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Introduction 

This article is a brief report of recent developments in Fefferman's 
program, proposed and initiated in [F3], concerning invariant expression 
of the singularity of the Bergman kernel KB on the diagonal of a strictly 
pseudoconvex domain n c en with smooth boundary. It was proved by 
Fefferman in [Fl] that 

(0.1) 

where r E C 00 is a defining function of the boundary an such that r > 0 
in n and dr -/- 0 on an. The problem is to choose r appropriately and 
express cpB modulo onH(r) and 'lj;B modulo 0 00 (r) invariantly in the 
sense of local biholomorphic geometry. This can be compared with the 
asymptotic expansion of the heat kernel associated with the diagonal of 
a compact Riemannian manifold, where the time variable corresponds 
to the function r in (0.1). The boundary an is approximated at every 
point by a sphere (hyperquadric), and carries a differential-geometric 
structure, called the CR ( or pseudo-conformal) structure. 

Let us employ an extrinsic approach due to Chern and Moser in 
[CM], [Ml, and put the boundary an (formally) in Moser's normal form 
N(A) with A= (A:13) given by 

00 

2 Re Zn = I z' I 2 + L L A :(3 z~ Zp (Im Zn l, 
ial,1/31~2 £=o 

where Z = (z',zn) = (z1,---,Zn-1,zn) E en. (For the notation z~ 
and lo:I with ordered multi-indices o:, see Subsection 1.1, (B) below.) 
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Then CR invariants of weight w E N0 = {0, 1, 2, ... } are defined as 
polynomials P = P(A) satisfying the transformation law 

(0.2) P(A) = P(A) ldet<l>1(0)1 2w/(n+l) 

for local ( or formal) biholomorphic mappings <I> such that <I> ( N (A)) = 
N(A) and <l>(0) = 0. We wish to express the asymptotic expansions 

n 
'PB = L 'Pk rk mod on+1(r), 'Pk E C 00 (0), 

(0.3) 
k=O 
00 

'lj}B = L 1Pkrk mod 0 00 (r), 1Pk E C00 (0), 
k=O 

of cpB and 'lj}B in (0.1) in terms of CR invariants. We thus consider local 
(or localizable) domain functionals K = Kn near a reference point at 
the boundary an satisfying a transformation law of weight w E Z: 

(0.4) Kn1 = Kn2 0 q> I det<I>'l 2w/(n+1) 

for local biholomorphic mappings <I> : n1 --, n2 preserving the reference 
points, cf. (0.2). 

The Bergman kernel KB satisfies (0.4) with w = n + l. If one could 
find a defining function r satisfying (0.4) with w = -l, then there would 
be a hope to have expansions as in (0.3) such that 'Pk for k ::; n and 
1Pk-n-l fork :::: n + l satisfy (0.4) with w = k. According to Hormander 
[Ho], the boundary value of cpB agrees with that of the Levi determinant 

multiplied by n! / 1rn. Thus we are led to the zero Dirichlet boundary 
value problem for the complex Monge-Ampere equation 

(0.5) J[u] = 1 and u > 0 in n; u = 0 on an. 

According to Fefferman [F2], any solution of J[u] = 1 satisfies (0.4) with 
w = -l. However, the solution of (0.5), of which the unique existence is 
guaranteed by Cheng and Yau in [CY], has a finite differentiability up 
to the boundary. This fact is seen from the asymptotic expansion below 
due to Lee and Melrose in [LM] (cf. also Graham [G2]): 

00 

(0.6) u = r L T/k · (rn+l logr)k, T/k E C 00 (0), 
k=O 
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with a C 00 defining function r as before. 
There are C 00 approximate solutions r = rF of (0.5) satisfying 

(r = rF > 0 in 0). 

In [F2], Pefferman gave an explicit algorithm of constructing such a 
function rF. Let us refer to these rF as Fefferman's defining functions. 
After reviewing quickly in Section 1 the background of the problem 
which contains expositions of CR invariants, the Bergman kernel and the 
complex Monge-Ampere boundary value problem, we state in Section 2 
Fefferman's main results in [F3], which were supplemented recently by 
Bailey, Eastwood and Graham in [BEG], on the expansion of 'PB in (0.3) 
by using Fefferman's defining function r = rF. Local domain functionals, 
called Weyl invariants, of weight ::; n are defined by using the curvature 
of the Lorentz-Kahler metric with potential function lzol 2 rF(z) on a 
bundle (C* x IT (or a neighborhood of <C* x 80) with an extra variable 
z0 E (C* = (C \ {0}. It is proved in [F3] and [BEG] that any CR invariant 
of weight ::; n is realized as the boundary value of a Weyl invariant and 
that the expansion of 'PB in (0.3) with r = rF is valid, where each 'P~ 
is a Weyl invariant of weight k. Proofs of these results are outlined in 
Section 5. 

The two dimensional case is exceptional and it is possible to obtain 
a very precise result by using Fefferman's defining function r = rF. We 
overview in Section 3 the work of Graham in [Gl] and [G2] supplemented 
by the authors' joint work with Nakazawa in [HKNl] and [HKN2]. There 
are no nonzero CR invariants of weight 1, 2, and the expansion of 'PB in 
(0.3) with r = rF is trivial, that is, 'PB= 2/1r2 +03 (r). For ¢Bin (0.1), 
it is shown in [G 1] and [HKN2] that 

'¢B =-; (-37)1 + W4 r + W5 r 2 ) + 0 3 (r) with r = rF, 
7f 

where Wk for k = 4, 5 are Weyl invariants of weight k and '1')1 is that 
in (0.6) with r = rF. This result is best possible as far as Fefferman's 
defining function is used. Explicit determination of W4 and W5 is also 
done in [HKN2] (partial results are found in [Gl] and [HKNl]). In order 
to identify universal constants appearing in W4 and W5, it is necessary 
to express the singularity of the Bergman kernel in terms of Moser's 
normal form coefficients. This is done in [HKNl] and [HKN2] by using 
microlocal calculus due to Kashiwara in [Kas] and Boutet de Monvel in 
[Bl]-[B3]. We explain this method in Section 4. 

In order to get a complete expansion of ¢B as in (0.3), it is nec­
essary to take account of the ambiguity of r = rF. In [Hi], a special 
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family of Fefferman's defining functions parametrized by C 00 (8rl) (or 
rather the space of formal power series) is so defined as to satisfy (0.4) 
with w = -1. This family leads to the definition of Weyl invariants with 
ambiguity measured by C 00 (8rl). It is proved in [Hi] that the space CR 
invariants of arbitrary weight exactly corresponds to that of Weyl in­
variants without ambiguity and that the expansion of 'lj;B in (0.3) with a 
Fefferman's defining function r parametrized by C 00 (8rl) is valid, where 
each 'lj;~ is a Weyl invariant, with ambiguity, of weight k + n + 1. This 
expansion of 'lj;B is invariant in the sense that each Weyl invariant with 
ambiguity measured by C 00 (8rl) is a universal polynomial of A= (A~13 ) 

and C = (C!13), where A~13 are Moser's normal form coefficients and C!13 
appear as the coefficients of the power series expansion of an element 
f E C 00 (8rl), that is, 

00 

J(z',z',Imzn) = L L C!13 z:z~ (Imznf 
lal,li'.il~O £=0 

In Section 6, we state these results more precisely and outline the proofs. 
In this article, we restrict ourselves to the local analysis of the 

Bergman kernel associated with a general strictly pseudoconvex domain, 
and do not refer to related topics. Here we only mention two of these. 
The first one is an analogue of Fefferman's program above for the Szego 
kernel associated with an invariant surface element on the boundary of a 
strictly pseudoconvex domain. This problem was also posed in [F3], and 
the analysis of the Bergman kernel presented in this article applies to the 
Szego kernel as well, after a slight modification ( cf. [HKNl], [HKN2]). 
Another topic is a conformal analogue of the construction of CR invari­
ants in terms of Weyl invariants. This problem was posed by Fefferman 
and Graham in [FG]. For recent progress of this topic, the reader should 
see the papers by Bailey-Eastwood-Graham [BEG] and by Eastwood­
Graham [EG]; there are also comprehensive survey articles by Graham 
[G3] and by Bailey [Ba]. 

§ 1 Backgrounds 

1. 1 CR invariants 

(A) Local boundary equivalence problem. A remarkable phe­
nomenon in Several Complex Variables is the existence of a domain 0, 

(in fact, many domains) such that all holomorphic functions in fl extend 
holomorphically across a part of the boundary 80 to a larger domain 
simultaneously. If such a phenomenon does never occur for fl, then 0, is 
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called a domain of holomorphy. Assume for simplicity that fl is a domain 
in en with C 00 boundary. That is, fl= {r > O}, where r E C 00 (en, JR) 
is a defining function of the boundary 8fl and thus ldrl > 0 on 8fl. A 
well-known theorem of Oka states that fl is a domain of holomorphy if 
and only if it is pseudoconvex at every boundary point. The pseudocon­
vexity at z E 8fl is by definition the non-negativity of the eigenvalues 
of the Levi form of rat z = (z1 , ... , zn) given by 

where T;•0 (8fl) = {~ E en; E7=i ~j8r(z)/8zj = o}, and thus each 

element ~ E T;•0 ( 8fl) is identified with a (1, 0)-vector I: ~j 8 / 8zj which 
is tangential to 8fl at z. If the Levi form is positive-definite on 8fl, then 
fl is said to be strictly pseudoconvex. The notion of (strict) pseudocon­
vexity is defined independently of the choice of r. 

Let fl 1 and fl 2 be strictly pseudoconvex domains in en with C 00 

boundaries. If there exists a biholomorphic mapping <I> : fl 1 -+ fl 2 , then 
fl 1 and fl 2 are said to be holomorphically equivalent. When are fl 1 and 
fl 2 holomorphically equivalent? A necessary condition is formulated via 
a theorem of Fefferman [Fl] which states that if <I> as above exists then <I> 

extends to a C 00 diffeomorphism from 0 1 to 0 2 . (If the boundaries are 
real analytic, then <I> extends biholomorphically across the boundaries, 
cf. Lewy [12].) Thus one can compare the boundaries. The boundary 
value of <I> is a diffeomorphism <I>0 : 8fl1 -+ 8fl2 such that the compo­
nents are CR functions, those functions which are annihilated by differ­
entiation with respect to sections of the bundle T 0 •1 (8fl) = T 1 ,0 (8fl). 
Suppose now we are given <I>0 , a CR diffeomorphism. If the boundaries 
are real analytic, then <I>0 has an analytic extension to a full neighbor­
hood of 8fl1 . In general, <I>0 extends holomorphically to fl 1 according 
to a theorem of Lewy [Ll]. These are in fact local results, and one is led 
to a local boundary equivalence problem of comparing open portions Mj 
of 8flj (j = 1, 2), which are strictly pseudoconvex real hypersurfaces. 
That is, one asks when there exists a CR diffeomorphism <I>0 : M 1 -+ M 2 

such that <I>0 (p1) = p2, where the pairs ( Mj, Pj) with Pj E Mj are pre­
scribed. In what follows, we mainly consider the real analytic case, and 
identify <I>0 with its holomorphic extension <I>. More precisely, we regard 
<I> as a germ of mapping between germs of surface (Mj,Pj)- In the C 00 

case, we regard <I> as a formal mapping given by formal power series 
between C 00 surfaces (Mj,Pj), and thus we are only concerned with the 
Taylor expansions of defining functions of Mj about the reference points 
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Pi E Mj. 

(B) Moser's normal form. Let MC en be a strictly pseudocon­
vex real hypersurface containing the origin OE en as a reference point, 
and assume first that M is real analytic. To study the biholomorphic 
equivalence problem of Min the previous subsection, Moser (M], (CM] 
introduced the notion of normal form of M defined as follows. 

For the standard coordinate §ystem z = (z1 , ... , Zn) in en, we write 
z = (z',zn) and set z~ = z01 ···Za,., where a= (a1, ... ,aa) is an 
ordered multi-index of length lal = a, that is, Ctj E {1, ... , n - 1} for 
j = 1, ... , a. After a holomorphic change of coordinates, M is locally 
written near the origin as 

(1.1) 2u = lz'l2 + FA(z', z',v), Zn=u+iv, 

where FA is a real analytic function having the Taylor expansion 

F( ,,) ~ Ae ,,e ~A(),, 
A Z , Z , V = L....J a/3 Z0 Z/3 V = L....J a/3 V Z0 Z13. 

lol+l/31+2£~3 a, /3 

(The meaning of the subscript A in FA will be made clear just after the 
definition of Moser's normal form.) We say that M given by (1.1) is in 

pre-normal form if A013 (v) = Af3a(v) hold for all a, /3 and each A073(v) is 
unchanged under permutation of a and that of (3. These normalizations 
are always possible. 

By another change of coordinates, Min pre-normal form is made to 
satisfy A0 73(v) = 0 when lal < 2 or 1/31 < 2, and thus 

(1.2) FA(z', z', v) = L A013(v) z: z~, 
lol,l/31~2 

00 

Aa73(v) = L A~"jjve. 
l=O 

DEFINITION. A surface M in pre-normal form given by (1.1) is 
said to be in Moser's normal form if (1.2) holds and the following trace 
conditions are fulfilled: 

(1.3) tr A22(v) = 0, (tr)2 A23(v) = Q, (tr)3 A33(v) = 0. 

Here, Aab(v) = (A0 73(v))1al=a,l/3l=b, and (tr)m Aab(v) for m = 1, 2, 3 

means that the contractions with respect to Kronecker's delta {jik are 
taken m times for the indices a, /3 in A0 73( v) with lal = a, l/31 = b. 

If M is a surface in Moser's normal form, we write M = N(A) and 
A E .N, where A= (A~13 ) is a collection of the coefficients in (1.2). Thus 
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N is the vector space of all collections A giving Moser's normal forms. 
We may identify a surface N(A) with A EN. 

The existence of Moser's normal form is guaranteed as follows. 

Theorem 1.1 ([CM], [Ml). For any Min pre-normal form, there 
exists a holomorphic change of coordinates w = 4>(z) such that 4>(M) is 
in Moser's normal form. The mapping q> is unique under the conditions 

4>(0) = O, 4>1(0) = identity, Im (82wn(0)/8z~) = 0, 

where 4>1 denotes the holomorphic differential of q>. 

According to Theorem 1.1, there exists a holomorphic coordinate 
system z = (z', Zn) such that Mis in Moser's normal form N(A). We 
refer to z', Zn as Moser's normal coordinates. These give "real" coordi­
nates z', z', u, v with Zn= u+iv. We rather use coordinates z', z', PA, 
v, where 

PA= 2u - lz'l 2 - FA(z', z', v), 

so that N(A) is given by the equation PA= 0. 
In general, Moser's normal form of a surface Mis not unique; M has 

a unique normal form if and only if M is locally equivalent to a sphere, 
in which case the normal form is given by 

Mo = ano = {2u = lz'l 2}, where no = {2u > lz'l 2 }. 

The model domain n 0 is a Siegel domain which is biholomorphic to a 
ball. Elements of Aut(n0), the group of holomorphic automorphisms 
of n 0 , are linear fractional transformations. The non-uniqueness of the 
normal form is measured by using the isotropy group Hof Aut(no) at 
the origin O defined by H = {h E Aut(n0); h(0) = O}; elements of H 
are biholomorphic at 0. In fact, there is a group action 

(1.4) H x N 3 (h,A) f-+ h.A EN 

such that equivalence classes of N are realized by H-orbits of N. The 
action (1.4) is defined by N(h.A) = M with M = h(N(A)) when Mis in 
Moser's normal form. In general, Mis merely in pre-normal form, but 
Theorem 1.1 guarantees the unique existence of a local biholomorphic 
mapping q> such that 4>(M) is close to Mand in Moser's normal form. 
Then the action (1.4) is defined by N(h.A) = 4>(M). That is, 

(1.4)' N(h.A) = Eh,A(N(A)), where Eh,A = 4> oh. 

Observe that EtA(0) = h'(0). 
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Let us finally give remarks on the case where the original real hy­
persurface M c en, being • strictly pseudoconvex, is not real analytic 
but merely C 00 • In the category of formal power series, the notions of 
pre-normal form and Moser's normal form make sense. After a formal 
change of variables, M can be always put in pre-normal form, and The­
orem 1.1 has an obvious analogue. We continue to use the notations 
N(A) and A EN. (We have a larger class N'00 ~ N but abuse nota­
tion by writing both N and N'00 as N.) Then the action (1.4) remains 
well-defined. 

Remark 1.1. Let a surface M with a reference point p E M be 
real analytic or C 00 • Then by Theorem 1.1, there exists a (formal) 
biholomorphic mapping <l?p such that <l?p(p) = 0 and <l?p(M) = N(A) for 
some A= (A~13) EN. We now regard each A~13 as a function of p EM. 

Then a family { <l?p}pEM can be chosen in such a way that A~13 is real 

analytic or C00 • This fact is contained in the proof of Theorem 1.1. 

(C) Local scalar invariants. Given a surface M with a reference 
point p EM, local scalar invariants of Mat pare defined as follows. For 
A= (A~13) EN, we regard components A~13 as variables and consider 

functions of A. 

DEFINITION. A polynomial P(A) in A EN' is called a CR invari­
ant of weight w E No if 

(1.5) P(A) = I det h'(O)l 2w/(n+l) P(h.A) for any h EH. 

We denote by J~R the totality of CR invariants of weight w, and 
thus J~R is the complexification of a real vector space. 

Each P(A) E J~R determines a functional M 1-+ PM defined by 

PM(p) = I det <I?~(P)l 2w/(n+l) P(A) with <I?p(M) = N(A), 

where <J?P is a mapping in Remark 1.1. The function PM is real analytic 
or C 00 according to the regularity assumption on M, and the value 
PM(P) is independent of the choice of <J?P. We have a transformation 
law under biholomorphic mappings <I?: 

(p EM). 

Conversely, given a functional' PM(p) of a pair (M,p) satisfying the law 
above, if PN(A)(O) is a polynomial in A EN then PN(A)(O) E J~R. 
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Every P(A) E JSR is a polynomial in A EN of homogeneous weight 
w, if we define the weight of Ae - by 

cr.{3 

w(A~/3) = w(a/3£) = (lo.I + l,Bl)/2 + £ - 1. 

This fact is seen by using dilations </Jr E H defined by </Jr ( z', Zn) = 
(rz', r2 Zn) for r > 0. We have P(A) = r2w P( </Jr.A), while the action 
</Jr.A= A is given by xe _ = r-lal-l/31-2H 2 Ae _. 

cr.{3 cr.{3 

1.2 The Bergman kernel 

For a general domain n c en, we denote by H 8 (!1) the Hilbert 
space of L2 holomorphic functions inn with the norm 11 · 11B- Then the 
Bergman kernel associated with n is defined by 

K 8 (z) = K 8 (z,z) = L lhj(z)l 2 for Z En, 
j 

where {hj}j is an arbitrary complete orthonormal system of H8 (n). 
The series I: lhi(z)l 2 converges uniformly on every compact subset w of 
n, by virtue of the following inequality with a constant Cw > 0: 

(In fact, I: I hi ( z) 12 is the square of the norm of the evaluation functional 
h ~ h(z) on H 8 (n).) Thus, a complex extension of K 8 (z) = K 8 (z, z) 
is given by 

K 8 (z, w) = L hi(z) hi(w) for z, w En, 
j 

which is holomorphic in (z, w). This function K 8 (z, w), which is also 
referred to as the Bergman kernel, is the reproducing kernel associated 
with the Hilbert space H 8 (!1) in the sense that 

K 8 (z,w)=K8 (w,z) for z,wEO, 

h(z) = L K 8 (z,w)h(w)dV(w) for h E H 8 (n), z En, 

where dV(w) denotes the standard volume element of en at w. 
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When we wish to emphasize the dependence on 0, we write KB(z, w) 
as K~(z, w). Recall that each element h E HB(O) is identified with a 
holomorphic n-form wh(z) = h(z) dz1 I\··· I\ dzn, and 

Thus the Bergman kernel K~(z, w) is defined for a complex manifold 0. 
(This fact will not be used explicitly, since we shall mainly work locally 
near a boundary point.) Also, the transformation law for the Bergman 
kernel under a biholomorphic mapping <I> : 0 1 ---t 0 2 is given as follows: 

a relation which can be complexified. 

Example. If O c en is the unit ball, then 

B - n!/rrn 
K (z, w) = (1 - z. w)n+l , 

n 

where z • w = L Zj Wj . 

j=l 

For our model domain Oo = {z = (z',zn) E en; Zn +zn > lz'l2 }, 

(1.7) B n! ( , -)-n-1 Kn (z, w) = - Zn + Wn - z . w' . 
o 7rn 

Remark 1.2. (1 °) If O is a domain in e, then 

82G(z,w) 
8z8w 

for z,w E 0, 

where G(z, w) denotes the Green function normalized by multiplying a 
constant (cf. Schiffer [Serl). An operator version is given by using the 

8-operator and its £ 2 adjoint a* as KB= 1- a*Ga, where G denotes 
the Green operator and KB, called the Bergman projector, stands for 
the orthogonal projector of £ 2 (0) to the closed subspace HB(O). 

(2°) An analogous formula is available for a domain O in en as far as 

the complex Laplacian • = 88* +a*a for (0, 1)-forms on O has a closed 
range in £ 2 . The generalized inverse N, called the 8-Neumann operator, 
satisfies KB = 1 - a*Na. If, for instance, 0 is a strictly pseudoconvex 
domain with C 00 boundary, then N is defined and C 00 pseudolocal at 
every point of the closure O ( cf. Folland-Kohn [FK]). Then, the Bergman 
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kernel KB(z, w) as a function of (z, w) is C 00 on TT x TT off the diagonal 
of 80. x 80. (cf. Kerzman [Ke]). 

From now on, we assume that 0, = {z; r(z) > O} c en is a strictly 
pseudoconvex domain, where r is a smooth ( C 00 or real analytic) defining 
function of the boundary. It has been known that the Bergman kernel 
KB(z) = KB(z, z) tends to +oo as z approaches to a boundary point. 
The magnitude of divergence is measured by virtue of a theorem of 
Hormander [Ho] as follows: 

(1.8) 

where J[r] denotes the Levi determinant of r given by 

(1.9) J[r] = (-lt det ( 8r/8zj 
We shall rather refer to J[ ·] as the (complex) Monge-Ampere operator. 
A far-reaching refinement of (1.8) is given as follows. 

Theorem 1.2 ([Fl]). Let 0, = {z E en; r(z) > O} be a strictly 
pseudoconvex domain, where r is a C 00 defining function of 80.. Then 
there exist 'PB, 'lj;B E C00 (TT) such that 

(1.10) KB(z, z) = KB(z) = ~:i:L + 'lj;B(z) logr(z). 

In particular, 'PB= (n!/1rn)J[r] on 80.. 

Remark 1. 3. If 80. with r is real analytic, then 'PB and 'lj;B are real 
analytic too, so that (1.10) is complexified (cf. Kashiwara [Kas]): 

(1.10)' 

Even when 80, is C 00 , the above equality (1.10)' remains valid with 
C 00 functions r(z,w), 'PB(z,w), 'lj;B(z,w) of (z,w) E TT x TT which are 
regarded as almost analytic extensions of r(z) = r(z, z), ... in the sense 
that 8r(z,w)/oz, . .. and 8r(z,w)/8w, ... vanish to infinite order at 
z = w (cf. Boutet de Monvel-Sjostrand [BS]). 

Remark 1.4. The singularities (1.10) and (1.10)' are localizable to 
a neighborhood of a boundary point as follows. If 0.1 and 0.2 are strictly 
pseudoconvex domains with smooth ( C 00 or real analytic) boundaries 
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such that TT1 n V = TT2 n V for a neighborhood V of a point p E 8f21 nan2, 
then there exists a smaller neighborhood V0 of p such that the difference 
KRl(z, w) - KR2 (z, w) are smooth for z, w E TT1 n Vo= TT2 n Vo. 

Remark 1.5. (1°) An elementary property of the Bergman kernel 
is the monotonicity with respect to the domain: 

KRl (z) ~ KR2(z) when Z E n1 C n2. 

In the proof of (1.8), this fact and the model case formula (1.7) are used 
together with a localization argument, after a scaling of the coordinates 
(cf. Hormander [Ho]). 

(2°) Fefferman's original proof of Theorem 1.2 requires a more pre­
cise approximation of n from inside at a boundary point by a domain 
nball which is locally biholomorphic to a ball. Roughly speaking, starting 
from an explicit approximation of the decomposition 1 = K8 + a*N8, 
the Bergman kernel is obtained as a Neumann series, where successive 
integrations over a thin domain given locally by n \ nball are involved. 
The estimates are extremely hard ( cf. [Fl]). 

(3°) An alternative proof of Theorem 1.2 is given by Boutet de 
Manvel and Sjostrand [BS], where the singularity of the Bergman kernel 
is .written as a Fourier integral distribution with complex phase: 

mod C00 , 

where p8 (z, w, t) is a symbol admitting an asymptotic expansion 

00 

B ( - t) '°' tn-j B ( -) p z,w, ~ ~ Pj z,w, 
j=O 

This expression yields (1.10)' via the following formulas for the Laplace 
transforms, which are valid for p E <C with Rep > 0: 

tm e-pt dt = --·-100 ml 

0 pm+l 
for m ~ O, 

pf cm e-pt dt = - p (logp + Cm) 100 ( l)m m-1 

o (m -1)! 
for m ~ 1, 

where Cm are constants and pf stands for the Hadamard finite part. 
(4°) For Kashiwara's proof [Kas] of (1.10) in the real analytic case 

and its application, see Section 4 below. 
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The equality (1.10) in Theorem 1.2 is referred to as an asymptotic 
expansion. A reason is that if the boundary 80 is locally flattened by a 
real change of coordinates z = w(s, r) withs E ~zn-l then 

and the Taylor expansions about r = 0 of cpB(w(s, r)) modulo on+1 (r) 
and "PB ( W ( s, r)) provide an asymptotic expansion of KB (w( s, r)). This 
is analogous to that of the heat kernel. However, the biholomorphic 
invariance is lost, for the expansion depends on the choices of the real 
coordinate system ( s, r) and the defining function r. Instead, we make 
the following tentative definition. 

DEFINITION. A domain functional K(z) = Kn(z) is said to satisfy 
a (biholomorphic) transformation law of weight w E Z if 

(1.11) 

for any biholomorphic mapping '1>: 0 1 ----+ 0 2 • This definition extends to 
local domain functionals defined only near a boundary point. 

The equality (1.6) means that the Bergman kernel satisfies a trans­
formation law of weight n + 1. If there would· exist a defining function 
r satisfying a transformation law of weight -1, then we could speak of 
an invariant expansion of the Bergman kernel given by the expansions 

n 

(1.12) 
00 

B ~ . 
'Ip = L.i 'Pn+l+j rJ mod 0 00 (r), 

j=O 

with 'Pj E C 00 (0) for j E N0 satisfying transformation laws of weight j. 
Here, the first relation in (1.12) means that the difference between both 
sides is smoothly divisible by rn+l, and the second relation means that 

m 
B ~ . 

'Ip = L.i 'Pn+l+j r3 for any m EN. 
j=O 

In fact, the situation is not so simple. Nevertheless, this is approximately 
the case, as we shall see in the next subsection. 
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1.3 The Monge-Ampere boundary value problem 

Recall the (complex) Monge-Ampere operator J[ •] defined in (1.9). 
If <I> : 0 1 -+ 0 2 is a biholomorphic mapping, then 

J[u1] = J[u2] o <I> with u1 = I det <I>'l-2/(n+l) u2 o <I> 

for any function u 2 in 0 2 (cf. Fefferman [F2]). In particular, every 
solution u of the Monge-Ampere equation J[u] = 1 satisfies a transfor­
mation law of weight -1 in the sense of (1.11). This fact motivates us 
to consider the zero Dirichlet boundary value problem 

(1.13) J[uMA] = 1 and uMA > 0 in fl; UMA =0 on afl. 

The problem (1.13) has a unique solution but it has only a finite 
degree of smoothness up to the boundary (cf. Cheng-Yau [CY]): 

(1.14) for any c > 0. 

The solution uMA admits an asymptotic expansion, with an arbitrary 
defining function r of an such that n = {r > O} (cf. Lee-Melrose [LM]): 

00 

(1.15) uMA ~ r L T/k. (rn+l logr)k, rtk E c 00 (n). 
k=O 

In particular, (1.14) is improved as follows: uMA E cn+2-e: (D) for any 
c > 0 small. In the expansion (1.15) considered near a reference point 
at the boundary, the function rto depends globally on the choice of r, 
whereas the Taylor expansions of T/k for k ::::0: 1 are determined locally by 
those of rto and r ( cf. [LM]). 

Though the solution uMA of (1.13) is a defining function of an and 
satisfies a transformation law of weight -1, it is not C 00 smooth up to 
the boundary. Thus we cannot use uMA in an invariant expansion of the 
Bergman kernel of the form (1.12). Instead, we confine ourselves to a 
C 00 defining function r = rF of an satisfying (1.13) approximately in 
the sense that 

(1.16) (r = rF > 0 in fl). 

Fefferman [F2] considered rF precedent to the above stated works of 
Cheng-Yau [CY] and Lee-Melrose [LM]. In [F2], an explicit algorithm of 
constructing rF is given locally near a boundary point ( cf. Subsection 
3.2 below). We refer to rF as a Fefferman's defining function. For later 
use, we summarize properties of rF: 

(lF) rF is unique modulo on+2(r), or the ambiguity ofrF is on+2(r); 
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(2F) rF satisfies a transformation law of weight -1 modulo on+2 (r); 
(3F) rF makes sense locally near a reference point at the boundary. 

By (lF), we mean that ifrf and r[ satisfy (1.16) then rf-r[ = on+2 (r) 
and that if rf satisfies ( 1.16) so does r[ = rf + 8 when ever 8 = on+ 2 ( r). 
The fact (lF) follows from the condition (1.16); and (lF) implies (2F), 
because if <I> : n1 - n2 is biholomorphic then 

for any Fefferman's defining function r[ of n2 • By (3F), we mean that 
the properties (1 F) and (2F) are valid locally near a reference point at 
the boundary. 

By continuing Fefferman's construction beyond rF, Graham [G2] 
constructed a local asymptotic solution uG of (1.13) in the form 

00 

(1.17) uG = r L rJ'i! · (rn+l logr)k, ,,,f E c 00 (n). 
k=O 

Theorem 1.3 ([G2]). Let r = rF be a Fefferman's defining func­
tion of n. Then, for any a E C 00 (an), there exists a unique asymptotic 
solution u = uG of the form (1.17) to the problem 

(1.18) J[u] = 1 + 0 00 (r) near an, ,,,c;; = 1 + arn+l + on+2 (r). 

Furthermore, rJf for each k ~ 1 has the following properties: 

(1 G) rJ'i! modulo on+i (r) is independent of the choice of a and rF; 
(2G) rJ'i! has a transformation law of weight k(n+ 1) modulo on+i(r); 
(3G) rJ'i! modulo on+l(r) makes sense locally near a boundary point. 

The asymptotic solution uG is a formal series of the form (1.17). 
The first relation of (1.18) means that J[uG] - 1 is formally fl.at on an 
in the sense that for any m E N there exists a finite sum u~ correspond­
ing to (1.17) such that J[u~] - 1 is continuously divisible by rm. The 
meanings of (1 G )-( 3G) are similar to those of ( 1 F )-( 3F), except for the 
fact that uG is uniquely determined by a and rF, where a is prescribed 
in a neighborhood of a reference point at the boundary. 

Let us return to the problem mentioned at the end of the previous 
subsection. We wish to realize an invariant expansion of the Bergman 
kernel of the form (1.12) with r = rF. Because of the ambiguity of rF, 
the invariance becomes approximate and the expansion of 'lj;B, even if 
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possible, only makes sense as a finite sum, say, 

(1.12)~ nl,B + N-n-l 
'f' = 'Pn+l + 'Pn+2 r + · · · 'PN r mod oN-n(r). 

Suppose we are given vector subspaces If C C'x'(O) (0 :S: j :S: N) with 
the following properties: 

(lw) Elements of If make sense modulo 0N-H1 (r) (we regard these 

as equivalence classes modulo ON - J+ 1 ( r)); 
(2w) Each element of If satisfies the transformation law of weight j 

modulo 0N-H1 (r); 
(3w) The boundary value of each element cp E If is a CR invariant, 

and the resulting mapping If -+ tjm is surjective. In addition, 
if the boundary 80 is in normal form N(A) near the origin, then 

8';8:cp(O) (iai + l,81 :S: N - j) for cp E If are polynomials in A. 

The latter condition in (3w) is referred to as the polynomial dependence 
of cp E If on the boundary. The functions cpB, 'l/JB and rF have a 
similar property, as we shall see in Sections 3 and 4. If N ~ n, then 
the conditions (lw)-(3w) yield the expansion of cpB in (1.12) as follows. 
Since the boundary value of cpB is an element of If?R being a constant, 
(3w) implies the existence of cp0 E if such that cpB = cp0 +01 (r). Then 
the approximate invariance of the smooth function ip1 := (cpB - cp0)/r 
makes sense. By virtue of (lw)-(3w) and the polynomial dependence 
of cpB and rF, the boundary value of (751 belongs to IfR, and thus (3w) 
implies as before the existence of cp1 E If such that cpB = cp0 + cp1 r + 
0 2 (r). Then induction yields the expansion of cpB as in (1.12). 

A construction of If for 0 :S: j ::;; n is discussed in the next section. 

The same argument applies to the expansion of 'l/JB as in (1.12)~, 
but the approximate invariance of the right side of (1.12)~ only makes 
sense modulo on+1 (r) by the ambiguity of r = rF. Consequently, we 
have invariant expressions of 'Pj for 0 :S: j :S: min (N, 2n + 1) whenever 
If for 0 :S: j ::;; N are constructed. In Section 3, we consider the case 
n = 2 and realize the optimal case N = 5, that is, we express 'Pj for 
0 :S: j ::;; 5 explicitly by constructing If for 0 ::;; j :S: 5. 

§2 Weyl invariants 

Elements of the spaces If (0 :S: j ::;; n) in Subsection 1.3 are realized 
by Weyl invariants in the sense of Fefferman [F3]. This notion was 
introduced in [F3] as an analogy of that in Riemannian Geometry, where 



Invariant Theory of the Bergman Kernel 183 

the Bergman kernel is compared with the heat kernel. Reviewing quickly 
the heat kernel asymptotics in Subsection 2.1, we give the definition of 
Weyl invariants in Subsection 2.2. ,Then in Subsection 2.3, we state the 
main results of this section, due to Fefferman [F3] and Bailey-Eastwood­
Graham [BEG], on Weyl invariants and the invariant expansion of the 
Bergman kernel. 

2.1 Heat kernel on a Riemannian manifold 

Let (M,g) be an n-dimensional compact Riemannian manifold. We 
denote by D.9 the (negative) Laplacian acting on functions on M, and 
consider the initial value problem for the heat equation: 

8u/8t- D.9 u = 0 on M x [O,oo), ult=O = f, 

where f E C00 (M) is prescribed arbitrarily. Then there exists a unique 
solution, which has the form u(x, t) = JM Ht(x, y) f(y) dV(y), where dV 
stands for the volume element on M. The function Ht(x, y) for x, y EM 
and t > 0 is called the heat kernel (for functions) associated with D.9 . 

Let us consider the restriction Ht(x,x) to the diagonal of M x M. This 
is a smooth function as far as t > O, but becomes singular as t -+ +0. 
More precisely, the following asymptotic expansion holds: 

00 

Ht(x, x) ~ cn/2 ~ am(x) tm with am E C00 (M). 
m=O 

The coefficient functions am are determined locally by the metric 
g. In addition, these are Riemannian invariants defined as follows. Let 
us take a normal coordinate system x = (x1, ... , Xn) about a reference 
point p E M. The choice of normal coordinate systems has freedom 
corresponding to the action of the isotropy group O(n), and an action 
of O(n) is induced on jets of the metric, gjk,ab···C = aXa aXb ... aXcgjk(P), 
where aXa = 8/oxa, etc. A universal polynomial Pm= Pm(gjk,ab···c) is 
called a (local) Riemannian invariant if it is invariant under this action 
of O(n). 

For the curvature tensor R of g, we consider its successive covariant 
derivatives and denote the components by Rijkl,ab·••c• Then each gjk,ab···c 
is a polynomial of (Rijkl,ab---c), and thus each Riemannian invariant is 
written as an O(n)-invariant polynomial of (Rijkl,ab---c), where O(n) 
acts tensorially on (Rijkl,ab---c)- According to Weyl's invariant theory, 
the vector space of all Riemannian invariants is generated by complete 
contractions of the form 

contr (v'P1 R Q9 ••. Q9 y'Ps R) ' 
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where the contractions are taken over all indices. Consequently, each am 
in the heat kernel is expressed as a linear combination of these complete 
contractions such that 2m = p1 + · · · + p8 + s. This equality is seen by 
scaling the metric. 

2.2 Definition of Weyl invariants 

CR invariants can be compared with Riemannian invariants with 
Moser's normal coordinates in place of Riemannian normal coordinates. 
A substitute for the Riemannian curvature is the curvature of the am­
bient metric, which is defined as follows. 

Let r = rF be a Fefferman's defining function of the domain n. 
Introducing an extra variable z0 E IC* = IC\ {O}, we consider a function 

r#(zo, z) = lzol 2r(z) on IC* X n. Then, a tensor of (1, 1)-type 

defines a Lorentz-Kahler metric in a neighborhood of IC* x an. This 
metric g is called an ambient metric associated with an. Due to the 
ambiguity of r = rF modulo on+2(r), the ambient metric is well-defined 
only up to the n-th jets along IC* X an. 

As in the Riemannian case, scalar invariants are constructed from 
the metric g as follows. For the curvature tensor R of g, we consider 
successive covariant derivatives R(p,q) = v7q-Zv7p-Z Rand complete con­
tractions of the form 

(2.1) 

These are functions in a neighborhood of IC* X an C IC* X n, and the 
restrictions w = W#lzo=l are defined near an. The weight of w# in 
(2.1) is defined by w = I:;=l (p1 + q1)/2 - s. 

DEFINITION. A Weyl invariant of weight w is a linear combination 
of complete contractions of the form (2.1) of the weight w. 

By definition, a Weyl invariant W # is a functional of r. Nevertheless, 
we also use this terminology for the composite function (z0 ,z) 1--+ W# 
or the equivalence class modulo the ambiguity of r = rF. For a Weyl 
invariant W# of weight w, we set W = W#lzo=l· Then 

Accordingly, we still call W a Weyl invariant of weight w. 
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Let us recall that rF is a local domain functional of weight -1 in the 
sense of (1.12) but with error ofOn+2(r). Likewise, Weyl invariants W of 
weight w are local domain functionals of weight w with some error. The 
argument involving the error is somewhat technical, and we postpone 
it until the next subsection. Instead, we give here a transformation law 
under a biholomorphic mapping <I>: 0 1 -+ 0 2 for representatives of Weyl 
invariants defined by a Fefferman's defining function r 2 of 0 2 and its pull­
back r 1 = I det <I>'l-2/(n+l) r 2 o <I> to 0 1 . To emphasize the dependence 
on r = rF, we write g = g[r], W# = W#[r], W = W[r]. Then 

(2.2) 

This is seen as follows. We lift <I> to a bundle map <I># : C* x01 -+ C* x02 

defined by 

(2.3) <I>#(zo, z) = (zo · (det <I>'(z))-l/(n+i), <I>(z)). 

Then (r1)# = (r2)# o <I>#, and <I># is an isometry with respect to the 
metrics g[r1] andg[r2]. Thus W#h]o<I># = W#[ri], which implies (2.2). 

2.3 Results of Fefferman and Bailey-Eastwood-Graham 

We begin with a consideration of the dependence on the choice of 
Fefferman's defining function. 

Proposition 2.1. If W[r] is a Weyl invariant of weight w ~ n, 
then W[r] modulo on-w+l(r) is independent of the choice ofr = rF. 

The proof of Proposition 2.1 is done by using Moser's normal coor­
dinates. If the boundary 80 is locally in Moser's normal form N(A), 
then W[r] is written in terms of the coordinate system (z',z',PA,v) as 

n-w 
W[r] = L L P!W(A) z~ Z~VlPA + on-w+l(PA), 

rn=O o.,(3,£ 

where pl'!!: (A) are polynomials in A ( cf. the statement ( #) in Subsection 
o.{3 

3.2, (B) below.) The desired result then follows, since the main part of 
the expression of W[r] above is independent of the choice of r = rF. 

By Proposition 2.1 above and (2.2) in the previous subsection, we 
have an approximate transformation law corresponding to (2.2), but for 
arbitrary Fefferman's defining functions rj = rf of Oj (j = 1, 2): 
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In particular, the boundary value of a Weyl invariant of weight w ~ n 
gives a CR invariant of weight w. The converse is the first main result 
of this section. 

Theorem 2.1 ([F3], [BEG]). Every CR invariant of weight ~ n 
is given by the boundary value of a Weyl invariant. 

The statement of Theorem 2.1 was first proved by Fefferman [F3] for 
CR invariants of weight ~ n - 19. The weight restriction was removed 
recently by Bailey-Eastwood-Graham [BEG]. We outline the proof of 
Theorem 2.1 in Section 5. 

Let 1:;:: denote the totality of Weyl invariants of weight w. By virtue 
of Proposition 2.1 and Theorem 2.1 above, the spaces f:! for O ~ w ~ n 
satisfy the conditions (lw), (2w) and (3w) in Subsection 1.3 with N = n. 
Consequently, the argument given there is valid, and we have: 

Theorem 2.2 ([F3],[BEG]). For 'PB in the expression (1.10) of the 
Bergman kernel, the following expansion holds: 

n 

'PB= L wk rk + on+1(r) with wk Et:;:. 
k=O 

§3 Explicit computation in the two dimensional case 

For domains in C2 , it is possible to refine Theorems 2.1 and 2.2, 
as we mentioned at the end of Section 1. We also get explicit results, 
which are stated in Subsection 3.1. These results are obtained with 
the aid of asymptotic calculi of the Monge-Ampere equation and the 
Bergman kernel, where explicit algorithms are necessary. Postponing 
the calculus of the Bergman kernel until the next section, we discuss 
that of the Monge-Ampere equation in Subsection 3.2. 

3.1 The two dimensional case 

(A) Results. Consider for a domain O in (C2 the approximate 
invariant expansions of 'PB and 'ljJB expressing the singularity of the 
Bergman kernel 

KB = 'PB r-3 + 'ljJB logr with r = rF 

in terms of Fefferman's defining function rF. To write down explicit 
results, it is convenient to normalize 'PB and 'ljJB by writing 
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so that cpB = 1 on an, cf. (1.8). As we shall see below, we can completely 

determine cpB and ;j;B both modulo O3 (r). The results are optimal and 
better than those in the higher dimensional case. 

As before, let M be a portion of an, and assume that M is in 
Moser's normal form N(A), where A = (A~:a) EN. Changing notation 

slightly, we write A;q in place of A~:a with lal = p and l,61 = q, since 

(a, ,6) 1-+ (p, q) is bijective. Then the trace conditions on A take the 
form 

A 22(v) = A 23 (v) = A 33(v) = 0, 

so that A;q = 0 for p + q + £ :5 5. That is, M can be approximated 
by a sphere to order 5, though in the higher dimensional case the third 
order approximation is optimal. By this fact, the two dimensional case 
is exceptional in the sense that the Weyl invariants are less ambiguous 
(cf. Lemma 3.3 and Remark 3.2 below). 

To state the main results of this section, we begin by presenting 
bases of the vector spaces J~R of CR invariants of weight w :5 5. 

Lemma 3.1. JfR = JfR = {O} and 

dimJfR = dimJ.fR = 1, dimJfR = 2. 

The spaces JfR and J.fR are generated by A~4 and IA~4 12 , respectively. 

The space JfR is spanned by FfR(l, 0) and FfR(o, 1), where 

p~R(a, b) = F(a, b, -2a + (10/9) b, -a+ b/3) 

with F(a, b, c, d) = a IA~2 12 + b IA~3 l2 + Re { (cA~5 - idA~4) A~2}. 

For the proof, see [Gl] for w :5 4 and [HKN2] for w = 5. 
As a consequence of Lemma 3.1, the expansion of r:pB is trivial: 

(3.1) cpB = constant + 0 3 ( r) (constant= 1). 

To proceed further, it is necessary to extend A~4 E JfR approximate 
invariantly to the domain n. This is done by using the first coefficient 
function ryf of the asymptotic series uG in Subsection 1.3. It is proved 
by Graham [G2] that: 

Lemma 3.2. The boundary value of ryf is a CR invariant of 
weight 3. Specifically, ryf = 4A~4 on M. 

Let us proceed further to describe ;j;B modulo O3 (r). As we stated 
in Subsection 1.3, Fefferman's defining function r = rF makes invariant 
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sense modulo 0 4 (r), and ryf modulo O3 (r) is independent of the choices 
ofrF and the data a E C00 (M) determining uG. Consequently, it suffices 
to extend I A~4 I 2 E J.fR to n in such a way that the extension satisfies 

an approximate transformation law of weight 4 modulo O2 (r). Such an 
extension is realized by a Weyl invariant. (The Weyl invariant of weight 
2:'.: 3 are subject to a restriction stronger than that in Subsection 2.2, 
because Proposition 2.1 is irrelevant to the case n = 2. See Remark 
3.2 below.) Specifically, we consider complete contractions of weight 
w = p + q - 2 of the form: 

where the sum runs over ordered multi-indices a, a', /3, /3' of lengths 
lal = la'I = P, 1/31 = l/3'1 = q, e.g. a= (a1, ... , ap) E {0, 1, 2}P, and 

R - - =R - - - -
°'1 .. ·O<g/31. ··/3· 0<1/31 0<2/32;0<3 .. •O<g/33 ... 13 • • 

As before, we restrict IIR(p,q)ll2 to zo = 1 and regard it as a function on 
the base domain n. It is shown in [HKN2] that (cf. Remark 3.2 below): 

Lemma 3.3. lfw = p+q-2 = 4, 5 then IIR(p,q)l12 modulo O6-w(r) 
is independent of the ambient metric. The boundary values are given by 

3 IIR(4,2)1121M = 7 IIR(3,3)1121M = 28. 21 IA~2l2, 
IIR(5,2) 11 21M = -4. (5!)2 F~R(l, 18), 

IIR(4,3)11 21M = -4· (5!)2FjR(4/3,57/5). 

Using these three lemmas, we get: 

Theorem 3.1. There exist universal constants co, c1, c2, c3, Ci, 
c;, c; independent of A EN' such that 

;{;B + co11f = cii1R(3,3lll2r + (c2IIR(5,2)11 2 + c3IIR(4,3)11 2) r2 + 03(r) 

= cillR(4,2lll2r + ( ~IIR(s,2)11 2 + c;IIR(4,3ljl2) r2 + 0 3(r). 

The constant co was determined in Graham [Gl], where he proved 

(3.2) ;j;B = -12A0- on M, so that co= 3. 44 
It is shown in [HKN2] that: 
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Theorem 3.2. For other universal constants in Theorem 3.1 above, 

1 
C -­

l - 160' 

/ 3 
C --­

l - 1120' 

1 
C ---

2 - 20160' 
, 61 

C2 = 141120' 

1 
C --· 

3 - 560' 

/ 3 
C3 = 7840. 

Theorems 3.1 and 3.2 together with (3.1) and (3.2) are the main 
results of this section. 

Remark 3.1. For the two dimensional analysis of <pB and '1/JB stated 
above, Graham [Gl] originally proved (3.1) and 

(constant= 24/5), 

where the determination of the constant is due to [HKNl]. This result 

on :;(;B is refined one step further in [HKN2] to get Theorems 3.1 and 
3.2, where the first statement of Lemma 3.3 concerning the ambiguity 
of the Weyl invariants is crucial. 

Remark 3. 2. In the argument above, we have only considered the 
complete contractions of the form IIR(p,q) 11 2 , because these generate all 
Weyl invariants of weight w ~ 5, w =/= 3 (see [HKN2]). To state it more 
precisely, let I;; denote the vector space of all Weyl invariants of weight 

w which are well-defined modulo 06 -w(r), and set I;;= I;;/~, where 
~ stands for the equivalence relation of having the same boundary value. 

Then dimlf = dimi';w = dimfJV = 0, dim.If= 1 and dimff = 2. 
Bases of ii,W and Ir,w are given by the boundary values of 

respectively. Consequently, there are isomorphisms f;; ~ J~R for w ~ 5, 
w =I= 3. In the exceptional case w = 3, the CR invariant A~4 generating 

the space JfR is realized by the boundary value of a linear complete con­
traction, but the contraction is defined only up to 0 1 (r) (see [HKN2]). 

(B) Determination of the universal constants. We first write 

down ;{;B explicitly in terms of Moser's normal coordinate system z = 
(z1 , z2 ). It is sufficient to consider an expansion of ;{;B along the half-line 
Pt= (0, t/2) E (C2 (t > 0). Let F(a, b, c, d) be as in Lemma 3.1. Using a 
method which will be explained in Section 4, We have: 



190 K. Hirachi and G. Komatsu 

Proposition 3.1. Ast--+ +o along the half-line Pt= (0, t/2), 

;j;B = - 12 A~4 - (216 IA~412 + a1 A~5 + a2 A!4) t 

+ (F(660, 1116, a 3 , a 4 ) + a 5 A~6 + a6 A!5 + a7 A~4) t2 + O 3 (t), 

where aj for j = 1, 2, ... , 7 are constants independent of A EN. 

We next refine Lemmas 3.2 and 3.3. It is rather easy to see that 

(3.3) rF = t + O3 (t) as t--+ +o along Pt= (0, t/2). 

We have the following two propositions. 

Proposition 3.2. Ast--+ +0 along the half-line Pt= (0, t/2), 

where bj for j = 1, 2, ... , 7 are constants independent of A EN. 

Proposition 3.3. As t --+ +o along the half-line Pt = (0, t/2), 

IIR(4 ,2) 11 2 = 28 . 7 IA~21 2 + 28 F(50, 936, d1, d2) t + O2 (t), 

IIR(3 ,3) 11 2 = 28 . 3 IA~21 2 + 28 . 3 F(25, 243, d3, d4) t + 0 2 (t), 

where d1 , d2 , d3 , d4 are constants independent of A EN. 

Using these three propositions together with Lemma 3.3, (3.2) and 
(3.3), we can determine all universal constants in Theorem 3.1 and get 
Theorem 3.2. 

3.2 The complex Monge-Ampere asymptotics 

The proofs of the results stated in Section 2 and Subsection 3.1 
require knowledge of the construction and properties of the asymptotic 
solutions of the complex Monge-Ampere boundary value problem (1.13). 
In this subsection, we summarize these. In particular, we present the 
method of proving Proposition 3.2. After reviewing in the part (A) 
Graham's construction of his asymptotic solutions as in Theorem 1.3, 
we consider in the part (B) its expansion with respect to Moser's normal 
form coefficients A = (A:1/ We are then required to write down the 

linearization with respect to A, and this is done finally in the part (C). 
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(A) Construction of the asymptotic solution. We first recall 
Fefferman's construction [F2] of his defining functions rF of M C 80, 
which are locally defined smooth approximate solutions of (1.13). Start­
ing from an arbitrary smooth defining function p of M, we define rs for 
s = 1, ... , n + 1 successively by 

(3.4) ri = J[p]-1/(n+l) P, 

where Cs= s(n+2-s). Then rs are smooth defining functions satisfying 

(3.5)s (s = 1, ... , n + 1), 

and thus we may set rF = r n+l. In fact, ( 3. 5 )i holds, since J[ q> p] 
4>nHJ[p] + 0 1(p) whenever ¢ is smooth. Furthermore, (3.5)s implies 
(3.5)s+l for 1 :S s '.S n, since 

(3.6) J[r + q>rs+lj = J[r] + Cs+1<f>rs + os+l(p) (s = 1, ... , n + 1) 

whenever r is a smooth defining function of M satisfying J[r] = 1 + 
os(p). Note that Cn+2 = 0 and thus rn+2 cannot be defined by (3.4). 
Instead, the above equality (3.6) for s = n + 1 yields the uniqueness of 
rF modulo on+2(p). 

We next recall Graham's construction [G2] of his asymptotic solu­
tions u0 of (1.13), which are formal series of the form 

00 

r + r L '17k • (rn+l logrl 
k=O 

where 'IJk are functions of (z, z) smooth up to M. Starting from a 
Fefferman's defining function r = rF with the initial defining function p 
arbitrarily chosen, we set Un+l = r and define Us for s ~ n + 2 succes­
sively in such a way that each Us is a formal series as above (in fact, we 
can choose Us to be a finite sum) and satisfies 

(3. 7)s (s ~ n + 2), 

where os-0(r) stands for an error term of the form r 3 Lr=O '/]k. (logr)k. 
Obviously, (3.7)nH follows from (3.5)n+l· For the ambient metric g = 
(gf,;;) with potential r#, we define an approximate Laplacian by 

n - a2 
'"' "k ~[g] = ~ gJ 8z·8z ' 

j,k=O J k 
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Using this, we define a linear differential operator L = L[r] by 

L[r]f = ~[g] (lzol2 f) lzo=l · 

It follows that if Us satisfies (3.7)s then 

J[us + <l>s+l rs+l] = J[us] + L(<l>s+i rs+l) + os+i-0(r), 

where </>s+l is a formal series of the form I:;~0 7Jk•(logr)k. Thus (3.7)s+i 
is satisfied by Us+l = Us + </>s+i rs+l if </>s+i is subject to 

(3.8) 8 (s 2:: n + l), 

which is regarded as a linearized equation of J[u] = 1. If (3.8)s is solved 
for all s, then an asymptotic solution u0 is given by the formal limit of 
Us as s --+ oo. 

To solve (3.8)s for s 2:: n+l, we use the coordinate system (z', z', r, v) 
and try to determine successively the coefficients of the expansion 

</>s+l rs+l =LL c;,k[¢s+1J ri(logr)k, 
j?:_s k?:_O 

where c;,k [¢s+1] are smooth functions of (z', z', v ). Setting 

L = I + E with I = 8r ( r8r - n - 2), 

we see that E is a tangential operator in the sense that it does not contain 
differentiation with respect tor. Consequently, if we write (3.8)s as 

(3.9)s 

then the right side belongs to os-0 (r). Dropping the error term 
os+1- 0(r) in (3.9)s and regarding the result as an ordinary differen­
tial equation of the form If = g, we can determine all the coeffi­
cients c;,k[<l>s+i] uniquely provided Cn+2,0[¢n+2] is prescribed, a condi­
tion which exactly corresponds to the ambiguity of u0 . Therefore, u0 

is obtained as desired. 

(B) Dependence of the asymptotic solution on the normal 
form coefficients. For a surface in Moser's normal form N(A), let us 
use the real coordinate system ( z', z', PA, v). If we consider the Taylor 
expansions with respect to this coordinate system, then 

( #) the Taylor coefficients of rF modulo on+2 (p A) and those of 77f 
modulo on+i(PA) are polynomials in A. 
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This can be seen as follows. Starting from the defining function p = PA, 
we construct r = rF and u0 with Cn+2[</>n+1l = 0 by the algorithm given 
in the part (A) above. Then ( #) holds without error terms, and thus 
we may write rF = r~ and u0 = u1. The statement ( #) for general rF 
and uG follows from (lF) and (lG) in Subsection 1.3. 

To prove Proposition 3.2, we need to know the explicit dependence 
of r~ and u1 on A. We thus expand u1 in powers of A as follows (the 
expansion of r~ in powers of A will be discussed in the part ( C) below): 

00 

(3.10) 

where 7Jj,k['!Ps] = rJj,k['!Ps](z', z', v; A) are homogeneous polynomials of 
degree s in A such that the coefficients are polynomials in ( z', z', v). 
Regarding (3.10) as an asymptotic series in powers of A, we have: 

Proposition 3.4. There exists a unique asymptotic series u1 of 
the form (3.10) such that J[u1] = 1 and 1Jn+2,o := E~o 1Jn+2,o['!Ps] = 0. 

Proposition 3.4 is proved by constructing uls := Em:<,;s '!Pm for 
s E N0 , and the algorithm is actually used in the proof of Proposition 
3.2 (cf. [HKN2]). The construction is similar to that of U 8 in the part 
(A) above, and done as follows. First, u1 0 = 'l/io = PA follows from the , 
condition 7Jn+2,0 ['1/io] = 0. Fors> 0, we have by induction on s that 

where os+1 (A) stands for a term which does not contain polynomials 
of degree :::; s in A. (Here, p A is regarded as an independent variable, 
and the dependence of PA on A is not taken into account.) The above 
equality is written as a linear equation for 'l/Js (cf. (3.8) 8 in the part (A)): 

Therefore, 'l/Js and thus uls are determined inductively by solving this 

equation under the condition 1Jn+2,o['l/Js] = 0. 

(C) First variation of the Monge-Ampere equation. Let us 
next consider the dependence of r! on A EN. To prove Proposition 3.3 
in the previous subsection, we need to know r! modulo O2 (A) explicitly. 
Less precise information is required also in the proof of Theorem 2.1 (see 
Section 5 below). We thus consider r:A for a real parameter c, and seek 
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an approximate boundary value problem which characterizes the first 

variation~= (d/dc)r~Ale=o· 
We begin with a heuristic argument for an exact asymptotic solution 

u~ in place of a smooth approximate oner~, disregarding the difficulty 
due to the ambiguity of Fefferman's defining functions. Supposing as if 

. u~A were smoothly depending on c E JR small and had no singularity 

even on the boundary, we set u~ = (d/dc)u~Ale=o· Then, a relation 

characterizing u~ is obtained by taking the first variation of the formal 
boundary value problem 

(3.11) 

where D,e is a pseudoconvex side of N(cA). The first equality yields 

(3.12) L[p0 ] u~ = 0 in D0 . 

The second equality of (3.11) is written as u~A (z', z', u, v) = 0 evaluated 

at u = (lz'l 2+c FA(z', z', v))/2. Differentiating both sides of this equality 
with respect to c and evaluating the result at c = 0, we have 

-G( , , I ,
1
212 ) _ 1 Buff ( , -, I ,

1
2/ ) F ( , , ) uAz,z,z ,v ----0 z,z,z 2,v Az,z,v. 

2 u 

Recalling that ufl =po= 2u - lz'l 2 , we get 

(3.13) -G F UA =- A on 8D0 = N(O) ={po= O}. 

The function u~ is obtained by solving the linear equation (3.12) under 
the boundary condition (3.13). 

Returning to the original problem of expressing the first variation 
of r~, we have: 

Proposition 3.5. The first variation r~ = (d/dc)r~Ale=O exists 
and satisfies the approximate boundary value problem 

(3.14) L[po] ~ = on+ 1 (po) in Do, ~=-FA on 8Do = N(O). 

The problem (3.14) has a formal power series solution which is unique 
modulo on+2 (p0 ). 

The proof of the latter part of Proposition 3.5 above is done similarly 
to that of Proposition 3.4. 
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To give an explicit representation of ~, it is convenient to lift the 
problem (3.14) to (C* x Oo, Setting (Po)# = \zo\2 po, (FA)# = \zo\2 FA 
and (~)# = lzo\ 2~, we write (3.14) as 

(3.15) ~o(~)# = on+i ((Po)#), (~)#=-(FA)#+ 0 1 ((Po)#), 

where ~o = ~[go], which is the (negative) Laplacian with respect to the 
ambient metric g0 with potential (p0 )#- Solutions of (3.15) are given by 

where c8 = s(n + 2 - s), which are the same constants as those in (3.4). 
To see that the right side of (3.16) gives a solution of (3.15), we use the 
projective coordinates z0 = (0 , Zj = (j/(0 (j = 1, ... ,n). Then 

n-1 (0 0 1) 
(po)#= (o(n +(n(o - L !(11 2 and go= 0 -In-1 0 , 

j=l 1 0 0 

where In-l is the identity matrix. Noting that (go)-1 = g0 , we have 

82 82 n-1 82 
~o = -- + -- - I: --

8(0 8(n 8(n 8(0 j=l 8(j 8(j 

This expression permits us to compute the commutator 

where Z = L.j=O (j 8 / 8(i. Consequently, 

~o ((po)#~o(FA)#) = (po)#~g+1 (FA)# + Cs(Po);t~o(FA)#­

Therefore, (~)# in (3.16) satisfies (3.15). 

Remark 3.3. In proving Lemma 3.2 stated in the previous sub­
section, Graham [G2] uses essentially the same expression for~ as that 
for (~)# given by (3.16). 

§4 Microlocal calculus of the Bergman kernel 

4.1 Outline 

Proposition 3.1 is proved by using a method of Boutet de Monvel 
[Bl]-[B3] of computing explicitly the singularity of the Bergman kernel. 
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In this section, we briefly explain his method which remains valid in the 
n dimensional case (cf. Theorem 4.2 below). To get an alternative proof 
of Theorem 1.2, Boutet de Monvel and Sjostrand constructed in [BS] a 
Fourier integral operator AFIO with complex phase, which transforms 
the Bergman kernel of a strictly pseudoconvex domain n C en to that 
of a model domain n0 (cf. Example in Subsection 1.2). It might be 
difficult to derive information we need from A FIO. It would seem, for a 
general strictly pseudoconvex domain n, that there is no known system 
of differential equations which characterizes the Bergman kernel, and 
that this is a reason why the computation of the Bergman kernel was 
not so easy. 

Kashiwara discovered in [Kas] a system of microdifferential equa­
tions (i.e. pseudodifferential equations in the real analytic category or 
its complexification) which characterizes the Bergman kernel KB(z, z) 
up to a multiplicative constant. This system arises as the formal adjoint 
of a system which characterizes the singularity of the Heaviside function 
of the domain n (i.e. the characteristic function of n or its complexi­
fication) up to a multiplicative constant (cf. Theorem 4.1 below). The 
Heaviside function of the model domain n0 is transformed to that of n 
by a shift (or translation) operator Ashift(z,oz), and consequently, the 
operator A B(z, oz) which transforms the Bergman kernel of n0 to that 
of n is given by 

( 4.1) 
00 

AB= A*- 1 = L)l -A*)J 
j=O 

for A = A shift, 

where A* = A* ( z, Oz) is the formal adjoint of the shift operator A = 
A(z, Oz)- This formula, due to Boutet de Monvel, remains valid formally 
in the C 00 category. 

The operator AB is much simpler than the Fourier integral operator 
AFIO, because the shift operator A shift is completely explicit. However, 
we have to be careful with two points. We are now in a complexified 
world, so that z and z are independent variables. A point in ( 4.1) is 
that A shift = A shift ( z, Oz) is realized as a holomorphic operator, and it 
is convenient to regard Ashift as a (formal) microdifferential operator of 
infinite order. For such operators, usual definitions of the composition, 
the formal adjoint and the asymptotic expansion should be modified. 
Another point in ( 4 .1) is that AB acts on functions on no, while A* 
with A = Ashift acts on functions on n. Though we only consider as 
operands special types of functions related to the asymptotic expansion 
of the Bergman kernel as in the part (B) of Subsection 3.2, we need to 
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expand these functions in powers of A. Then the singularity on N(A) 
loses its role in the asymptotic expansions of operators and operands. 
We thus need to introduce the notion of weight for formal operators and 
operands. The formal setting in this sense is necessary even under the 
assumption that the boundary is real analytic. 

The proof of Proposition 3.1 is done by computing explicitly the 
necessary terms in the right side of ( 4.1). In the remaining part of this 
section, we describe briefly the justification of ( 4.1) and its application 
to the proof of Proposition 3.1, after a quick overview of the theory of 
hyperfunctions. 

4.2 Quick review of hyperfunction theory 

For a mild function f on IR, say, in the Schwartz class, let us consider 
the Cauchy integrals 

p±(z) := ~ f f(t) dt 
2m, JR. t-z 

for z E c±, 

where c± = {z E C; ±Imz > O}. According to the Plemelj formula, 
the boundary values J±(x) = p±(x ± iO) for x E IR exist and satisfy 
2 J± = ±f +i 1i[f], where 1i is the Hilbert transformation. In particular, 

(4.2) 

More generally, for a Schwartz distribution f E V'(IR), there exist 
p± E O(C±) such that the boundary values J± on IR exist in V'(IR) 
and satisfy ( 4.2). Consequently, f is realized by the pair F = (F+, p-) 
regarded as a holomorphic function in a disconnected open set c+ Uc-. 
We identify F1 , F2 E O(c+uc-) if F1-F2 extends holomorphically to C, 
and denote the quotient space by B(IR). Thus V'(IR) C B(IR). Elements 
of B(IR) are called hyperfunctions on R For FE O(C+ uc-), we regard 
(4.2) as a formal expression and write f E B(IR). Differentiation of 
f E B(IR) is then defined by that of FE O(C+ u c-), and the definition 
is compatible with that on V'(IR). 

The space B(X) of hyperfunctions on an arbitrary open set X CIR 
is defined similarly by taking an open set U C C such that X C U 
is relatively closed. Each element f E B(X) is realized by a function 
FE O(U\X), and two functions Fi, F2 E O(U\X) are identified when 
F1 - F2 extends holomorphically to U. The space B(X) is independent of 
the choice of U. Multiplication off E B(X) by a real analytic function g 
on X is then defined by that on F E O(U \ X) by the complex extension 
of g to a suitable U, and the definition is again compatible with that on 
'D'(IR). It is remarkable that the restriction mapping B(IR) -+ B(X) is 
surjective. 
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Example. The Heaviside function Y E V' (II~) is realized by a func­
tion FE O(C \ [0,oo)) satisfying f+(x) = (-1/21ri) logx for x > 0. 
Thus, the Delta measure 8 E V'(IR) is realized by the function -1/21riz. 
More generally, a class of distributions on an open set X C JR containing 
the origin is given by holomorphic functions on U \ X, with U as above, 
of the form 

<p(:) + 'lj.,(z) log z with £ E No and <p, '1j., E O(U). 
z 

For f E B(X), its support supp f is defined by the complement of the 
largest open subset of X on which f = 0. For a compact set K C X, we 
denote by BK(X) the totality off E B(X) such that supp f CK. Then 
BK(X) is identified with the dual of the space cw(K) of real analytic 
functions near K. Thus, elements of BK(X) are regarded as analytic 
functionals. Each element f E B(X) is expressed as a locally finite sum 
f = E fi such that supp Ji C X are compact. This gives an alternative 
definition of B(X), which remains valid in the higher dimensional case. 

For a Schwartz distribution f on an open set X C !Rn, there exist 
open convex cones r j C !Rn with vertices at the origin and functions 
Fi E O(X + iri) for j = 1, ... ,N such that 

(4.3) 
N 

f(x) = L Fj(x + irj0) for x EX, 
j=l 

where Fj(x + irj0) denote the limits of Fj(x + iy) as y - 0 with 
y E r j. Similarly for f E B ( X), and this property can be used as a 
definition of B(X), in which an arbitrary list of holomorphic functions 
(Fi, ... , FN) is considered. Let W FA(!) denote the analytic wave front 
set off E V'(X). Then for (x0 ,y) E T*X\0, we have (xo,Y) (/. WFA(f) 
if and only if there exists a representation off of the form (4.3) for x 
near xo such that y (/. LJ r], where rJ denote the (open) dual cones of 
rj. The microanalyticity off E B(X) is defined by this condition, and 
the singular spectrum off is defined by S.S. f = {(x, y) ET* X \ 0; f (/. 
A(x,y)}, where A(x,y) denotes the set of germs of hyperfunctions which 
are microanalytic in the direction (x,y). Thus S.S.f = WFA(f) for 
f E V'(X). 

A microlocal singularity (in the analytic category) of a hyperfunction 
is called a microfunction. That is, for f E B(X), a microfunction at 
(x, y) ET* X \ 0 is defined by f modulo A(x,y)• The equivalence class is 
denoted by [fl, and the totality of such equivalence classes is denoted by 
C(x,y)· Given a microfunction [fl E C(x,y), there exists FE O(X + ir) 
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with an open convex cone r such that y E r 0 and that f (x)-F(x+i ro) 
is microanalytic in the direction (x, y). Thus [fl is identified with the 
equivalence class [Fl of F(x + i ro). 

Differentiation of a microfunction [fl E C(x,y) is defined by using a 
holomorphic function F such that f(x) - F(x + ir0) is microanalytic, 
and similarly for multiplication by a real analytic function. These define 
the action of linear differential operators with analytic coefficients on 
microfunctions. It is also possible to define indefinite integration of [fl 
with respect to a variable, say 8;,1 at (x, y) with y1 =/- 0. The analogue 
of pseudodifferential operator in analytic category, acting on microfunc­
tion, is called microdiff erential opemtor. The symbol of a microdiffer­
ential operator of order mis a formal series P(z,l) = I:,";:_ 00 pi(z,l) 
of holomorphic functions on a conic open set n c T*Cn \ 0 such that 
each Pi is homogeneous of degree j in l and satisfies 

(4.4) IPi(z,l)I :'.S Ci/(-j)! for j < 0 

on each compact set KC 0, where CK > 0 is a constant. Near a point 
(x, y) E On T*JRn with Yn =/- 0, each Pi(z, l) admits an expansion 

j 

pj(z, l) = L L aka(z)("'l!-
k=-oo l<>l=j-k 

Thus replacing l by 8z we may define P(z, 8z)F(z) as a convergent 
series for each holomorphic function F(z) on a wedge X + ir such that 
X + ir0 c n. In this action the ambiguity of the indefinite integral a;} 
causes only a difference by a function that extends holomorphically to 
z = x. Thus the action of P(z, 8z) to [F(x+ir0)l E C(x,y) can be defined 
by the modulo class of P(z, 8z)F(z). 

Remark 4.1. A microdifferential operator of infinite order P(z, 8z) 
is also defined by giving the symbol 

00 

P(z,l) = L Pi(z,l) (pj E 0(0)), 
j=-00 

where each Pi is homogeneous of degree j in l- In addition to (4.4), it 
is required that 

(j E No, c > 0), 

where CK,e: > 0 is a constant. Thus P(z, 8z) is a local operator. In 
Subsection 4.4 below, we shall be coJ;J.cerned with a shift operator A= 
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A(z, 8z). Though A is not a local operator, we regard it as a formal 
microdifferential operator of infinite order. 

A far more precise description of the matters in this subsection is 
found in a book by Kaneko [Kan]. 

4.3 Kashiwara's characterization of the Bergman kernel 

Let O C en be a strictly pseudoconvex domain with a local defin­
ing function p which is positive in O and real analytic near a point 
p E 80, and let M C 80 be a small neighborhood of p. Setting 
X = en and denoting by X' the complex conjugate of X, we regard 
X x X' as the complexification of X identified with JR2n. Then p ex­
tends holomorphically to a neighborhood U C X x X' of M, and the 
complexification of Mis given by N = {p(z, z) = O} CU. We also have 
0 = {p(z,z) > O} C Xx X' and Ox ff C {Rep(z,z) > O} near M. 

The Bergman kernel KB = cpB p-n-l + 'l/;B log p near M has a multi­
valued holomorphic extension to U \ N (cf. Remark 1.3). Thus, setting 

u± = {(z, z) EU; ±lmp(z, z) > O}, 

we have KB E O(U+). Another multi-valued function on U \ N is 
defined by Y(p) = -(1/2ni) logp, and we have Y(p) E O(U+ u u-) 
which represents the characteristic function of O near M. Let us regard 
KB and Y(p) as elements of O(U+). Then these define hyperfunctions 
with the same singular spectrum 

_TMX = {(x, >-.dp(x)) ET* X; x EM, 0 /-).. E JR}, 

the conormal bundle of M. Similarly for multi-valued functions on U\N 
of the form 

m 

( 4.5) K = L 'P£ p-£ + 'l/; log p with 'P£, 'l/; E O(U), m E N. 
£=1 

For (x,y) = (x,dp(x)) E TMX, elements [K] E C(x,y) defined by K of 
the form ( 4.5) are called holomorphic microfunctions, and the totality of 
these is denoted by (CNIXxX' )(x,y)· In what follows, we omit the bracket 
in [ K] and regard K as a holomorphic microfunction. 

Action of microdifferential operators on C(x,y) preserves the subspace 

(CNIXxX' )(x,y)• Let KE (CNIXxX' )(x,y) such that cp /- 0 in (4.5). Then, 
for a microdifferential operator of the form P(z, 8z), there exists a unique 
microdifferential operator of the form Q(z, Eh) such that 

(4.6) P(z, 8z)K = Q(z, Eh)K. 
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Such an operator Pis generated by Zj and 8/8z1 for j = 1, ... , n. Using 
these generators, we get a system of equations of the form ( 4.6), and this 
system characterizes Kin (CNIXxx)(x,y) up to a constant multiple. For 

a general theory including these facts, see Sato-Kawai-Kashiwara [SKK] 
and Schapira [Sea]. 

A system characterizing the Bergman kernel can be written down 
explicitly. The following theorem is due to Kashiwara [Kas]. 

Theorem 4.1 ([Kas]). The Bergman kernel KB satisfies 

(4.7) 

whenever P(z,8z)Y(p) = Q(z,{h)Y(p) with Y(p) = (-1/21ri)logp, 
where P* = P*(z, 8z) and Q* = Q*(z, ch) are the formal adjoints of P 
and Q, respectively. 

In the next subsection, we shall give a procedure of constructing the 
solution to this system of equation by using Moser's normal coordinates. 

4.4 A formula of Boutet de Monvel 

In the previous subsection, we fixed a domain and considered micro­
differential operators of finite order. To study the shift operator A 
mentioned in Subsection 4.1, we need to define formal microdifferential 
operators of infinite order. These operators act on holomorphic micro­
functions of infinite order defined by setting m = oo in (4.5). 

It is non-trivial to define such operators, via the symbols, carrying 
the operations of taking composition, formal adjoint and inverse. We 
need to introduce the notion of weight for the variable z = (z1 , ... , Zn) 

by setting 

w(z1) = -1/2 (j = 1, ... ,n-1), w(zn) = -1, 

and extend it to 8z and the dual variable l = (6, ... , ln) of z by 

(j=l, ... ,n). 

(We do not consider the notion of weight for polynomials in A E Nin this 
subsection.) Then we may say polynomials P w ; 2 = P w ; 2 ( z, l, t;; 1) to be 
of homogeneous weight w/2. By a formal sum of such polynomials Pw;2 

with respect tow E Z bounded above, we define the (total) symbol of 
a formal microdifferential operator of infinite order. In other words, we 
regard the symbol as an asymptotic series of decreasing weight. For these 
operators, operations of taking the composition, the formal adjoint and 
the inverse are defined, as usual, by using weight in place of order. These 
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operations are compatible with those for microdifferential operators of 
finite order. 

We next define holomorphic microfunctions of infinite order. Again, 
it is necessary to introduce the notion of weight for holomorphic micro­
functions with support N(O) ={po= O} C Xx X by setting 

We consider asymptotic series of decreasing weight: 

(4.8) 
m 

K = L Kj;2 with w(K2jj) = 2/j, 
j=-= 

where Kj;2 E (CN(O)!Xx:X)(o,dzo)· Then we can define an action of formal 
m' 

operators of infinite order P(z, 8z) = I:j=-= Pj;2(z, 8z) to K of the 
form (4.8) by setting 

m+m' 

P(z, az)K = L Kj/2 with Kj/2 = L Pk;2(z, az)K£/2· 
j=-= k+£=j 

We refer to a series of the form (4.8) as a holomorphic microfunction of 
infinite order. 

Let us restrict ourselves to real analytic surfaces in Moser's normal 
form N(A) (A EN). To define the shift operator A by giving its symbol, 
we need the following: 

Lemma 4.1 ([Bl]). There exists a unique complex-valued defining 
function of N(A) of the form piM(z,z) = p0 (z,z) - HB(z,z'), where 
HB(z, z') are convergent power series of the form 

= 
HB(z,z')= L Ba13 (zn)z:z~, Ba13 (zn)=I:B:13 z;,. 

!al, l/31::::2 t=o 

The coefficients B = (B£-13 ) are polynomials in A= (A£-), and the trace 
a a/3 

conditions (1.3) are valid for Ba/3 (zn) in place of Aa/3 (v). 

With the defining function piM in Lemma 4.1, any holomorphic 
microfunction with support N(A) is written as 

(4.9) r.p p-m + 'lj; log p with p = p~M. 
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Let us expand (4.9) by using 

( ) 
00 ( )£ BM Hs 1 Hs 

log p B = log Po + log 1 - - = log Po - L £ -
Po bl Po 

The right sides are asymptotic series of decreasing weight, since Hs 
consists of terms of weight:::; -2. Consequently, we obtain an expression 
of (4.9) as a formal sum of holomorphic microfunctions with support 
N(O). The asymptotic series thus obtained uniquely determines the 
original holomorphic microfunction (4.9). We thus identify (4.9) with 
its asymptotic expansion of the form ( 4.8). 

Lemma 4.2 ([Bl]). Let A(z, 8z) be a formal microdifferential op­
erator of infinite order defined by the symbol 

A(z, () = exp[-Hs(z, -e /(n) (nl with ( = ((, (n)-

Then 

Lemma 4.2 is proved by direct computation using the relations 

(j = 1, ... , n - 1). 

Changing the notation slightly, we denote by K~ the Bergman kernel 
associated with the domain bounded by N(A). The singularity of its 
complex extension is again denoted by K~ = K~(z, z). Regarding it 
as a holomorphic microfunction, we can state the following theorem of 
Boutet de Monvel [Bl], which is used in the proof of Proposition 3.1. 

Theorem 4.2 ([Bl]). Let A(z, Bz) be as in Lemma 4.2. Then the 
formal adjoint A* is invertible as a formal microdifferential operator of 
infinite order, and the following equality holds: 

(4.10) K B -A*-lKB 
A - 0 · 

The invertibility of A* is a consequence of the fact that the symbol 
expansion of 1 - A* consists of terms of negative weight. In fact, the 
inverse A*- 1 is given by (4.1), because the right side of (4.1) makes sense 
as an asymptotic series of decreasing weight. The formula (4.10) follows 
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from Theorem 4.1, since K = A *-1 K[f satisfies the microdifferential 
equation P* K = Q* K whenever P = P(z, Oz) and Q = Q(z, ch) satisfy 

(4.11) 

In fact, by virtue of Lemma 4.2 and the commutation relation 

Q(z, ch) o A(z, oz)= A(z, oz) o Q(z, ch), 

it follows from (4.11) that 

(4.12) A-1 o Po AY(po) = QY(po). 

Then Theorem 4.1 yields A* oP* oA*- 1Krf = Q*K/!, so that P*K = 
Q* K. A point is that A-1 o Po A is an operator of finite order. This 
fact automatically follows from the relation (4.12). 

Let us next sketch the proof of Proposition 3.1 by using the formula 
(4.10) in Theorem 4.2. We consider the expansion of ;j;B along the half­
line Pt = (0, t/2) E C2 (t > 0): 

{fB(Pt) = F3(A) + F4(A) t + F5(A) t2 + · · ·. 

Then each Fj depends only on the terms in A *-1 of the form 

(4.13) (k=0,l, ... ,j-3). 

In addition, if we write A *-1 = 1 + E.i~-oo Qj/2 the expansion of A *-1 

of decreasing weight, then Fj is determined by Q-j• On the other hand, 

if we set A= 1 + E.i~-oo Pj;2 , then the trace conditions (1.3) for HiJ 

yield Pj;2 = 0 for j ~ -4, and thus A= 1 + E;;_00 Pj;2 • Using these 
facts, we can show that Q_3 , Q_4 and Q_5 are written as 

Q-3 = -P~3, 

The identification of Fj(A) given in Proposition 3.1 is done by computing 
explicitly the terms of the form (4.13) in each Q-j• 

§5 Parabolic invariant theory 

In this section, we outline the proof of Theorem 2.1. This amounts 
to reviewing the invariant theory of Fefferman [F3] supplemented by 
Bailey-Eastwood-Graham [BEG]. 
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5.1 H#-invariants of the curvature 

Recall that CR invariants are H-invariants of A E N (cf. (1.5)). 
To compare the boundary values of Weyl invariants with CR invariants, 
it is convenient to represent linear fractional transformations h E H by 
matrices h# with respect to the projective coordinates ( = ((0 , ..• , (n) 
used in Subsection 3.2, (C). Let H# denote the (parabolic) subgroup of 
SU (g0 ) given by 

where e0 = t(l, 0, ... , 0) E (Cn+l. Then each element h# E H# defines 

h E H such that A = ( det h' (0) )-l/(n+l). An H#-action on N is given 

by h#.A = h.A, and the definition of CR invariants (1.5) is written as 

To regard the boundary values of Weyl invariants as H#-invariants, 
we need to define H#-invariants of the curvature R of the ambient metric 
by using the H#-action on A EN. We first identify R with its Taylor 
expansion about e0 with respect to the coordinates ( = ((0 , •.• , (n)­
That is, given a domain with boundary in Moser's normal form N(A), 
we write R = (R013 )1al,l/31~2 for the components 

of the covariant derivatives of the curvature R evaluated at e0 , where a= 
o:1 • • • o:P and /3 = /31 • • · /3q are lists of holomorphic indices 0, 1, ... , n. 
We now introduce the notion of weight for the components R013 , as a 

generalization of that for Weyl invariants, by setting 

w(Ra/3) = w(o:/3) = llo:;II -1 with llo:/311 = t 110:111 + t 11/3111, 
j=l j=l 

where II0II = 0, IIJII = 1 for j = 1, ... ,n -1 and llnll = 2. 
Let us next restrict ourselves to the components R013 of weight ~ n. 

We then see, as in the proof of Proposition 2.1, that Ra/3 is a polynomial 

in A, so that we may write R 013 as Ra13 (A). Furthermore, 

(5.l)i Ra13 (A) is a polynomial in A of homogeneous weight w(o:/3), 

(5.l)z (-1 ~ w(o:/3) < 1). 
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These are seen as follows. Given h# = (h/) E H#, we consider the 
curvature corresponding to h#.A E .N. Then the components of weight 
:=:; n and of type (p, q) are transformed by 

(5.2) R0 _-"i3(h#.A) = _xp-l "Xq-l L ha a' h13f3' Ra,;s,(A) 
\a'\=p,lf3'\=q 

with A E C defined by h#eo = A eo, where ha a' = ha1 a~ ···hap a~ and 

h13131 = h131 f3~ · · · h13q f3~. The transformation law is thus weighted by the 
factor _xp-l-Xq-l. If in particular h# corresponds to a dilation <Pr, then 

Rafi(h#.A) = r-2w(afi) Rafi(A). Thus (5.l)i is obtained. The proof 

of (5.1)2 is simple. Since components of A E .N satisfy w(A~fi) 2:: 1, 

it follows that each Rafi(A) with w(aP) < 1 is a constant, which is 0 

because Rafi(O) = 0. 

Regarding Rafi E (C = IR+ i!R with !al, l,BI 2:: 2 as independent 

variables, we denote by Raux the totality of the points R = (Rafi)\a\,\f3\?:2 
satisfying 

(5.3) (-1:::; w(aP) < 1). 

Thus R aux is a countable dimensional real vector space. Truncating 
components of R = (Rafi) E Raux by w(aP) :::; n, we obtain an infinite 
dimensional vector space R~ux as the quotient space of Raux. This space 
R~ux admits an H#-action 

given by the right side of (5.2) with Ra'f3' in place of Ra1;s,(A). In fact, 

since hii = 0 for llill < !Iii!, it follows that the H#-action on R~ux above 
is well-defined. 

Returning to the components of the curvature R = (Rafi)la\,\f3\?:2, 

we write Rn(A) = (Rafi(A))w(afi)::;n and denote by Rn the image of 
the map .N 3 A 1--+ Rn(A) E R~ux. It then follows from (5.2) and the 
definition of the H#-action on R~ux that 

That is, the map A 1--+ Rn(A) is H#-equivariant and Rn is an H#­
invariant subset of R~ux. In what follows, we sometimes abbreviate the 
variable Rn E R~ux by writing R. 
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DEFINITION. A polynomial P = P(R) in R E R~ux is called an 
H#-invariant of Rn of weight w ::=; n if 

Two H#-invariants are identified if these are identical as functions on 
Rn. The totality of H#-invariants of Rn is denoted by Iw(Rn)-

For RE Raux, let us consider complete contractions 

(5.4) W(R) = contr ( R(Pi,qi) 0 · · · 0 R(p.,q.)) 

of the tensors R(p,q) = (R°'13)1al=P,IPl=q with respect to the flat metric 

g0 . Then W(R) is a polynomial in RE Raux of homogeneous weight. If 
w(W(R)) ::=; n, then W(R) depends only on RE R~ux because of (5.3), 
and thus W(R) gives an H#-invariant of Rn. We define Weyl invariants 
of Rn as linear combinations of the complete contractions of the form 
(5.4) which are of homogeneous weight ::=; n. Denoting by I;/ (Rn) the 
totality of Weyl invariants of weight w, we have I;/(Rn) C Iw(Rn) for 
w ::=;n. 

The surjection N 3 A 1--+ R(A) E Rn induces a map 

(5.5) Iw(Rn) 3 P(R) 1--+ P(R(A)) E I~R (w ::=; n). 

Therefore, Theorem 2.1 follows from: 

Theorem 2.1'. (I) The map (5.5) is surjective (and thus bijec­
tive}. 

(II) I;/ (Rn) = Iw(Rn) for W ::=; n. 

We outline the proofs of (I) and (II) in Subsections 5.2 and 5.3, 
respectively. 

5.2 Bijectivity of (5.5) 

The proof of the part (I) in Theorem 2.1' is done by giving the 
inverse of the map (5.5). We first note by w ::=; n that any Q(A) E JSR 
depends only on 

An = (A::a)w(a/3£):Sn for A= (A::a) EN, 

so that one may write Q(A) = Q(An)- Let Nn denote the totality of 
such An, that is, Nn = {An; A EN}. Then, R(A) E Rn for A EN 
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depends only on An E Nn, and thus the map N 3 A f----, R(A) E Rn 
induces a surjection 

(5.6) F: Nn 3 An f----, R(An) E Rn, where R(An) = R(A). 

This surjection is H#-equivariant, where the H#-action 

is well-defined from the H#-action on N. We have: 

Theorem 5.1. The surjection F in (5.6) is bijective and the in­
verse g = F- 1 extends to a polynomial map R~ux -+ Nn, in the sense 
that the components are polynomials in R E R~ux. (The map g is auto­
matically H # -equivariant.) 

Assuming for a while the validity of Theorem 5.1, let us first prove 
the bijectivity of the map (5.5). Given Q(An) E J;;]R arbitrarily, we set 
P(R) = Q(g(R)) for RE Rn, Then 

P(F(An)) = Q(g O F(An)) = Q(An), 

and the H#-equivariance ofQ implies P(R) E Iw(Rn)- Conversely, given 
P(R) E Iw(Rn) arbitrarily, we set Q(An) = P(F(An)) for An E Nn, 
Then 

Q(g(R)) = P(F o Q(R)) = P(R), 

and the H#-equivariance of F implies Q(An) E J;;]R. Consequently, the 
pull-back by g gives the inverse map of (5.5), and thus (I) in Theorem 
2.11 is proved. 

To prove Theorem 5.1, we extend the target space Rn of the map 
Fin (5.6) to R~ux_ That is, if we denote this new map again by F, 

(5.7) (and F(Nn) =Rn). 

Now note that F is finite dimensional in the sense that Nn is a finite 
dimensional vector space. Then the injectivity of F follows from the 
following proposition. 

Proposition 5.1. The differential F'(O) : Nn -+ R~ux of F in 
(5.7) at the origin is injective. Consequently, F is an embedding and 
Rn C R~ux is a finite dimensional manifold. (We are always working 
near the origin.) 

To complete the proof of Theorem 5.1, it remains to show that g 
extends to a polynomial map. By Proposition 5.1, we get an extension 
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of Q, 
R:ux 3 R ~ A(R) = (A~;a(R)) E Nn, 

such that each component A~;a(R) is a formal power series in R of ho­

mogeneous weight w(a/3£). In addition, the series A~;a(R) depends only 

on a finite number of components of R and is convergent near the ori­
gin. Using (5.1)2, we can remove monomials of degree > w(a/3£) from 
A~;a(R) without changing the value on Rn. The resulting polynomials 

give a polynomial extension of Q. 
We conclude this subsection by sketching the proof of Proposition 

5.1. Setting Rn = .r'(0)An, we wish to show that Rn = 0 implies 
An= 0. To express Rn= (R0 ;a) explicitly, we take Fefferman's defining 

functions rEA of N(cA) given in Subsection 3.2, (B), and denote by~ 
the first variation at c = 0. Then 

'Turning from 8c;, and 8< to 8z and {h, we see that the assumption Rn = 0 
is equivalent to 

(5.9) (w(a/3) ~ n, lal, l,BI ~ 2). 

On the other hand, we have seen in Subsection 3.2, (C) that ~ is 
uniquely determined modulo on+2 (p0 ) as a solution of the linear equa­
tion 

(5.10) Lpo(~)# = on+i(po), ~12u=lz'l2 = - L A~;az:z~vl. 
w(a;Bl)-5,_n 

Now An = 0 follows from (5.9) via (5.10). The proof is similar to that of 
the uniqueness of Moser's normal form, where the trace conditions (1.3) 
are used crucially. 

5.3 H#-invariants of Rn are Weyl invariants. 

Let T0 Rn denote the tangent space of Rn at the origin, and thus 

( ToNn = Nn as a set). 

Then the H#-action on Rn induces an H#-action on To Rn, which agrees 
with that on R~ux restricted to To Rn. The H#-invariants of To Rn is 
defined as in the definition of those of Rn, in which Rn is literally 
replaced by T0Rn. Now the proof of the part (II) in Theorem 2.1' is 
reduced to: 
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Theorem 5.2. Every H#-invariant of To Rn of weight :::; n is a 
Weyl invariant. 

Assuming the validity of Theorem 5.2 above for a moment, we first 
prove the statement (II). Let P(R) be an H#-invariant of Rn of weight 
:::; n. We denote by p(R) the lowest degree part of P(R). Then p(R) 
is an H#-invariant on To Rn. It then follows from Theorem 5.2 that 
there exists a Weyl invariant W(R) such that p(R) = W(R) on ToRn. 
Though W(R) differs p(R) from on Rn, the difference consists of terms 
of higher degree. Thus we can repeat this procedure and write P(R) as 

a sum of Weyl invariants. This proves (II). 
The proof of Theorem 5.2 requires a defining system of equations of 

ToRn. In view of (5.8), we have 

To Rn= {(Ra;a) E R~ux; Ra/3 = 8,;"of (~)#lea, A E Nn}-

From this expression, we obtain a defining system of T0Rn in terms of 
the variables (Ra;a) E R':,ux: 

(5.ll)i 

(5.ll)z 

(5.11)3 

Ra/3 = Rf3'a' (for any permutation a.' /3' of a./3), 

n n-1 

L gt' Rjak/3 = ROan/3 + Rna0/3 - L Rjaj/3 = O. 
~k=O j=l 

Here (ggI) = (g0 )-1 = g0 . The Hermitian symmetry (5.ll)i is equivalent 
to the fact that (~)# is real. The reduction rule (5.11 )2 is a consequence 

of the homogeneity of (~)# in ( and (. (Here we have set Ra/3 = 0 

if la.I :::; 1 or 1/31 :::; 1.) The relation (5.11)3 comes from ..6.0 (~)# = 
on+l((po)#) of (3.15). 

Disregarding the weight restriction, we consider H#-invariants of 

As far as H#-invariants of weight :::; n are concerned, an invariant of 
To Rn is an invariant of 1{, and vice versa. Consequently, Theorem 5.2 
is contained in a more general: 

Theorem 5.3. Every H#-invariant of 1{ is a Weyl invariant. 

Fefferman [F3] proved this result for invariants of weight :::; n - 19. 
The weight restriction was later removed by Bailey-Eastwood-Graham 
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[BEG]. The proof in [BEG] is constructive and gives an algorithm of 
writing the given H#-invariant as a linear combination of complete con­
tractions. In what follows, we explain this algorithm. 

Let R = (R013 ) E Ji. Then each R013 is written as a linear combina­
tion of 

-R, 
A -=R -a' {3' a'n· 00 n/3' 

where a' and /3' are lists of {1, ... , n - l} of length ~ 2, and the number 
of n is £. In fact, indices 0, 0, n in R013 can be deleted by repeated use 

. -R, -R, . 
of (5.11)2 and (5.11)3. Settmg Apq = (A013 )1al=v,l/3l=q, we regard 1t as 

a symmetric tensor on en-I of type (p, q). Then the U(n - 1)-action 

on A;q is the restriction of the H#-action to U(n - 1) C H#. Thus 

an H#-invariant P(R) can be regarded as a U(n - 1)-invariant P(A) of 

A!13 . (This procedure amounts to rewriting polynomials in Ras those 

in A!13 .) Using Weyl's invariant theory for U(n- l), we can write P(A) 

as a linear combination of complete contractions on cn- 1 , that is, those 

with respect to (8ik): 

(5.12) 

In addition, we can make so that these contractions do not contain 

From these contractions on cn-1 , we manufacture complete contractions 
with respect to the ambient metric g0 , depending on the degreed of the 
polynomial P(A), as follows. 

At first, let d < n. From the linear combination P(A) of complete 
contractions of the form (5.12), we make a partial sum consisting of 
terms corresponding to £1 = · · · = fd = 0, and replace the complete 
contractions there formally by those with respect to g0 : 

contr ( R(p,,q,) (8) ••• (8) R(Pd,qd)) . 

Then we get a Weyl invariant, which agrees with the given H#-invariant 
P(R). The proof of this fact requires careful examination of the H#­
action on complete contractions of the form (5.12). 

When d ~ n, we cannot expect this. In fact, if for instance an 
H#-invariant P(R) of degree d ~ n contains an alternating sum of n 
indices, then P(R) is not manufactured by the procedure above. We 
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thus proceed as follows. Let us first recall that, in the case d < n, we 

have formally replaced complete contractions with respect to (151k) by 
those with respect to g0 . That is, we have ignored the right side of 

n-l n '°' /51kT - + '°' g1 kT - - ,..,., - + T -~ jk ~ 0 jk - .LQn nO 

j,k=l j,k=O 

for an arbitrary tensor (T1k) of type (1, 1). Taking account of the right 

side, we now express complete contractions of the form (5.12) in terms of 
partial contractions with respect to g0 • That is, we manufacture tensors 
(Ta/3) by partially contracting R(Pi,qi) ® • • • igi R(Ps,Qs) in such a way that 

(5.12) is given by a linear combination of components of (Ta/3) of the form 

T0 .,.on--·nO•·•On·-:n· The indices 0 and O can be eliminated by repeated use 
of (5.11)2. We then get an expression of the given H#-invariant P(R) 
as a linear combination of components Tn···nn···n of (Ta/3). Let us recall 

by the definition of ToRn that Ra/3 = 8f8{(~)#leo• Likewise, Ta/3 are 

given by the "values" of formal power series at ea. Then Ta/3 are ex­

tended to jets at e0 , and the partial derivatives of the extensions of Ta/3 
make sense. If these are used as substitutes for the covariant derivatives, 
then a scalar is obtained by the complete contraction. We do this proce­
dure after some algebraic manipulations which are technical. Then the 
scalar above is a Weyl invariant, which coincides with the original H#­
invariant P(R) up to a multiple. It turns out that components of (Ta/3) 
other than Tn .. ,n ;:;; ... ;:;; do not contribute to the resulting Weyl invariant. 

§6 Full invariant expansion of the Bergman kernel 

So far, we have considered an invariant expression of the singularity 
of the Bergman kernel KB = <pBr-n-l + 'lj;B log r by using Fefferman's 
defining function r = rF. Because of the ambiguity of rF, it was only 
possible to express <pB modulo on+1(r) in general (Theorem 2.2), and 
'lj;B modulo O 2 (r) even in the case n = 2 (Theorems 3.1 and 3.2). In 
this section, we express 'lj;B modulo O00 (r) invariantly by using a special 
family of Fefferman's defining functions. (The details are found in [Hi].) 
That family, which we denote by R'f;0 , is parametrized by C 00 (8fl) and 
satisfies 

(6.1) r1 := I det <I>'l-2/(n+l)r2 o <I> E R~o,1 for r2 E R~o,2 

for biholomorphic mappings <I> : fl 1 -. fl 2 . This can be regarded as an 
exact transformation law of weight -1 without error. 
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In Subsection 6.1 below, we lift the Monge-Ampere boundary value 
problem (1.12) to a C*-bundle over n. Then the lifted problem admits 
asymptotic solutions which are similar to those of the original problem 
(1.12) in Theorem 1.3. Elements of R~0 are obtained as the "smooth 
parts" of these asymptotic solutions. Using r E R~0 , we define as before 
Weyl invariants, which inherit the ambiguity measured by R~0 . These 
Weyl invariants with ambiguity, together with r, are used in expressing 
a full expansion of 'lj;B in the Bergman kernel. 

6.1 A special family of Fefferman's defining functions 

Given a strictly pseudoconvex domain n with C 00 boundary, we take 
a thin one-sided neighborhood V c D of an and consider the following 
equation for a function U = U(z0 , z) on (C* x V: 

(6.2) 

In terms of differential forms, (6.2) is intrinsically written as 

(6.3) 

where dv = (n + l)!lzol 2ndzo /\ azo I\··· I\ dzn I\ CLZn. If U is of the form 
U(z0 , z) = lzol 2u(z), then (6.2) is reduced to the equation J[u] = 1. 
That is, (6.2) is a lift of the complex Monge-Ampere equation to the 
(C* -bundle (C* x V. The bundle structure on (C* x V is given by if!# in 
(2.3), where if! is a local (or formal) biholomorphic change of coordinates 
near a point of an. The transition function if!# preserves dv. Thus if!# 
preserves the equation (6.3) in the sense that if U2 satisfies (6.3) so does 
U1 = U2 o if!#. 

We consider asymptotic solutions to (6.2) of the form 

00 

(6.4) U = r# + r# L T/k · (rn+l logr#l with r# = lzol 2r, 
k=l 

where T/k E C00 (V), and r is a defining function of n, r > 0 in n. 
Let us identify two such formal series if the corresponding r and T/k 

agree modulo 0 00 (an). Then the totality of such asymptotic solutions 
is parametrized by C 00 (an) as follows. 

Proposition 6.1. Let X be a C 00 vector field on V which is 
transversal to an. Then, for any f E C00 (an), there exists a unique 
asymptotic solution U of the form (6.4) to the equation (6.2) such that 

xn+2rlan = f. 
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If U2 is an asymptotic solution of the form (6.4) in V2 => 8fh so 
is U1 = U2 o if!# in Vi => 8fh, where if! : V1 -+ V2 is a biholomorphic 
mapping satisfying <1!(801) = 802. This transformation law is rewritten 
as r1 = I <let <P'l-2/(n+1)r2 o if! and rJl,k = I <let <P'l 2krJ2,k o <P, where 

00 

Uj = (rJ)# + (rJ)# L rJJ,k • (r7+11og(rJ)#)k (j = 1,2). 
k=l 

For an asymptotic solution U to (6.2) of the form (6.4), we call r 
in (6.4) the smooth part of U, and denote by Rhn the totality of the 
smooth parts. Then the transformation law (6.1) for R~n is valid. In 
addition, each smooth part r is a Fefferman's defining function, that is, 
r satisfies J[r] = 1 + on+l(r). 

Remark 6.1. If we drop the subscript # from r# in (6.4), then we 
get Graham's asymptotic solutions (1.17) with rJ~ = 1. However, the 
transformation law (6.1) breaks down. Similarly, if we add the subscript 
#tor in rn+l logr#, then again (6.1) breaks down. 

6.2 A refinement of Theorem 2.2 

Starting from a Fefferman's defining function r E R~n, we construct 
Weyl invariants as in Subsection 2.2. That is, for the Lorentz-Kahler 
metric g with potential r# in a thin neighborhood CC* X V C CC* X n 
of CC* x 80, we consider the curvature R of g and successive covariant 
derivatives R(p,q) = 'vq- 2\7P-2 R. Then a Weyl invariant of weight w is 
defined as a linear combination of the complete contractions of the form 

By definition, a Weyl invariant W # is a functional of r E R~n, and thus 
we write W# = W#[r]. As in Section 2, we also use this terminology 
for the composite function (z0 , z) 1--+ W#[r]. We denote the restriction 
of W#[r] to z0 = 1 by W[r], and still call it a Weyl invariant. It follows 
from the construction that the transformation law (6.1) for R~n implies 

W[r1] = I det <I>'l 2w/(n+l)Wh] o if! 

for a Weyl invariant of weight w, cf. (2.4) in Subsection 2.3. 
With r E R~n, let us consider the expression (1.10) in Theorem 1.2 

for the Bergman kernel. Observe that 'lj;B is uniquely determined modulo 
0 00 (r) and independent of the choice of r. Nevertheless, we regard 'lj;B 
as a functional of r E R~n and write 'lj;B = '1/JB[r]. Then we have: 
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Theorem 6.1. For each j 2:: n + 1, there exists a Weyl invariant 
Wj of weight j such that if r E Rho then 

00 

7PB[r] = L Wk+n+dr]rk mod 0 00 (r). 
k=O 

That is, for each m > 0, 'lfB[r] = I::=o Wk+n+dr] rk mod om+ 1 (r). 

This theorem refines Theorem 2.2 (cf. Remark 6.2 below). 

6.3 Generalization of the CR invariant 

Recall that Theorem 2.2 follows from Theorem 2.1. In order to refine 
Theorem 2.1, we need to generalize the notion of CR invariant taking 
account of the ambiguity described by Rho· Let us begin by recalling 
that Proposition 6.1 gives a bijection C 00 (an) - Rho as far as a vector 
field X is specified. For a reference point p E an, this parametrization 
is localizable to a neighborhood of p, but we rather consider formally. 
We have a bijection Cen,p - Rho,p, where cihl,p and Rho,p denote 
the spaces of all Taylor expansions about p of elements of C 00 (an) and 
Rho, respectively. Thus Cen,p and Rho,p consist of formal power series, 
though the notation Cen,p might be somewhat confusing. 

The family Rho,p satisfies a formal transformation law correspond­

ing to (6.1), and this transformation law is transplanted to Cen,p· To 
write it down explicitly, we assume that an near p is in Moser's normal 
form N(A), and take X = a/apA with respect to the coordinate system 
( z', z', p A, v). Each element f E C00,P is written in the form 

f ( I 1 ) _ ~ c£ I 1 £ 
Z , Z , V - ~ a/3 Z°' Z/3 V . 

a,/3,£ 

We denote by C the totality of collections of the coefficients C = (C!13). 

Thus Coo,p is identified with C. If r E Rho,p is in the image of f under 

the bijection C00,P - Rho,p, then 

a,(3,.e,m 

where P!f](A, C) are polynomials in (A, C) E N x C. We thus write 

r = r(A, C), and use the notation Ri(A) for the totality of r = r(A, C) 

with (A, C) EN x C. Thus Rho,p is identified with Ri(A), and we have 

a bijection C - Ri(A) as far as A EN is specified. 
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The H-action (1.4) on N extends to that on N x C as follows. For 

(A, C) EN x C and h E H, we define (A, C) = h.(A, C) by A= h.A 

and r(A, C) = I det E~,A1-2/(n+l) r(A, C) oh, where Eh,A is defined by 

(1.4)'. Then we have, as a generalization of (1.4), a group action 

(6.5) H x N x C 3 (h, A, C) 1--+ h.(A, C) EN x C, 

which is regarded as a transformation law for C00 ,P parametrizing R~n,p· 
We now recall that CR invariants are defined by (1.5). This notion 

is generalized as follows. Let I2R(C) denote the totality of polynomials 
Pin (A, C) EN x C such that 

P(A, C) = I det h'(O)l 2w/(nH) P(h.(A, C)) for any h EH. 

Then I2R = Iw(N) C Iw(N X C) = I2R(C), where Iw(N X C) stands for 
the space of H-invariants of N x C, and similarly for Iw(N). As in the 
case of CR invariants, elements of I2R(C) can be identified with smooth 
( C 00 or real analytic) functions on 8D. 

6.4 Boundary values of C-dependent Weyl invariants 

We want to refine Theorem 2.1 in such a way that the refinement 
implies Theorem 6.1. As in the previous subsection, let us consider a 
surface in Moser's normal form N(A), and take X = 8/apA with respect 
to the coordinate system (z',z',PA,v). For a Weyl invariant W = W[r] 
of weight w, the value at the origin is a polynomial in (A, C). We thus 
write it as W ( A, C), and denote the totality of these polynomials by 
i::! (N x C). Let I::! (N) denote the totality of W(A, C) E I::! (N x C) 
which do not contain the variable CE C. Then Proposition 2.1 implies 
I::! (N x C) = I::! (N) for w ::=:; n, and Theorem 2.2 is restated as 

t:: (N X C) = t:: (N) = I~R for w ::=:; n. 

Improving this, we have: 

Theorem 6.2. For any w E N0 , I::! (N x C) = I2R(C) and thus 
I::! (N) = I2R. 

Theorem 6.3. If n 2'. 3, then I::! (N x C) = I::! (N) for w ::=:; n + 2 
and I::1+-3 (N x C) =/- I::1+- 3 (N). If n = 2, then I"'tj (N x C) = I"'tj (N) for 

w :S: 5 and [f(N x C) =J i;;'(N). 

In the case n = 2, these theorems imply I::! (N x C) = f:/ (N) = I2R 
for w ::=:; 5 (cf. Remark 3.2). 
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Remark 6.2. By direct computation, we can show that if n = 2 
then W6 (A, C) ff. if (N) for the Weyl invariant W6 in Theorem 6.1. 
This fact will be published elsewhere. 

Theorem 6.1 is proved by using Theorem 6.2 if we recall the proof of 
Theorem 2.2 which uses Theorem 2.1. In the next subsection, we outline 
the proof of Theorem 6.2, which is analogous to that of Theorems 2.1. 
We omit the proof of Theorem 6.3, which is technical and consists of 
careful inspection of the proof of Theorem 6.2. 

6.5 C-dependent invariant theory 

Recalling that Theorem 2.1 follows from Theorem 2.1' at the end of 
Subsection 5.1, let us first formulate a substitute for Theorem 2.1'. We 
have to remove the weight restriction by using .N x C in place of .N. 

For a surface in Moser's normal form N(A) with X = 8/opA, we 
taker= r(A, C) E Ri(A) and consider the curvature R of the Lorentz­
Kahler metric g with potential r#. As in Subsection 5.1, we identify R 
with the collection of the components Ra/3 of the covariant derivatives 

at e0 , and write R = (Ra"li). Then each Ra/3 is a polynomial in (A, C) E 

.N x C. We thus write Ra/3 = Ra73(A, C) and define a map 

:F: .N x C 3 (A,C) f--+ R(A,C) E Raux, 

where R(A, C) = (Ra13(A, C)), and set R = :F(.N x C). This map :F and 

Rare refinements of the map in (5.7) and Rn. 
Let us recall that the H#-action on .N induces that on Rn via (5.2). 

Likewise, the H#-action on .N x C, defined by h#.(A, C) = h.(A, C), 
induces that on R. Thus we can define H#-invariants of weight w on 
R, and we denote the totality of these by Iw(R). The map :Fis H#­
equivariant and induces an injection 

:F*: Iw(R) 3 P(R) f--+ P(:F(A, C)) E Iw(.N x C) = I~R(C), 

which corresponds to the map in (5.5). Let I';'; (R) denote the subspace 
of Iw(R) consisting of elements which are given by linear combinations 
of complete contractions of the form (5.4) of weight w. Then we can 
state a substitute for Theorem 2.1' as follows. 

Theorem 6.2'. (I) The map :F* is bijective. 
(II) Iw(R) = I';'j(R) for each w E No. 

Theorem 6.2 follows from Theorem 6.2'. 
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As in the case of Theorem 2.1', the proof of (I) is reduced to proving 
the injectivity of F'(O). 

The statement (II) for w ::; n is equivalent to that in Theorem 2.1', 
and most parts of the proof work as well for the case w > n. The point 
is to show 

(6.6) I;j (ToR) = Iw(ToR), 

where T0R c naux is the tangent space of'R at 0. In Subsection 5.3, we 
outlined the proof of (6.6) for w::; n, where (5.11)3 was used crucially. 
The equality (5.11)3, stating that (Ra/3) is trace-free, follows from the 
equation 

(6.7) 

where ~o and (po)# are those in (3.15). To prove (6.6) in the case 
w > n, we need to compute explicitly the error term on+1 ((p0 )#) of 
(6.7) when~ is replaced by 

r A,C = ! r(e:A, e:c{s=O. 
The result is: 

A - n+1An+2-
uoTA,C = Cn µ LJ.o r A,C, 

(-1t+1 
where Cn = ( )'2 n+ 1. 

Using this equality in place of (6.7), we can remove the restriction w::; n 
in the argument of Subsection 5.3, and obtain (6.6) with the aid of the 
invariant theory of [BEG]. 

Remark 6.3. In general, the Weyl invariants Wk in Theorem 6.1 
are not uniquely determined, since there are linear relations among the 
boundary values of complete contractions of the form (2.1). For instance, 
in the case n = 2, the boundary values of IIR(4 ,2) 11 2 and IIR(3 ,3) 11 2 are 
linearly dependent (and, accordingly, Theorem 3.1 includes two expres­
sions for W4 and Ws). Under the terminology of this section, IIR(3 ,3 )11 2 

and IIRC2 ,4) 11 2 are polynomials on naux such that the restrictions to the 
submanifold R are linearly dependent functions. 

The situation is similar for the Weyl invariants Wk in Theorem 2.2, 
though we do not know specific examples of non-uniqueness. (Note that 
IIR(3 ,3) 11 2 and IIR(2 ,4 ) 11 2 for n = 2 are irrelevant to Theorem 2.2 because 
of the weight restriction.) It should be mentioned that a basis of Weyl 
invariants of degree d < n is given in [BEG]; in particular, it is shown 
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that, if d = 2 < n, then IIR(p,q) 11 2 (p 2". q 2". 2) form a basis of quadratic 
Weyl invariants. 
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