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I. Introduction 

Two bounded linear operators A and B in a Hilbert space 1i are said 
to anticommute if AB+ BA= 0. However, if A and Bare unbounded, 
then this definition of anticommutativity does not work, because AB + 
BA may not make sense on any vector in 1-l. 

A proper notion of anticommutativity of ( unbounded) self-adjoint 
operators was given by Vasilescu [23]. Samoilenko [21] and Pedersen 
[20] gave several equivalent characterizations of the anticommutativity 
and discussed some aspects of anticommuting self-adjoint operators. 

Following [20], we say that two self-adjoint operators A and B in a 
Hilbert space anticommute if 

for all t ER We remark that this definition is symmetric in A and B [20] 
and gives an extension of the notion of anticommutativity of bounded 
operators mentioned above. 

Families of anticommuting self-adjoint operators are not only in­
teresting in its own right (in particular, from representation theoretical 
points of view), but also may be important in applications (e.g., analysis 
of operators of Dirac's type [3, 5-8, 13, 16] and supersymmetric quantum 
theory [1, 2, 4, 9, 15, 17, 18]). 

In [10, 11] the present author has developed analysis on anticom­
muting self-adjoint operators; The paper [10] is concerned with alge­
braic properties of the partial isometries assoicated with anticommuting 
self-adjoint operators and analysis of the sum of two anticommuting 
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self-adjoint operators, while the paper [11] gives a characterization of 
the anticommutativity of self-adjoint operators in connection with Clif­
ford algebra and discusses some consequences of it, one of which can 
be applied to the self-adjointness problem of some classes of operators 
of Dirac's type in both finite and infinite dimensions. In this paper we 
summarize the main results obtained in [10, 11]. 

n. Product of two anticommuting self-adjoint operators 

In this section we describe some results on a product of two anti­
commuting self-adjoint operators. We denote by D(A) the domain of 
the operator A. 

For the reader's convenience, we first summarize as a lemma some 
known facts on anticommuting self-adjoint operators. 

Let A be a self-adjoint operator in a Hilbert space with the spectral 
family {EA(A)I.X E IR}. Then the polar decomposition of A is given by 

with 

see, e.g., [19, p.358). We call U A the partial isometry associated with 
the self-adjoint operator A. 

Lemma 2.1 [20, 23]. Let A and B be anticommuting self-adjoint 
operators in a Hibert space. Then the following (i)-(vii) hold: 

(i) UsA c -AUs and UAB c -BUA. 
(ii) UslAI C IAIUs and UAIBI C IBIUA. 

(iii) IAI and IBI commute. 
(iv) UAUB = -UsUA. 
(v) A and IBI commute and B and IAI commute. 

(vi) D(A) n D(B) n D(AB) = D(A) n D(B) n D(BA) and 

(AB+ BA)f = o, f E D(A) n D(B) n D(AB). 

(vii) A+ B is self-adjoint. 

For two anticommuting self-adjoint operators A and B in a Hilbert 
space, we consider the product 

Co(A, B) = iAB 
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with D(Co(A, B)) = D(A) n D(B) n D(AB). It follows from Lemma 
2.l(vi) that 

D(Co(A,B)) = D(Co(B,A)), 

and 

[Co(A, B) + Co(B, A)]!= 0, f E D(C0 (A, B)). 

In particular, Co(A, B) is symmetric. 

Theorem 2.2 [10]. Let A and B be anticommuting self-adjoint 
operators in a Hilbert space. Then 

(i) C0 (A, B) is essentially self-adjoint. 
(ii) Let C(A, B) be the closure of Co(A, B). Then 

C(A, B) = -C(B, A). 

(iii) The operator C(A, B) is essentially self-adjoint on every core 
for A2 +B2 • 

Remark. We can find a dense domain V on which C0 (A, B)k is 
essentially self-adjoint for all k EN [10, Theorem 2.3]. 

By Lemma 2.1 (vi) we have 

ACo(A, B) + Co(A, B)A = 0, BC0 (A, B) + C0 (A, B)B = O, 

on a suitable domain, respectively. Hence C(A, B) may have a chance 
to anticommute with A and B. In fact, the following theorem holds. 

Theorem 2.3 [10]. The operator C(A, B) anticommutes with A, B, 
andA+B. 

m. Algebraic properties of the partial isometries associated 
with anticommuting self-adjoint operators 

Theorem 2.3 shows that, given two anticommuting self-adjoint op­
erators A and B in a Hilbert space, we have a triple { A, B, C ( A, B)} 
of mutually anticommuting self-adjoint operators. It is interesting to 
investigate structures of this triple. We do it by analyzing the algebraic 
structure of the partial isometries of UA, UB, and Uc(A,B)· Thus our first 
task is to compute products of these partial isometries. A key tool for 
this purpose is the following formula for the partial isometry associated 
with a self-adjoint operator. 
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Lemma 3.1. Let A be a self-adjoint operator. Then 

Proof. This can be proven by the functional calculus for self-adjoint 
operators. For the details, see [10]. Q.E.D. 

Remark. Let A be a self-adjoint operator and PA be the orthogonal 
projection onto (Ker A)_[_. Then: 

UA = sgn(A)PA, 

where sgn(,\) = ,\/1,\I, ,\ E JR\ {O}. 

We also note the following fact. 

Lemma 3.2 [10]. Let A and B be anticommuting self-adjoint op­
erators in a Hibert space. Then: 

(i) PA and PB commute. 
(ii) PA and UB commute, and PB and UA commute. 

Using Lemmas 3.1, 3.2 and some technical facts, we can obtain the 
following results . 

Theorem 3.3 [10]. Let A and B be anticommuting self-adjoint 
operators in a Hilbert space. Then: 

UAUB = -iUC(A,B), 

Uc(A,B)UA = -iPAUB = -iUBPA, 

Uc(A,B)UB = iPBUA = iUAPB. 

In the rest of this section, we assume that A and B are anticommut­
ing self-adjoint operators in a Hilbert space 'H. To rewrite the formulas 
given in Theorem 3.3 as commutation relations, we introduce 

X .UA X .UB X .Uc(A,B) 
1=i2, 2=i2, 3=i 2 ' 

Y1 = 1, Y2 = PB, Y3 = PA, Y4 = PAPE. 

For bounded linear operators X, Yon 'H, we define 

[X, Y] = XY - Y X. 
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Theorem 3.4 [10]. The following commutation relations hold: 

3 

[Xj, Xk] = 1:>jkeXeYj, j, k = 1, 2, 3, 

[Xj, Ym] = [Ym, Yn] = O, j = 1,2,3, m,n = 1, 2, 3,4, 

where Ejke is the Levi~Civita symbol with E123 = 1. 
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Proof ( Outline). This follows from Theorem 3.3, Lemma 3.2, 
Lemma 2.1 (iv), and the fact that Pj = PA. Q.E.D. 

The vector space of all bounded linear operators on 1i is a Lie algebra 
with the Lie bracket [ •, • ]. We denote it by £(1-i). Theorem 3.4 implies 
the following result. 

Theorem 3.5 [10]. Let wt C £(1-i) be the subspace spanned by 
XkYm, k = 1, 2, 3, m = 1, 2, 3, 4. Then wt is a Lie subalgebm of £(1-i). 

As is well-known, the Lie algebra su (2, C) of the special unitary 
group SU(2) is the set of 2 x 2 complex skew-Hermitian matrices of trace 
zero and has a basis { Cj n=l which satisfy the commutation relations 

3 

[ej, ek] = L Ejkfee, j, k = 1, 2, 3. 
£=1 

We define a linear map {! : su (2, q -. £(1-i) by 

3 3 

e(1:ajej) = 1:ajXj, aj E C,j = 1,2,3. 
j=l j=l 

Theorem 3.6 [10]. Suppose that A and B are injective. Then{! 
is an isomorphism between su (2, C) and wt. 

Proof. We need only to note that, in the present case, PA= PB= 
1. Q.E.D. 

In the case where A and B are not necessarily injective, we can 
proceed as follows. Let 

rio = (Ker A+ Ker B)_1_ 
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and define the operators Ao and Bo acting in 'Ho by 

with 

Aof = Af, f E D(Ao), 

Bof = Bf, f E D(Bo) 

D(Ao) = D(A) n 'Ho, D(Bo) = D(B) n 'Ho. 

It has been proven in [20] that Ao and Bo are injective, self-adjoint, and 
anticommute. We define the operators 

X (O) _ .UAo 
1 -i-2-, X (O) _ .UBo 

2 - i-2-, 

and the map ea : su (2, q ____, ..C('Ho) by 

3 3 

x~O) = i Uc(Ao,Bo) 

2 

eo(Lo:iei) = Lo:iXJ°), O:j E C.,j = 1,2,3. 
j=l j=l 

Applying Theorem 3.6 with A and B replaced by Ao and Bo, respec­
tively, we have the following result. 

Theorem 3.7 [10]. The map ea is an isomorphism between 

su (2, q and the Lie algebra 9)10 generated by xJ°) ,j = 1, 2, 3. 

Theorem 3.7 implies that ea is a faithful representation of su (2, q 
on the Hilbert space 1-{0 • If 'Ho is infinite dimensional, then ea gives 
an infinite dimensional representation of su (2, C.). The structure of the 
representation ea may be interesting. We have the following theorem. 

Theorem 3.8 [10]. Let 1-l be separable and Ho be infinite dimen­
sional. Then there exists a sequence {Mn};:"=1 of subspaces in Ho with 
the following properties: 

(i) For each m and n with m =f. n, Mm and Mn are orthogonal. 
(ii) 'Ho= EB;:"=1Mn-

(iii) For all n E N, dim Mn = 2 and Mn is left invariant by 

{X;°)}J=i· 

In particular, the representation ea is completely reducible with the heigh­
est weight of each irreducible component being 1/2. 

In concluding this section, we give a remark on a relevance of anti­
commuting self-adjoint operators to Clifford algebra theory. The Clifford 
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algebra 2ln associated with the n-dimensional Euclidean space !Rn is the 
algebra generated by elements "/j, j = 1, • • •, n, and identity 1 satisfying 

(3.1) "/j"/k + 'Yk"/j = 281k, j, k = 1, · · ·, n. 

Let A and B be anticommuting self-adjoint operators in the Hilbert 
space H and define 

Then the operators r1 , j = 1, 2, 3, are self-adjoint on H0 • Moreover we 
have 

and r1 leaves Mn invariant. Let rt) be the restriction of r1 to Mn, 
so that we have 

00 

rj = EB rt)· 
n=l 

Let ltn be the algebra generated by rt), j = 1, 2, 3. Then we have the 
following result. 

Theorem 3.9 [10]. For each n = 1, 2, · · ·, the algebra ltn is the 
spin representation of 2l3. 

IV. The sum of two anticommuting self-adjoint operators 

Let A and B be anticommuting self-adjoint operators in the Hilbert 
space H. As we have seen in Lemma 2.1 (vii), A+B is self-adjoint. This 
section concerns more detailed properties of the operator A+ B. 

4.1. The case where Bis injective 

In this case, the partial isometry U B is unitary with the spectrum 
O'(Us) = {±1}, so that we have the orthogonal decomposition 

(4.1) H = H+ffiH- = {(~)If E H+,g E '}-{_} 

with 
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Theorem 4.1 [10]. Let A and B be anticommuting self-adjoint 
operators in 1i and B be injective. Then A, B, and PA have the following 
matrix representations with respect to ( w. r. t.) the decomposition ( 4.1): 

( 4.2) A = ( a!+ a*~- ) , B = ( ~+ _ ~- ), 

( a*a O ) 
PA= 0 aa* ' 

where a is a partial isometry from 1i+ to 1{,_, B+ (resp. B_) and M+ 
( resp. M_) are commuting nonnegative self-adjoint operators in 1i+ 
(resp. 1i,_), and aB+ C B_a. 

This theorem is a generalization of [20, Corollary 3.3] which gives 
matrix representations of A and B similar to ( 4.2) in the case where 
both of A and B are injective. 

We consider the diagonalization of A+ B w.r.t. the decomposition 
(4.1). By the commutativity of IAI and IBI [ Lemma 2.l(iii) ], we can 
define, via the functional calculus, 

which is bounded and self-adjoint. Since -iX3 and A are commut­
ing bounded self-adjoint operators, -iX3A is bounded and self-adjoint. 
Hence the operator 

V = eXaA 

is unitary. It turns otit that V implements the diagonalization of A+ B 
w.r.t. the decomposition (4.1): 

Theorem 4.2 [10]. Let A and B be anticommuting self-adjoint 
operators and B be injective. Then 

(4.3) 

where 

Remark. Formula ( 4.3) can be regarded as an abstract and non­
perturbative version of the so-called Tani-Foldy-Wouthuysen transfor­
mation of the usual Dirac operator in three space dimensions ( e.g., [14]). 

Theorem 4.2 can be proven by using the following lemma. 
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Lemma 4.3 [10]. 

VX1 v-1 = (1 - PA)X1 + PA(X1 cos A+ X2 sin A), 

VX2V- 1 = (l-PA)X2+PA(-X1sinA+X2cosA). 

4.2. The case where Bis not injective 

In this case, we note the following fact. 

9 

Lemma 4.4 [10]. The operator PB commutes with A, V, UB, and 
(A2 + B2)1/2. 

Lemma 4.4 implies that A, B, V, UB, and (A2+B2)112 can be reduced 
to (Ker B)_1_ in which B is injective. Thus we can apply the preceeding 
result in Section 4.1 to obtain the following theorem. 

Theorem 4.5 [10]. Let A and B be anticommuting self-adjoint 
operators. Then (4.3) holds on (Ker B)_1_. 

Remark. In the case of abstract Dirac operators, results similar to 
Theorems 4.2 and 4.5 have been obtained in [22]. 

V. Characterization of anticommutativity of self-adjoint 
operators in connection with Clifford algebra 

In Section m we have seen that two anticommuting self-adjoint op­
erators are related to the Clifford algebra 21.3 . This fact suggests that it 
may be more natural to characterize anticommutativity of self-adjoint 
operators in connection with Clifford algebra. In fact, such a character­
ization is possible as we shall present below. 

Let 1-i be a Hilbert space. We say that { "/j }7=1 is a self-adjoint 
representation of the Clifford algebra 21.n on 1-i if each "/j is a bounded 
self-adjoint operator on 1-i satisfying (3.1). 

The first of the main results in this section is the following. 

Theorem 5.1 [11]. Let A and B be self-adjoint operators in a 
Hilbert space 1-i. Suppose that there exists a self-adjoint representation 
b1, "(2} of 21.2 on 1-i such that each "/j commutes with A and B. Then 
A and B anticommute if and only if 
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for all s, t E JR. 

Remark. If 1'l commutes with A, then ')'1A is self-adjoint with 
')'1A = A,'1- The same holds for the pair {1'2, B}. Hence exp(is')'1A) 
and exp( it')'2 B) can be defined via the functional calculus. 

Theorem 5.1 has some interesting consequences. We fix a self-adjoint 
representation {1'1,1'2} of21.2 on a Hilbert space K. We denote by K®H 
the tensor product of K, and H. 

Theorem 5.2 [11]. Let A and B be self-adjoint operators in a 
Hilbert space H. Then A and B anticommute if and only if 1'l ® A and 
')'2 ® B commute in the Hilbert space K, ® H. 

Remark. A simple example of K, and { 1'l, ')'2} is given by 

K, = (['.2, 

')'1 = a1 := ( ~ ~) , ,,2 = a 2 := ( ~ ~i) . 
The matrices a 1 and a 2 are the first two of the so-called Pauli matrices. 

We have a "dual" version of Theorem 5.2: 

Theorem 5.3 [11]. Let A and B be self-adjoint operators in a 
Hilbert space H. Then A and B commute if and only if 1'l ® A and 
')'2 ® B anticommute in the Hilbert space K, ® H. 

Remark. In the case where K, = (['.2 and ,'j = a1,j = 1, 2, the 
necessary condition in Theorem 5.3 has been proven in [13] by a method 
different from that in [11]. 

Theorem 5.3 can be applied to the self-adjointness problem of op­
erators of Dirac's type. We first recall a basic result due to Vasilescu 
[23]: 

Lemma 5.4 [23]. Let {A1}J=l be a family of mutually anticom­

muting self-adjoint operators in a Hilbert space (n < oo ). Then I:7=l A1 
is self-adjoint and 

Using this lemma and Theorem 5.3, we can prove the following fact: 
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Theorem 5.5 [11]. Let {Ai}.7=1 be a family of mutually commut­
ing self-adjoint operators in a Hilbert space 1-l (n < oo). Let hi}J=1 

be a self-adjoint representation of m,. on a Hilbert space IC. Then the 
operator 

n 

./b := L 'Yi ® Ai 
j=l 

is self-adjoint in IC ® 1-l and 

n 

.w2 = Ll®AJ. 
j=l 

We next consider a countable family {An}~=l of self-adjoint opera­
tors. We can define the operator 

00 

A:= LAn 
n=l 

by the relation 

D(A) = { f E f1 D(An) I W - _J~00 t, Anf exists} , 

N 

Af = w - lim ~ Anf, f E D(A). 
N--+oo L...J 

n=l 

The following lemma is an extension of Lemma 5.4. 

Lemma 5.6 [23]. Let {An}~=l be a family of mutually anticom­
muting self-adjoint operators in a Hilbert space 1-l such that D(E:'=l An) 
is dense in 1-l. Then E:'=1 An is self-adjoint and 

Using Lemma 5.6, we can obtain an extension of Theorem 5.5: 

Theorem 5.7 [11]. Let {An}~=l be a family of mutually com­
muting self-adjoint operators in a Hilbert space 1-l. Let {'Yn}~=l be a 
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self-adjoint representation of l.2100 on a Hilbert space IC. Suppose that 
D(E%'=1 'Yn ® An) is dense in IC ® 1i. Then the operator 

00 

J/Joo := L'Yn®An 
n=l 

is self-adjoint in IC ® 1i and 

00 

J/)~ = LI®A!. 
n=l 

The operator fJ (resp. fJ00 ) in Theorem 5.5 (resp. Theorem 5.7) 
gives a class of operators of Dirac's type in an abstract form. Hence 
Theorems 5.5 and 5.7 solve the self-adjointness problem for such Dirac 
operators. Examples to which Theorems 5.5 and 5.7 are applicable in­
clude: (i) the Dirac-Weyl operator with a strongly singular gauge po­
tential [13] (cf. also [12]); (ii) classes of operators of Dirac's type in an 
abstract Boson-Fermion Fock space (infinite dimensional Dirac opera-
tors) [3, 4, 7, 9, 11]. · 

VI. Anticommuting self-adjoint operators and super­
symmetric quantum theory 

As a final topic in this paper, we discuss a connection of the theory 
of anticommuting self-adjoint operators with supersymmetric quantum 
theory (SSQT). 

We first give an abstract definition ofSSQT (e.g., [1,2,4,17,25]). 
Let N ~ 1 be an integer. A SSQT with N-supersymmetry is defined to 
be a quadruple {1i, {Qn}~=l, H, Np} consisting of a Hilbert space 1i, a 
set of self-adjoint operators {Qn}~=l ("supercharges"), self-adjoint op­
erators H ( "supersymmetric Hamiltonian") and Np ( "Fermion number 
operator") acting in 1i, which satisfies the following conditions: 

(S.1) N'j., = I (identity on 1i) and Np-/- ±I. 
(S.2) H = Q~, n = 1, .. ·, N. 
(S.3) For each n = 1, · · ·, N, Np leaves D(Qn) invariant and 

NpQn + QnNP = 0 on D(Qn), n = 1, · · ·, N. 

(S.4) For all n, m = 1, · · ·, N, with n -/- m, 

(Qn7P, Qm</J) + (Qm'lj;, Qn</J) = 0, 7P, <p E D(Qn) n D(Qm), 

where (·, ·) is the inner product of 1i. 
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Note that (S.3) means that NF and Qn anticommute in a "naive" 
sense, while (S.4) shows that Qn and Qm (n # m) anticommute in the 
sense of quadratic form on D( Qn) n D( Qm)- It is natural to ask if they 
anticommute in the proper sense given in the Introduction. 

The following fact is known. 

Lemma 6.1 [23]. Let T be a bounded self-adjoint operator and Q 
be a self-adjoint operator in a Hilbert space. Suppose that T leaves D( Q) 
invariant and 

TQ +QT= 0 on D(Q). 

Then T and Q anticommute. 

Applying Lemma 6.1 to T = Np and Q = Qn, we have the following 
result. 

Proposition 6.2. In any SSQT {1-t'.,{Qn}:=1 ,H,Np}, each Qn 
and NF anticommute. 

As for (S.4), we can apply the following theorem. 

Theorem 6.3. Let Q1 and Q2 be self-adjoint operators in a Hilbert 
space rt'. such that 

Q~ =Q~ 

and 

Then Q1 and Q2 anticommute. 

Proof. We have L = IQ1I = IQ2I- Hence D(Q1) = D(Q2) = D(L) 
and the polar decompositions of Q1 and Q2 are given by 

Q1 = U1L, Q2 = U2L, 

where Uj = UQ,- Putting these formulas into (6.1), we have 

(6.2) 

with¢= L'ljJ, ¢ = L</J, 1/J, ¢ E D(L). 
We first consider the case where L is injective and hence so is Qj 

(j = 1, 2). Then U1 and U2 are unitary, self-adjoint and Ran Lis dense 
in rt'.. Hence (6.2) implies that 
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Let 'D = U;;'."= 1Ran EL([O,n]). Then 'Dis dense in 1i. Since Uj commutes 
with L, U1 and U2 leave 'D invariant and hence so do Q1 and Q2 . It 
is easy to see that 'D is a set of entire analytic vectors for each Qi and 
Q 1 Q2 + Q2 Q1 = 0 on 'D. Hence we can apply [20, Proposition 5.2] to 
conclude that Q1 and Q2 anticommute. 

In the case where L is not injective, Q1 and Q2 are reduced to Ho = 
(Ker L)..L = (Ker Q1 )..L = (Ker Q2 )..L. We can apply the preceeding 

result to Qi= Qi f 1i0 to conclude that Q1 and Q2 anticommute. This 
implies the anticommutativity of Q1 and Q2 in H. Q.E.D. 

Theorem 6.3 gives the following result. 

Proposition 6.4. In any SSQT {1i, {Qn};':'=1 , H, Np}, Qn and 
Qm (n, m = 1, · · ·, N, n -=I= m) anticommute. 

Remark. The SSQT considered above is a non-relativistic one. In 
relativistic cases, condition (S.2) have to be replaced by a more compli­
cated one (e.g., [9, 24]). 
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