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Absolute Continuity of the Essential Spectrum 
for some Linearized MHD Operator 

Takashi Kako 

§1. Introduction 

The magneto hydrodynamic (MHD) motion of plasma is described by 
the system of equations which consist of the compressible Euler equation 
and the reduced Maxwell equation with the mutual interaction terms 
given by the Lorenz force and Ohm's low. Related to the plasma con­
finement experiment, the study of the behavior of plasma motion around 
the equilibrium is very important. The MHD motion in the vicinity of 
the equilibrium is described by the following linearized MHD equation: 

(1.1) 
a2t . 

Po at2 =-Kt= grad{'YPo(d1vt) + (grad Po)· 0 
+ B 0 x rot(rot(B0 x t)) - (rot Bo) x rot(Bo x t), 

for the Lagrangian displacement vector field t : 0 C R 3 ---, R 3 . Here, 
the equilibrium quantities p0 ( =density), P0 ( =pressure), Bo ( =magnetic 
field), are given bounded smooth functions which satisfy the equilibrium 
condition: 

grad Po= Jo x B 0 , div Bo= 0, 

(1.2) with Jo = rot Bo ( =electric current density), 

Po 2: cp > 0, Po 2: cp > 0 : arbitrary. 

We assume in (1.1) that the specific heat ratio I is a positive constant. 
We impose a slip condition: t · n = 0 on the boundary 80 where n is 
the unit normal on the boundary. 

In this paper, we shall study some spectral properties of the operator 
ic;1K in a Hilbert space L2 (0;p0dr) 3 . In particular, we shall prove the 
absolute continuity of the essential spectrum and the discreteness of the 
embedded eigenvalues in the continuum under some assumptions on the 
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shape of the region n and the symmetry of the equilibrium. We assume 
hereafter that n is a fl.at torus in R 3 : 

f2 = {(x,y,z): x,y,z ES= R/21rZ} = S3 • 

We consider the equilibrium where the quantities Bo and Po depend only 
on one variable x. Then, these one-dimensional equilibrium quantities 
are given as: 

B0 = (O,b(x)sin¢(x),b(x)cos¢(x)) 

Po= c - .!_b(x)2 , 
2 

where b(x) and ¢(x) are arbitrary smooth functions with the property: 

b(O) = b(21r), ¢(0) = ¢(21r) mod 21r, 

and c is a sufficiently large positive constant. Due to the symmetry of 
the coefficients, we can decompose e into (m,n) Fourier modes: 

eimy+inz e( X), m, n : integers 

and the force operator p0 -l K is realized in the decomposed space as a 
selfadjoint operator with a form (see Kako [1]): 

(1.3) 

where A, B, B* and Care differential/multiplication operators given as 

(1.4) 

with 

(1.5) net,= n(cos<f>) + m(sin¢), met,= m(cos¢) - n(sin¢). 
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We can construct a selfadjoint operator p0 - 1 Kin L 2 (S; p0 dx) 3 with the 
resolvent expression: 

( 
E-1 -E-1 Bc- 1 ) >. >. >. 

Po, 
-c-1 B* E-1 c-1 + c-1 B* E-1 Bc-1 >. >. >. >. >. >. 

where E>. = A>. - BC~ 1 B* with A>. = A+ Apo and C.>. = C + Apo (see 
Kako [1]). 

§2. The essential spectrum of p01 K 

From the resolvent expression {1.6), we can extract some spectral 
properties of the operator Po 1 K such as the range of the essential spec­
trum. 

Theorem 2.1 (Kako [1]). The operator p01 K has a natural self­
adjoint realization in the Hilbert space L 2 (S; p0 dx)3, and the essential 
spectrum of Po1 K consists of CT A and as with 

CT A = { A : A = WA ( X), 0 :$ X :$ 271"} 

and 

(2.1) as={>..: A= ws(x), 0 S x S 21r}, 

where 
WA = b2n// Po (Alfven frequency) 

and 

(2.2) ws = WA"f Po/(b2 + 7P0 ) (slow magnetosonic frequency). 

The proof of this theorem is based on the following expression of the 
resolvent: 

(2.3) 

with G = A;:} B and G* = B* A;}. Where the remainder R1 is a trace 

class operator in L2 (S; p0 dx) 3 and G is a Hilbert-Schmidt class operator 
from L2 (S; p0dx) 2 to L 2(S; p0dx ), and F.>.0 is a multiplication operator: 

(2.4) 
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Introducing unitary operators U and U* in L 2 (S; p0 dx) 3 as 

(2.5) U -1 ( 0 = Po exp -G* 
G) d, U* -1 ( 0 0 an = Po exp G* -G) 

0 ' 

we have 

( -1 )-1 * (0 0 ) (2.6) U Po K + >.o U = O F~1 Po+ R2, 

where R 2 is a trace class operator which maps L2 (S; podx)3 to the 
Sobolev space of order two: H 2 ( S; p0 dx )3. Applying the trace class 
perturbation theory (see Kato [2]), we can prove that there exists an ab­
solutely continuous spectrum which consists of the union of the ranges 
of functions WA(x) and ws(x) (see Kako [1]). 

§3. Application of Mourre's estimate 

We shall apply Mourre's commutator estimate to the present prob­
lem and prove the discreteness of embedded eigenvalues in the contin­
uum as well as the absolute continuity of the continuous spectrum in 
the complement of eigenvalues under the following assumption. 

Assumption. The functions WA and w8 are smooth and a number 
of critical points x'.Hk), k = 1, 2, ... ,Mand x8(l), l = 1, 2, ... , N: 

w~(xA(k)) = w~(xs(l)) = 0 

are finite. 

We define functions HA(x) and Hs(x) as 

Let T be an unitary operator from L 2 (S;p0dx)3 to L 2(S)3 : 

(3.1) 

Then the operator Tp,;1KT- 1 = p0112 Kp0112 is unitarily equivalent 
to p01 K. We denote this selfadjoint operator in L2 (S)3 by K'. We 
introduce a conjugate operator H to K' as 

(3.2) 
0 

H' (x)_!!:_ + _!!:_H' (x) A dx dxA 

0 

0 ) 0 . 
H' (x)_!!:_ + _!!:_H' (x) S dx dx S 
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Proposition 1. Under the assumption of the smoothness of w A 

and ws, the operator iH with domain: 

V(iH) = {! : f =U1, h, h)t' !k E L2(8), k = 1, 2, 3, 

H~(x) !h, H~(x) d~fa E L 2 (8)} 

is skew selfadjoint in L 2 (8) 3 

Proof. Let a(x) be a real valued continuously differentiable func­
tion. We claim that an operator A defined as 

V(A) ={!: f E L 2 (8), a(x) d~f E L 2 (8)} 

Af =i(a(x) !t + d~ a(x)f) 

is selfadjoint. In fact, for f,g E L 2 (8) with the property that a(x)..!!:_g, 
dx 

d 
a(x) dxf E L 2 (8), we have 

(3.3) f d -ls dx (a(x)g(x)f(x))dx = 0. 

Using this identity, we can prove that A is closed and symmetric. The 
denseness of the range of A ± i can be shown in the standard way. 

Q.E.D. 

Let E(·) and Eo(·) be spectral resolutions of D = (K' + .X0 )-1 and 

(0 o ) (0 0 0 ) Do= O p-1 Po= 0 HA(x) 0 . 
>-o O O Hs(x) 

Then the commutator [H, Do] = H Do - D 0 H between H and Do can 
be calculated as 

(3.4) HD0 - D0 H = (~ 2H:(x)2 ~ ) • 

0 0 2H~(x)2 

This operator is nonnegative. Using Proposition 1 and this expression 
of the commutator [H, Do], we can prove the following lemma. 
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Lemma 2. Let ~ C R be such that 

(H.41(~) U H81(~)) n {xA.(k)}f=1 n {xs(l)}/'!1 = 0 

and also let the intersection between ~ and the point spectrum of ( K' + 
Ao)-1 be empty. Then we have the following Mourre type estimate: 

(3.5) E(~)[H, D]E(~) ~ aE(~) + Q, a > 0, 

where Q is a compact operator. 

Proof. Since D - Do is compact, E(~) - Eo(~) is also compact. 
Furthermore, (D - D0 )H is a compact operator in L2 (S)3 , since the 
difference D - Do is bounded from L2 (S)3 to H 2 (S)3 • Hence we have 
that the operator E(~)[H, D]E(~) - Eo(~)[H, Do)Eo(~) is compact. 
Using the non-negativity of the commutator [H, Do) and the assumption 
for the interval ~, we have the estimate (3.5). Q.E.D. 

From this lemma, applying the results of Mourre (see [4, Theorem 
4.7 and Theorem 4.9] and [3]), we have the follwing theorem. 

Theorem 3. Let~ be as in Lemma 2. Then the operator (K' + 
Ao)- 1 restricted to the subspace E(~)L2 (S)3 is absolutely continuous 
except for some discrete set. The absolutely continuous part is unitarily 
equivalent to a part of the multiplication operator Fi:o 1 Po. 

From this theorem, we can have the corresponding results for the 
absolute continuity of the continuous spectrum of Po1 K and the unitary 
equivalence between the absolutely continuous part of the operator p01 K 
and the multiplication opetator Po1 Fo. 
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