^*X_J \to V$ is affine, it is sufficient to show $H^k(V, p_*\mathcal{O}_{T_V^*X_J}) = 0$ for $k \neq 0$. Note

that $V=P_I^+P_J^+/P_J^+=L_I/L_I\cap P_J^+$ is the generalized flag manifold of the smaller group L_I . For an $L_I\cap P_J^+$ -module U let \mathcal{L}_U denote the locally free \mathcal{O}_V -module consisting of sections of the L_I -equivariant vector bundle on $V=L_I/L_I\cap P_J^+$ corresponding to U. Then we have $p_*\mathcal{O}_{T_V^*X_J}=\mathcal{L}_{S((\mathfrak{n}_I^+\cap\mathfrak{n}_J^+)^*)}$. Since $S((\mathfrak{n}_I^+\cap\mathfrak{n}_J^+)^*)$ is a union of finite dimensional $L_I\cap P_J^+$ -modules, $p_*\mathcal{O}_{T_V^*X_J}$ is a union of locally free \mathcal{O}_V -modules with finite rank. Hence it is sufficient to show that for any irreducible $L_I\cap P_J^+$ -module U appearing in $S((\mathfrak{n}_I^+\cap\mathfrak{n}_J^+)^*)$ we have $H^k(V,\mathcal{L}_U)=0$ for $k\neq 0$. Let j_0 be the unique element of $I\setminus J$. By the theorem of Borel-Weil-Bott we have only to verify $\langle \gamma, h_{j_0} \rangle \geq 0$ for any highest weight γ appearing in the $L_I\cap L_J$ -module $S(\mathfrak{n}_I^+\cap\mathfrak{n}_J^+)$. This condition holds if $\langle \gamma, h_{j_0} \rangle \geq 0$ for any weight γ appearing in the $L_I\cap L_J$ -module $\mathfrak{n}_I^+\cap\mathfrak{n}_J^+$. We can easily check it directly. Q.E.D.

Corollary 3.6. If $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$, we have

$$H^{k}(R_{IJ}(D_{X_{J},\mu})) = 0 (k \neq 0),$$

 $\varphi : D_{X_{I},\lambda}/\mathcal{L}_{X_{I}}(J_{\lambda}) \simeq H^{0}(R_{IJ}(D_{X_{J},\mu})).$

Real versions of this result are given in Kakehi [13], Oshima [21], and Sekiguchi [23].

§4. Hypergeometric systems

4.1 In this section we fix a subset I of I_0 satisfying (2.1).

For $r \in \mathcal{A}$, a closed subgroup K of G with Lie algebra \mathfrak{k} , and a character $\xi \in \operatorname{Hom}(\mathfrak{k}, \mathbb{C})$ we define a $D_{X_I, r\varpi_{i\alpha}}$ -module $M_{r,K,\xi}$ by

$$(4.1) \quad M_{r,K,\xi} = D_{X_I,r\varpi_{i_0}}/(\mathcal{L}_{X_I}(J_{r\varpi_{i_0}}) + \sum_{a \in \mathbb{R}} D_{X_I,r\varpi_{i_0}}(\partial_a^{r\varpi_{i_0}} - \xi(a)))$$

Let $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$. If r=1 and K is a maximal torus, then the system $M_{r,K,\xi}$ is nothing but the hypergeometric system investigated in Gelfand [6] and Gelfand-Gelfand [7] (see also Aomoto [1]). The case r=1 and K is the centralizer of a (not necessarily semisimple) regular element was also treated in Gelfand-Retakh-Serganova [8] and Kimura-Haraoka-Takano [16]. Moreover, Oshima [21] recently considered the case where $1 \leq r \leq k-1$ and K is an appropriate subgroup of G. Our systems $M_{r,K,\xi}$ are natural generalization of the systems mentioned above, and we call them the hypergeometric systems on the Hermitian symmetric spaces X_I .

4.2 We identify the cotangent bundle T^*X_I of our flag manifold X_I with

$$\{(gP_I, a) \in X_I \times \mathfrak{g} \mid a \in \mathrm{Ad}(g)\mathfrak{n}_I^+\}$$

via the Killing form. For $s \in \mathcal{A}$ let O_s be the nilpotent conjugacy class of \mathfrak{g} satisfying $\overline{\mathrm{Ad}(G)C_s} = \overline{O}_s$. For $s \in \mathcal{A}$ and a closed subgroup K of G we define a locally closed subset $\Lambda_{s,K}^0$ and a closed subset $\Lambda_{s,K}^0$ of T^*X_I by

$$(4.2) \Lambda_{s,K}^0 = \{(gP_I, a) \in T^*X_I \mid a \in O_s \cap \mathfrak{k}^\perp\},\$$

$$(4.3) \Lambda_{s,K} = \{(gP_I, a) \in T^*X_I \mid a \in \overline{O}_s \cap \mathfrak{k}^\perp\},$$

where \mathfrak{k} is the Lie algebra of K and $\mathfrak{k}^{\perp} = \{a \in \mathfrak{g} \mid \langle a, \mathfrak{k} \rangle = 0\}$. Here \langle , \rangle is the Killing form of \mathfrak{g} . We have $\Lambda_{s,K} = \sqcup_{s' \in \mathcal{A}, s' \leq s} \Lambda^0_{s',K}$.

For a coherent module M over a TDO-ring on a smooth algebraic variety X one can define its characteristic variety Ch(M) as a closed subset of the cotangent bundle T^*X . Then M is called a holonomic module if $\dim Ch(M) = \dim X$. By Proposition 2.2 we see easily the following.

Lemma 4.1. We have $Ch(M_{r,K,\xi}) \subset \Lambda_{r,K}$.

Lemma 4.2. We have

$$\dim \Lambda_{r,K}^0 = \dim X_I + \dim(O_r \cap \mathfrak{k}^{\perp}) - \frac{1}{2} \dim O_r.$$

Proof. Set

$$Z = \{(gP_I, a) \in X_I \times \mathfrak{g} \mid a \in \operatorname{Ad}(g)C_r\} = \{(gP_I, a) \in T^*X_I \mid a \in O_r\}.$$

The first projection $Z \to X_I$ is a G-equivariant fibering onto the homogeneous space X_I whose fiber at the origin is C_r , and hence we have $\dim Z = \dim X_I + \dim C_r = \dim X_I + (\dim O_r/2)$, The second projection $p: Z \to O_r$ is also a G-equivariant fibering onto the homogeneous space O_r , and hence we have $\dim p^{-1}(a) = \dim Z - \dim O_r = \dim X_I - (\dim O_r/2)$ for any $a \in O_r$. Since $\Lambda_{r,K}^0 = p^{-1}(O_r \cap \mathfrak{k}^\perp)$, we have $\dim \Lambda_{r,K}^0 = \dim(O_r \cap \mathfrak{k}^\perp) + \dim X_I - (\dim O_r/2)$. Q.E.D.

Hence the $D_{X_I,r\varpi_{i_0}}$ -module $M_{r,K,\xi}$ is holonomic if $\dim(O_s \cap \mathfrak{k}^{\perp}) \leq \dim O_s/2$ for any $s \in \mathcal{A}$ such that $s \leq r$.

Remark 4.3. (i) The equality $\dim(O_s \cap \mathfrak{k}^{\perp}) = \dim O_s/2$ apparently holds true for s = 0. Hence, for $r = r_0 = \min(\mathcal{A} \setminus \{0\})$, the system $M_{r_0,K,\xi}$ is holonomic if $\dim(O_{r_0} \cap \mathfrak{k}^{\perp}) = \dim O_{r_0}/2$. One may suspect that a candidate for a closed subgroup K of G satisfying $\dim(O_{r_0} \cap \mathfrak{k}^{\perp}) = \dim O_{r_0}/2$ is the maximal torus H. However, we have $\dim(O_{r_0} \cap \mathfrak{h}^{\perp}) = \dim O_{r_0}/2$ if and only if (\mathfrak{g},I) is of type (I) or type (II). In other cases we have $\dim \Lambda_{r_0,H} > \dim X_I$.

(ii) In [9] a certain $D_{\mathfrak{n}_I^-}$ -module is investigated as a special case of the so called A-hypergeometric systems. Identifying \mathfrak{n}_I^- with an open subset of X_I via the embedding $\mathfrak{n}_I^- \to X_I$ $(a \mapsto \exp(a)P_I)$, this $D_{\mathfrak{n}_I^-}$ -module coincides with the restriction of $M_{r_0,H,\xi}$ to \mathfrak{n}_I^- when (\mathfrak{g},I) is of the type (I) or the type (II). In other cases it is some quotient of $M_{r_0,H,\xi}|\mathfrak{n}_I^-$.

4.3 We fix $r \in \mathcal{A}$ and a subset J of I_0 satisfying the conditions (3.20) and (3.22), and set

(4.4)
$$\lambda = r\varpi_{i_0}, \qquad \mu = \lambda + \gamma_{IJ}.$$

Then, for a $D_{X_J,\mu}$ -module N, we can define its Radon transform $R_{IJ}(N)$ as a complex of $D_{X_I,\lambda}$ -modules. Let K be a closed subgroup of G with Lie algebra \mathfrak{k} , and let $\xi \in \operatorname{Hom}(\mathfrak{k},\mathbb{C})$. Set

(4.5)
$$N_{r,K,\xi} = D_{X_J,\mu} / \sum_{a \in \mathfrak{k}} D_{X_J,\mu} (\partial_a^{\mu} - \xi(a)).$$

By the argument in the proof of Lemma 3.3, we see easily the following.

Proposition 4.4. There exists a canonical homomorphism

$$M_{r,K,\xi} \to R_{IJ}(N_{r,K,\xi}).$$

Proposition 4.5. Assume that there exist only finitely many K-orbits on X_J .

- (i) We have $\dim \Lambda_{s,K}^0 \leq \dim X_I + (\dim O_s/2) \dim(O_s \cap \mathfrak{n}_J^+)$ for any $s \leq r$.
- (ii) We have dim $\Lambda_{r,K}^0 \leq \dim X_I$. Especially, if $r = r_0 = \min(A \setminus \{0\})$, then the system $M_{r,K,\xi}$ is holonomic.
- (iii) If $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$, then we have $\dim \Lambda^0_{s,K} \leq \dim X_I$ for any $s \leq r$. Especially, the system $M_{r,K,\xi}$ is holonomic.

Proof. (i) By Lemma 4.2 it is sufficient to show

$$(4.6) \qquad \dim(O \cap \mathfrak{k}^{\perp}) \le \dim O - \dim(O \cap \mathfrak{n}_{I}^{+})$$

for any nilpotent conjugacy class O in \mathfrak{g} such that $O \cap \mathfrak{n}_J^+ \neq \emptyset$. Let $\gamma: T^*X_J \to \mathfrak{g}$ be the moment map. By the assumption O is contained in the image of γ . Set $Z = \gamma^{-1}(O)$. Since the projection $Z \to X_J$ is a G-equivariant fibering onto the homogeneous space X_J whose typical fiber is $O \cap \mathfrak{n}_J^+$, we have

 $\dim Z = \dim X_J + \dim(O \cap \mathfrak{n}_J^+)$. Since the natural morphism $\overline{\gamma}: Z \to O$ is a G-equivariant fibering onto the homogeneous space O, we have $\dim \overline{\gamma}^{-1}(a) = \dim Z - \dim O = \dim X_J + \dim(O \cap \mathfrak{n}_J^+) - \dim O$ for any $a \in O$. Hence we have

$$(4.7) \qquad \dim \overline{\gamma}^{-1}(O \cap \mathfrak{k}^{\perp}) = \dim X_J + \dim(O \cap \mathfrak{n}_J^+) - \dim O + \dim(O \cap \mathfrak{k}^{\perp}).$$

By the definition $\gamma^{-1}(\mathfrak{k}^{\perp})$ is the union of the conormal bundles of the K-orbits on X_J . Hence by the assumption on K we have $\dim \gamma^{-1}(\mathfrak{k}^{\perp}) = \dim X_J$, and thus

$$(4.8) \qquad \dim \overline{\gamma}^{-1}(O \cap \mathfrak{k}^{\perp}) \le \dim \gamma^{-1}(\mathfrak{k}^{\perp}) = \dim X_J.$$

The assertion (4.6) follows from (4.7) and (4.8).

(ii) By (i) it is sufficient to show

(4.9)
$$\dim(O \cap \mathfrak{n}_I^+) = \dim(O \cap \mathfrak{n}_I^+) = \dim O/2$$

for any nilpotent conjugacy class O in \mathfrak{g} such that there exists some $w \in W$ satisfying $\overline{\mathrm{Ad}(G)(\mathfrak{n}_I^+ \cap w(\mathfrak{n}_J^+))} = \overline{O}$. Let Λ be the union of the conormal bundles of the G-orbits on $X_I \times X_J$. Since there exists only finitely many G-orbits on $X_I \times X_J$, Λ is a closed subvariety of $T^*(X_I \times X_J) \simeq T^*X_I \times T^*X_J$ with pure dimension $\dim X_I + \dim X_J$. We can identify Λ with

$$\{(g_1P_I^+,g_2P_J^+,a)\in X_I\times X_J\times \mathfrak{g}\mid a\in \mathrm{Ad}(g_1)\mathfrak{n}_I^+\cap \mathrm{Ad}(g_2)\mathfrak{n}_J^+\}.$$

Let $\varphi: \Lambda \to \mathfrak{g}$ be the natural morphism given by $(g_1P_I^+, g_2P_J^+, a) \mapsto a$. Let $\Lambda_w \subset \Lambda$ be the conormal bundle of the G-orbit containing $(eP_I^+, wP_J^+) \in X_I \times X_J$. By the assumption on O we see that $\varphi^{-1}(O) \cap \Lambda_w$ is an open subset of Λ_w , and hence we have $\dim \varphi^{-1}(O) = \dim X_I + \dim X_J$. Fix $a \in O$ and set

$$X_I^a = \{gP_I^+ \mid a \in Ad(g)(\mathfrak{n}_I^+)\}, \qquad X_J^a = \{gP_I^+ \mid a \in Ad(g)(\mathfrak{n}_I^+)\}.$$

Since $\varphi^{-1}(O) \to O$ is a G-equivariant fibering onto O whose typical fiber is $X_I^a \times X_I^a$, we have

(4.10)
$$\dim O = (\dim X_I - \dim X_I^a) + (\dim X_J - \dim X_I^a)$$

Set $D = \{(gP_I^+, x) \in X_I \times O \mid a \in \operatorname{Ad}(g)(\mathfrak{n}_I^+)\}$. Considering the natural morphisms $D \to X_I$ and $D \to O$ we obtain $\dim X_I - \dim X_I^a = \dim O - \dim(O \cap \mathfrak{n}_I^+)$. Similarly we have $\dim X_J - \dim X_J^a = \dim O - \dim(O \cap \mathfrak{n}_J^+)$. Hence we have

(4.11)
$$\dim O = \dim(O \cap \mathfrak{n}_I^+) + \dim(O \cap \mathfrak{n}_I^+).$$

On the other hand, we have $\dim(O \cap \mathfrak{n}^+) = \dim O/2$, where $\mathfrak{n}^+ = \mathfrak{n}^+_{\emptyset}$ for $\emptyset \subset I_0$ (Spaltenstein [25]), and hence

$$(4.12) \qquad \dim(O \cap \mathfrak{n}_I^+) \le \dim(O/2, \qquad \dim(O \cap \mathfrak{n}_I^+) \le \dim(O/2.$$

We obtain (4.9) from (4.11) and (4.12)

(iii) By Spaltenstein [24] we always have $\dim(O \cap \mathfrak{n}_{I_1}^+) = \dim O/2$ for any nilpotent conjugacy class O in $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$ and any $I_1 \subset I_0$ (unless $O \cap \mathfrak{n}_{I_1}^+ = \emptyset$). Hence the assertion follows from (i). Q.E.D.

4.4 We give an example in this subsection.

Let V be a 2n-dimensional vector space over \mathbb{C} with nondegenerate skew-symmetric bilinear form $\phi: V \times V \to \mathbb{C}$. Choose a basis $\langle e_1, \ldots, e_n, f_1, \ldots, f_n \rangle$ of V such that

(4.13)
$$\phi(e_i, e_j) = \phi(f_i, f_j) = 0, \quad \phi(e_i, f_j) = \delta_{ij}.$$

Set

$$\begin{array}{lcl} \mathfrak{g} & = & \{f \in \operatorname{End}(V) \, | \, \phi(fv_1,v_2) + \phi(v_1,fv_2) = 0 \quad (v_1,v_2 \in V) \}, \\ G & = & \{g \in GL(V) \, | \, \phi(gv_1,gv_2) = \phi(v_1,v_2) \quad (v_1,v_2 \in V) \}, \\ \mathfrak{h} & = & \{f \in \mathfrak{g} \, | \, f(e_i) \in \mathbb{C}e_i, \quad f(f_i) \in \mathbb{C}f_i \quad (i=1,\ldots,n) \}. \end{array}$$

Define $\epsilon_i \in \mathfrak{h}^*$ by $f(e_i) = \epsilon_i(f)e_i$ for $f \in \mathfrak{h}$ and $i = 1, \dots, n$. Set

$$(4.14) I_0 = \{1, 2, \dots, n\}, I = \{1, 2, \dots, n-1\},$$

(4.15)
$$\alpha_i = \epsilon_i - \epsilon_{i+1} \quad (i \in I_0, i \neq n), \qquad \alpha_n = 2\epsilon_n.$$

Then \mathfrak{g} is a simple Lie algebra of type (C_n) , G is the corresponding algebraic group, \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} , $\{\alpha_i\}_{i\in I_0}$ is a set of simple roots, and (\mathfrak{g},I) is of type (II). The generalized flag manifold X_I is identified with the set of n-dimensional subspaces W of V satisfying $\phi(w_1,w_2)=0$ for any $w_1,w_2\in W$. We shall identify \mathfrak{n}_I^- with

$$(4.16) \mathcal{S}_n = \{ z = (z_{ij}) \in M_n(\mathbb{C}) \mid {}^t z = z \}$$

via

$$\mathfrak{n}_{\mathfrak{I}}^{-}\ni f\leftrightarrow z=(z_{ij})\in\mathcal{S}_{n}\qquad (f(e_{j})=\sum_{i=1}^{n}z_{ij}f_{i}).$$

We further identify \mathfrak{n}_I^- with an open subset of X_I via the embedding $\mathfrak{n}_I^- \ni a \mapsto \exp(a)P_I \in X_I$. Note that $\mathcal{S}_n \to X_I$ is given by $z \mapsto \sum_{i=1}^n \mathbb{C}(e_i + \sum_{j=1}^n z_{ij}f_j)$.

We consider the case $r = 1 \in \mathcal{A}$ in the following. Then we have

(4.18)
$$\lambda = r \varpi_{i_0} = \varpi_n = (\epsilon_1 + \dots + \epsilon_n)/2.$$

In this case the subset

$$(4.19) J = \{2, \dots, n\}$$

of I_0 satisfies the conditions (3.20), (3.22), and we have

$$(4.20) \mu = \lambda + \gamma_{IJ} = n\omega_1 = n\epsilon_1.$$

Fix 0 < m < n. Set $W_m = \sum_{i=1}^m \mathbb{C}e_i$, $W'_m = \sum_{i=1}^m \mathbb{C}f_i$. Identify the group $K_1 = GL_m(\mathbb{C}) \times (\mathbb{C}^{\times})^{n-m}$ with a subgroup of G via the following action of K_1 on V:

$$(4.21) (g, a_{m+1}, \dots, a_n) \cdot v = gv (v \in W_m),$$

$$(4.22) (g, a_{m+1}, \dots, a_n) \cdot e_i = a_i e_i (i = m+1, \dots, n),$$

$$(4.23) (g, a_{m+1}, \dots, a_n) \cdot v = {}^{t}g^{-1}v (v \in W'_m),$$

$$(4.24) (g, a_{m+1}, \dots, a_n) \cdot f_i = a_i^{-1} f_i (i = m+1, \dots, n),$$

where W_m and W'_m are identified with \mathbb{C}^m through the bases $\langle e_i | i = 1, \dots m \rangle$ and $\langle f_i | i = 1, \dots m \rangle$, respectively. We define a subalgebra \mathfrak{k}_2 of $\mathfrak{n}_I^- \simeq \mathcal{S}_n$ by $\mathfrak{k}_2 = \{z = (z_{ij}) \in \mathcal{S}_n | z_{ij} = 0 \text{ unless } i, j \geq m+1\}$, and set $K_2 = \exp(\mathfrak{k}_2)$. We take K to be the semidirect product $K = K_1K_2$.

Let us give an explicit description of $M_{1,K,\xi}|\mathcal{S}_n$. We use $(z_{ij})_{1\leq i\leq j\leq n}$ as a coordinate of \mathcal{S}_n . Set $\partial_{ij}=\partial_{ji}=(1+\delta_{ij})\partial/\partial z_{ij}$ for $i\leq j$. For $1\leq i_1<\dots< i_N\leq n$ and $1\leq j_1<\dots< j_N\leq n$ set $D^{i_1,\dots,i_N}_{j_1,\dots,j_N}=\det(\partial_{i_pj_q})_{1\leq p,q\leq N}$. For $(\xi_1,\xi_{m+1},\dots,\xi_n)\in\mathbb{C}^{n-m+1}$ define a character ξ of $\mathfrak{k}=\mathrm{Lie}(K_1)\oplus\mathrm{Lie}(K_2)$ by

(4.25)
$$\xi(a, a_{m+1}, \dots, a_n) = \xi_1 \operatorname{tr}(a) + \sum_{i=m}^n \xi_i a_i$$
$$((a, a_{m+1}, \dots, a_n) \in \operatorname{Lie}(K_1)),$$
$$(4.26) \qquad \xi(b) = 0 \quad (b \in \operatorname{Lie}(K_2)),$$

where we identify $\operatorname{Lie}(K_1)$ with $\mathfrak{gl}_m(\mathbb{C}) \times \mathbb{C}^{n-m}$. Then $M_{1,K,\xi}|\mathcal{S}_n$ corresponds to the following system of differential equations for an unknown function f.

$$(4.27) D_{j_1,j_2,j_3}^{i_1,i_2,i_3}(f) = 0$$
for $1 \le i_1 < i_2 < i_3 \le n, 1 \le j_1 < j_2 < j_3 \le n$,

(4.28)
$$\partial_{ij}(f) = 0$$
 for $m + 1 \le i, j \le n$,

(4.29)
$$\sum_{k=1}^{n} z_{ik} \partial_{jk}(f) = \delta_{ij} (\xi_1 - \frac{1}{2}) f \quad \text{for } 1 \le i, j \le m,$$

(4.30)
$$\sum_{k=1}^{n} z_{ik} \partial_{ik}(f) = (\xi_i - \frac{1}{2})f \quad \text{for } m + 1 \le i \le n.$$

The equation (4.28) allows us to rewrite the system (4.27), ..., (4.30) into a system of differential equations on $S_m \times M_{m,n-m}(\mathbb{C})$ with the coordinate $(z_{ij})_{1 \leq i \leq j \leq m} \times (z_{ip})_{1 \leq i \leq m, m+1 \leq p \leq n}$. If $n-m \geq 3$ and $\sharp \{p \mid m+1 \leq p \leq n, \xi_p = 1/2\} \leq 2$, then the rewritten system is equivalent to the following.

$$(4.31) \quad D_{j_1,j_2,j_3}^{i_1,i_2,i_3}(f) = 0 \quad \text{ for } i_1 < i_2 < i_3 \le m, \quad j_1 < j_2 < j_3 \le m,$$

$$(4.32) \quad D_{j_1,j_2,j_3}^{i_1,i_2,p}(f) = 0 \quad \text{for } i_1 < i_2 \le m < p, \quad j_1 < j_2 < j_3 \le p,$$

$$(4.33) \quad D_{j_1, j_2, q}^{i_1, i_2, p}(f) = 0 \quad \text{ for } i_1 < i_2 \le m < p, \quad j_1 < j_2 \le m < q,$$

$$(4.34) \quad D^{i_1, i_2}_{p_1, p_2}(f) = 0 \quad \text{ for } i_1 < i_2 \le m < p_1 < p_2,$$

$$(4.35) \quad (\sum_{k=1}^{m} z_{ik} \partial_{jk} + \sum_{p=m+1}^{n} z_{ip} \partial_{jp})(f) = \delta_{ij} (\xi_1 - \frac{1}{2}) f \quad \text{ for } i, j \le m,$$

(4.36)
$$\sum_{i=1}^{m} z_{ip} \partial_{ip}(f) = (\xi_p - \frac{1}{2})f$$
 for $p > m$.

Here $\partial_{pq} = 0$ in (4.33).

Next we give integral representations of solutions of this system. The $D_{X_J,\mu}$ -module $N_{1,K,\xi}$ is nonzero at the generic point of X_J if and only if $\xi_1 = 0$. Hence we restrict ourselves to this case. Define an (n-1)-form τ on $\mathbb{C}^n \setminus \{0\}$ by

(4.37)
$$\tau = \sum_{i=1}^{n} (-1)^{i+1} u_i du_1 \wedge \dots \wedge \widehat{du_i} \wedge \dots \wedge du_n,$$

where (u_1, \ldots, u_n) is the coordinate of $\mathbb{C}^n \setminus \{0\} \subset \mathbb{C}^n$. Let

$$(4.38) z_1 = (z_{ij}) \in \mathcal{S}_m, z_2 = (z_{ip}) \in M_{m,n-m}(\mathbb{C}),$$

(4.39)
$$\mathbf{u}_1 = {}^t(u_1, \dots, u_m), \quad \mathbf{u}_2 = {}^t(u_{m+1}, \dots, u_n).$$

Then the (n-1)-form

(4.40)

$$\tilde{\omega}(u_1, \dots, u_n) = ({}^t\mathbf{u}_1 z_1 \mathbf{u}_1 + {}^t\mathbf{u}_1 z_2 \mathbf{u}_2)^{(\xi_{m+1} + \dots + \xi_n - n)/2} u_{m+1}^{-\xi_{m+1}} \cdots u_n^{-\xi_n} \tau$$

on $\mathbb{C}^n \setminus \{0\}$ induces an (n-1)-form ω on $\mathbb{P}^{n-1} = (\mathbb{C}^n \setminus \{0\})/\mathbb{C}^{\times}$. We see that the function

$$(4.41) f(z_1, z_2) = \int_{\Gamma} \omega$$

on $S_m \times M_{m,n-m}(\mathbb{C})$ is a solution to the system $(4.31), \ldots, (4.36)$ with $\xi_1 = 0$ for any twisted (n-1)-cycle Γ on \mathbb{P}^{n-1} .

This example is related to the system investigated in Matsumoto-Sasaki [18].

References

- K. Aomoto, On the structures of integrals of power products of linear functions, Sc. Papers Coll. Gen. Education, Univ. Tokyo, 27 (1977), 49-61.
- [2] A. Beilinson, J. Bernstein, Localisation de g-modules, C. R. Acad. Sci. Paris, 292 (1981), 15–18.
- [3] A. Beilinson, J. Bernstein, A generalization of Casselman's submodule theorem, in Representation Theory of Reductive Groups, Progr. Math., 40, Birkhäuser, Boston, 1983, 35–52.
- [4] A. D'Agnolo, P. Schapira, Radon-Penrose transform for D-modules, J. Funct. Anal., 139 (1996), 349–382.
- [5] T.J. Enright, A. Joseph, An intrinsic analysis of unitarizable highest weight modules, Math. Ann., 288 (1990), 571–594.
- [6] I. M. Gelfand, General theory of hypergeometric functions, Soviet Math. Dokl., 33 (1986), 573–577.
- [7] I. M. Gelfand, S. I. Gelfand, Generalized hypergeometric equations, Soviet Math. Dokl., 33 (1986), 643–646.
- [8] I. M. Gelfand, V. S. Retakh, V. V. Serganova, Generalized Airy functions, Schubert cells, and Jordan groups, Soviet Math. Dokl., 37 (1988), 8–12.
- [9] I. M. Gelfand, A.V. Zelevinsky, M. M. Kapranov, Hypergeometric functions and toric varieties, Functional Anal. Appl., 23 (1989), 94–106.
- [10] A. B. Goncharov, Construction of the Weil representations of certain simple Lie algebras, Functional Anal. Appl., 16 (1982), 70–71.

- [11] A. Gyoja, Highest weight modules and b-functions of semiinvariants, Publ. RIMS Kyoto Univ., **30** (1994), 353–400.
- [12] W. Hesselink, Singularities in the nilpotent scheme of a classical group, Trans. Amer. Math. Soc., **222** (1976), 1–32.
- [13] T. Kakehi, Integral geometry on Grassmann manifolds and calculus on invariant differential operators, preprint.
- [14] M. Kashiwara, Representation theory and D-modules on flag varieties, Astérisque, 173-174 (1989), 55-109.
- [15] M. Kashiwara, T. Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level II non-integral case, Duke Math. J., 84 (1996), 771–813.
- [16] H. Kimura, Y. Haraoka, K. Takano, The Generalized confluent hypergeometric functions, Proc. Japan Acad., 68 (1992), 290–295.
- [17] C. Marastoni, La dualité de Grassmann pour les D-modules, C. R. Acad. Sci. Paris, 322 (1996), 929–933.
- [18] K. Matsumoto, T. Sasaki, On the system of differential equations associated with a quadric and hyperplanes, Kyushu J. Math., 50 (1996), 93–131.
- [19] K. Mizuno, The conjugate classes of unipotent elements of the Chevalley groups E₇ and E₈, Tokyo J. Math. 3 (1980), 391–461.
- [20] D. Mumford, Lectures on curves on an algebraic surface, Ann. of Math. Studies, 59, Princeton Univ. Press, 1966.
- [21] T. Oshima, Generalized Capelli identities and boundary value problems for GL(n), Structure of Solutions of Differential Equations, Katata/Kyoto 1995, 307–335, World Scientific, 1996.
- [22] R. Richardson, G. Röhrle, R. Steinberg, Parabolic subgroup with abelian unipotent radical, Invent. Math., 110 (1992), 649–671.
- [23] H. Sekiguchi, The Penrose transform for certain non-compact homogeneous manifolds of U(n,n), J. Math. Sci. Univ. Tokyo **3** (1996), 655–697.
- [24] N. Spaltenstein, On the fixed point set of a unipotent transformation on the flag manifold, Proc. Kon. Ak. v. Wet., **79** (1976), 452–456.
- [25] N. Spaltenstein, On the fixed point set of a unipotent element on the variety of Borel subgroups, Topology, **16** (1977), 203–204.
- [26] T. Tanisaki, Highest weight modules associated to parabolic subgroups with commutative unipotent radicals, in:Algebraic groups and their representations (ed. R. W. Carter and J. Saxl). 73–90, 1998, Kluwer Academic Publishers.

T. Tanisaki Department of Mathematics Faculty of Science Hiroshima University Higashi-Hiroshima, 739-8526, JAPAN tanisaki@math.sci.hiroshima-u.ac.jp