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§1. Introduction and results 

We consider the following system of wave equations 

(1.1) 

where De= (1/c2)82 /8t2 - -r:,;=1 8 2 /Bx; and C1 and C2 are positive con­
stants. We assume that f(·, •) and g(·, •) are in C 00 . In what follows, we 
shall study the singularities of the solutions to (1.1) when the solutions 
are 'conormal distributions' to some hyperplanes. Before the statement 
of main theorems, we define conormal distributions. 

Definition (Conormal distributions). Let O C !Rn be a domain. 
Let £ be a C 00 -manifold in n. We call that U is in H 8 (L, 00) in O if 

M1 o M2 o · · · o Miu E Hz80 c(O) for l = 0, l, 2, ... , 

where each Mj is a C00 vector field which is tangent to L. 

We can define the space of conormal distributions not only for a 
C 00-manifold but also for a union of two hypersurfaces which intersect 
each other transversally. 

Now we shall state the main results. Let w E sn-l and Lij = 
{(t,x) E !Rn;cit + (-l)Jw · x = O} for i, j = 1, 2. 

Received December 25, 1992. 



218 K. Kato 

Theorem 1. Let n be a neighborhood of the origin of IR.n+l, i = 1 
or 2 and j = 1 or 2. Suppose that u, v are in H{"0 c(n) for s > (n + 1)/2, 
u and v are solutions to (1.1) and 

u, V E H 8 (Lij, oo) inn n {t < O}, 

then 

u, v E H 8 (Lij, oo) in K 

where K is the domain of dependence with respect ton n {t < O}. 

Theorem 2. Let· n be a neighborhood of the origin of IR.n+l and 
i, i', j, j' EN with i +i' = 3, j + j' = 3. Suppose that O < c1 < c2, u, v 
are in Hi"oc(n) for s > (n + 1)/2, u and v are solutions to (1.1) and 

then 

u, v E H 8 (Lij ULi'j ULij' ULi'j',oo) in K 

where K is the domain of dependence with respect ton n {t < 0}. 

Theorem 3. Let n be a neighborhood of the origin of ]Rn+l and 
i, i', j, j' E N with i + i' = 3, j + j' = 3. Suppose that O < c1 < c2, u, v 
are in Hi80 c(n) for s > (n + 1)/2, u and v are solutions to (1.1) and 

u, v E H 8 (Lij U Lij',oo) inf! n {t < O}, 

then 

where K is the domain of dependence with respect to n n { t < 0}. 

J.M. Bony has obtained the same result for scalar strictly hyperbolic 
equations in [3). So our results are not full of originalities. But the author 
believes that our proofs are new and simple. 

§2. Proof of Theorem 1 

We set M = tat + x · Bx and Mk = Wk8t + ci8Xk for k = 1, ... , n. It 
is easy to prove the following proposition. 
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Proposition 1. Mi, ... , Mn are linearly independent on ~n+l 
and M, Mi, ... , Mn are linearly independent on ~n+l\Lij· 

Proof of Theorem 1. 

(2.1) 

• (Mu) =[• ,M]u+Mf(u,v) 

=2• u+Mf(u,v) 

=2f(u,v) + Mf(u,v). 

Similarly we have 

(2.2) • (Mu)= 2g(u,v) + Mf(u,v). 

Since u and v are in Hi'30 c(n), we have that 2f(u,v) + Mf(u,v) and 
2g(u,v)+Mf(u,v) are in H1~-;;1(n) and Mu, Mv are in H1~c(nn{t < O}). 
Using the energy estimate for Dc1 and Dc2 , we consequently have that 
Mu, Mv E H1~c(K). Repeating this argument, we have 

(2.3) 

It is easy to see that 

(2.4) 

(2.3) and (2.4) yield Theorem 1. 

§3. Proof of Theorem 2 and Theorem 3 

Proof of Theorem 2. We put Ma= t8t + (x - a)· Bx for a E ~n. 

Using the same argument as in the proof of Theorem 1, we have 

(3.1) M!u, M!v E Ht'oc(K) for Va with a· w = 0 and 'vl EN. 

We divide K\ LJ:,j=i Lij into the following three parts, 

Ki = {(t, x) EK; cit - w · x > 0, cit+ w · x > O} 

K 2 = {(t, x) EK; cit - w · x < O, c2t - w · x > O}U 

{(t, x) EK; c2t + w · x > O, cit+ w · x < O} 

K3 = {(t,x) E K;c2t-w · x < 0 or c2t +w · x < O}. 

We prove first that u, v E C 00 in Ki. Let (to,xo) be any point in Ki. 
Let (to, xo, To, eo) be any point in T(~o,xo) \o. We use the same argument 
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as in the proof of the main theorem of M. Beals [1]. If Ma is elliptic at 
(to, x0, To, €0) for some a E ~n, then from {3.1) we have 

(3.2) +1 ( ) u,vEH8 at to,xo,To,€0. 

When Ma is not elliptic at {to, Xo, To, €0) for all a E ~n, De1 and De2 are 
elliptic at {to, x0, To, €0). In fact, we can choose ao E ~n with ao · w = 0 
such that c~t~ - lxo - aol 2 > 0. Then we have 

c1to (:1 ITol - l€ol) < tolTol - l€ollxo - aol 

= l€o · (xo - ao)l - l€ollxo - aol 

::::; 0. 

The same argument works for De2 • Hence 

{3.3) u, v E Hs+l at (to,Xo,To,fo). 

From {3.2) and {3.3), we have 

u, v E Hs+l at {to, xo). 

Repeating this argument, we have 

{3.5) u, VE C 00 at (to, xo)-

Next we prove that u, v is in C00 on K2. Let {to, xo) be any point 
in K2. Let {to, xo, To, fo) be any point in T(*t )\0. When Ma is elliptic o,xo 
at (t0,x0,T0,fo) for some a E ~n, then from {3.1) we have 

{3.5) u, v E Hs+l at (to, Xo, To, €0)-

When Ma is not elliptic at {to, x0 , To, €0) for all a E ~n, the same method 
as in the first step proves that De2 is elliptic at {to, xo, To, €0). So it 
suffices to show that De1 is elliptic at {to, xo, To, €0). Since Toto+ (xo -
a). €0 = 0 for all a E ~n with a. w = o, Toto+ Xo. €0 =a. eo = 0. Then 
a· €0 = 0 for all a E ~n with a· w = 0. Hence€ is parallel tow. We 

decompose x 0 = x~1) + x~2) such that x~1) is parallel to w and x~2) is 

perpendicular tow. We put ao = x~2). Hence xo - a0 = x~1) is parallel 
tow. Since c~ltol2 < lxo - al 2 for all a E ~n, we have 

c1to (:1 ITol - l€ol) > tolTol - lfollxo - aol 

= tolTol - l€o · (xo - ao)I 

= 0 {since toTo - €0 · (xo - ao) = 0). 
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Consequently we have 

(3.6) u, v E H 8 +2 at (to,xo,ro,~o). 

From (3.5) and (3.6), we have 

u, v E Hs+l at (to, xo). 

Repeating this argument, we have 

(3.7) u, V E c= at (to, Xo). 

The same argument for u in the second step yields that 

(3.8) u,v E c= in K3. 

(3.1), (3.4), (3.7) and (3,8) imply Theorem 2. 

We can prove Theorem 3 by the same argument as in the proof of 
Theorem 2. 
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