Billiards without Boundary and Their Zeta Functions

Takehiko Morita

In this article we consider a simple dynamical system in R^{2} with elastic reflection. As it is shown in [2], the zeta function

$$
\begin{equation*}
\zeta(s)=\prod_{\gamma}\left(1-\exp \left[-s T_{\gamma}\right]\right)^{-1} \tag{1}
\end{equation*}
$$

of such a dynamical system satisfies nice properties which enable us to apply the results in [3] and [4], where \prod_{γ} is taken over all prime periodic orbits of the dynamical system and T_{γ} denotes their period. Our present purpose is to summarize auxiliary results which do not appear in [2].

First we recall definitions and notations in [2]. Let $O_{1}, O_{2}, \ldots, O_{L}$ $(L \geq 3)$ a finite number of bounded domains in R^{2}, which will be called scatterers, with smooth boundary. We impose the following hypotheses on scatterers:
(H.1) (dispersing) For each j, O_{j} is strictly convex, i.e., the boundary ∂O_{j} is a simple closed curve with nonvanishing curvature.
(H.2) (no eclipse) For any triple of distinct indices (j, k, l), the convex hull of $\overline{O_{j}}$ and $\overline{O_{k}}$ does not intersect $\overline{O_{l}}$.
Under these hypotheses it is clear that the boundary ∂O of $O=$ $\cup_{j=1}^{L} O_{j}$ equals $\cup_{j=1}^{L} \partial O_{j}$.

Let $S R^{2}=R^{2} \times S^{1}=\{(q, v) ;|v|=1\}$ be the unit tangent bundle of R^{2}, and let $\pi: S R^{2} \rightarrow R^{2}$ be the natural projection. Choose a point $q_{j} \in \partial O_{j}$ and fix it for each j. We define the following quantities for $x=(q, v) \in \partial O$.

$$
\begin{align*}
& \xi_{0}(x)=\xi_{0}(q)=j \text { if } \pi(x) \in \partial O_{j}, \text { and } \\
& r(x)=r(q), \phi(x)=\phi(q, v), k(x)=k(q) \tag{2}
\end{align*}
$$

where $r(x)$ is the arclength between $q_{\xi_{0}(x)}$ and q measured clockwise along the curve $\partial O_{\xi_{0}(x)}, \phi(x)$ is the angle between the vector v and the unit outer normal $n(q)$ of $\partial O_{\xi_{0}(x)}$ at q measured anticlockwise, and $k(x)$ is the curvature of $\partial O_{\xi_{0}(x)}$ at q.

Then $\pi^{-1}(\partial O)$ is parametrized as

$$
\begin{align*}
\pi^{-1}(\partial O)= & \{(j, r, \phi) ; 1 \leq j \leq L, 0 \leq r \tag{3}\\
& \left.<\text { the perimeter of } \partial O_{j}, \text { and } 0 \leq \phi<2 \pi\right\}
\end{align*}
$$

Put

$$
\begin{align*}
M & =\pi^{-1}(\partial O) \cup M_{-}, \text {where } M_{-} \\
& =\left\{x \in \pi^{-1}(\partial O) ; \frac{\pi}{2} \leq \phi(x) \leq \frac{3 \pi}{2}\right\} \tag{4}
\end{align*}
$$

Now we consider the motion of a particle in the exterior domain $Q=$ $R^{2}-\bar{O}$, which moves with the unit velocity in Q and reflects at $\partial O=\partial Q$ so that the angle of incidence equals the angle of reflection. As in [1] and [6], such a motion of a particle determines a dynamical system (or a flow) S_{t} on M. We call it a billiard without boundary in the light of the Sinai's billiard. We define the first collision time τ_{+}and the last collision time τ_{-}by

$$
\left\{\begin{array}{l}
\tau_{+}(x)=\inf \left\{t>0 ; \pi\left(S_{t} x\right) \in \partial Q\right\} \tag{5}\\
\tau_{-}(x)=\sup \left\{t<0 ; \pi\left(S_{t} x\right) \in \partial Q\right\}
\end{array}\right.
$$

Here we regard $\tau_{+}(x)$ (resp. $\left.\tau_{-}(x)\right)$ as $+\infty$ (resp. $-\infty$) if the set in the definition is empty. Put

$$
\left\{\begin{array}{l}
\Omega=\left\{x \in M ; \pi\left(S_{t} x\right) \in \partial Q \text { for infinitely many } t>0\right. \tag{6}\\
\quad \text { and infinitely many } t<0\}, \\
\Omega_{0}=\pi^{-1}(Q) \cap \Omega, \text { and } \\
\Omega_{-}=M_{-} \cap \Omega .
\end{array}\right.
$$

We define the map T and T^{-1} by

$$
\begin{cases}T(x)=S_{\tau_{+}(x)}(x) & \text { if } \tau_{+}(x)<+\infty \tag{7}\\ T^{-1}(x)=S_{\tau_{-}(x)}(x) & \text { if } \tau_{-}(x)>-\infty\end{cases}
$$

The notation T^{-1} is compatible with the notation of the inverse of T. We note that if $x=(q, v) \in M$ and if $0 \leq t<\tau_{+}(x)$, then the flow S_{t}
can be expressed as

$$
S_{t} x= \begin{cases}(q+t v, v) & \text { if } x \in \pi^{-1} Q \tag{8}\\ (q+t \tilde{v}, \tilde{v}) & \text { if } x \in M_{-}\end{cases}
$$

in our formulation, where $\tilde{v} \in S^{1}$ is determined so that the point $(q, \tilde{v}) \in$ M_{-}has the coordinate $\left(\xi_{0}(x), r(x), \pi-\phi(x)\right)$ in the parametrization of $\pi^{-1}(\partial Q)=\pi^{-1}(\partial O)$ in (3).

The zeta function of the flow S_{t} is defined by the formal product (1). In [2] the author obtains:

Theorem 1 (Theorem 0, Theorem 1, and Theorem 2 in [2]). Assume the hypotheses (H.1) and (H.2). There exists a positive number H such that (1) $\zeta(s)$ converges and is nonzero analytic in $\Re s>H$, and (2) $\zeta(s)$ can be extended meromorphically beyond the axis $\Re s=H$ and $s=H$ is the unique pole on the axis $\Re s=H$ and is simple.

Corollary. Under the hypotheses (H.1) and (H.2) the prime periodic orbits of the billiard without boundary satisfies an analogue of the prime number theorem:

$$
\begin{equation*}
\#\left\{\gamma ; \exp \left[H T_{\gamma}\right] \leq t\right\} \frac{\log t}{t} \longrightarrow 1 \text { as } t \rightarrow \infty \tag{9}
\end{equation*}
$$

where γ denotes the prime periodic orbit of S_{t}.
We give a brief sketch of the proof. As in the case of the Axiom A flows, we reduce our problem to the case of the symbolic flows and this enable us to apply the results in [3] and [4]. Let $A=(A(i, j))_{1 \leq i, j \leq L}$ be the $(L \times L)$-matrix with entry $A(i, j)=1-\delta(i, j)$ and $\Sigma_{A}=\{\xi=$ $\left(\xi_{j}\right)_{j=-\infty}^{\infty} ; A\left(\xi_{j} \xi_{j+1}\right)=1$ for any $\left.j \in Z\right\}$, where $\delta(i, j)$ is the Kronecker's delta. Then for any $\xi \in \Sigma_{A}$, there is a unique $x=x(\xi) \in \Omega_{-}$ such that $\xi(x)=\xi$, where $\xi_{j}(x)=\xi_{0}\left(T^{j} x\right)$ for $j \in Z$. Moreover if $\xi_{j}(x)=\xi_{j}(y)$ for $-n \leq j \leq n$, then we have

$$
\begin{equation*}
d(x, y)<C \rho^{n} \tag{10}
\end{equation*}
$$

where C is a positive constant independent of x and $y, d(x, y)$ denotes the euclidean distance $\left\{(r(x)-r(y))^{2}+(\phi(x)-\phi(y))^{2}\right\}^{\frac{1}{2}}$, and ρ is given by

$$
\begin{equation*}
\rho=\left\{1+\left(\min _{j \neq k}\left(\operatorname{dist}\left(O_{j}, O_{k}\right)\right)\left(\min _{q \in \partial Q} k(q)\right)\right\}^{-1}\right. \tag{11}
\end{equation*}
$$

Now the function f below is well-defined and it belongs to the space F_{ρ} in virtue of the estimate (10) (for the definition of F_{ρ}, see [3]).

$$
\begin{equation*}
f(\xi)=\tau_{+}(x(\xi)), \text { for } \xi \in \Sigma_{A} \tag{12}
\end{equation*}
$$

Put $\Sigma^{f}=\left\{(\xi, s) ; \xi \in \Sigma_{A}, 0 \leq s<f(\xi)\right\}$. Define σ_{t} by

$$
\begin{equation*}
\sigma_{t}(\xi, s)=\left(\sigma^{k} \xi, u\right), \text { if } \sum_{j=0}^{k-1} f\left(\sigma^{j} \xi\right) \leq t+s<\sum_{j=0}^{k} f\left(\sigma^{j} \xi\right) \tag{13}
\end{equation*}
$$

and $h: \Sigma^{f} \rightarrow \Omega_{-}$by

$$
h(\xi, s)=S_{s} x(\xi)
$$

Then h gives a conjugacy between the dynamical systems $\left(\Omega,\left.S_{t}\right|_{\Omega}\right)$ and (Σ^{f}, σ_{t}). Using the estimate (10), we can also prove that f can not be expressed as

$$
\begin{equation*}
f(\xi)=a K(\xi)+\Phi(\sigma \xi)-\Phi(\xi) \tag{14}
\end{equation*}
$$

for any positive number $a>0$, a Z-valued function $K(\cdot)$ and a real valued function $\Phi(\cdot)$ on Σ_{A}.

From now on, we summarize the auxiliary facts. Since we obtain the fact that the function f is in F_{ρ}, and ρ is given by the formula (11), we have immediately:

Proposition 1. The number H in Theorem 1 depends analytically on the C^{2} perturbation of the scatterers.

If the diameter of the scatterers are small enough compared with the distance between the scatterers we can regard the zeta function for the flow as a small perturbation of the zeta function corresponding to a directed graph. For instance, we can show:

Proposition 2. Let $p_{1}, p_{2}, \ldots, p_{L}(L \geq 3)$ be a family of points such that any distinct three of them are not located on the same line. Let $O_{j}(\lambda)$ be an open disc with radius λ centered at p_{j}. We denote by ζ_{λ} the zeta function corresponds to the family $\left\{O_{j}(\lambda)\right\}_{j=1}^{L}$ and ζ_{0} the zeta function of the symbolic flow $\left(\Sigma^{f}, \sigma_{t}^{0}\right)$ over the subshift of finite type $\left(\Sigma_{A}, \sigma\right)$ with the ceiling function (the first collision time) defined by $f_{0}(\xi)=\left|p_{\xi_{0}}-p_{\xi 1}\right|$. Then for any bounded domain $K \subset C$, there exists $\lambda_{K}>0$ such that ζ_{λ} is meromorphic and nonzero in K for any $\lambda \leq \lambda_{K}$
and ζ_{λ}^{-1} converges uniformly to ζ_{0}^{-1} on K as $\lambda \rightarrow \infty$. In particular, each pole of ζ_{λ} in K converges to the pole of ζ_{0}.

Proof. Put $\rho(\lambda)=\left(1+\min _{j \neq k} \operatorname{dist}\left(O_{j}(\lambda), O_{k}(\lambda)\right) \lambda^{-1}\right)^{-1}$. From Pollicott [4], ζ_{λ} can be extended meromorphically at least to the domain $s(\lambda)<\Re s$, where $s(\lambda)$ is the unique real number satisfying

$$
\begin{equation*}
P\left(-s(\lambda) f_{\lambda}\right)=\frac{|\log \rho(\lambda)|}{2} \frac{|\log \rho(\lambda)|}{|\log \rho(\lambda)|+2 \log (L-1)} \tag{15}
\end{equation*}
$$

and $P(g)$ denotes the so-called topological pressure of g. The right hand side of (15) goes to $+\infty$ as λ goes to 0 . Note that $P\left(g_{1}\right) \leq P\left(g_{2}\right)$ holds if g_{1} and g_{2} are real valued functions in F_{ρ} with $g_{1} \leq g_{2}$. Clearly there exists positive constants $A_{1}<A_{2}$ such that $A_{1}<f_{\lambda}<A_{2}$ holds for any sufficiently small λ. Thus we have

$$
\begin{align*}
-A_{2} s+\log (L-1) & =P\left(-s A_{2}\right) \leq P\left(-s f_{\lambda}\right) \leq P\left(-s A_{1}\right) \\
& =-A_{1} s+\log (L-1) \tag{16}
\end{align*}
$$

Therefore $s(\lambda) \rightarrow-\infty$ as $\lambda \rightarrow 0$ in virtue of (15) and (16). Combining these facts and Proposition 1, we obtain Proposition 2.

Example. Consider the regular triangle with sides of length l. Let p_{1}, p_{2}, and p_{3} be its vertices. Then it is easy to see

$$
\begin{equation*}
\frac{1}{\zeta_{0}(s)}=\left(1-2 e^{-3 s l}\right)\left(1+e^{-3 s l}\right)^{2} \tag{17}
\end{equation*}
$$

Therefore $\zeta_{0}(s)$ is meromorphic in the entire complex plane. It is holomorphic in the domain $\Re s>H_{0}=\frac{\log 2}{3 l}$, and on the axis $\Re s=H_{0}$, simple poles are located periodically. For $\zeta_{\lambda}(s)$, the estimate

$$
\frac{\log 2}{3 l} \leq H_{\lambda} \leq \frac{\log 2}{3\left(l-\frac{\sqrt{3}}{2} \lambda\right)}
$$

holds, where H_{λ} denotes the value corresponding to H in Theorem 1.
Concerning the dynamical system $\left(\Omega_{-}, T\right)$ we obtain:
Proposition 3. Assume the hypotheses (H.1) and (H.2). For $x \in \Omega_{-}$, define

$$
\begin{aligned}
W^{s}(x, T) & =\left\{y \in M_{-} ; d\left(T^{n} x, T^{n} y\right) \rightarrow 0, n \rightarrow \infty\right\} \\
\left(\text { resp. } W^{u}(x, T)\right. & \left.=\left\{y \in M_{-} ; d\left(T^{-n} x, T^{-n} y\right) \rightarrow 0, n \rightarrow \infty\right\}\right)
\end{aligned}
$$

Then $W^{s}(x, T)\left(\right.$ resp. $\left.W^{u}(x, T)\right)$ is a smooth curve of the form $\phi=\psi(r)$ with $-K_{2} \leq \frac{d \psi}{d r} \leq-K_{1}$ (resp. $K_{1} \leq \frac{d \psi}{d r} \leq K_{2}$), where $K_{1}=\min _{q \in \partial Q} k(q)$ and $K_{2}=\max _{q \in \partial Q} k(q)+\left\{\min _{j \neq k} \operatorname{dist}\left(O_{j}, O_{k}\right)\right\}^{-1}$.

Sketch of Proof. Denote by D_{n} the definition domain of the first collision map T^{n} for $n \in Z$. For $t \in R$, we put

$$
\left\{\begin{array}{l}
V_{1}(x, t)=k(T x)-\frac{\cos \phi(T x)}{\cos \phi(x)} \frac{1}{\frac{\tau_{+}(x)}{\cos \phi(x)}-\frac{1}{t+k(x)}}, \quad \text { if } x \in D_{1} \tag{18}\\
V_{0}(x, t)=t, \\
V_{-1}(x, t)=-k\left(T^{-1} x\right)-\frac{\cos \phi\left(T^{-1} x\right)}{\cos \phi(x)} \frac{1}{\frac{\tau_{-}(x)}{\cos \phi(x)}-\frac{1}{t-k(x)}}, \\
\text { if } x \in D_{-}
\end{array}\right.
$$

Inductively we can define

$$
\begin{cases}V_{n+1}(x, t)=V_{1}\left(T^{n} x, V_{n}(x, t)\right), & \text { if } x \in D_{n+1} \tag{19}\\ V_{-n-1}(x, t)=V_{-1}\left(T^{-1} x, V_{-n}(x, t)\right) & \text { if } x \in D_{-n-1}\end{cases}
$$

By the same way as in [1] and [6], we can show that the connected component of $D_{\infty}=\cap_{n=1}^{\infty} D_{n}$ containing $x \in \Omega_{-}$is a curve $\gamma=\{(r, \phi) ; \phi=$ $\left.\psi(r),-K_{2} \leq \frac{d \psi}{d r} \leq-K_{1}\right\}$. Moreover $\gamma_{n}=T^{n} \gamma$ is also a curve $\left\{\left(r_{n}, \phi_{n}\right) ;\right.$ $\left.-K_{2} \leq \frac{d \psi_{n}}{d r_{n}} \leq-K_{1}\right\}$, and satisfies

$$
\begin{equation*}
\frac{d \psi}{d r}=V_{-n}\left(T^{n} x, \frac{d \psi_{n}}{d r_{n}}\right) \tag{20}
\end{equation*}
$$

By using the definition (19) of V_{-n} and the induction in k, we can also show that $\frac{d^{k} V_{-n}\left(T^{n} x, t\right)}{d r^{k}}$ converges locally uniformly in r and uniformly in t to a function which is independent of t. Thus γ turns out to be a smooth curve. It is clear that $\gamma=W^{s}(T, x)$.

Proposition 3 reminds us the results in Ruelle [5] and Tangerman [7]. In these papers it is shown that a certain dynamical system with smooth local stable and unstable manifolds has a zeta function meromorphic in the entire complex plane. Therefore we reach the following:

Conjecture. The zeta function of a billiard without boundary can be extended meromorphically to the entire complex plane.

References

[1] I. Kubo, Perturbed billiard system I, Nagoya Math. J, 61 (1976), 1-57.
[2] T. Morita, The symbolic representation of billiards without boundary condition, to appear in Trans. Amer. Math. Soc..
[3] W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. of Math., 118 (1983), 573-591.
[4] M. Pollicott, Meromorphic extension of generalized zeta functions, Invent. Math., 85 (1986), 147-164.
[5] D. Ruelle, Zeta-functions for expanding maps and Anosov flows, Invent. Math., 34 (1976), 231-242.
[6] Ya.G. Sinai, Dynamical systems with elastic reflections, Russian Math. Surveys, 25 (1970), 137-189.
[7] F. Tangernman, Meromorphic continuation of Ruelle zeta functions, preprint.

Department of Mathematics
Tokyo Institute of Technology
Oh-okayama, Meguro-ku 152
Japan

