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H!'-Blow up Solutions for
Peker-Choquard Type Schrodinger Equations

Hitoshi Hirata

§1. Imtroduction and the main results

In this paper, we study the H'-solution for the following nonlinear
Schrédinger equation

{ i0u = —Azu — (r77 * |ul?)u
u(0,z) = uo(z) € HY(RN)

’

(1-1)

where r = |z| and 2 < v < 4, v £ N — 1, and show a sufficient condi-
tion of ‘H!-blowing up’. Here we say that u is an H'-local solution of
(1-1) when for some T > 0, u € C([0,T); H') and satisfies next integral
equation

(1-2)  w(t) = Ult)uo — /O Ut = $){(r= % [u2])u} (s)ds,

where U(t) =exp(itA) is the evolution operator for the free Schrédinger
equation. Above type nonlinear Schrédinger equation is appeared in
some approximations of many body problems, so-called Hartree approx-
imation. As for detailed arguments of this approximation, see e.g. [5],
[6] and [7].

Before stating the main results, we define several notations. For
p € [1,00] and k € N, we define Sobolev space

Whe = {f eS8 |fllwre = 3 102Fllp < o0},

la|<k

where || - ||, is usual LP-norm. H* = W*? and H~* = (H*)*. For an
interval I and a Banach space X, C*(I; X) is the space of X-valued C*-
functions on I, k = 0,1,2... and LP(I; X) is the space of LP-functions.
We say u € L (I;X) if u € LP(J; X) for any compact J C I.

loc
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For the existence of H'-local solution of (1-1) and (1-2), we have
obtained following theorem. (e.g. [2],[3])

Theorem 0. Let2 <~y < 4,7 < N and ug € H'. Then, there
exist T* > 0 and u € C([0,T*); H'), which satisfies (1-2), and has
following properties (1) ~ (4).

(1) u is unique solution of (1-2) in LY (0,T*; W'P), where 1/p =
1/2 — (y—2)/4N and 8 =8/(y — 2).

(2) u satisfies following conservation laws.

(1-3) w2 = lluollz,
(1-4) E(u(t)) = [Vau@®)3 — 1/2(1u(®)*, 77 * [u(®)|*) = E(uo),

fort € [0,T*). Here (-,-) is L?-dual coupling.
(B) If2< vy <4 and T* < o0, then ||V u(t)||2 — o0 as t — T™*.
(4) u satisfies (1-1) in H™! sense.

Remark. (1) If u satisfies ||u(t)|lz — oo as t — T™ for some T™* <
0o, we say u blows up at blow up time 7.

(2) The assumption 2 < -y is not essential. Since the space in which
u is unique becomes simple, we state this assumption. On the other
hand, the assumption 4 > + is essential for the existence of H!-local
solution.

On the blow up of H!-solutions, 2 < v is a necessary condition,
i.e. when 0 < v < 2, the H'-solution with any initial data uy € H?!
is global. On the other hand, it is well-known that when 2 < v, ug €
H' N L2(RY;|z|?dz) and E(uo) < 0, the H!-solution of (1-1) blows up
in finite time (e.g. [1]). K. Kurata and T. Ogawa ([4]) dealt with more
complicated potential —(r=7t * |u|?)u — (r=72 * |u|?)u, and showed there
exists a blow up solution under the assumption 71 < 2 < 2 < 4 and
2 < N — 1. Recently, in the local nonlinear case, i.e. —|u|P~1u instead
of —(r=7 x |u|?)u, T. Ogawa and Y. Tsutsumi ([8]) showed that for any
radially symmetric H'-initial data ug, the H'-solution of corresponding-
equation blows up in finite time. We shall prove that we can use their
methods in the non-local nonlinear case in this paper. Our main result
is following.

Theorem 1. Let2 <y <4 andy+ 1< N. Suppose that ug be
radially symmetric in H*(RN) and E(uo) < 0. Then the H'-solution u
blows up in finite time.

Remark. (1) Since uo is unique in L{ (0,7*; W'P) and the equa-
tion is symmetric by spatial rotation, u is also radially symmetric.
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(2) Since E(K¢) = K?||V.9|3 — K*/2- (|¢|%, 777 * |¢|?) for any
¢ € H* and K > 0, E(up) < O is attained by some uo € H'. This
observation shows the assumption E(up) < 0 means ‘ug is not small’.

§2. General lemmas

In this chapter, we state two well-known lemmas which hold in H*.
The first one is so-called Gagliardo-Nirenberg’s inequality.

Lemma 2-1. Letu € H*(RM) and N > 3. Then, there ezists a
constant C such that

(2-1). lully < CIVaulgllulz™,
where 1/p=1/2—a/N.
The second one holds on radially symmetric functions.

Lemma 2-2 (Strauss[9]). Let u be a radially symmetric function
in HY(RN). Then, there erists a constant C such that for any R > 0
and p € [2, ],

- - - 1/2—-1
(22) llullzs(reiay < CR™V2HPN D)l VE I Voul 5 dE)-

§3. Proof of Theorem 1

Choose ¢ € W3°°([0,00)) such that

r for 0<r<1,
61 6 r—(r—1)>3 for 1<7<1++3/3,
- r) =
smooth and ¢/ <0 for 14++/3/3<r <2,
0 for 2<r,
and put

¢m(r) =m: (]5(7’/771),

Remark that if we put ®(r) = [ ¢m(s)ds, @ € L*°(RY) and V,® =
Vm. We also obtain next lemma.
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Lemma 3-1. Let u be the H'-solution of (1-1). Then,
(3-2)

< / Uo Y, - Valipdz — / w(t)m - Vyu(t)de

=/0 [23%].’Zk/6]-(1/),,,),c 0;u(7)Oku(r)dx

~1/2 / Ae(Va - ) - [u(r) 2, do + 7E(uo) — Y Vau(r)|2

/2 / / a(z,y)|z — g7 fu(r, 2)Plu(r, y) Pdadyldr
|z|V]y|>m
for all tel0,T7),

where S and R mean imaginary and real parts respectively, (¥m )k is k"
component of 1V, and

(3-3) a(z,y) = e —yI* = (Wm(z) = ¥n®)) - (z - y).

Now, remarking that u is radially symmetric, we have
(3-4)
®Y / 8 () By u By doo
j ’k

_o / Voul2dz + 2 / 8|V oul?da.
jzl<m m<lel<2m

And, simple calculation shows that there exists a constant C such that

<Cm™2 for m<|z| <2m,
=0 for otherwise.

(35)  1Au(Ta - (@) {

The next lemma is the key estimate to obtain our result.

Lemma 3-2. Let0<a <1 andm > 1. Forl|z|V |y > m and
|z—y| < m®, there exists a constant C, which is independent of x,y and
m, such that

(3-6) a(z,y) < C(b(|z]) + b(ly])|= - yl*.
Here

0 for r<m,
(3-7) b(ry=< 1=¢..(r) for m<r<2m,

1 for 2m <.
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Using this lemma, we obtain
(39)

//||v| [>m,|e—y|< aa(x’y)lm_y|_7—2|u($)lz|u(y)|2dxdy
SC/ /ﬁlviylZm,'m_ylSma (b(|]) + b(|y])) |z — y| = u(z)?[u(y)*dedy

Szc‘/wm b)) (Dx({r < m*}) -+~ » [uf?)(2)de

<2000 2 (r)u(@) | F o (ja) 2y X < 13) - 77711 - Jluo 13

(by Holder’s and Young’s inequalities)
<Cm~ NV {62 (ru(@) HE 2o 2m) - m* N |luoll3
(by Lemma 2-2)

<OmeN =0 =(N=1) 402 / b(r)| Vu(e)|?de + Cm* =1~V "Djuq 3.

Here we used L2-conservation law (1-3) and defined

1 xz € A,

xw@={, 257

On the other hand, since |(Ym(z) — ¥m(v)) - (z — ¥)| < [¥) ol — ¥l?,
we get

[/ ala,v)la = ol ") Pfuly) P dedy
lz|VIy[zm,|z—y|Zm=

G <o f [ o = o1 u(o) futy) Pdzdy
lzivIylzm, [z—y|Zm=

<Cm™"*||uoll3.
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After all, by (3-2),(3-4),(3-8) and (3-9), we have
& / UgYm - Volpdr — / w(t) Y - Vou(t)de

< / E(uo) — (7 — 2)[[Vau(r)2

(3-10) —2 / b(r)|Vu(r) 2dz — Cm~2uol3

+O(m ™7 4+ m W= g3

+Cma(N_q)—(N—l)”uOHg/b(r)|V$u(T)|2d:L']dT.

Thus, if we take sufficiently large m such that
YE(uo) + C(m™ " + m*N=1=W=D)jjo ||} = —n < 0,

and
Cm"‘(N"V)“(N“l)HuoH% —2<0,

we obtain
(3-11) %/uo Um - Valgdz — %/u(t) Ym - Vou(t)de > nt.

Since

d/dt( / Blu(t)2dz) = —23 / w(t) Y - VaulDde,

integrating the both hands of (3-12), we deduce that

/\Il|u(t)|2dm < —nt? — 2t%/u0 VY - Vg dz
(3-12)
+/‘Il|uo|2d:1; for all t € [0,T).

Now, we assume u is a global solution. Then, (3-12) is satisfied for
any t < oo and the r.h.s. of (3-12) is negative for sufficiently large ¢.
This is contradiction since the Lh.s. of (3-12) is non-negative. Thus,
u is not global solution and T < oco. Using Theorem 0.(3), we obtain
[Vzu(t)|l2 — oo as t — T™*. This means our desired result.

§4. The proofs of lemmas

Proof of Lemma 3-1. We first assume ug € H?. Under this as-
sumption, the solution u belongs to C([0,T*); H?) N C* ([0, T*); L?) and
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satisfies (1-1) in L2-sense (see e.g. [2]). Note that the maximum ex-
istence time T™* is the same as that of the H!-solution. We take the
real part of L2-inner product between (1-1) and t,, - V,u. Here, using
equality (1-1) and integrating by parts, we have

2R(i0pu , Y - Vu)

=i/8tu1/1m -V, adz — i/zjzm -V, udads

4-1
(41) =i d/dt/u'gbm -Vudzr + / Vo Uml|u|?(r~™7 * |[u|?)dz
— /Vx . 1[Jm|qu|2d:L‘ + 1/2/AZ(VI . ¢m)|u|2d:l:,
2R(—Azu, P, - Vyu)
(4-2) — 2R 0 () Osu DT AT — | Vg - |V ou|2d,
] j
ok
and

2R(u(r™ * |u?), Ym - Vo)
(4-3)

= [ P )+ [ 1P o ¢ )
Here, since
172 [ 1) m(@) - 0ol [ 1o~ o))
=172 [ 1u@ P92 [ $imla)lz = ol () P
~ (Vatm)(@) [ o= 4l uto)Pdy}da
~1/2 [[u@P V. - [ (@) = @)l = ol )

+ |z — Y| T Pm () [u(y)|* Yy da

~1/2 [(V2 )@@ 12 = ol ut) Pz
=~ 1/2 [ Vulu@P - ([ vm)le ol ulo) )i
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4172 [ 1u@PL[ Vo - {n(z) = 9m(u)le = o Hulo) Pl

=172 [(Va - em)@Pu@ ([ o = vl luty) Pd)da
—~1/2 [ lu)Pbm(y /v ju(e) Pz — y| " da)dy

+1/2 [J@P{ [ (bn(@) = (@) - (V7)o ~ 9)luly) Pa}do
== 1/2 [ |u(@)Pbm(a) - Valr ¢ uf?)(2)d

- 7/2/IU(w)|2{/(¢m(w) — Ym(y)) - (& = 9) |z — y| 77 ?|uly)*dy}dz,
the second term of r.h.s. of (4-3) is equal to

2 [ [1u@)P(aep)le -1 = lo =3 lulw) dyda.
Thus, by (4-1)~(4-3), we get
id/dt/m/;m - Vyudz + 1/2/Az(vgc <ty ) [ul2dx

=2R ) / 8; (V) k Oju BT da
7k

/2 [ [ lut@)Pate, ke - v uty) Py de
~ /2 [P o uPyis

Taking real part of b.h.s. and using the definition of energy (1-4), we
obtain

—d/dt%/u'gbm-vzﬂdw

— . . a7 — - 2
) _23%%; / 8; (m )1 Oju Syudz — 1/2 / Ag(Vg - ) |ul?de

+ 7B (uo) —1|V.ul}
/2 [ [lu@)ate, ke - 1 ut) Py de.

Thus, integrating (4-4) over [0,T*) by t, we obtain (3-3).
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For the case of ug € H', we take {uo;} C H? such that ug; — ug
in H' as | — oo. For each up,i, we can construct strong solutions wu;(t)
of (1-1) in a certain common time interval [0, T], and {w;(¢)} converges
to the H'-solution u(t) in H' uniformly. (See [2].) Thus, we obtain
(3-2) on [0,T]. Since T is depend only on ||ug||g1, we can repeat this
procedure, and we obtain (3-2) as long as u(t) exists. Q.E.D.

Proof of Lemma 3-2. It suffices to consider on z,y 2-dimensional
plain, then let z = (rcosf,rsinf) and y = (p,0). By taking m suf-
ficiently large and using renormalization, we can assume m = 1 and
6 < 1. For the case of 1 <, p < 1+ +/3/3, we calculate

|z —y|* — (6(z) — (y)) - (z — 9)
=(r —p){(r — ¢(r)) — (p — ¢(p))}
+ (1 = cos){r(p — ¢(p)) + p(r — &(r))}
=(r—p){(r = 1)° = (0 = 1)’} + (1 = cos ) {r(p — 1)° + p(r — 1)%}
=(r—p){(r=1)*+ (- 1(p—-1)+(p—-1)%}
+ (1 = cos){r(p — 1)3 + p(r — 1)*}.

Since b(r) =3(r—1)2on 1 < r < 14+/3/3, it suffices to show that there
exists a constant C, independent of r and p, such that

(r=p){(r=1)*+(r=1)(p—1) + (p - 1)’}
+ (1 = cos){r(p —1)* + p(r — 1)*}
<Cl(r - p){(r—1)" + (p— 1)%}
+2(1 = cosO)rp{(r — 1) + (p — 1)*}].
This is possible obviously since 1 < r, p. For the case of r A p < 1, the

similar calculation shows the statement, and we omit the details.
Q.E.D.
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