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Introduction

Conformal field theory has not only useful application to string the-
ory and two-dimensional critical phenomena but also has beautiful and
rich mathematical structure, and it has interested many mathemati-
cians. Conformal field theory is characterized by infinite-dimensional
symmetry such as Virasoro algebra. Especially, its correlation functions
are characterized by differential equations arising from representations
of infinite-dimensional Lie algebras. ( [BPZ], [KZ], [EO], [MMS].) Phys-
ically, correlation functions should have the properties such as local-
ity, holomorphic factorization and monodromy invariance (duality). To
build conformal field theory having such properties, usual approach is
to construct holomorphic (chiral) conformal blocks which are the half
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of the theory and to study its monodromy. ([TK1], [TK2], [FS], [Val],
[Va2], [Ve], [MS1], [MS2].)

In the present paper, mathematically rigorous formulation of holo-
morphic (chiral) conformal field theory with gauge symmetry (affine Lie
algebra §) (Wess-Zumino-Witten model) over curves of arbitrary genus
is given by means of operator formalism. A curve in our theory may
have ordinary double points singularities corresponding to a point of
the boundary of the moduli space of curves. The fundamental object in
our theory is the space of vacua. A vacuum is a linear functional on the
direct product of representation spaces of § giving vacuum expectation
value (correlation function). Our formulation of conformal field theory
is a natural generalization of the one developed in [TK1].

Let g be a simple Lie algebra over the complex numbers C and §
the corresponding affine Lie algebra. We fix a positive integer £ and con-
sider integrable highest weight representations of § with level £. Such
representations are parameterized by a finite set of highest weights P,.
Let X(®) = (C; Q1,Qa2,...,Qn; t(°°) t(°°) .,tg\j-”)) be an N-pointed
stable curve with formal nelghbourhoods (For details see Definition
2.1.1 below.) To each point Q; we associate a representation of § corre-
sponding to A; € P,. Then to X(> and X = (A,...,Ay) we associate
the space of vacua v§(3e(°°>) and its dual space V;(%(>)). The space of
vacua V;(%(“’)) is defined by the gauge condition. (See Definition 2.2.2
below). It will be shown that V;.(}I(“)) does only depend on the first
order infinitesimal structure X(1) of X(*). (See Remark 4.1.7 below.)

Let 95?( ~ (resp. ﬁf( ) be the moduli space of N-pointed stable
curves w1th formal nelghbourhoods (resp. first order infinitesimal struc-
tures) and 7(°) : ¢(®) wf;:? (resp. 71 : () — ?.m(l x) be the
universal family of N-pointed stable curves on it. Then, the collec-
tion of the spaces of vacua v;(%(“))’s (resp. the dual spaces of vacua

V5 (%())) forms a sheaf V;(w) (zesp. V§°°)) on Wf:;; and it is the pull
back of a sheaf V§(1) (resp. Vg)) on ?m_f:,)v
Precisely speaking, there exist no universal families of N-pointed

stable curves over the moduli spaces ?ﬁt_f,‘j@ and ﬁiﬁv Therefore, we
have to consider local universal families. Namely, we define the sheaves
of vacua V;‘(S(“)) and V;(S(l)) (resp. V(3(>) and V5(F1))) attached
to local universal families §() = (#(®) ; ¢(=) — B(x); 5(=) )

,sg\}x’) f(°°) f(°°) .,t~(§°)) and §M = () : ¢ - B, sgl),
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sgl), ... ,s%) ; fgl),f(zl), . ,fg\l,)), respectively. The sheaves V;({S’(‘”)) and
V5 (F()) (resp. V;(E(l)) and V;(F1))) are Op()-modules (resp. Og)-
modules). If a local universal family §'(1) is a subfamily of §(!) the
restriction of the sheaves V}\({;"(l)) and V;(™M) to the subfamily are the
sheaves Vi(@'(l)) and V;(F (M), respectively.

In the present paper we shall analyze the structure of the sheaves
V;(S(l)) and V;(§"). Though our arguments below often use spe-
cific coordinates, they have intrinsic meaning and we could argue as if
there were universal family over the moduli space of N-pointed stable
curves with infinitesimal structures. Fancy mathematical tool to treat
the above situation is the theory of stacks ([DM]). But in the present
paper we choose primitive approach described above. Using the idea of
Beilinson-Manin-Shechtman [BMS],[BS2], we construct an Og1)-module
of Lie algebra DL ;) (—log D(V); ¢,) (the sheaf of twisted first order differ-
ential operators) acting on V§(§(1)) and V;(F™)), which is the geometric
counter part of the Virasoro algebra with central charge ¢, defined from
the representations as the Sugawara form. (For details see Section 5.)

Main results of the present paper are the following.

1) V;(EU)) and V5(FY)) are coherent Ogq)-modules. (Theorem
4.2.4.) Hence, the space of vacua v}(x(‘xﬁ) and V;(X(=)) are finite-
dimensional. Moreover, V;(S"(l)) and V(F(1) are locally free sheaf of
finite rank, that is, a vector bundle over B(1), (Theorem 6.2.1 and
Corollary 6.2.3.)

2) The sheaf Dy, (—log DM); ¢,) of twisted first order differential
operators acts on V%({i’(l)) and Viz(FY). (Theorem 5.3.3.) This defines
projective flat connections on V;(g(l)) and V(§1)) with regular singu-
larities at the locus D) ¢ B() corresponding to singular curves. The
connections are nothing but the Ward-Takahashi identity. Moreover, the
solution sheaf of V;'\.({f(l)) gives what physicists call current conformal
blocks.

3) V;(S(l)) has a factorization property [FS]. (Theorem 6.2.6.)

Hence the dimension of the space of vacua VX(X(°°)) does only depend

on the genus of the curve C and X = (As,...,Ay) and can be calculated
by a maximally degenerate curve by using the fusion rule. Moreover,
the proof in Section 6 shows that we can construct a canonical basis of
flat sections of V)I\(S(l)) from the data on the boundary.
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Our result in this paper may be regarded as an infinite-dimensional
version of the Beilinson-Bernstein theory [BB], [BK] for representations
of finite dimensional simple Lie groups. Here three notions, Virasoro
algebra, moduli space, and the braid group and the mapping class group
correspond to simple Lie group G , the Flag manifold G/P and the Weyl
group of the original theory, respectively.

Let us explain briefly the content of the present paper. In Section 1
we shall give basic results on integrable highest weight representations of
an affine Lie algebra §. The energy-momentum tensor will be defined as
the Segal-Sugawara form. Also the automorphism group D = AutC((¢))
of the field of formal Laurent series C((¢)) will be introduced and its
properties will be studied.

In Section 2 we shall first define the notion of an N-pointed stable
curve with n-th infinitesimal neighbourhoods X(™) or with formal neigh-

bourhoods X() and define the space of vacua V§(3€(°°)) and its dual

space of vacua Vx(.'f(”)) attached to X(°). The important properties of
the space of vacua such as propagation of vacua will be proved. Also we
shall define correlation functions of current and study their properties.
The propagation of vacua and the properties of correlation functions will
play an essential role to construct our conformal field theory.

To study the properties of the space of vacua we need to vary the
moduli of N-pointed curves with infinitesimal structures. In Section 3
we shall study local universal family of such curves. The content of this
section is well-known to the specialists. Since the results in this section
are scattered among many references, we shall describe some details of
deformation theory of N-pointed curves with infinitesimal structures.
We shall use freely the standard technique of the cohomology theory of
sheaves which can be found, for example, in [Ha] or [BS1].

In Section 4 we shall define the sheaf of vacua associated with a local
universal family of N-pointed stable curves with formal neighbourhoods
(w(®) : ¢l - Bl s§°°’,s§°°),‘..,s§3°); t~§°°),t~g°°),...,f(§°)). We
shall show that the sheaf is coherent Og(:)-module. Here, Gabber’s
theorem [Ga| plays an essential role.

In Section 5 we shall define the sheaf of twisted first order differential
operators Dy, (—log DM;¢c,) acting on Vi(F*)) from the left and on

V;(E(l)) from the right. This sheaf defines an integrable connection
on V;(FWY) and V;".(%(l)) with regular singularities on the boundary
corresponding to singular curves.

Finally in Section 6 we shall show that the sheaves V;(3)) and

V;\f.(%(l)) are locally free and have the factorization property. Hence
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the dimension of the space of vacua can be calculated by a maximally
degenerate curve by using the fusion rule. Moreover, the proof shows
that we can construct a canonical basis of flat sections of V{.(S(”) from
the data on the boundary.

The main results of the present paper was announced in [TY]. In
[BS2], analogous results have been given for the case of ¢ < 1 minimal
models. But the analysis of singularity on the boundary was not studied
there.

Notations

g : simple Lie algebra over the complex numbers C.

A : set of all non-zero roots of g.

AL ( A_): set of all positive (resp. negative) roots of g.

8 : the maximal root of g.

pt := —w(u) where w is the longest element of Weyl group of g.

( , ): Cartan-Killing form of g normalized as (6,6) = 2.

Va ( V,\’f ) : irreducible left (resp. right) g-module with highest (resp.
lowest) weight .

P, : set of all dominant integral weights.

@ : affine Lie algebra attached to g. (Definition 1.1.1)

£ : level of a representation of §.

Ppr={X€ P |0<(6,\) <t}

2
A= %—%ﬁl where p = % Z a and g* is the dual Coxeter
aEly
number of g.
__t-dimg
v T g* + l

Ha ( 'Hf\ ) : integrable highest weight left (resp. right) g-module with
highest (resp. lowest) weight A.

FoH ( F"H:‘\ ) : filtration of M (resp. HL). (See 1.3).

Hs = Ha, ®c -+ - ®c Hay where = Ay AN) € (P)N.

’H;. = 'Hf\l@c .- @c’H;N

C((¢)) : field of all formal Laurent series. That is, the quotient field of
the formal power series ring C[[¢]].

X(n):=X @ ¢, where X € g.

X(2) = Ypez X ()2
T(z) : energy-momentum tensor. (Definition 1.2.1)

X[f] := Res.=o(X(2)f(2)dz) for f(£) € C((£))-
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T} = Res.—o(T(:)A(2)dz) for L= U(2) € C((2) -
D = AutC((¢))
DP i {h e D |h(E) = £+ ape? +-- )

d

d) = —

(@ = Cligle 3¢
d

()7 := C[[EH&"“EE

G[h] := exp(—T|l]) for h € D' where h = exp(l).

X" =(C; Q1,Q2,...,QnN; tg"),tg"), . ,t%‘)) : N-pointed stable curve

with n-th infinitesimal neighborhoods. (Definition 2.1.3)

X(=) =(C; Q1,Qs,..-,QnN; t§°°),tg°°),...,t§f;°)) : N-pointed stable
curve with formal neighbourhoods.

v = DI, 9® C((¢))) ® Ce (Definition 2.2.1)

F(X(=)) := g @ H(C,00(+ L1, Q)))

V;(%(“)) ( V5(X(=)) ) : space of vacua (resp. dual space of vacua)
associated with X(°°). (Definition 2.2.2)

T.M (T:M ): tangent (resp. cotangent) space at a point z of a complex
manifold M.

L, : sheaf of Kahler differentials of a curve C.

wx : dualizing sheaf of a complex space X.

Q}W NG sheaf of relative 1-form for a surjective holomorphic mapping

7 : M — N of complex manifolds.

OpyN = Homg,, (Q}l N Or) : sheaf of relative holomorphic vector
fields.

wpyn ¢ relative dualizing sheaf.

O p(—log D) : sheaf of vector fields on a complex manifold M tangent
to an effective divisor D of M.

F = (™ ;™) - B sg"),sg"),...,s%‘); iﬁ"),t"g"),...,f(;)) .
local universal family of N-pointed stable curves with n-th infini-
tesimal neighbourhoods. (Definition 3.1.1 and Theorem 3.1.5)

F(®)= (7} : ¢loo) 5 Bl=) s§°°),s§°°),...,s§3°) ; f(1°°),t~g°°),...,f(;°)):
local universal family of N-pointed stable curves with formal neigh-
bourhoods.

2(") : critical locus of F(™. ((3.1-8) and Lemma 3.1.6)

D™ : discriminant locus of F™. ((3.1-9) and Lemma 3.1.6)

H(Xoo) = Og() ®c Hj,

H}(w) = Homo (quoo), Op(e) )

V5(5(®)) : dual sheaf of vacua attached to a family F(>). (Definition
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4.1.2)
V;({s"("")) : sheaf of vacua attached to a family §(>). (Definition 4.1.2)
V5(FW) : dual sheaf of vacua attached to a family §V). (Lemma 4.1.6)
i

({f(l)) sheaf of vacua attached to a family ). (Lemma 4.1.6)
ng(— log DM; ¢, ) : sheaf of twisted differential operators.

) o w" 3 /w" 2
{w;z} : Schwarzian derivative. {w,z} = o 3 (Tu’->

§1. Integrable highest weight representation of affine Lie al-
gebra

1.1. Affine Lie algebra

In this subsection we recall basic facts on integrable highest weight
representations of affine Lie algebras. For the details on integrable high-
est weight representations of affine Lie algebras we refer the reader to
Kac’s book {Ka].

Let g be a simple Lie algebra over the complex numbers C and f
its Cartan subalgebra. By A we denote the root system of (g, h). We
have the root space decomposition

9=50 ) ga-
aCA

Fix a lexicographic ordering of hg once for all. This gives the decompo-
sition A = A U A_ of the root system into the positive roots and the
negative roots. Let § be the maximal root. We normalize the Cartan-
Killing form

(, )igxg—C

with the property

(1.1-1) (9, 9) =2.

Note that the Cartan-Killing form has the following property.
(1.1-2) (X, Y], 2)+ (Y, X, Z])=0.

Let P, be the set of dominant integral weights of the Lie algebra g.
There is a one-to-one correspondence between the set of finite dimen-
sional irreducible representations of g and the set P, of the dominant
integral weights of g.
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By CJ[¢]] and C((¢)) we mean the ring of formal power series in £
and the field of formal Laurent power series in £, respectively. Namely

Clel ={>_a.¢|a, € C},

C((§)={D_b.e"|b,eC,meZ}.

v=m

Definition 1.1.1. The affine Lie algebra § over C((¢)) associated
with g is defined by

(1.1-3) 8=90C((§) @ Cc

where c is an element of the center of § and the Lie algebra structure is
given by

X ® f(£),Y ® g(¢)] =

(1.1-4) [X, Y] ® £(€)g(€) + - (X, Y) Res(g(€)df €)),

for

X, Y € g, f(£), 9(§) € C((¢))-

Note that usually the affine Lie algebra is defined over C[£,£7}] but
for our theory we need to define it over C((£)). Put

(118) By =9®Clgl 3 =soCkE
We regard §iand §_ as Lie subalgebras of §. We have a decomposition
(1.1-6) §=0:0900Cco3-.
Fix a positive integer £ (called the level) and put
Pp={Xe P |0<(§,)) <L}

Proposition 1.1.2. For each A € P, there exists the unique left
§-module Hy (called the integrable highest weight §-module) satisfying
the following properties.

(1) Vi = {|v) € Hx| G+|v) = 0} is the irreducidle left g-module
with highest weight .
(2) The central element ¢ acts on Hy as £-id.
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(3) Hax is generated by Vy over §_ with only one relation
(1.1-7) (Xp® €71~ OMH) = 0

where Xg € g is the element corresponding to the mazimal root
6 and |X) € Vy is the highest weight vector.
Similarly we have the integrable highest weight right §-module ’H;»

which will be discussed in 1.3 below.

1.2. Segal-Sugawara form

In the following we use the following notation freely.
X(n)=X®¢", Xeg
X(z)= Z X(n)z ™1

ncZ
where z is a variable. Then the normal odering ¢ is defined by
X(n)Y(m), n<m,
3X(n)Y(m)g = ¢ F(X(n)Y(m)+Y(m)X(n)) n=m,
Y (m)X(n) n>m.

Definition 1.2.1. The energy-momentum tensor T'(z) is defined
by

dim g

> 8T%(2)T%(2) 8

a=1

1

(1.2-1) ()= 50 p

where {J,J%,...} is an orthonormal basis of g with respect to the
Cartan-Killing form { , ) and g* is the dual Coxeter number of g.

Put
1 dim g
1.2-2 L,=—+—— 0J%(m)J*(n—-m)2.
( ) 2(9* +£)m'2€:z ‘; o o}

Then we have the expansion

T(z) = Z Lnz~™7%

necs

The operator L, is called the Virasoro operator which acts on H.
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Lemma 1.2.2. The set {L,} forms a Virasoro algebra and we
have

(L, L] = (n = m)Lpym + f—;(rﬁ — )bntmo
[Ln, X(m)]=-mX(n+m), forXeg

where
{dimg
Cy =
g*+1

is the central charge of the Virasoro algebra.

For X € g, f = f(2) € C((2)) and | = l(z)% € C((z))gd; we use

the following notation.
X[f] = Res(X(2)f(2)dz)
T(l] = Res(T'(2)¢(2)dz).

Lemma 1.2.3. X|[f] and T[l} act on H and we have

X[fl=X ® £(6),
(12:3) (T, X(£]] = - XU,
(1), Tlal) = ~Tlll, )+ T3 Res(tad2).

1.3. Filtrations and ’H;
Let us introduce filtrations {F,} on C((z)), § and Hx. For any
integer p put
(1.3-1) FpC((§)) = £7PCI[]l,
F,C 0
(1.3-2) Fpﬁz{ 8@ F,C((¢)) p<
g® F,C((§))®Cc p20.

To define a filtration {F,} on Hy, we first define the subspace H(d) of
‘H for a non-negative integer d by

(1.3-3) Ha(d) = {|v) € Ha| Lolv) = (d+ Ay)|v) }

where () O p)
’ 3 + 2 P _ 1
0= QAN Ly

2(g* +¢) ey
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For a negative integer —d we define
Ha(—d) = {0}.
Now we define the filtration {F,H} by
P
(1.3-4) FyHa =Y Ha(d).
d=0

Note that all the filtrations defined above are the increasing ones.
Put

(1.3-5) H1(d) = Homg(Ha(d), C).

Then the dual space ’H; of H, is defined to be
(1.3-6) M} = Homg(Hs, C) = || #i(a).
d=0

By definition 'HI‘ is a right §-module. A decreasing filtration {F?H1} is
defined by

(1.3-7) FrHl = [ Hi(d).

d>p
There is a canonical complete bilinear pairing
(1.3-8) (| y:HlxHy— C,
which satisfies the following equality for each a € §.
(u|av) = (ualv), for all (u| € H} and |v) € H,.

Note that the filtrations {F,} and {F?} define the topology on H and
'HI‘, respectively. With respect to this topology HI‘ is complete and is
the integrable highest weight right §-module with the lowest weight .
Put

Vi={(leH]| (vlg-=0}.

It is easy to show that Vi = H}(0) and V! is the irreducible right
g-module with lowest weight A. The integrable highest weight right §-
module with lowest weight A is generated by V; over §; with only one

relation
(X0 @ €)1 =,
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Lemma 1.3.2.
X(m)Hx(d) C Ha(d — m)
Lo Ha(d) C Ha(d — m)
Hi(d) X (m) C Hi(d+m)
H(d) L C HA(d +m).

—m

m

1.4. D= AutC((¢))

Let D be the automorphisms group AutC((¢)) of the field C((¢)).
The group is infinite-dimensional and is regarded as the automorphism
group AutCl[¢]] of the ring C[[£]].

Lemma 1.4.1. There is an isomorphism

(1.4-1) D =~ { ;}anﬁ“*‘ | ao #0}
hoe h(E)

where for hy, ha € D the composition hy o hy corresponds to a power
series ha(h1(€)).

In the following we often identify the group D with the set of power
series given in the right hand side of (1.4.1). For each positive integer p
put

(1.4-2) DP = {h(¢) =€ +apt®t + ...}
Then this defines a decreasing filtration

D=D">D'>D*>....

Put
(14-3) d=Clees

d 5
(1.4-4) & = cnﬂhsf'“;;-’g

for each positive integer p. We have a decreasing filtration of ideals

d=d>d'>d*>....
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For any element [ € d and f(¢) € C[[¢]] define exp(1)(f(£)) by
(1.4-5) exp(1)(f Z kl

This is well defined and exp(l) is an element of D.
Lemma 1.4.2. The exponential mapping

exp: d — D
I — e

is surjective. Moreover, for each positive integer p we have
exp(d’) = DP
and the ezponential mapping is injective on dF.

For each positive integer p and an element [ € d¥ define exp(7'[l])
by

?r|p_a

(1.4-6) exp(T[l]) = i

Lemma 1.4.3. exp(T'[l]) is well-defined and is a continuous linear
operator on Hy and 'HI‘. Moreover, it induces the identity operator on
GrFHy and GryHl,.

Definition 1.4.4. For an automorphism h € D?, p > 1, G[h] is
defined by

(L47) Gl] = exp(-T1l)),
where
h = exp(l).
Note that by Lemma 1.4.2 G[h] is well-defined.

Theorem 1.4.5. For h € D! and f € C((£€)) we have the follow-
ing.

1)  GRI(X® f)Gh7] = X ® h(f).

2) G[hz]G{hl] = G[h2 o hl] fOT‘ hi,hy € D.

3)  GIRTWGCI™] = Tlad(r)(1)] + 75 Res({h(e); £}4(6)dE)
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d
where {h(£); €} is the Schwarzian derivative and | = l(ﬁ)zidz € C((ﬁ))d—5
Corollary 1.4.6. For f € C((£)) and X € 8a, @ € A the action
of Xo|f] = Xa® f on Hy and 'H; are locally nilpotent.

§2. Pointed stable curves and the associated vacua

2.1. Pointed stable curves

Definition 2.1.1. Data X = (C; Q1,Q3,...,Qn) consisting of
a curve C and points Q1,...,Qxn on C are called an N-pointed stable
curve, if the following conditions are satisfied.

(1) The curve C is a reduced connected complete algebraic curve
defined over the complex numbers C. The singularities of the curve C
are at worst ordinary double points. That is, C is a semi-stable curve.

(2) @Q1,Q3,-..,Qn are non-singular points of the curve C.

(3) If an irreducible component C; is a projective line (i.e. Rie-
mann sphere) P! (resp. a rational curve with one double point, resp. an
elliptic curve), the sum of the number of intersection points of C; and
other components and the number of Q;’s on C; is at least three (resp.
one).

(4) dimc HI(C, Oc) =4g.

Note that the above condition (3) is equivalent to saying that Aut(X)
is a finite group so that X has no infinitesimal automorphisms. In the
following we often add the following condition (Q) for an N-pointed
stable curve X.

(Q) Each component C; contains at least one Q;.

The meaning of the condition (Q) will be clarified in the following
Lemma 2.1.4 and Lemma 2.1.5. By virtue of Proposition 2.2.3 below
the assumption is not restrictive. (See Remark 2.2.5.)

Definition 2.1.2. Let C be a curve and @ a non-singular point
on C. An n-th infinitesimal neighbourhood t(™ of C at the point Q is a
C-algebra isomorphism

(2.1-1) t™ : Og,q/mGH = C[€1]/(€™+)
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where mg is the maximal ideal of O¢ g consisting of germs of holomor-
phic functions vanishing at Q.

Taking the limit n — oo in the isomorphism (2.1-1), we have an
isomorphism

(2.1-2) (=) : O o ~ C[[£]).
The isomorphism t{*) is called a formal neighbourhood of C at Q.

Definition 2.1.3. Data X(™ = (C;Q1,Qa,...,Qn; £, 8™, ..,

tg(;’) are called an IV-pointed stable curve of genus g with n-th infinites-
imal neighbourhoods, if

(1) (C;Q1,Qs,...,Qn) is an N-pointed stable curve of genus g.
(2) tg.") is an n-th infinitesimal neighbourhood of C at Q.

An N-pointed stable curve X(®) = (C; Q1,Q3,...,Qn; t} ${>) t(°°),

. ,ftg\,-m)) with formal neighbourhoods is defined similarly.

Lemma 2.1.4. Assume that an N-pointed stable curve X(°) =
(C; @1,Q2,-..,Qn; t§°°),t§°°),...,t§§°)) with formal neighbourhoods
satisfies the condition (Q). By t; we denote the Laurent expansions at Q;

with respect to a formal parameter §; = t(°°)_1(§). Then, the following
homomorphisms are injective.

(2.1-3)

N N
t=@ot; : H(C,0(x Z — @)
(2.1-4)

N N
t=ot;: H(C,wo(* Y Q;)) — @D C((¢;))dé;
j=1

j=1
where we' is the dualizing sheaf of the curve C.

N N
By this Lemma H(C, O(*ZQi)) (resp. H°(C, wc(*ZQ]-))) can

7=1 j=1
be regarded as a subspace of ®_; C((¢;)) (resp. &7, C((£;))d¢;). There
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is the residue pairing
(2.1-5)

O, C((&) x DY, C((€;))de;  — C
((f(gl)’vf(EN) (ﬁl)dﬁx,-,g(&v di — de% g])dﬁ])

2

The following Lemma is well-known and plays an important role in our
theory.

Lemma 2.1.5. Under the residue pairing H°(C, O(* Zyzl Q;)
and H(C,wc(* Zjvzl Q;)) are the annihilators to each other.

2.2. The space of vacua associated with X()

First we generalize the notion of an affine Lie algebra to the one
over the direct sum of the fields of Laurent series ®_; C((¢;)) and the

one over the data X() = (C; Q1,Q3,...,Qn; t §°°),t§°°),---,t§$°))-

Definition 2.2.1. Let g be a simple Lie algebra over the complex
numbers C. The associated affine Lie algebra §n over &L, C((¢;)) is
defined by

N
(2.2-1) QB 8® C((¢;)) @ Ce

with the following commutation relations.

(2.2-2)
(11X, ® £, ®1L,Y; ® g;] =

N

;L1 (X;, Y;1® fig; + ¢ 3 _(X;, ¥;) Res(dfsgs),
7=1 =
c € Center
where ®¥_,a; means (a1,as,...,an). The Lie subalgebra g(X(>)) of

B associated with X(°) = (C; Q1,Qa,...,Qn; tgw),tg“’),...,t%)) is
defined by
N

B(X*) = g® H(C,00(x Y Q)
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Here we regard H°(C, O¢c(* Ejvzl Q;)) as a subspace of &I, C((£)) by
the mapping ¢ given in (2.1-3).

Note that the Lie algebra §(X(°)) has no centers. By Lemma 1.2.3 we
use the notation X([f;] instead of X ® f;(£;). Also we sometimes use
the notation X |[f] instead of X ® f for a meromorphic function f on the
curve C, if there is no danger of confusion.
Let us fix a positive integer £. For X = (A1,...,An) € (Po)V, a left
Bn-module H; and a right §y-module 'H} are defined by
Hz =Hx ® ... 0 Hay,

t_yt 5 St
HL=H®...8H],,
where the left gy-action on Hj is given by
(&L X5 fiD)v1 ® ... ow)

N
= Z [’Ul Q..U ® (Xj[f]-])vj QUi - ®’UN>.
7=1

The right §x-action on HTX is defined similarly. In what follows we use
the following notation.

pi(X[fiDlv1 ® - vn®)
=|v1® - ®vj—1® (X[fj])v; ®vj41 ® - ®vn)
pi(X[f1) = pi(X[t;(F)])

for a meromorphic function f on the curve C.
The complete pairing ( | ) defined in (1.3-8) defines a complete
pairing

(2.2-3) (| ):HlxH;—C
which is §y-invariant: |
(up;i (X[fiDlv) = (ulp;(X[fi])v)
Definition 2.2.2. Put
V(X)) = Hy/F(X)H;
VL(E) = {(¥] e HL| (¥ja=0 for any a € G(X())}.
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We call v;(ae(@) the space of vacua associated with X(>) and V;(X(=))
the dual space of vacua associated with X(°),

Note that we have an isomorphism
VL(E(*)) & Home (V5(X(>)), C).
The above pairing (2.2-3 ) {( | ) induces a complete pairing
(1) VHE) x vy(x)) — C.

For X(®) = (C; Q1,Qz,...,Qn; t§°°),t§°°),...,tg‘;°)) let P be a non-
singular point of the curve C' and t.a formal parameter of C at P. Put
R = (C;Q1y- -, Qn, Quas 88,152,155

where Qn+1 = P and tgﬁ)l =t.

Now let us describe the properties which we call propagation of
vacua. Since there is a canonical inclusion

'Hx — HX ® Ho
lv) — [v) ®10)
we have a canonical surjection
T 'H}@Hg —_— HTX .

Proposition 2.2.3. The canonical surjection t* induces a canon-
ical isomorphism

b (F(0)y ~ pl(xlee
Vi () = V().
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Proof. For an element (¥ € V;O(i(‘x’)) put (¥| = *((¥]) € 'H}.

Choose f € H(C,Oc(* Zf;l Q;)), X € g and |u) € H;. Then by our
definition we have

2

Z ¥lp;i(X z ‘I’IPJ(X[f lu®0).

=1
On the other hand, since f is regular at the point Qnx4+1 = P, we have
(¥lpn41 (X[f)u®0) =0.

Hence we have

N N+1
Z Tlp; (X [f])lu®0) = Z(‘ilpj(X[f])IU®0> =0.

Thus we have (¥| € V;.(%(‘”)) and we have a linear mapping
v;,o(%w)) — VI(X)).

First we shall show that the linear mapping ¢* is injective.
Assume that (¥| = *((¥|) = 0. By induction on p we show that

(2.2-4) (lu®v) =0, forall uc Hy and v e FyH,.
By our assumption we have
(Tlu) = (Tlu®0)=0.

Hence (2.2-4) is true for p = 0. Next assume that (2.2-4) holds for p.
Choose an element X(m)|v) € Fpy1Ho, where |v) € FyH,. Choose a

meromorphic function f € H°(C, Oc( ZN+1 Q;)) and a positive inte-
ger M such that

(2.2-5) f=n7" mod (n™)
and that

(2.2-6) X®n*v)=0 forall k> M.
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Then we have

(Tlu® X(m)|v) = (¥lu ® (X[f])v)

N
= = > (Ep (X(u o)
=0

since by the induction hypothesis (¥|p;(X[f])u ® v) = 0. Thus (2.2-4)
holds for p + 1. Thus (¥|u ® v) = 0 for any |u ® v) € H; ® Ho. Hence,
(¥ =o0.

Next we shall show that ¢* is surjective. For that purpose, to a given
(¥] € V;.(}:(“’)) we attach an element (¥| € Homc(Hz ® Ho,C) =

H}@'HS. The linear functional (§l| is defined inductively as a linear
mapping of H; ® F,'Ho to C as follows. First define

(P|u®0) = (¥lu) for any u € H;.

Then we havé

N N

> (Tloi(X[g))lu®0) = > (¥|p;(X[g))lu) = 0
j=1 J=1

for any element g € H(C, Oc(* E?:; Qj))-

Now assume that (¥| is defined as a linear mapping of M 5 ® FpHo
to C with

N

(2.2-7) Y (Zlps(Xg])lu®v) =0

j=1

for any [u®@v) € H; ® F,Ho and g € HY(C, O¢(x Zj\;l Q;)). Then, on
M5 ® Fpy1'Ho the linear mapping (§| is defined by

(2.2-8)
(Tlu® X(m)v) = Z(\III(p,(X[ﬂ)u@v) for any u € Hy,v € F,Hp

where a meromorphic function f is chosen in the same way as in
(2.2-5) and (2.2-6). It is easy to show that this is well-defined and



Conformal Field Theory 479

has the property
N+1

> (Tlpi(X[f]) = 0

j=1

for each element f € HY(C,O¢(* Z;V;ll Q;)). A straightforward calcu-
lation shows the equality

(Bu®X (m1)Y (ma)v) — (¥|u® ¥ (ma) X (my)v)
= (Tlu® ([X,Y](my +m3) + £ (X,Y)M180m, +mz,0)V)-

This equality shows that the (\‘IVII is defined at least as a linear mapping
form H; ® My to C, where M, is the Verma module associated to the
trivial representation of the affine Lie algebra @.

To show that (¥ is a linear form on M 5 ® Mo, it is enough to show
the equality

(2.2-9) (Flu ® Xo(—1)4+1]0) = 0.
To prove (2.2-9) we first show
(Flu ® Xo(—1)"0) = 0

N+1
for sufficiently large n depending on |u). Let f € H°(C, OC(*ZQj))
Jj=1
be a meromorphic function on C which satisfies the conditions (2.2-5)
and (2.2-6) for m = —1. By Corollary 1.4.6 there is a positive integer n
depending on |u) such that for any 7, j = 1,..., N, we have

(2:2-10) o (Xalf)Hu) =0, if k> n/N.
Applying the formula (2.2-8), by (2.2-10) we obtain

(Flu®Xs(—1)"|0) = (¥lu ® (Xo[f])"|0)

N
=1 Y @l ue0)

nilngl...n .
ni+..+ny=n 1:7%2 j=1

=0.

Put
E=2X 4(1), F=X4¢(-1), H=IE, F]:
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Then {E, F, H} forms a sl(2, C)-triplet. Let U, be a vector subspace
of the Verma module My such that (¥] is zero on C|u) ® My and N,

the s5[(2, C)-module generated by |0). Then the above equality (¥lu®
F™|0) = 0 means that the sl(2, C)-module R, = N, + U, /Uy, is of finite
dimension. Since we have

HI|0) = £]0),

by representation theory of s{(2,C) we conclude that F**!|0) = 0 in
R,. This means that

(Tlu ® Xo(—1)4+0) = 0.

Thus we obtain (¥| € V;‘. 0(.';'é("")) such that 7*((¥|) = (¥|. The details
of the above argument can be found in [TK1,2.3)]. Q.E.D.

Corollary 2.2.4.  There is a canonical isomorphism

V(X)) x Vg (X))

Remark 2.2.5. Proposition 2.2.3 and Corollary 2.2.4 say that in
the study of the space of vacua and its dual space attached to an N-
pointed stable curve with formal neighbourhoods we can add as many
points with formal neighbourhoods as possible we need. Therefore, as
we mentioned above, we can always assume that the condition (Q) is
satisfied. Below this fact will be often used and play an essential role to
prove important theorems.

For an element u € P, put

pt = —w(p)

where w is the longest element of the Weyl group of the simple Lie alge-
bra g (in other word, w(A}) = A_). Note that u'! is also characterized
by the fact that —u' is the lowest weight of the g-module V.

For an N-pointed stable curve X(®) = (C; Q1,Q2,---,QnN; t§°°),
tg°°), . ,t$§°)) with formal neighbourhoods, assume that the curve C has
a double point P. Let v : C — C be the normalization at the point P.
(See, for example, [Se, Chap. IV, Section 1 ].) Put v~1(P) = {P', P"}.
Furthermore we introduce formal neighbourhoods (> and ¢(*) at P’
and P", respectively.

In the proof of the following Proposition 2.2.6 we shall use the results
of Theorem 2.4.1. We shall not use Proposition 2.2.6 in the proof of the
theorem.
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p v
— (Y-
.

Figure 2.

Proposition 2.2.6. Under the above notation, for an N -pointed
stable curve X(=) = (C; Q1,Q3,...,Qn; t§°°),t§°°),...,t§5°)) with for-
mal neighbourhoods, put

F) = (G, P, P",Qu, ..., Qu; "%, 1) 4o,

Then there is a canonical isomorphism

D V) 53 5 VHE),

pEP

Figure 3.

Proof. The diagonal action of g on V, ® V,,;+ makes V, ® V1 a g-
module and it contains a trivial g-module with multiplicity one. Let
|0,,.t) be a basis of the trivial g-submodule of V, ® V)1 such that
T(|0,,ut)) = |04t ), where T is a canonical isomorphism

T:V,®Vy — V1 ®V,
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defined by T(a ® b) = b® a. Hence H _, x contains a subspace

w.pt,

H, a5 D [0u,) ®Hy ~Hs.

wout,

For any element (¥ € V;,m,i(i:(@)’ define (¥] € 'H; by

(¥|8) = (¥|0, ,+ ® &) forall |3) € H;.
Then, for any meromorphic function f € H%(C,Oc(* Zjvzl Q;)) we
have

N

Z Tp;(X[FDI®) =

i=1

Mz

(F)(0, 1) ® p3(X[F))2)

1

©.
Ell
I

>~ (Flp;(X[£1)[0,,1 @ B) =0

~
1l

since if we regard f as a meromorphic function on C, we have (P =
f(P") and pp (X[f])[0,,ut) + ppr(X[f])0, ut) = 0. Hence we have

2

> (¥|p;(X[f]) =0 forany fe H'(C,Oc(x

J=1

H'Mz

Thus we have a canonical C-linear mapping

Vi (EE)) — vi(E().

Ly o
® et X

We shall show that the mapping ¢, is injective. For that purpose, first
we show that for (¥] € ¢, ((¥|), (¥| € Vl t x(%(”)) we have

(2.2-11) (Z|X(P)|8)dP = (¥|X(P)0, ,+ ® &)dP.

Note that by Claim 3 of the proof of Theorem 2.4.1, the expansion of
the left hand side of (2.2-11) at Q; with respect to the formal parameter
¢; has the form

D (Wlpi(X(n))|@)¢; g .

neZ
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Similarly the right hand side of (2.2-11) has the expansion
D (T (X (n))]0, 0 ® B)e5™ 1 dE
neZ

=Y (T|(0,,1) ® pj (X (n))®)E; " de;

nezZ

=S (Tlpi(X(n))| @)™ de; .

n€Z
Hence the equality (2.2-11) holds. Similar argument shows the equality
(¥|X1(P1). .. Xpm(Py)|®)dP:...dPy =
(B|X1(P1) ... Xps(Par)|0, ut ® ®)dPy ... dPys .
Now assume that (¥| = 0. By Theorem 2.4.1, 3) we have
(B X2(P2) ... Xpe(Par)|pp (X1(n))0, 4t © ) = 0.
Applying again Theorem 2.4.1, 3), we obtain
(Tlop (Xa(n2) X1 (n1))0, 4t ® B) = 0
(¥lpp (X1(n1))pp (X2(n2))0pu ® &) =0
(¥lppr (X1 (n1)X2(n2))0, 1 ® 8) = 0.
Repeating the same process we can show that

(¥|@) =0 forany &€ H, 5

since M, ® H,t is an irreducible § x g-module. Hence ¢, is injective.
Let us consider a C-linear homomorphism

. f F(oo 91'“ t oo
P v#,“tyx(ae( )) =5 VI(E().
pEP,

We shall show that ¢ is injective. For that purpose, to the points P’ and
P" we associate right g-modules and integrable right §-modules.

Fix an element (¥| € V;(.’f(“’)). Let h be a meromorphic function
on C such that

N
h eHY(C,04(x>_Q;))
j=1
(2.2-12) R(P') =1
h(P") = 0.
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If h' satisfies also the properties (2.2-12), then h — k' can be regarded
as a meromorphic function on C and h — k' € H°(C, O¢(x Zle Q;))-
Hence, for each |u) € My

N
Z Yp;(X[A])|u)

is independent of the choice of a meromorphic function & satisfying (2.2-
12). For each element X € g define (¥|pp/(X) € Homc(Vy, C) by

N

(lop (X)) = = > (Tps(X[R)lu),  |u) € Vy

i=1

where h satisfies (2.2-12). This is well-defined.
Next for X,Y € g define (¥|pp:(X)pp(Y) € Homc(Vy, C) by

N
(Tlop (X)pp(Y)lu) = Z (®pjs (X[ha])psr (Y [a2]) u)

|u) € Vi

where h; and h, satisfy (2.2-12). The definition is independent of the
choice of h; by the same reason as above. That the definition is in-
dependent of the choice of hy is proved as follows. Since hydh; is a

meromorphic one form on C having poles only at Q,,...,QnN, we have
Zj-vzl Resq, (hadhi) = 0. Therefore, we have the equality

N

> (¥los (X [h1])psa (¥ [ha])lus)

= > (Uloa(Yha))pis (XTha))e) + D (Zlps(IX, ¥]lhiha])lu).
J1#7j2 j=1

The right hand side of the equality shows the independence of the choice
of hg, since hihy also satisfies the properties (2.2-12). Moreover the
above equality shows the equality

(l(pp (X)pp:(Y) — pp(Y)pp (X)) = (¥|pp([X, Y]).

In this way we can define a right g-module U((¥|) C Homc(Vj,C) at
the point P’. By the same way we can construct a right g-module at
the point P”.
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More generally, we can define an integrable right g-module U((¥|) C
Homc(Hy, C). For example, (¥|pp/ (X (n)) is defined as follows. Let g

be a meromorphic function on C such that

geH"co ZQ]

(2.2-13) gzg’" mod (¢'M) at P’
9(P") =

where ¢ = t’_l(ﬁ) is a formal parameter at the point P’. Then, define
(¥lpp(X(n)) by

N
(Tlpp (X (n))lu) = Z ¥lpi (X

The definition is independent of the choice of a meromorphic function g
satisfying (2.2-13). Similarly we can define (¥|pp (X (n))pp (Y (m)) €
Homc(HMy, C) and we have the equality

(2.2-14)

(¥l(pp (X (n))pp (Y (m)) — (¥lop (Y (m))pp (X(n)))
= (‘I’!pP'([Xa Y](m + TI,)) +¢- (X7 Y)n6n+m,0<‘I’]'

In this way we can construct a right §-module U((¥]) C Homg (Hz, C).
Since the action of p;(Xa[g]), Xa € g. is locally nilpotent by Corollary

1.4.6, the action of pp/(Xa(m)) on U((¥]) is locally nilpotent. Hence

17((‘11|) is an integrable right g-module of level £.
Thus to the point P’ we associate a right g-module

vlE=n = Y o)

(Zlevi(x(=)
and an integrable right §-module

golE=N) = J o@D

(¥levi(x(=))

of level £. Since V(X()) is finite-dimensional, by Theorem 4.2.4,
U(V;‘:(:f(‘”))) is a finite-dimensional right g-module. By (2.2-14) we



486 A. Tsuchiya, K. Ueno and Y. Yamada

have an irreducible decomposition

UIE) = @ Vi

neP,

(X)) = @ HL°™.

HEP,

(2.2-15)

Now we are ready to prove the injectivity of .. For an element (¥| €
V;,m’x(%(w)), put (¥] = ¢,((¥|) and choose a meromorphic function

on C satisfying (2.2-12). Then we have

(Plpp(X1)--- ppr (X )w)
N

=(=1% 3 (X)) s (Xulh])u)

J1=1,00k=1

= (1" (Z|pp:(X1(0)) - ppr (X5 (0))|0y 1 @ w)-

Since pp(X1(0))---pp(Xk(0))|0, 4t)’s generate an irreducible left g-
module isomorphic to VJ, we conclude

U((®)) c VJ@"».

Hence, for (¥,| € Vl,m,x(%("")) and (¥,] €V, , (X)), we have

U(Z,))nU(Z,|) =0.

This means that ¢ is injective, since ¢, is injective.
Finally let us prove that : is surjective. By (2.2-15) for an element
(¥ € v§(3€<°°>) we have a decomposition

= Z<‘I’#|’ (| € VIO,
pEP,

We construct (EI,J € Homc(H

V.t is generated by elements

uut 30 C) as follows. First note that V, ®

ppi(X1) - pp(Xn)ppi (Y1) - ppr (Ym)|0, ut)
X1, Xny Y1y, Vi € .
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Moreover, (¥,| defines a right §-module ﬁ((\AI;PI) C Hom¢(Hj, C). For
each element |v) € Hj define

(B,[0, .t ® v) = (Tlv).
Define

(Bulop(X1) -+ ppr(Xa)ppr (Y1) - s (Yom )0y ot ©® 0)
= (=1)™(@ulpp: (X1(0)) - - - ppr (X0 (0))pp (Y (0)) - - - pp: (Y1(0))).

This is well-defined, since the diagonal action of g on C|0,, ,+) is trivial.
This defines (¥ x| € Homg(V, ®V,t ® H;, C). Now assume that we have
already defined (¥,,| € Homg(F,H, ® FyH,+ ® Hs, C) for non-negative
integers p and ¢. Choose an element pp/ (X(m))|u®u' ®v) € Fpy1H, ®
FyH,+ ® Hy with |[u ® u') € FyH, ® FyH,+. Choose a meromorphic
function f on C such that

N
feHYC,05(x)_ Q;+ P +xP"))
i=1 '
F=¢™ mod (&™) at P’
F=0 mod (¢"™) at P".

Here we choose the positive integer M in such a way that pp/ (X (n))|u) =
0 and ppr(X(n))|u) = 0 for all n > M. Then we define

2

(Tulop (X(m)u® ' ®v) = =3 (Tulp;(X[f)u® v @ v).

By the similar argument to the proof of Proposition 2.2.4 we can
show that the definition is independent of the choice of a meromorphic
function f satisfying the above conditions and we have

(9,| € Homg(Fpr1H, ® FyH,t ® Hy, C).
Similarly we can define

(V4] € Homc(FpHy ® Fyr1Myu ® Hs, C).
In this way we can show the existence of

(9,] € Homg(H, ® H,t ® Hy, C).
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Moreover, we can show that

(@l eVl | (B,

I-%/-"tv)‘
By our construction we have ¢,((¥,]) = (¥,,]. Q.E.D.
Corollary 2.2.7. There is a canonical isomorphism

V() S @V, 5 (X)),

HEP,

Example 2.2.8. Let us consider the space of vacua V;.(%(“’)) with

C = P!. We use the results in 2.4, especially Theorem 2.4.1.
Let z be a global inhomogeneous coordinate of P!. For N points
ai,...,a, € C, put

uj=2-a;, j=1,...,N

and
X = (PYay,...,aNju1,...,uN).

Fix X € (P,)". Let us consider a homomorphism

i : VI(X(*?) — Homc(V5, C)
defined by ‘
i((2])(120)) = (¥[R0), Do) € V5.
Let us show that the homomorphism ¢ defines an injective homomor-
phism
(2.2-16) i : V(X)) & Homy(V5,C).

For that purpose, for an element X € g first consider a meromorphic
one form F = (¥|X(z)|®¢)dz in Theorem 2.4.1. By Theorem 2.4.1, 5)
we have

N
(2:2-17) (B X(2)[Bo)dz = > —— (W[p,(X)Bo)dz
j=1 1

since the left hand side minus the right hand side is a holomorphic one
form on P!, hence zero. By Theorem 2.4.1 3) we have

(¥15(X (m))Bo) = Res (w3 (¥1X(2)[Bo)dz) .
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Since (¥|X(z)|®o)dz is a global one form on P!, we have
N N
S (o5 (X)%0) = 3 Res (¥1X (2)[%0)dz) = 0.
7=1 i=1 ’

Hence, i((¥]) € Homy(V5;, C). By the similar arguments, using Theorem
2.4.1, 4) and 5) we have

(¥ X (2)Y ()| o) dzdw _%{g@]%)dww
1

T ;;U—<\r1[x, Y)(w)) @) dzdw

N
+Zz

(w)lp;(X)®o)dzdw

+ Y g X (V)20 dzdw

The right hand side is uniquely determined by i((¥|). In this way we
can show that ¢((¥|) determines uniquely the correlation functions of
currents

<‘I’|X1(Zl) e XA(ZA)!§0>d21 e dZA

hence, determines uniquely the bilinear pairing

ViE=) xHy — C

(e,le)  — (¥[2).

Hence the mapping ¢ is injective.
Finally consider the case N = 3. In this case the image

i(V1(%())) ¢ Homg(Vs, C)
is characterized by the following fusion rule ([GW], [TK1], [TK2]). For
X= (g,v,A) € P}, put
(2.2-18) Wy = {¢ € Homgy(V, ® V,, ® Vi, C) | condition (x) }

where the condition () is given as follows. Let €y = CXy ® CX_4 &
C[Xy, X_4] be the principal 3-dimensional subalgebra of g, and let

2/2

Va=EP W,
7=0
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be the decomposition to the spin-j homogeneous components of -
modules. Then the condition (x) is

(*) ¢|Wp,h®wv,i®WA,j =0 if h+i +] > 1.
Then, we have
i(VHE)) = Wy

2.3. Action of D

For an N-pointed stable curve X(®) = (C; Q;,Qs,-..,QnN; t§°°),
tg°°), - ,tgf,”)) of genus g with formal neighbourhoods and an N-tuple
h = (hy,...,hn) € DV let us define k o X(=) by

(231)  hoX®) =(C;Q1,..., Qn; h1otl™, ..., hyotl$)).

This defines a left D®V action on the set of N-pointed stable curves of
genus g with formal neighbourhoods.
By Lemma 1.4.2, for an element h € D!, there exists the unique

derivation [ € d* with h = exp(l).

Definition 2.3.1. The (D*)®V.actions on H; and 'H} are defined
by

N
(2.3-2) G[R)|®) = H pi(exp(=T[;]))|®),
(2:3-3) (¥|G[R] = H<w|p,(exp( ~TL,])),
7=1
where
oN

k= (hi,...,hn) € (DY) h; =exp(l;) 1 €d.

Lemma 2.3.2. For an element h € (D')®Y, we have

V(R o X)) = vI(X(=)G(h)

Remark 2.3.3. The above Lemma says that the space of vacua at-
tached to X(>°) = (C; Q1,Qa,...,QnN; t§°°),t§°°),...,t§f;°)) does essen-
tially depend on the first infinitesimal neighbourhoods. This fact will
be clarified in Section 4 below.
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2.4. Correlation functions

Let C be a semi-stable curve and we its dualizing sheaf. Put
M

M /_/% M . oy . .
CY" = Cx...x C. Then C* has singularities of codimension 1, but
still we can define the dualizing sheaf won, since CM is locally a com-
plete intersection. (See, for example, [BS1] or [Kl].) Moreover, we can

show that

WomMm = UJ%M

where 7; : CM — C is the j-th projection and we define

wBM = rtwe @ Twe ® ... ® Thwe .

(See, for example, [K1].) Since C™ has singularities for a singular semi-
stable curve, the (i, j)-th diagonal A;; = {(P,...,Pn)|P; = P;} of CM
is only a Weil divisor and not a Cartier divisor. But it is well-known
that 2A,; is a Cartier divisor.

Theorem 2.4.1.° Fiz (¥| € v§(3€<°°)). For each non-negative in-
teger M the data

X1,X2,..., XM € 8, l§>€HX
define an element

F = (9|X;(P1)X2(Py) ... Xa(Py)|®)dPdP; . .. dPy

M N
HO(CM,wEM( > *Aij-l-zz*?fi—l(Qj))’

1<i<j<M i=1 j=1
where A;; = {(Py, ..., Pn)|P; = P;} is the diagonal. The meromorphic
form has the following properties.

0) For M =0, F =<¥|®> is the canonical pairing induced by
the pairing (2.2-3).

1) F is linear with respect to |®) and multi-linear with respect to
.Xi ’s. .

2)  For any permutation o € Gy, we have

F = (¥]X,1)(Po(1)) Xo(2)(Po(z)) - - Xo(a)(Po(ar))|2)dP1dP; . .. dPays .
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For example, for a transposition (i,i+ 1) we have

F = (9| X1(P1) - Xio1(Pic1) Xipa (Piy1) Xo(F;)
Xir2(Pive) .. - Xar(Par)|®)dPydP; ... dPy .

3) Fork=1,...,N and & = tx(®)71(¢), if & is a holomorphic
coordinate, then we have the equality

§ g e (B Xu(Pule)

= (¥|X1(P1)X2(Py) - - Xm(Ppr) (X (n)) @)
where Cy, is a contour rounding only Qi and containing no other Q;’s
nor P;’s.

4)  For a local holomorphic coordinate z around a nonsingular
point we have the following equality.

(R X(P)Y (P') X1 (P1)X3(Py) - Xpa(P)|@)

_ £- (XaY)
= ) =2y LK PO Xa(P2) - X (Paa) )
—_— _1 !
+ z(p)_z(P,)<‘I’|[X:Y](P )X1(P1)X2(P2) - Xm(Pum)|®)

+ regular at P = P'.

5)  For a local holomorphic coordinate z around Q; and for |®) €
Vi = Vi, ® -+ ® Vi, we have an equality

(¥|X(P)X1(P1)X2(P2) - Xm(Pm)| )
1

" 2(P) = 2(Q3)

» + regular at P =Q;.

(¥|X1(P1)X2(Py) - - - X (Par)lpi( X)@)

These functions meromorphic one forms F are called correlation
functions of currents.

Proof. Choose M + 1 non-singular points Py, Ps,..., Py, P of the

curve C and their formal neighbourhoods tgff_;_)l, tmz’ . ,tgf,’j,)M +1- Put

g(oo) = (C7 Ql)" . )QN, QN+1;- .- aQN—i—M—l-l;tgoc,)v' . ‘7t5\(;1)M+1)

i(oo) = (C;Ql,...,QN,QN.H,...,QN+M;tg°°),...,t$:;:_)M
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where Qn4: = P, i = 1,...,M and Qni+m+1 = P. By Proposition
2.2.3 there are canonical isomorphisms

o VHE)) = VI (X09)
(X))

M1t V;’(;M(x(oo)) = ,\ Oaras

= ——
where 0y, = (0,...,0). For (¥| € v§(3e(°°>) put

~ ~

(Bl = (2, (F] = eprra ((F))

Claim 1. For any |i) € H3®H;, and X € g, (Bla® X (~1)|0)dy
defines a cotangent vector of the curve C at the point P.

Proof. Choose a meromorphic function f € H%(C,O¢(*(P + Q1))
on C such that

f =n"1+regular at P
f=0 mod (¢7) at Qj, j#1
where 5 = tg',ﬂl—l(g), & = t§.°°)_1(5) and n; is sufficiently large so that
p;(X[f])|%) = 0 and f is holomorphic at Q;, 7 # 1. Then we have
(Tl @ X(-1)|0) = (‘T’I ® (X[/)I0)
~(¥p(X[f)E®0).

Hence, if we change a formal neighbourhood tg\ﬁl by f(ﬂ‘,}" le’ we have

A=T70 ) =am+an+..., a1 #0

-~

(¥i® X(-1)|0); = a;(¥|T @ X(-1)|0),,.

This implies that (¥|% ® X(—1)|0) depends only on the first order in-
finitesimal neighbourhood and (¥|% ® X (—1)|0),dn € THC is indepen-
dent of the choice of a formal coordinate.

Claim 2. Put

wi= Y (Tlp;(X(n)|Wé;"1dg;, j=1,2,..., N+ M
necz
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-1
where £ = t§-°°) (¢). There is a meromorphic 1-form

N+M

w € H'(C,we(* ZQ,

on C such that
t(w) = (w1, w2y, WN+M)
where the mapping t is defined in (2.1-4).
Proof. For an element f € HO(* ZN+M Q;)) let £;(&) = Zam
be the formal Laurent expansion of f at the point Q; by the formal

parameter ¢; = .07 (¢). Hence t(f) = (fi(é1),- .., fivraa(€wen))-
Then we have

N+M N+M
Z Res(fi(¢5)ws) = 3 S (i (X (n))[@)el)
7=1 =1 n€Z

= (| X @ t(f)[7) = 0
since (¥|X ® t(f) = 0 by our assumption. Therefore, by Lemma 2.1.5

there exists an element w € H®(C,wg(* EN+M Q;)) with t{w) = (wi,
.swWN+Mm)- This proves Claim 2.

Claim 3. As a cotangent vector at P with formal parameter 1,
(P2 ® X(—1)]0)dn and w coincide.

In the following we express w by
w = (¥|X(P)|@)dP

Proof. Since (¥|@® X(—1)]0)dn is a cotangent vector at P, we may
assume that 7 is a local holomorphic coordinate of C' at P. Choose a
meromorphic function f € H*(C,O¢c(*(P + Q;)) on C such that

f=n"1+regular at P

f=0 mod () at Q;, j#41<j<N+M
where n; is sufficiently large so that p;(X[f])|@) = 0 and fw is holomor-
phic at @;, j #i,1 < j < N + M. Then we have

N+M

(Tla® X(-1)|0) = Z (Tloe(X[£])@)
~(Flo:(X[M)]D)-
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On the other hand, at the point P we have

ResP(%w) = Resp(fw)

N+M

== Z Rest(fw)
k=1
= —Resq,(fw)

=~ Res (fi(ﬁi) Z(‘ilpi(x(n))fﬁ)fi_"*ld&)

nez
—(Tlou( X[£])&)
(Fla® X(-1)0),

il

This proves Claim 3.
Now we are ready to prove Theorem 2.4.1. Put

@) = |u® X1(~1)0® - ® Xar(—1)0).
The above argument shows that
(i) = (Flu® X1 (~-1)0® -+ ® Xpr(~1)0)

is regarded as an element of Tp C ® --- ® T, C, if P # Q; and
P; # P, j # k, and depends meromorphically on P,. Hence, by
the Hartogs theorem, it defines an element of H(CM,wE(T, j*0 +

Efil Z;v:l *1;1(Q;)). We denote this meromorphic section by

The assertions 0) and 1) are clear by our definition. For the assertion
2) note that the meromorphic form defined above from the data

f%(oo) = (C;Ql,...,QN,Pl,...,PM;tgoo),...,tg;i)M)

and the data

~

xzo = (C;le")QN)PO'(I))"'7Pa(M);tg°°),"')tg\;,o)y

(o) (o0)
tnro(1) * ENto(an))

are the same. This implies the assertion 2).
The assertion 3) follows from Claim 2.
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Let us prove the assertion 4). Let the point P’ be in a small neigh-
bourhood U of the point P with local coordinate z with center P. Let
us choose a meromorphic function f € H°(C,O¢(xP + EN+M *Qr))
such that

f=2z""'+regularat P.

Moreover, changing the local coordinate at P if necessary, we may as-

sume that f = 27!, Then w = z — z(P’) is a local coordinate of C at
M

——
P'. As a cotangent vector at each point of (P,P') x C X ...x C,
= (¥|X(P)Y(P)X1(Py)... Xpt(Par)|®)dPdP'
is equal to
(T*|X(~1)0p @ Y(~1)0p ® &)dzdw
where

Zap _ .yt _, pi F(oo
<‘p | - t((‘I’l)’ L Vx(x( ) vx,6M+2(x ))

and
18) = |8) ® X1(~1)0) ®...® Xp(—1)0) € M5 ® Hg,,

Then we have

(2.4-1)
(T*1X(~1)0p @ Y (~1)0p ® &) = — (¥|(X[f])Y(~1)0p ® &)
N+M _ _
- ) (¥Y(-1)0p ® pi(X[f])|2).
k=1

The second term of the right hand side of (2.4-1) is written as

N+M

= " (@Y (P)|pe(X[£])@)dP’
k=1

hence, it is holomorphic at the point P’. On the other hand, putting
a = z(P') we have

(XIDY (-1)l0p) = (X[——)(¥Tw]0r)
([X E ¥y u’—"—ﬁ) 0p).
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Hence the first term of the right hand side of (2.4-1) has the form

(| X1(P1) ... Xm(Pu)|®)

X, Y(P)X B . Xae(Pac)| ).

£ (X,Y)
a?

Since —a = z(P) — z(P'), we have the desired result.
The similar argument proves the assertion 5). Q.E.D.

Furthermore we can show the following Proposition.

Proposition 2.4.2.
1) Fork=1,...,N, we have

f 5 df/k—— YT (6) X1 (P) X2(Py) .. X (Pur)|@)

= (Y| X1(P1)X2(P2) - .. Xnr(Prr)lpr(Ln)®),

where the energy-momentum tensor T'(z) is defined by

““““a . {dim
T(z) = (H)H{ZJ J()—(——_——{u—%}.

Here, {J1,...,J4™8} is an orthonormal basis of the Lie algebra g.
2)  For a holomorphic coordinate transformation w = w(z) we
have
(¥|T(w)X1(P1)X2(P2) ... X s (Par)|®)dw?
= (\I"T(Z)Xl(Pl)Xz(Pz) e XM(PM)'§>d22

— O w(z); HEX () Xa(Py) . Xe(Par)|2)d

where {w(z); 2} is the Schwarzian derivative.

2.5. The space of vacua, general case.

Now we define the space of vacua without assuming the condi-
tion (Q) in 2.1. Let X(>) = (C;Q1,...,Qn;t{,...,t$>) be an N-
pointed stable curve with infinitesimal neighbourhoods. For a suffi-
ciently large integer M, choose M points Qs with infinitesimal neigh-

bourhood £, k = N +1,...,M + N in such a way that X(® =
(C;Q1,. .., QM+N,t( =) 5;;32,\,) is an (M + N)-pointed stable curve
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with infinitesimal neighbourhoods and satisfies the condition (Q). Put
O = (0,...,0) and define
N —

V3(X)) = V55, (X))

2.5-1
(251 VHE)) = Vi 5, (X)),

The definition does not depend on the choice of the data (Qn+1,...,

Qut Wity tond)-

§3. Universal family of pointed stable curves

3.1. Deformations of pointed stable curves
Let C be a compact Riemann surface of genus g. Infinitesimal de-
formations of the Riemann surfaces are parameterized by the cohomol-
ogy group H!(C,0¢), where O¢ is the sheaf of germs of holomorphic
vector fields on C. (See, for example [Ko].) More generally infinites-
imal deformations of the data X(™ = (C; Q,Qs,...,QnN; tg"),tg"),
.,tg\',')) of an N-pointed Riemann surface of genus g with n-th in-
finitesimal neighbourhoods are parameterized by the cohomology group
HYC,006(—(n + 1)2?’21 Q;). If C is a singular stable curve, then
the cohomology group should be replaced by the cohomology group
Ezt}, (Qp,O¢). (See, for example, [Ar], [DM, Section 1], [SGA7, Ex-
posé VI, 6], [Bin].) Here, 02, is the sheaf of Kihler differentials of the
curve C. (See, for example, [Ha, Chap. II, 8] or [Se]. In our situation,
we may regard the exact sequence (3.1-3) as a definition of the sheaf
Qg.) Put ©¢ = Hom (4, O¢). There is an exact sequence

0 — HY(C,0¢(- +1)ZQ,))

7=1
(3.1-1) . . N
— Eatp, (R, 00(-(n+1) Y Q;))
— H°(C, Ezty, (2, Oc)) — 0.
If the stable curve C has ¢ double points Py, Ps, ..., Py, then we have

C, ifQ=P;, i=12,...,q

E.’Btl Ql 70 = {
Ezto, (R, Oc)e | 0, otherwise.
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Hence we have
H°(C, Ezty, (U, 0¢)) ~ CO.

Each element of H}(C,Oc(—(n + 1) Ef’:l Q;)) corresponds to an in-

finitesimal deformation of the data X(*) = (C; @Q1,Q2,...,Qn; t(")

tg"), .. (")) preserving the singularities.

Definition 3.1.1. Data (7 : Y — Bjsy,ss,...,sn 0,8,

f(;,' )) are called a (holomorphic) family of N-pointed stable curves of
genus g with n-th infinitesimal neighbourhoods, if the following condi-
tions are satisfied.

(1) Y and B are connected complex manifolds, 7 : ¥ — B is a
proper flat holomorphic map and s;, 3, ..., $§ are holomorphic sections
of «.

(2) For each point b € B the data (Y5 := 7w~ 1(b); 51(b), 52(2),. . .,
sn (b)) is an N-pointed stable curve of genus g.

(3) f(jn) is an O p-algebra isomorphism
i : Oy I =~ O [[E)/(€"),

where I,; is the defining ideal of s;(B) in Y.

Similarly we define a family of N-pointed stable curve of genus g

with formal neighbourhoods (7 : ¥ — B; sy, sa,.- sN,f(w) f(°°)

£,

ceny

Proposition 3.1.2. For a family of N-pointed stable curve of
genus g with formal neighbourhoods (w: Y — B;s1,83,...,8N; f(l"),f(z”),

.,f(l\’,')) and for each point b € B, there ezists a C-linear mapping

N
(12) g T — Bath, (O, 0n(—(n+ 1) S 50),
=1

where Yy = 771 (b).

The linear mapping p; is called the Kodaira-Spencer mapping of the
family (7 : Y — B;s1,82,...,8n8;1; #im, h(") ,f(;)) at the point b.

Since the proposition plays an 1mportant role in our formulation of
conformal field theory, we give rather detailed discussions about a proof.
For the fundamental properties of the functor Ext we refer the reader
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to [Ha, Chap. III, 6]. Put C =Y}, Q; = s;(b). Let I¢ be the sheaf of
the defining ideal of C in Y. There is an exact sequence

(3.1-3) 0 - Ic/Ih — QY ® Oc — Qp — 0.

This gives a locally free resolution of the sheaf Q. The sheaf Ic/I%
is the conormal sheaf of the curve C in Y and we have a canonical
isomorphism

(TyB) ®c O¢ ~ Ic/I%.

Hence there are canonical isomorphisms

(3.1-4) Homoc (Ic/Ié, O¢) ~TyB ®c O¢,
(3.1-5) Home,,(Qy ®0y, Oc,0c) ~ Oy @0y Oc.
Put

I' =0y ®0, Oc, I'=TyB®o.Oc.

In other words, we have an exact sequence
0— 0¢ — I - I' - Egtp_(Q,0¢) — 0.

Then applying Homq( ,Oc) to the exact sequence (3.1-3) and using
the canonical isomorphisms (3.1-4) and (3.1-5), we obtain a complex of
sheaves

(3.1-6) 0I5 1 —0.

The cohomology groups of the complex (3.1-6) are Ezty (Qf,O¢).
That is, we have

Ext® = Ker {n, : I° - I'} = O,
Ezt' = Coker {r, : I® — I'}.

Note that the map =, in (3.1-6) is surjective outside the double points
Py, Py, ..., Py of the curve C. The cohomology groups Eztg, (Qc,Oc¢)
is calculated as follows. Choose an open covering Y = {Ux}reca of the
curve C. Let C*¥(U4,I™) be k-th cochains with values in the sheaf I™.
Put
K'= & Ccku,im).
k+m=n

We define the differentials §™ of { K™} as follows. For any element {@,} €
C°(U,I%) = K° we define

5°{¢a} = ({m(9a)}, {95 — ¢a}) € C°U, I') 8 C' (U, I°) = K.
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For each element ({p4}, {6as}) € COU, I')®CH(U,I°) = K we define

§' ({9a}s {8as}) ={(95 — ¥a) — m(8ap)}s {05y — by + 0as})
ecC'(U,I")e C*(U,I°) = K.

Other §*’s are defined to be the zero map. Then {K*,§°} is a complex
and if the covering is good, namely each open set U is different from
C, then we have

Ezty (%, 0¢) = Ker 6™ /Im§™ .

Assume that the covering U is good. Assume further that each of the
points @;’s and P;’s is contained in only one open set i{,. For each
tangent vector § € Ty B of B at b, there is a vector field § on a neigh-
bourhood of b. Then there is a lifting §, on ZZ, \ ¥ of the vector field é,

where ZZ, is an open set in Y with U, = ZZ, N C and X is the locus of
double points of fibres of w. Put

Ya=10¢€ H (U, Ty ® O¢)
0aﬂ = (5,3 — éa)|uamuﬁ € Ho(ua NUg, Oy oy Oc).

Then ¥(8) = ({¢u}, {0as}) is an element of K' and by definition we
have §'(¥(0)) = 0, hence defines an element [¥(8)] of Ext, (Qc,Oc).
Thus we have a C-linear mapping

py : ToB — Exty (2, 0¢).

This is the Kodaira-Spencer mapping of 7 : Y — B at b.

So far we do not consider the points @; and n-th infinitesimal
neighbourhoods. To define the Kodaira-Spencer mapping of the fam-
iy (x:Y — B;31,32,...,31\/;1?(1"),5;”),...,f(b';)) we need to be careful
to choose a lifting §, of §, namely the lifting should respects the n-th
formal neighbourhoods. For simplicity assume that the point Q; is con-
tained in an open set ;. Choose local coordinates (ui,us,...,%m) of
B with center b. Then we can choose local coordinates of Y with center
Q; as (u1,u2,...,Um,2). We may assume that ¥; is contained in the

coordinate neighbourhood of Q; with the above coordinates. By these

= 0
coordinates the vector field 4 is expressed in a form Z ak(u)a‘—. Then,
k

as éj we choose the same form Z ax(u) . Other lifting is given by

Buy
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a form 5
Zak — +A(u z)a

To preserve the n-th formal nelghbourhoods A(u, z) has the zero of order
n+ 1 at Q;. Precisely speaking, if we choose the lifting §; above then
we have an element ¥(0) as above. This lifting does depend on the
choice of the local coordinates. If we choose other local coordinates,
¥(9) changes by adding 6°({@a}). ¢ corresponds to an infinitesimal
change of local coordinates of U/,. Hence ¢, needs to preserve the n-th
formal neighbourhoods. Let I3, and I}, ; be O¢-submodules of I° and
I', respectively defined by

10, = Homy (9% ®0, Oc,Oc(—(n+1)

H'Mz

~ Oy ®oy Oc¢(—(n+1) Z Qj)
=1

I, =Homg, (Ic/1%,0c(~(n +1)

an

N
~TyB ®@c Oc(—(n+1) Z Qi)
et

Then, again we have a complex of sheaves
0—1I° nt1 il nt1 — 0

and ({@a}, {6ap}) defines a cohomology class [¥(6)] of the complex
{K»,1,6°}, where we define

K£+1: & Cc™U, I£+1)

m+4£=p
The cohomology group of {K3, ,;, 8} is Exty (U, Oc(—(n+1) Y Q5)).
Hence [¥(0)] is an element of Ezty, (Qf, Oc(—(n+1)> Q;)). This de-
fines the Kodaira-Spencer mapping of the family (r : Y — B; sy, sa,...,
sN;fg"),fg"), . ,f(;)). We thus prove the Proposition 3.1.2.
A sheaf version of Proposition 3.1.2 is the following.

Corollary 3.1.3. If(n:Y — B;sl,sg,...,sN;ﬁn),fgn),...,fg.‘))
is a family of N-pointed smooth curve of genus g with n-th infinitesimal
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neighbourhoods, the Kodaira-Spencer mapping p, induces an O g-module
homomorphism

N
p: Oy — R'm,Hom(Q},p, Oy (—(n+1) Z

Definition 3.1.4. A family (x(® : ¢® — B(®); g ¢
sg\’,” ; ~§"), i ,f(_,\',‘ )) of N-pointed stable curves of genus g is called a

local unwersal famz'ly, if the Kodaira-Spencer mapping

N
(3.1-7) ps: Ty — Eatp, (Qb, ,0c,(~(n+1) 3 s (s)))
7=1

is isomorphic at each point s € B("™,

The following theorem plays a crucial role in our conformal field
theory.

Theorem 3.1.5. For each N-pointed stable curve X(") = (C; Q;,
Q:,....0N; tgn),tg"), ... ,tgv)) of genus g with n-th infinitesimal neigh-
bourhoods, there always ezists a local universal family (7r(") I A0
B, s(ln),sgn), .. (" f(") f(") ,55\',')) with point z € B™ such that

Ce = W(")_l(z) o~ C and that with respect to this isomorphism we have

Q]- == sgn)(m), t;-n) = f(jn)lca.

Proof. The theorem is a consequence of a deformation theory ([Az],
[Sc], [SGA 7], [Bin]). Since we need an explicit description of a local uni-
versal family (1) below, we give a method to construct a local universal
family.

By our assumption, the curve C' has only ordinary double points.
Hence, by a deformation theory, there exists a versal family = : C — B
with specified point z € B such that C, = 7~!(z) ~ C. Here, "versal®
means that the Kodaira-Spencer mapping

Pz ToB — E’:ctbc== (Q¢.,0¢,)

is isomorphic. (Since the automorphism group of C may be infinite, the
family = : C — B may not be universal at the point z but semi-universal.)
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Put
BO = ¢\ (U Aj; U{ singular points of CV })
i<y
where
Ay ={(z1,...,en)€CN | 2, =12;}
is the (¢,7)-th diagonal. There is a natural holomorphic mapping

p: B0 = B. Put also

c® =¢ xzB®
and let 7(9) : ¢(® — B pe the projection to the second factor. By
our definition, (Q1,...,Qn) € p~(z). Put o = (Q1,...,Qn) € BO.
Then we have W(O)—l(.’co) = C, x ©g ~ C. Moreover, we can define

holomorphic sections
s BO @

7
by
O(Py,...Py)) = (Pj, Py,...,Py) € C x5 BO.

(
Then we have 350)(30) = (Qj;,%0). It is easy to show that O = (x(0)

c® — BO); 4 o . .,553)) is universal at each point of B(%),

Next we construct the family V). For that purpose, put

0) _
T (mc( ) = U T (u)(y)c
yeB©)

Thus T' (o)C(O) consists of tangent vectors of C(®) at s(~°)(B(°)) tangent to

the ﬁbres of 70, T (o)C( )is a holomorphlc line bundle over B(®). Put
further

(O)C( =T (o)C( ) _ zero section
B(l) = T:(io)c’( ) X (o) * -+ Xp(o) T:E\?)C(O)
cW = ¢ x g0, BY,

Let #() : ¢ — B() be the projection to the second factor and
p1 : BO) — BO the natural holomorphic mapping. The holomorphic

sections 35.0) lifts to holomorphic sections 8&1) : B - ¢ by

y— (s (p1(9)),9) -
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Moreover, for each element y = (v1,...,vn) € B, by using the canon-
ical isomorphism Og) /Ia(l) =~ Og(), we can define Og(1y-module homo-
i

morphism
. Oc(n/If(}) — Opa) ® Opm§
3

f e (£ (), vi(£)€)

where we regard v; as a derivation.

)

Note that the first order infinitesimal neighbourhood t§~1 of the curve

C defines a derivation v; € T C by

t0(£) = £(Q) + v;(F)¢

where f is a holomorphic function at the point @. Hence the data
X(1) define a point z; € BN with py(z;) = o. Moreover, w(l)_l(ml)
is isomorphic to the curve C' and with respect to this isomorphism we
have

s(@) =@y, BVlo=1V.

It is easy to show that our family F1 = (71 : ¢ - BW; ) )
s ED ED DY is universal at each point of B(Y).
Similarly, using the n-th jet bundle, we can construct local univer-

sal family of N-pointed stable curves with n-th infinitesimal neighbour-
hoods. Q.E.D.

Let (™ : cm) — B ; g{m gm) - glw)glm) ) )y e a
local universal family of N-pointed stable curve of genus g with n-th
infinitesimal neighbourhoods. Put

(3.1-8)
=™ = {pec) |d7r§,") : TpC™ — ,,(n)(P)B(") is not surjective }
(3.1-9)

pn = 7,(")(2("))_

The set (™ is called the critical locus of the family and D(™ is called the
discriminant locus of the family. The following lemma is a consequence

of the deformation theory of singular curves with ordinary double points.
(See for example [Ar], [DM, Section 1] or [SGA 7, Exposé VI, 6].)
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Lemma 3.1.6. For a local universal family (x(") : ¢t - B,
s(ln), 5(2"), . 5(1\',1) ; fg"),fg"), .o ,fg{,‘)) of N -pointed stable curve of genus

g with n-th infinitesimal neighbourhoods, assume 2g —2+ N > 1.
1) We have

dimB™ =39 -3+ (n+ 1)N
dim €™ =39 — 24 (n+ 1)N.

2)  The critical locus (™) is a smooth subvariety of codimension 2
in C(™),

3) The discriminant locus D(™) is a divisor with normal crossings
in B,

3.2. Kodaira-Spencer mapping

Let us consider a local universal family §® = (#(" : ¢ — B(»);
sgn), sgn), . s(;;) ; f(ln) , fg"), ... ,{(1\',1)) of N-pointed stable curves of genus
g with n-th infinitesimal neighbourhoods. In the following we need to
consider locally a family $(®). For that purpose we introduce the fol-
lowing local coordinates of C(™).

For a point P € (™ of the critical locus of #(™), we can choose
local coordinates (u;, us,...,up_1,2,w) of C'™) with center P and local
coordinates (71,7a,...,7ar) of B(™ with center 7(™(P) such that the

holomorphic mapping 7™ is given by
(U1,Ug, .o Upr—1, 2, W) > (U1, Uzy. e, Up—1,2W) = (T1, T2y ey TM) -
In other word, we have

(n)* {Uk, k=1,2,...,M—1
T Tk =
Zw, k=M.

For a point P € C(™) \ (") we can choose local coordinates (u;,uz,
vy Upr, 2) Of C(™ with center P and local coordinates (11,72 -y ™M)
of B(") with center 7(")(P) such that the holomorphic mapping is given
by

(v1,us,...,unm, 2) — (u1,Us,...,upm) = (T1,72,.. ., TM) -
An O¢my-module Q) g, is defined by the following exact se-
quence

-1
n 1 1 1
"0k 80, Octm) = Qi — Qe gy = 0

B(n)
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The sheaf Q7 EOR called the sheaf of germs of relative 1-forms of
the family #(®) : ¢(® — B(™). Let us describe the sheaf Qé(")/B(n),
by using the above local coordinates. In a neighbourhood of a point
P € C(™\ ("), the sheaf 2}, () is locally isomorphic to O¢m dz. Ina

small neighbourhood of P € £(™ | we have an O¢(n)-module isomorphism
(3.2-1) Qé(,\)/B(n) ~ (Opmydz + Opimydw) /Oy (wdz + zdw) .
Moreover, we have the following lemma.

Lemma 3.2.1. The following sequence

—1
(3.2-2) 0 — 7l'(") QIB(H) ®o Oc(n) — Qé(n) g Qé(")/B(") — 0

B(n)

is exact and gives a locally free resolution of the sheaf Qé(n)/B(n).

Let weem /8t be the relative dualizing sheaf of o™ ¢t o gln),
Since C(™ and B(™ are non-singular and 7(™ is flat, we have an Opn)-
module isomorphism

*
-1
Wem) /() = Wen) @ ™ wzl,

where wy is the dualizing sheaf (canonical sheaf) of a complex manifold
Y. (See, for example, [Kl].) The relative dualizing sheaf we(n) /p(n) 18
described locally as follows.

In a small neighbourhood of a point P € C(™ \ (™ we have

wc(n)/B(n) = Qé(")/B(") ~ Oc(n)dz .
In a small neighbourhood of a point P € £("), we have
Wem) /Bl = Ocm (dz A dw) ® (dTM)—l .

In particular, we have

d
Ocm ?” 240
Wem) /gy = dw
Oc(n) — ifw # 0
w
with relation
dz dw
— 4+ —=0
z w

if zw # 0.
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Lemma 3.2.2. There exits an exact sequence

Ogny — 0.

1
0— Qc(")/B(") = W) /B = Wen) B B0, ()

Proof. The mapping Qé(n)/B(n) — Wen) /B 18 given locally in a
neighbourhood of a point P € ¢(™ \ £(*) by
dz —> dz
and in a neighbourhood of a point P € Z(*) by

dz — z(dz A dw) ® (dTpr) ™"
dw — w(dz A dw) ® (drar) ™t .

In particular, we have
dz — zng ifz#0
dw — wd?w ifw#0.

This proves Lemma 3.2.2. Q.E.D.
Lemma 3.2.3. Put

(3.2-3) Ocm /g = Homeo (e s> Ocem)-

Then Oy jg(n) i85 an invertible Opny -module and there is an isomor-
c~) /B c
phism

(3.2-3a) ec(n)/B(n) o~ Homoc(n) (wc(n)/B(n) ,Ocn )-
Hence, O¢(n)/p(n) is an invertible sheaf.

Proof. By (3.2-2) it is easy to show that in a neighbourhood of a
point P € C(® \ (") we have an isomorphism

0
9 n n 20 n) S
c(») /B() cm 52

and in a neighbourhood of a point P € %(") we have an isomorphism

0 a
. '4 n n) X n -~ )
(3 2 ) @c( )/3( ) Oc( )(Zaz waw

By this fact and (3.2-1), we have the desired result. Q.E.D.
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From the exact sequence (3.2-2) we obtain the following Corollary.
Corollary 3.2.4. The following sequence
-1
0 = O¢tm) /8tm) = Ocmy = 7™ Opiay ® Oy
- Em_t}oc(n) (Qm) enys Ocim) = 0
of O¢(n)-modules is ezact.

Lemma 3.2.5. There ezists an exact sequence
(3.2-5) 0 — O (—log D) = Opm) 5 1™ O5m — 0
where
Opm (~log D) = {v € Opcn) | v(Ipm) C Ipe }
and Ipy is the sheaf of the defining ideal of D™ in B(™).

Proof. First note that the sheaf @ge(—1log D(™) is a sheaf of
germs of vector fields on B(™ tangent to D(™). Since (™ : ¢(™ — B(™) js
a local universal family, using the Kodaira-Spencer mapping and (3.1-1),
for each point s € B(™ we have an exact sequence

N
0— HI(CM OC:(,_("' +1) 231(3))) - TsB(n)

— H°(C,, Extp,, (,,00,)) — 0.

Each element of H'(C,,0O¢,(—(n + I)Z;’:l s;(s))) corresponds to a

tangent vector of B™ at s preserving the singularities of C';. Hence the
sheaf version of the above exact sequence is the exact sequence (3.2-5).
Q.E.D.

Theorem 3.2.6. Let (n(™) : ¢(® — B, sgn),sgn),...,sg\?);
t~(1") ,t‘g"), ... ,f(;)) be a local universal family of N-pointed stable curves
of genus g with n-th infinitesimal neighbourhoods. Then there exists an

Opg(n) -module isomorphism
(32:6)  p:0,(~log D™) 5 R'al™ (Ocem /sm (~(n +1)S™))

where we put S{™ = 5;(B™) and S = TV g,
J J j=1%3
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Proof. Applying H omoc(n)( ,Ocn) to the exact sequence (3.2-
2), we obtain the following exact sequence

(3.2-7)
-1
0— Oc(u)/B(n) — B¢ —q(™ Oy ® Opny

1 1
— Ezto . (e /e Ocm) = 0.
This exact sequence splits into the following short exact sequences.

(3.2-8) 00— @c(n)/B(n) — Oc(n) S M-0.

0—- M — 7r(")—1®3(n) ® Ocn
(3.2-9) - &”_ﬁ%oc(n)(né(n)/g(n), Octm) — 0.

Let 7 be a sheaf of germs of holomorphic vector fields on C(™ pre-
serving n-th infinitesimal neighbourhoods. The sheaf 7 is given by

(3.2-10) T ={v e 0w |v(ls) CIg™},

where we put S = Z;V:l S;. The sheaf T is an O¢(»)-submodule of O¢(n)
and coincides with ©g.) outside U;v=1 S;. For a point P € S; we let
(u1,uz,...,un,2) be local coordinates of C(™) with center P such that
(u1,uz,...,up) are the coordinates of B(™) with center 7(™)(P) and that

S; is defined by the equation z = 0 in a neighbourhood of P. Then, in
a neighbourhood of P the sheaf 7 is generated by

L
82’ Buy’ T Buy

as an Ogny-module. Hence 7 is locally free on ¢,
Let us consider the exact sequences (3.2-8) and (3.2-9). Since the
support of Eg:ﬁgc(n) (Qé(n)/ﬁ(n), Ocn) is in (™), the sheaf M is equal to

w(")_leg(ﬂ) ®O¢my on O™\ T(™ By using the above local coordinates
of (") with center P € S;, the restriction of k to 7 in a neighbourhood
of P is given by

0 i} 0
(nt1) 2 . — ; -
a({u, z)z 32 + E Bj(u,z) au, E Bj(u, z2) B,
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Hence £ : T — M is surjective and its kernel is O¢ () /g (—(n+ 1)8())

in a neighbourhood of P. On the other hand, on B(™)\ U;V:I S; the sheaf
T is equal to O¢m). Thus we have an exact sequence

(3.2-8a) 0 = Octmy/pem (—(n+1)S™M) - T — M — 0.
From the exact sequence (3.2-8a) we obtain a long exact sequence

(3.2-11)
0 — ™ (O /e (—(n+1)5™M)) 5ol

- M5 Rlﬂsn)(@cw/s(n)(—(n +1)5(M))
- RAWT R MM 0.

Put By = B™ \ D, ¢y = 7™ (By), my = 7(™|Co. Then on By,
moxM = Ogn) and the homomorphism p is the Kodaira-Spencer map-
ping by Corollary 3.1.3. Since our family is a local universal one, p is
isomorphic on By. Therefore, the sheaf homomorphism 7 in (3.2-11) is

isomorphic on By. But on By we have 7r£")(®c(,.)/3<n) (—(n+1)S("))) =0.
Therefore, 7r,(.")T =0on By. As T is locally free, 7™ T is torsion free,
hence 7™ 7T = 0 on B(™). This also implies

(3.2-12) w,(.")(@cm/s(n)(—(n +1)st)) =0

on B(®.
Next we show that p in (3.2-11) is isomorphic. For that purpose it

is enough to show that R'7{™T is locally free, because, if R17{™ T is
locally free, as p is isomorphic on By, Coker p is a torsion subsheaf of

R'2{™ T, hence zero. By the cohomology theory of coherent sheaves,
x(T ® O¢,) = dimg H*(C,,T ® O¢,) — dimc HY(C,,T ® O¢,)

is independent of s € B(™ where C, = 7" "!(s). (See, for exam-
ple, [BS1].) Moreover, if dimc H!(C,,7 ® Oc,) is independent of s,
say k, since we have H%(C,,7 ® O¢,) = 0, R7™T is a locally free
Ogny-module of rank k on B("). Therefore, it is enough to show that
H(C,, T ® O¢,) = 0 for all s € B(").

Since C, is a locally complete intersection in C{™), we have an exact
sequence

0 — O¢, = O¢m) ® O¢, — Oc,(N) — Eztp, (., ,0c,) = 0
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where N is the normal bundle of C, in C{™ which is a trivial bundle
of rank 39 — 3 + (n + 1)N. (See, for example, [Ar].) From this exact
sequence we obtain two short exact sequences

0— GC’. — @c(n) ®Oc‘ — M, — 0,
0 — M, - O¢,(N) — Egty, (Q0,,0¢,) — 0.

Similarly as above we have an exact sequence

N
0 0c,(-(n+1)>Q;) > T®0¢, » M, 0,

j=1
where Q; = s;(s). This gives a long exact sequence

(3.2-13)
0=H’(C,,00,(-(n+1))Q;))
— HY(C,, T ® O¢,) — H°(C,, M,)
4 HY(C,,00,(—(n+1))_Q;)) = H'(C,,T ® Og,).

The cohomology group H®(C,, M,) parameterizes infinitesimal displace-
ments of C, in C(™. (For the details see Tsuboi [Ts], where the theory is
formulated without n-th infinitesimal neighbourhoods, but the extension
of the theory to our situation is immediate.) Since #(™) : ¢(® — B(n)
is a local universal family, infinitesimal displacements of C, in C(*) and
infinitesimal deformations of C, coincide. Hence the homomorphism p
in (3.2-13) is isomorphic. Hence we have H°(C,, 7 ® O¢,) = 0.

Finally we show that MM is isomorphic to © g (—log D(™).
From (3.2-9) we obtain an exact sequence

0— MM - Opy > W*(sn)(Mé’c(n) (e ypm» Ocem)) -

The homomorphism ¢ is the same to the one appearing in the exact
sequence (3.2-5). Hence t is surjective. Therefore, by Lemma 3.2.5

7™ M is isomorphic to O g (—log D). Q.E.D.

Remark 3.2.7. The homomorphism p in the above Theorem 3.2.6
is also called Kodaira-Spencer mapping. The above proof shows that
there exists an exact sequence

-1
0— @C(n)/s(n)("'(n +1) Z S;) »T — 7™ O ® O¢(n)

— Eztp, (QF,,0c,) — 0
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where T is a subsheaf of O¢(n) defined in (3.2-10). Choose a small Stein
open set 4 C B(™ and a vector field v € HO(U, O (—log D)),
Choose also a Stein open covering {U;};cs of #(™~1(U). Then v also
defines an element 7(™ "y € HO(U;j, 7™ 1Op0) ® Op(n)), whose image
to Exty, e, (Qc.,Oc,) is zero, since the tangent vector v is a direction of
an infinitesimal deformation preserving singularities. Therefore, if /; is
small enough, we can find an element v; € H°(Y;, T) which is mapped
to (™" v. Then, we have

Vi; = U; —U; € Ho(ui nuY;, @C(n)/g(n)(—(n + 1)5))
and {v;;} defines an element
{vi}] € B (=M1 U), O¢m g (—(n +1)8)).

The mapping
vi— [{vi;}]

is nothing but the Kodaira-Spencer mapping p in Theorem 3.2.6.

3.3. Tower of local universal families

Let 3O = (x(0 : ¢ - BO), 3(10), sgo), e 333)) be a local univer-
sal family of N-pointed stable curves of genus g. The proof of Theorem
3.1.5 says that the family F(® can be constructed from a local versal
family 7 : C — B of the semi-stable curve C. The following theorem is
an easy consequence of the proof of Theorem 3.1.5 and plays an essential
role in our theory.

Theorem 3.3.1. Let (9 : c(© - BO); s§°),s§°~),...,s§3)) be a
local universal family of N -pointed stable curves of genus g. Then for
each non-negative integer n we have a local universal family F™ = ( x(™
cem 5 B (M), s sg\';) A O R ,fg\',')) of N -pointed stable
curves of genus g with n-th infinitesimal neighbourhoods such that the
following diagram is commutative.

(3.3-1)
c «— ¢ ) ... ¢l o e+l L.

Lo ! !

B —« BO®  pt) ... B o pkt) ...
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which is compatible with sections and infinitesimal neighbourhoods. Here
7w : C — B is a versal family of semi-stable curves associated with the
family 7(© : ¢ — BO). (See the proof of Theorem 3.1.5.)

By the theorem, as a limit, we have a family (#(>) : ¢(=) — B(=)
; s§°°),sg°°),...,s§3°) ; f(l°°),{(2°°),...,t~(§°)) where C() and B(*) are re-
garded as infinite dimensional complex manifolds and each fibre of 7(>)
consists of an N-pointed stable curve X(®) = (C; Q1,Q2,...,Qn;
t§°°) ,tgw), et ,tgf,x’)) of genus g with formal neighbourhoods. Moreover,
there exist canonical holomorphic mappings ¢(™ : ¢(*) — ¢(*) and
p(™ B>} B, The group D®Y, D = AutC((¢)) acts on B(*)
from left. (See (2.3-1).)

Remark 3.3.2. More generally, in Theorem 3.3.1 by the proof of
Theorem 3.1.5 we can always assume that for n > p the holomorphic
mapping B(™) — B(® is a principal fibre bundle with structure group
(Gn,p)®N, where the group G, , is the subgroup of ring automorphisms
Autc(C[€]/(€™)) which induce the identity automorphism of the ring
C[¢]/(£7). Moreover, the diagram

cn ., )
! l
B _, B

is cartesian. That is, C(®) = C(P) xg(.) B(P). In the following we always
assume that the families 3(*)’s have this property.

Corollary 3.3.3. A (DP)®¥N_invariant holomorphic function on
B(*) is the pull-back of a holomorphic function on B(®,

In the following we generalize Corollary 3.3.3 to the case of sheaves
on B(*),

Lemma 3.3.4. For any non-negative integer n the following se-
quence

(3.3-2)
0 —»@c(n+1)/3(n+1)(—(n + 1)S(n+1))
= B¢ /g (—(n +1)5™M) ® Opnsa)

= Octnin ) ® (&0 (Inkhs) [T5)) = 0
3

J
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of O¢ns1y-modules is exact, where we put S;P) = sg-p)(B(”)), 5 =
Z;-vzl SJ(-p) and Isgp) is the sheaf of defining ideal of S;-p) in C(P),

Similarly the following sequence of Og(n+1)-modules is exact.
0— @B(n-}—l)/B(n) *—9@3("4.1)(-— lOg D(n+l))
(3.3-3) — Ogm (—log D™) ® Og(ns1y — 0.
Let us define a sheaf ©g(w)(— log D{*)) on B(**) by

(3:3-4)  Op(—log (™)) = lim ©(~) (- log D™) &o,,, Ope)-

n

By Theorem 3.2.6 we have the following Proposition.

Proposition 3.3.5. There is a canonical Og(~)-module isomor-
phism

0 : Oglooy = l'ix_n(Rlvri")Ocm/B(,.)(—(n + 1)5("+1)) ® Opg(oo))-

n

For a local universal family §(™ = (#(™ : ¢(®) - B(*); (n ),sg"),

. s%‘) fg"), ﬁ"), ... ,t'(,(,')) we let Isﬁn) be the sheaf of the deﬁm’ng ideal

of S](.") = sg»")(B(")) in C(™). In the following we use the following nota-
tion.
O"(n) =lim (’)c(,.)/Is(,,) ’

6§xn)(p) = lim O c(,.)(pS(")) /T "?f)l for each positive integer p,

Also we fix an element ¢; € I () such that

"¢ =¢ mod (¢").
Then there is an Og.)-module isomorphism
(3.3-5) 63:@) ~ Ogm|[[¢]]
(3.3-6) Ky = O ((€5)) -
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Note that the first isomorphism is canonical up to the order n in §;.

Taking the limit, for a local universal family ( 7(>) : ¢{=) — B(=); s§°°),
sgw),...,sgf;o) ; t~5°°),t~g°°), ... ,f(l\c,x’)) we introduce the similar notation
and we have canonical Og(~)-module isomorphisms

(3.3-7) 5555») =~ Og [[¢5]]
(3.3-8) Kge = Ope ((§5))

where & = t”§.°°"1(§). The filtration {F,} on 5§~gw) and Kge) are
defined by

(3.39) FyKgimr = Ogio[65165”.
Define

(33'10) 93'}")/3(,;) = MOB(") (6:57}") ) 5'53"))
(3.3-11) 6:9\5.")/8(") (p) = Deros(n) (5§§n), 63;@) ()

03}")/3(") (*) = ]1_1'[)1 eggn)/B(") (p)
(3.3-12) P

= Dero,,, (K5, Kgm)
Also we introduce the filtration on ©4n) /B(n)(*) by

(3313)  FyOgm e (3) = Ogen) i (~(p + 1)

Proposition 3.3.6. Assume that the condition (Q) in 2.1 is satis-
fied for each fibre of a local universal family ™ = (x(™ : c™ — B
; sgn), s, ,sg\';) ; tﬂgn),t"g"), .. .,f(lf;)).

1) There exists an Ogx)-module surjective homomorphism

N
(3.3-14) ™ . @ eg‘gn)/B(n)(*) - GB(”)(— log D(n)) — 0.
=1’

2) Ker 8™ is equal to the following sheaf

N
(3:3-15) (O (+5™)) @ N Ogpm oy (~(n +1))).

7=1
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Proof. By the following exact sequence
0 = Ocimy/pem (= (1 +1)8™) = Oy 5 (m — n ~ 1)5™)

m n—m d
Ed @;\;1 Gak:l OB(n)Ej +k£ b d 0
J

we have a2 long exact sequence
0 — Wﬁ")((@cmm(n) (m —n—1)5))
- eﬁl(ewzlos<n>£;—m+ki) = Bl (@c(m g (~(n +1)5™))
—~R 7r£ Y0 /pim ((m — n — 1))5™).

If m is sufficiently large, the last term of the above exact sequence van-
ishes and we have an Og(n)-module isomorphism

O O™ G = Oy (m =1 = /O30y (~(n+ 1),

Hence, taking m — 400, we obtain the following exact sequence

00— Wgn)((")c(n)/gw(*s(n))) - 69?’:1@3}")/3(“)(*)/@gg,.)/s(,,)(——(n +1))
= R'ri”(Octn mem (—(n +1)S™)) = 0

By Theorem 3.2.6 we have the desired result. Q.E.D.

Remark 3.3.7. The geometric meaning of the above homomorphism
(") is as follows. By (3.3-12) there is an Og(n)-module isomorphism

d

®§§")/B<u)( ) = OB(")((é’))dgj

This 1somorphlsm is canonical up to the order n in £;. For (fi——

dE
) f] 36 € (')B(n)((g,)) let us consider the first order infinites-

d¢;
lmal coordmate change

(3.3-16) & — & +€fi(&5)-

This defines a first order infinitesimal deformations of each fibre of
our family (™ : ¢(") — B(™)  Moreover, since we do not change the
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coordinates around singular points of the fibre, the first order infinites-
imal deformation preserves the singularities. Hence, it defines a vector
field on B(™ preserving the discriminant locus. This is nothing but our

e(“)((flgg;,...,fNag—N)).

Now let us consider the tower (3.3-1) of local universal families.
The proof of Proposition 3.3.6 shows that there exists the following
commutative diagram.

©1L1050 0 gain () = BjL1Og0 e (¥) B0,y Oprrr =~ 0
16 16
eB(n+1)("' log D("+1)) — @B(n) (— log D(")) ®Os(n) OB(n+1) — 0

! !

0 0
Taking the limit n — oo, we obtain the following Theorem.

Theorem 3.3.8. Assume that the condition (Q) of Section 2 is
satisfied.
1)  There ezxists a surjective Og() -module homomorphism

N
0 @OB(”)((E:’))_J% - ®B(°°)(_10g D(°°)) - 0.

=1

2)  The restriction of 8 to @;il C((Sj))ﬂ%
J

N
d
6: D C(&)) 77~ — Oper(~log D)
15 a Lie algebra homomorphism.
3)  The further restriction of 8

N
d
9: @D Cllllés g5 — Ot (~log D)
j=1 J

coincides with the differential of the action of (DI)GBN on B(*),
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4)  We have

N
Ker § = 78 (O¢ () oo (* > 5.

i=1

Ot ((6:) 3

bracket [ , ]o defined by

has a structure of Og()-Lie algebra given by a Lie

(3.3-16)
[f(ﬁj)a(é—j,g(ﬁj)%]o=g(£j)%(f(£j))d%—f(&) el () i

where f(¢;) and g(¢;) are local sections of Og)((£;)). But the Og(eo)-
module homomorphism 6 is not a Lie algebra homomorphism. This
is because f(¢;) is a Laurent series whose coefficients are holomorphic
functions of the parameter space B(™). To obtain a Lie algebra homo-
morphism we need to introduce the following Lie algebra structure on

One (&) -

Definition 3.3.9. A bracket [ , ]on OB(«,)((Q)) is defined
by

(3.3~17)
d d d d
[fgéagaz;] = [fE,g@]o

+(f L) 0) L -

d¢; o

)(f)

dg; 9

Proposition 3.3.10. The bracket defined above induces a Lie al-

gebra structure on Og(w)((f,)) , hence also induces a Lie algebra stru-

dg;’

cure on &N 103(9.;)((51)) With respect to this Lie algebra structure,

d¢;’
the homomorphism 8 in Theorem 3.3.7, 1) is a homomorphism of Lie
algebras.

Proof. As was explained in Remark 3.3.7, ( f1 i . fN ) and

(glfg— S9N 5 ) define the first order infinitesimal deformations of
1
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each fibre of the family §(™ defined by

A: &> &+ eafi(s:§)
B: & — &+ egi(s,¢)

respectively, where s denotes the parameters of the base space B, If
we first deform fibres of F(™ infinitesimally by A then deform them by
B, we obtain

(3.3-18)
€ — &itefi(s, &) + e295(s,&5)

ree (a<">(gj%)(fj(s,sj>> " g,-d—ﬁ;(fj<s,ej>>) -

Because, by applying the infinitesimal deformation B each fibre of x(n)
: ¢(") — B(™ deforms infinitesimally, hence it changes the parameter
s, and we need to add the effect of this fact, which is nothing but the
fourth term of the right hand side of 3.3-18. Reversing the order of
infinitesimal deformations, we have

(3.3-19)
£ — &itenfi(s, &) + eag;(s, &)

+ €162 <9(n)(fj&%)(9j(3,5j)) + fj%(gj(saﬁj)) .

By subtracting 3.3-18 by 3.3-19, the coefficient [(™)(A),8(™)(B)]of €;e;
is equal to 6(™)([4, B]). Taking the limit n — co we obtain the desired
result. Q.E.D.

84. Sheaf of vacua attached to local universal family

4.1. Sheaf of Vacua

Let F() = (7(=) : ¢l>) — (=), s§°°),s§°°)
e ,t"gf,”)) be a local universal family of N-pointed stable curves of genus
g with formal neighbourhoods. We assume that each fibre of the family
§() satisfies the condition (Q) in 2.1. Main purpose of the present
section is to define the sheaf of vacua V;(S(m)) of attached to the family.

S, ),

g
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Definition 4.1.1. The sheaf Gy of affine Lie algebra attached to
the family F(>) is a sheaf of Og()-module

v = 98¢ (P Os=((£7))) ® Op(en) -

i=1

with the following commutation relation.
[©/11X; ® £, @117 © 9] =@ ([X;,Y;] @ (fj!]j))

@c- Z( ) Res((9;f;)

¢ € Center
where
X, Y €8, fi5 9 € Ope((&))-
Put /
(4.1-1) §(3)) = g &c T (Op(e) (x5)))

where we define

N
(o) — Z s(°°)($(°°))
7=1
™ (Ogim (+5)) = lim mi™) (O (k5))
k
There is a sheaf version of homomorphism defined in (2.1-3), by
using the formal neighbourhoods t§~°°).

£: 7 (O gy (#5()) = @I, Ogieer ((€5))

and we may regard §(F(°)) as a Lie subalgebra of §x.

Fix a non-negative integer £. For any X = (A1,...,An) € (Py)V, we
define
(4.1-2) ﬁf{”) = Og(=) ®c M5,

(4.1-3) HE = Home | (HS, Ope)).
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The pairing (2.2-3) induces an Og()-bilinear pairing
(4.1-4) ()7 @HED - Oy

which is complete with respect to the filtration introduced below. The
sheaf of affine Lie algebra gy acts on ’HE{”) and ’H}(w) by

(41-5) (L1(X;8) anfP)(FOIT)) =Y D (anF)®pi(X;(n))|T)

nez j=1n€Z
The action of gy on ﬁ}(m) is the dual action of ﬁ(x(’o), that is,
(Ta|®) = (¥|a®) for any a € Gyn-
Definition 4.1.2. Put
Vi(B1) = HE B(F ) A

4.1-6
Y VIE) = Homo ., (V3(3'™)), Opier)-

These are sheaves of Oy(e)-modules on B(>°). The sheaf V%(S(“))

is called the sheaf of vacua attached to the family F(>). Note that we
have

V;(%‘w)) ={(¥| e ’ﬁ}(w) | (¥la=0 forany aec §(F>))}.
The pairing (4.1-4) induces a non-degenerate Og(o)-bilinear pairing
(1) VEE™) ® V() = Opien.

Lemma 4.1.3. Let X(*) correspond to a point s € B(>). By the
canonical isomorphism Og() ,/M, ~ C, where m, is the mazimal ideal
of the stalk Oge) ,, we have the following canonical isomorphisms.

HE?) © (O, o/ m,) = H
Gn ® (Op(e),,/Ms) ~ BN
(41-7) B(3) ® (Op(e) . /my) =~ (X))
V3(F)) ® (Open o/ M) = V(X))
Y @ (Opce o/ ) = 1Y,
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Moreover, the action of gy on ﬁ(;o) defined in (4.1-7) and the action

of n on Hj; are compatible with respect to the above canonical isomor-
phisms.

Proof. The first, second and the fifth isomorphisms are clear from
the definition. Note that we have

TN (O o (£80))) = n_I,nﬂgoo)((’)aoo) (kS(=)))
k

and 7{°(Op(e) (kS(*))) comes from 7™ (Opm (kS™)). If k is suffi-
ciently large, we always have the base change

N
TN (Ocim (k8™)) 0, (O o/ Ma) = HY(C,, Oc, (k'S 51 (s)))

j: 1
since we have

H'(C,,00,(k Y 50 (s))) = 0

=1

where C, = 7{™)~1(s). (See for example, [Ha, Chap. III, Corollary 12.9]
or [BS1, Chap. IIT Corollary 3.5].) This implies the third isomorphism.

Finally let us consider the following commutative diagram of exact
sequences

0
l

EERNHT 8 C, B (H(EF) 0 CHHE @ C,)

la Le
H ® C, 2, My
! !
»F)ec, > Vi (X(=2))
1 !

0 0
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where we put C, = Opg() ,/M,. The above argument shows that the
mapping [ is surjective and the mapping ~ is isomorphic. Hence, the
commutativity of the diagram implies that the mapping v induces iso-
morphism between the Im(a) and Im(e). Therefore, the mapping § is
.isomorphic. Q.E.D.

Define the action of (DI)QN on Og)((€;)) by

(4.1-8)
R ang}) =Y Li(an)hi(€}) for h=(h,...,hy) € (01)®"
neZ neZ

where L; is defined for any F' € Og() by
Li(F)(s) = F((F ™ 0s)), s € B

Note that the action of (D1)®" on B(*) is defined in (2.3-1). (See also
3.1.)

Define the action = of (D1)®" on H~(X°°) by

(4.1-9) w(R)(F ® |¥)) = L;(F) ® (o(G[h)))|¥)

for b € (’DI)GBN. (See (2.3-1).) Also we define the action 7 of (Dl)eN

on gy by

w(R)( @1, X; ® fi @ a-c) = &)L, (X; ® hi(f;)) @ Lz(a) - c
for h = (h1,...,hy) € (D)®Y, X; € g, f; € Ope((&;)) and a €
08(0:)).

The following Lemma is an easy consequence of the definition of the
actions of (D!)®" and Theorem 1.4.5, 1).

Lemma 4.1.4. ﬁ(&"“))ﬁ(x‘x’) is stable under the action of (D')®Y

17(o0)
on HX .

Let us consider the tower of local universal family (3.3-1) of N-
pointed stable curves of genus g with infinitesimal neighbourhoods. As
was explained in 3.3, (V) : (=) — ¢() and y(1) : B(=) — B(1) are
principal fibre bundles with structure group (D! )eN. Put

HY = {f e HSD | n(R)f = f forall ke (D)}
§0(F) = { £ € 5B | n(B)f = f forall ke (D)™}
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1\®&N L((0)
By Lemma 4.1.4, (D')™" acts on V(§'*). Put
P = {9 € Vg(3)) | n(R)g = g for all i e (P)®" .

Then ﬁg), §(1)(F(>)) and fi)(;) are z/;(l)_lOB(l)-modules and we can
show that there are canonical isomorphisms:

H Qum-1o (1) Op(e) 77(30)
8{ ®¢(1) 1n (1) OB(N) x~ g(&(oo

-§ ®¢(1)—103(1) OB(eo) ~ X(g(oo )

Lemma 4.1.5. There exist sheaves H(Xl), (FW) and V;(FY) of
Ogay-modules on BY) such that

FO(FE)) = O T HFD)
Y = ¢(1)“1Vx(g(1)),

Moreover we have a non-canonical isomorphism
H(EY) ~ goc 70w (x50,
where S = Ef’:l s (BM),
Similarly we can define the sheaves 7-7;.(1) and V;(K(l)) on B,
Lemma 4.1.6.
Vvs(®) = 1O /BEOHE.
VIE®Y) = Homo, ,, (V3(B1), Ow)
= { (@ e HIV | (¥la=0 for all a € B(F")}

Remark 4.1.7. We define

V(D) = V(3Y) @04, (Opw),, /™)
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where the point s € B(1) corresponds to X(1). Then by Lemma 4.1.3
and Lemma 4.1.5 we have a canonical isomorphism

V(X)) 2 V(X))
where X(*) is an N-pointed stable curve with formal neighbourhoods
whose restriction to the first order infinitesimal structure is X(1).

4.2. Coherency

In this subsection we shall prove the coherency of the sheaf V;(F1)).
First we introduce filtrations {F,} which play an important role in the
proof of coherency. The filtration {F,} on Og()((¢;)) is defined by

FpOp)((§5)) = O [[6]1€;F,  p € Z.

The filtration {F,} on gy is defined by

N )
9@ Y F0p((¢)) ® Opier -c p >0
~ =1
(4.2-1) Fgn = ! .
90 F0p((£)) p<0.
i=1
The filtration {F,} on ’ﬁ&w) is defined by
(4.2-2) FHS) = Opw) ® FyHy
where FHy; =3, , Hy(d) and
Hi(d)= D Ha(d)®- - ®Hay(dn).
di+...+dny=d

It is easy to see that
Fplin - FHE) C Fpy g HY™.

The actions of (D!)®" on §y and ﬁg.“’) preserve these filtrations.
Hence, §&Y and ﬁg) have filtrations induced by those of §x and ﬁ(;"),
where g is a sheaf on B(1) whose pull-back to B(*) is the (p1)®V.

invariant part of gy and ﬁg\l,) ®0_ ., Og(=) =~ Gn. Then we have

B(1)

129 B ALY € Fy Y
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Since (Dl)e acts trivially on Gr.gx and Gr.Hg ) by Lemma 1.4.3,
we have the following canonical Og:)-module isomorphisms.

N

GT.QN ~ Oga ®c Y 88 Cl¢,£7] @ Ogayc
(42-4) 7=1

Gr.ﬁg) ~ Ogay ®c Hy
where degé; = —1, degc = 0 and the degree d part of Hjy is Hy(d).

On §(FM) and F(FW ) ) we introduce the induced filtrations from
that of g(l) and 'H( respectlvely On V;(§ (1)) we introduce the quotient
filtrations from that of H(X ). Then we have the following exact sequences
of graded Opg()-modules.

(4.2-5) 0 — Gr g(FV) — Gr gl

0 — Gry(FEFNHY) — GroHY) — Gravs(3M) — 0.

For a positive integer M, we consider the graded Lie subalgebra
Opo ® (9©® Y00, Cle7HE™) of Gr gy
The Riemann-Roch theorem implies the following lemma.

Lemma 4.2.1. There exists a positive integer M such that

N
(4.2-6) Opwy ® 3 §®c ClE11E7M = Gro3(FY).

7j=1

Fix a positive integer M satisfying (4.2-6) and define a graded Og)-
module V by

N
427)  V=6rHY /(050 ® (3 g 8c Cl&; ™)) GraHY.

i=1
On the other hand, by (4.2-3) we have
FEOH) = D Fu(@EM)) - Fpu(HY).
p1+p2=p
Hence we have

Gra(FEFNHY) = Gr 3(3D) - GroH.

Therefore, by Lemma 4.2.1 we have the following lemma.
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Lemma 4.2.2. There is a surjective Ogu)-module homomorphism

(4.2-8) YV — Gr vz (FY) — 0.

Proposition 4.2.3. The sheaf V is a coherent Ogu)-module.

Proposition 4.2.3, Lemma 4.2.2 and Lemma 4.1.6 imply the following
theorem.

Theorem 4.2.4. The sheaves V;(F™)) and V;(S(l)) are coherent
Oga)-modules.

The rest of this subsection is devoted to prove Proposition 4.2.3.
Put

N
V=Hg/(g® ) ClE; e )M
=1
Then, as Og1)-modules we have
V~0O0gauy®V.

Hence it is sufficient to prove that V is a finite dimensional vector space
over C. The module H; is generated by a finite dimensional vector
space H3(0) as a U(g® Z;'V=1 C[§j—1])-module, where U(b) denotes the

universal enveloping algebra of a Lie algebra b. Let V; be the image
of H3(0) on V and § denotes a finite dimensional Lie algebra § = g ®

E;il C[fj_l} / (fj_M ). Then Vj is a finite dimensional vector space and
we have

V=U(3) Vo.
We define filtrations {G,.} on U(§) and V as follows.
{0} m <0
GU(B) = C-1 m=0
Gm-1U(8) + 8- Grn-1U(8) m21

GmV = GnU(B) Vo.

Then we have
GnU(B) - GaU(B) C GrminU(B)

(GmU(8), GaU(8)] C Grtn—-1U(8)
GmU(B) - GoV C GrpnV.
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Now we consider the associated graded objects Gr,U(§) and Gr,V.
We have a C-algebra isomorphism

Gr.U(8) ~ 57(8)

where S*() is the symmetric algebra of §.

Furthermore the commutative algebra $*(§) has the Poisson bracket
{, } defined by {P,Q} = [P, Q] where P € G,,U(d), Q € G,U(g) and
P € 5™(§), @ € S™(§) are associated elements. And if a,b € §, then
{a,b} = [a,]].

Consider the ideal

a={a€ S*(g)| aGr,V =0}.

Then Gabber’s theorem [Ga] says that the radical /a is closed under the
Poisson bracket. On the other hand, for each element X, € g,, a € A,
and n € Z, X, ®¢7 acts locally nilpotently on Hy, so Xo®£;™ € 1/a for
eachn =0,1,...,M~1. Furthermore H,®¢{; " = {Xo®1,X_o®¢; "} €
v/a. Therefore, the radical 1/a contains a maximal ideal §S*(§). Hence,
S*(9)/a is an Artin ring over C, that is, a finite dimensional C-algebra.
Since Gr,V is a finite $*(§)/a-module, Gr,V is finite dimensional. This
implies that V is a finite dimensional vector space over C. This proves
Proposition 4.2.3.

§5. Integrable Connection with Regular Singularity

In this section we shall define a sheaf of twisted first order differ-
ential operators D, (—log D();c,) acting on the sheaf of vacua and
the dual sheaf of vacua. In the following we formulate left action of
Diy(—log DW;c,) on V5(F™M). The right action on V;(&m) is ob-
tained easily by using the canonical pairing ( | ) introduced in §4.
That is, for D € Dy,,(—log D®; ¢,) we have

(¥|D2) = (¥D|®)
In this section we use the same notations as those in §4.

5.1. Sheaf Virg.,(c,)
Let §(°) = (x() : ¢() - Bleo), sgw), 3g°°),. .. ,sg\,w); E§°°),t"§°°),

ceey E(Nw)) be a local universal family of N-pointed stable curves of genus
g with formal neighbourhoods. In §4 we defined the sheaf V5(F(>)) and
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v;(3<°°>) associated with the family §(>). Let Vzrs(w)( ) be a sheaf
of an Og(«)-module on B(*) defined by

N
d
V”'su») @OBM ﬁa))df ) ® Op(eo).-

7=1

Let
(5.1-1) p: Vzrs(w) @OB(OQ) ) ﬁ

be a natural projection. By Theorem 3.3.8 there is a surjective Og(co)-
module homomorphism

N
6: POg) ((ﬁj))ﬁ% — Op(e) (— log D),
=1 J

Put 6 =f o p.

Definition 5.1.1. On Vzrs(w)(c,,) we define a Lie algebra struc-
ture as follows.
1) The constant subsheaf C of Og(«) is the center.

2) Let[ , | denote the Lie bracket on &L OB(m)((ﬁj))d‘;
j
fined in Deﬁnition 3.3.9. For f; = (11,8,...,1), & = (3, 13,...,1N) ¢
69;-\;1(’?3(0:,)((ﬁj))d‘S define the bracket [ , ]yir by

” . oo . N dSeJ' ) i
((£1,0), (£2,0)}vir = [f1, &a] + 5_2];52% ( dlg(;])lz(gj)dfj)

d
d§]

3) For V1, V2 € Vzrs(m)(cv) and f € Opg(e) the bracket [ , Jvir
has the properties

where I = £1(¢;

V1, Valvir = FIV1, Valvir — 8(V2)(F)V2
[Vla fV2]Vir = f[%) VvZ]Vi‘r + y(‘fl)(f)v.z .
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It is easy to see that the above definition indeed defines a Lie algebra
structure on Vire S(eoy(€v)- In the following we often use the notation
[ , ]insteadof [ , Jvip.

Lemma 5.1.2. The following exact sequence of Opg(w)-modules

0— OB(W) - VZT‘S( ) @OB(OO) £J df
7

is an extension of the sheaves of Lie algebras with respect to the Lie
algebra structure defined above.
The sheaf Vzrg(m)
in the following way.
For F € Og(), |®) € Hz and V = (£,r) € Virs,

S(o0)
d
@2, 1Ny e ol 103<m>((61))—d5j

(¢v) of Lie algebras acts on 7:2(;") = Op() ®c H;;

(cy) with £ =
, 7 € Og(e), we define

(5.1-2)
D(V)(F & |®))

N
=8(f)(F)®|2) - F ® (Z pi(T[E))]®)) +rF ®|%).

Proposition 5.1.3. ForV € ﬁ'g(w)(c,,) the above action D(V)

is well-defined and has the following properties.
0) We have

D(fVy=fD(V) forany f € Op(e -
1) ForVi, Va€ Vzrg(m)

[D(V1), D(V2)] = D([V1, Valvir) -

(cv) we have

2) For f € O~ and |®) € ﬁ(xw), we have
D(V)(f|®)) = 8(V)(£)|®) + fD(V)|®) .

By the natural inclusion

(@)® EBC 116 - &~ GB@BM(@, )
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(d* )@N can be regarded as a Lie subalgebra subsheaf of ﬁ‘g‘(m) (ey)- By
the direct calculations we can prove the following two propositions.

Proposition 5.1.4.
1)  The restriction D[(d1)®N is equal to the differential of the ac-
tion of (D1)®Y on ﬁf—\w).

2) For an element

. B N
X=(X;,...,Xn) € @g ®c Og=)((£5))

7=1

and an element V € Vir,

S(eo) (Co), we have

[D(V), X] = B(V)(X)

as operators on ’I:Zf-\.w).

Proposition 5.1.5. ﬁ’g(m)(cv) preserves §(3(°°))7:2(;°) .

Corollary 5.1.6. Virg,

s<w>(cv) acts on vx(g(oo))_

Proposition 5.1.7. Let By, = ﬂiw)(Gc(m)/B(m)(*S(‘”))) be the
kernel of the homomorphism 0 given in Theorem 3.3.8. There exists a

unique Opg() -module homomorphism

a: Bg(m) — Opg(oo)

such that for any fe B3y we have
D((£,0)) = a(f) -id

as a linear operator acting on Vz(F(=)). Moreover, for any he (DI)GBN,
we have

a(x(R)(H)) = Lz(a(h) € Opor.

Proof. Let X(°°) be an N-pointed stable curve with formal neigh-
bourhoods corresponding to a point s € B(®). By Lemma 4.1.3, by
taking the tensor product ®Opg(e) , /m, there are canonical reduction
homomorphisms

bt HE) - Hy
ls : Vx(%(oo)) - VX(x(oo)) .
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The actions of T'(§;) = 3, 2 Lngj—"_z on the j-th component of ’)'~{(X°°)
and V;(F(>®)) are defined by the same way as those on Hy and V5 (X(=),
respectively. Then, for any |®) € VX(S’("")) we have

pi(T(£5))es(12)) = ¢5(p5(T(£;))]2)) -

In what follows, for (¥| € V%(%‘“”) and |®) € V;(F(>)) we use the
following notation freely.

(¥|2) = (¥]es(®)) -

Then for (2] € VI(X(=)), |®) € V5(F)) and £ = (I;,...,1y) € By
by (5.1-2) and Proposition 2.4.2 we have

S(e0)?

N

(¥|D((£,0))]20) = Z(‘I‘Ip] L,])|%o)
(5.1-3) N
= = 2 Res (&(6)(¥IT(;)|%o)de;)
j=1"7""

where [; —Z(ﬁj) i and

(B|(T(E5))]20)dE]
dim g
= lif,{ 2t o) 2 (TG I dedt;

C

Let us choose a meromorphic form w € H?(C(®) x gy C(?), wgﬁ)/s(o) (24))
such that

dwdz
(w—z)?

where m : C — B is the local universal family of N-pointed curves
corresponding to our family F(*). Existence of such a form will be
proved in Lemma 5.1.10, below. Let us define a meromorphic form

w(w, z)dwdz = + regular at the diagonal A



534 A. Tsuchiya, K. Ueno and Y. Yamada

(¥|T(2)|®0)d2? € HO(C,w(x L1, Q;)) by

(5.1-4)
(¥|T()|8o)dz"

dim g
1
=1l P YTy Tl J(w)J® &, \dwd

wl—r-r»lz{2((+g*) (;< I (w) (z)| 0> waz

—%’w(w,z)(\If}%)dwdz} .

Also define S, (z)dz? by

S, (2)dz* = —Giiinz{w(w,z)dwdz " dwdz 2}

S.(2)dz? is called projection connection, [T]. It depends on the choice
of local coordinate and we have

S (w)dw? = S, (2)dz* + {w, z}d2>.
Then we have

(5.1-5) (RIT(&;)|®o)dg} = (LIT(E;)|@0)de] + T3 (¥I0)S5(¢;)dE]

where S, j(£;)d¢? is the expression of the projection connection S,, (z)dz?
at the point Q; with respect to the formal parameter ¢;. By (5.1-3) and
(5.1-5) we have

(| D((£,0))/%o) = ZRes( (&) (®IT(¢;)|Bo)de; )

2

73 (¥%o) 2 5 (£(47)5w,7(€)d¢5) -

j=1 &=

Since £;(z)(®|T(z)|®0)dz is a global meromorphic one form on the curve
C, the first term of the right hand side vanished. Therefore, if we put

(5.1-6) au(s,0) = -2 Z Res (£5(65)5w,5(6;)d65)

- —

then a(f) = a,(s,£) satisfies the properties of Proposition 5.1.7.
Q.E.D.
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Corollary 5.1.8. There ezists a canonical Og(w)-module homo-
morphism
a: By, ® Op(e) — Op(ee)

such that for V € Bg.,, ® Op=) and |®) € V(8= we have

D(V)|2) = a(V)|®).

Proof. For V = (f,r) € Bg., ® Opw) put

-

a(V)=a(f) +r.
Then a has the desired properties. Q‘E.D.

Remark 5.1.9. We can define a non-canonical Opg(ce)-module ho-
momorphism

a:Virg

(o) (cv) = Op(eo)

whose restriction to Bg‘(w) @ Opg() is the canonical homomorphism a in
Corollary 5.1.8. Choose a meromorphic form

w e HO(C(O) XB(O) C(O),w(;g}zg)/s(o) (2A))

such that

dwd
w= (—JE_)——zz—)E + regular at the diagonal A.

and letS,, ;(£;)d¢? be the expression of the projective connection S, (z)dz?
by the formal parameter ¢; at ;. Then, for an element V = (Z, r) €

— o d .
Vzrg:(w)(c,,) withf=(l;,...,ly) € @;-VZI(’)B(C,O)((Q))@, a(V') is defined
by
o X
(5.1-7) oV)=-35- ; Res(£(4i)50,5(8)dE5) + v
d .
where [; = lj(&j)@. Thus the homomorphism a does depend on the
J

choice of w.

Let (79 : ¢ — B4, ..., 5x) be a local universal family of N-
pointed stable curves of genus g. If the family n(°) contains a singular
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curve, hence ¢ > 1, we let D be an irreducible component of the dis-
criminant locus. By Lemma 3.1.6 3), D is smooth. We let Cp — D be
the restriction of the family (% : ¢(®) — B(® to D andlet ¢: D — Cp
be the section such that o(D) is a locus of double points of fibres corre-
sponding to the component D. Let v : 5D — Cp be the normalization
of the locus of the double points o(D) and we let o', ¢ : D — Cp be
the sections corresponding to the inverse image of the locus o(D) by the
normalization. Let

j ng XD 5[) — C(O) X B(O)C(O)
be the canonical morphism and p; : ED XD ED — ED, i = 1,2 be the
i-th projection.

In the proof of the above Proposition 5.1.7 we used the first part of
the following Lemma.

Lemma 5.1.10.  Under the above notations, if we choose B(®) suf-
ficiently small, then there exists a meromorphic form

w € HO(C(O) X B(0) C(o),w%)/s(o) (2A))
such that

dwd
waz 5 + regular at the diagonal A.

(w - 2)

Moreover, w cab be chosen to satisfy the following property.

(5.1-8) w(w, z)dwdz =

(5.1-9) j*(w) € H*(Cp xp Cp,w™(24)).
That is, j*(w) is holomorphic at p;(o'(D)) and p;(c"(D)), i =1,2.

Proof. The proof of Theorem 3.1.5 says that our family F® is con-
structed from a versal family = : C — B of semi-stable curves and there
are holomorphic mappings ¢ : () — C and 4 : B(Y) — B. Moreover,
it is known that the family = : C — B is obtained from a pull-back of a
versal family # : C — B of stable curves ([DM]). Hence we have holomor-
phic mappings ¢ : C© — C and ¢ : B©®) — B. If the family #: C — B is
a family of smooth curves, the above Lemma is a consequence of the ex-
istence of Szegb kernel. If the family 7 : C — B contains singular stable
curves, then applying the arguments of Fay [Fa, Corollary 3.2, Corollary

3.8], we can find a meromorphic form & € H 0(5 x§awé§/2§(2A)) with

o(w, 2)dwdz = (510_% + regular at the diagonal A .
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Now the pull-back w of & to C(®) x gy C(®) is a desired form satisfying
(5.1-8).
Suppose that w and ' satisfy (5.1-8). Then we have

w—w' € H(CY xg0) €V, 0l 5o)-
Hence, choosing B(%) smaller we can find forms
7 € H(C®, wew /p0)
such that w + 7 X 7' satisfies the condition (5.1-9). QE.D.
Remark 5.1.11. There exists a sheaf homomorphism
Res : w?ﬁ,)/B(o)&A) — Oa

defined by
T(w, 2, u)dwdz — a(u)
where
dwdz

(w - 2)?

and (u) is a system of local coordinates of the base space B(?). This is
independent of the choice of local coordinates (w, z) and is well-defined.

m(w, z, u)dwdz = a(u) + regular at the diagonal A

5.2. Descent to B(!)

To define the sheaf of twisted differential operators, first we need to
define the action m of D®Y on Vzrg(w)( y)-

For = (h1,...,hn) € D®N and V = ({,r) € Vzrg(w)(c,,), define
(5:2-1) w(BY(E, ) = (x(B)(D),
where for £ = (I;,...,1y), L= dcél" =Y. a¥(s){y, we define
7

(5.2-2)
(R)() = Ly(a¥(s))Ad(h, (G )

h(r>+1ZZRes( W6rEI de).
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Proposition 5.2.1. For each h € D®V, r(ﬁ) s an automorphism
of the sheaf Virg ., (cy) preserving the Lie algebra structure. Moreover,

as an Og(w.)-module homomorphism, ﬂ'(ﬁ) is compatible with the action
of Ly.

Remark 5.2.2. If we regard d®" as a constant subsheaf of Lie sub-

algebras of ﬁg(w)(c,,), then the differential of the action of D®V on
ﬁ“g(w)(c,,) coincides with the adjoint action of d®" on ﬁg(m,(cv).
That is, we have

%w(exp(ef))(V)lpo = [[, V]

where h = exp(£).

Proposition 5.2.3. For k € (DI)QN and V € ﬁ'g(w) (cv), we
have
n(h)D(V)w(h™") = D(x(h)(V))

as an operator on 7:2(;(’) and Vi (F(=).

Corollary 5.2.4. ForV € B3y

® Opg(o) and s € B(*), we have
a(h(s),V) = a(s, n(R)V)

where a(s,V') is given in Corollary 5.1.8. Here, we also write ezplicitly
the dependence of s in the homomorphism a.

Now we are ready to define the sheaf Virg,,(c,) on BY. Put

Vir () = { V € Virgey(co) | w(B)(V) =V forall e (1)},

Proposition 5.2.5.  There ezists a sheaf Virg,(co) of an Oga)-

module over B such that Virg(l)(c,,) is a sheaf of Lie algebras and we
have

=) -1,
Vir " (c,) ~ M) Virgy,(co)

where Y1) : B — B() is the canonical holomorphic map. Moreover,
there is an ezact sequence

0— 03(1) — Virg:(l)(c.,) — ®;y=1@a1)/3(1)(*) —0
2
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Since the action of f/\i;g(m)(cv) on V;(F()) and the actions of
(DI)GBN on ﬁ'g(w)(c,,) and Vx(F(>)) are compatible, for each V ¢

ﬁg(m)(c,,), we can define the action D(V) on V;(§™M).

Put
Bgo,={V €Bg., | n(R)V =V forall ke (D)},

There exists a sheaf B, on B() such that we have

P n-1
B, AR Bs, -

. ~1 .
Moreover, since on (%) @3:(1)/3(1) (%) the action of (DI)QN comes from
i

the adjoint action on - Ogu)((€;))——, we have an exact sequence

4
d¢;
(5.2—3) 0 — Oga) — Vi?"s~(l)(c,,) — 69?,:1(@'331)/3(1)(*)) — 0

which is an extension of Lie algebras.

Proposition 5.2.6.  The sheaf Bg,, 69(619_,?’:1(@%1)/8(1)(—2))) can
be regarded as an ideal of Lie subalgebras of Virg:(,)(c,,) and it acts triv-
ially on V5(FM).

5.3. Sheaf of twisted differential operators

Let us define a locally free sheaf Vo(:(c,) of rank two on C(1) \ £(1),
It is locally a direct sum

@C(1)/B(1)(-—25(1)) & Wey g -

Let (uy,...,un,2) and (ui,...,us) be local coordinates of C(1) \ (1)
and those of B(1), respectively such that 7(!) : ¢V — B() is given by
the projection to the first M-factors. Then an element V € Vp,)(c,) is
expressed by

V = ({(u, z)%, w(u, z)dz).

If (ui,...,u},,2') are other local coordinates, by definition, V is ex-
pressed in the form

d
ot o !
V—(Z(u,z)—dz,,w(u,z)dz)
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where
e I 1 dz'
U, 2") = b(u(u',2'), 2(u', 2 ))(—c—l;)
;-1
(6.3-1) #'(u,2) = W(U(U’,z'),z'(u',z'))(%)

2L, 2, 20, ) (%) -

This defines V) (c,) as a sheaf of O¢(1)-module over C(1) \ () and the
relations (5.3-1) show that the projection to the first factor induces the
following exact sequence.

(5.3-2) 0 — weaypowy — Veay(ew) — @c(1)/3(1)(——25(1)) -0

Moreover, since wea) /gy and @c(l)/B(l)(—ZS(l)) are invertible on
¢, and £ is of codimension two in C(1), the sheaf V() (c,) can be
extended to a locally free sheaf of rank two on C(!) by using the above
exact sequence (5.3-2). Thus we may regard the exact sequence {5.3-2)
as the one of Ogq)-modules over C(1). Then, by (5.3-2) we obtain an
exact sequence

60— le(.l)wc(l)/g(l) — Rlﬂ'g)Vc(l)(Cu)
— eril)Qc(x)/3(1)(—2S(1)) — 0.
Note that there are canonical Og)-module isomorphisms
Rlﬂ',(,l)wc(l)/Bu) o~ 03(1)

and
9(1) : R1W£l)(®c(1)/3(1)(—-25(1))) o~ 93(1)(— log D(l)) .

Put
Dg(l) (— IOg D(l)) cv) = Rlﬂ'il)ch) (C—v) .

Then the above exact sequence is rewritten in the form
(5.3-3) 0 — Ogw — Pya)(—log DW;¢,) — Ogay(—log DM) — 0.

If we fix w € HO(CV) xpg0) €O, i) 50y (24)) with Resi (w) = 1, the
local splitting of the exact sequence (5.3-2) is given as follows.
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(5.3-4)
@C(l)/B(l)(“‘ZS(I)) @wcu)/gu) ~ Vc(l)(cv)

(L, £(2)d2) — (s (FE) + 2 (28 ())

where S(z)dz? is a projective connection defined by

S(z)dz* = —6 lim {w(w, z)dwdz — dw—dzz
w—z (w _ Z)

3.

Note that the projective connection does depend on the choice of the
coordinate 2 and we have

S(w)dw® = §(z)d2? + {w; 2}dz*.

This fact and (5.3-2) imply that the splitting (5.3-4) does depend on the
choice of a meromorphic form w. By taking the first direct images of
sheaves in (5.3-4), this splitting induces an Ogu)-module isomorphism

(5.3-5) O 5w (—log DY) @ Oga) ~ Dy (—log DW; e,

Proposition 5.3.1. There exists a canonical surjective homomor-
phism of Og)-modules

g(l) . ViT§(1)(c1’) — D}s(l)(— log D(l)’ Cv)

such that the following diagram is commutative.

7
Vzrs(l)( v) o, DB(l)(—logD(l);c,,) - 0

pl l

(1)
@j"zleal)/sm(*) —  Opm(-logDW) S 0.

Moreover, we have

)

Ker 0( = B4

S © (@(93\51)/3(1) (*2))) .
j=1
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Proof. By the exact sequence (5.2-3) and by Proposition 3.3.6, we
have the following diagram of exact sequences.

0 — Opwy — Virga, (cy) 5 T - 0

S(1)

| L 6w

0 — 03(1) — Dl

Bm(-logD(l);cv) — ¢ - 0

where
N

% = Bgu, ® P(Ogi 50 (~2))

=1

N
1= @(Gg‘(})/Bu) (*))
=1’

€ = Oy (—log DM).

By Remark 5.1.9, if we fix w € H(C ®g C(O),w%)/g(o) (24)) with

Resi(w) = 1, there is an Og)-module homomorphism

. a
aw : Virgy,(cs) = Opa.

By using the splitting (5.3-4), define M = (61, a,,). Then, it is easy
to show that 8" is well-defined and that we have

N

(1)
Ker g = B’§(1> ) (@(G:g\(jl)/g(l)(—z)) .
=1

Q.E.D.
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Next we introduce a Lie algebra structure on Dy, (—log D);c,).

Lemma 5.3.2. The above isomorphism (5.3-5) defines a Lie al-
gebra structure of Dy, (— log DW;¢,) and the ezact sequence (5.3-3) is
an extension of the sheaves of Lie algebras.

By Proposition 5.2.6 and Proposition 5.3.1 we obtain the following
Theorem.

Theorem 5.3.3. On V;(§M)) the sheaf Dy (~log DW;¢,) of
Lie algebras acts as twisted first order differential operators.

Corollary 5.3.4. If BO is small enough such that we have a
splitting (5.3-5), then the sheaves V3(F") and V;‘(S(l)) are locally free
on B\ DO,

Proof. Since we have the splitting (5.3-5), @) (— log D)) defines
an integrable connection with regular singularities on B(!), Hence, on
BMW \ DO we have an integrable connection. Therefore, the Corollary

is a consequence of the theory of connections on coherent sheaves.
Q.E.D.

By Remark 4.1.7 we have the following Coroliary.

Corollary 5.3.5. Under the same assumption as in Corollary
5.3.4, for each point s € B(Y \D(l) we have the canonical isomorphism

VW) ®0,0) (O ,./ms) = VE(XW).

§6. Locally freeness and factorization

6.1. Family of singular stable curves.

Let 3V = («(M) : ) - B, sgl),sgl),...,ss\l,) ; f(ll),fgl),...,f%))
be a local universal family of N-pointed stable curves with first or-
der infinitesimal neighbourhoods. Here we study the behavior of the
DLy (~log DW; ¢, )-module V5 (F!)) near the discriminant locus D).

Since the problem is local on B(!), we take sufficiently small family
3O = (2 ;@ - BO; 0 O 0y with local coordinates
(T1,...,T3g—34n) OD B() such that the discriminant locus is of the form
D = D1 UDZ U"'UDk, D,‘ = { (T) I T3g—24N—i = 0 }, 1= 1,...,k
and the family F1) is obtained from the family F®. (See the proof
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of Theorem 3.1.5.) Choosing B smaller, if necessary, we may assume
that
B — (C*)N x BO).

Let (71,...,nn) be global coordinates of (C*)¥. Moreover, we may
assume that there exists a meromorphic form

we H(CO @p0) €V, 0y /50 (24))
such that Res% (w) = 1 and the condition (5.1-9) is satisfied. Fixing it,
we have a trivialization
Dé(l) (—log DW; ¢y) = Ogu)(—log D(l)) ® Opw.-
Let DI ¢ B be the pull back of D; C B, and put
E= (] D, EV= ) D,
1<i<k 1<i<k

Denote by 7x : Cg — E the restriction of C() to E. Let #g : Cg — E
be obtained by the simultaneous normalization of g : Cg — FE and
o;,,a;,’ :E — Cg (p = 1,...,k) the cross-sections corresponding to the
normalized double points.

éE — CE — C(O)
Nfe 7l s,0 l
s,o' 0"
E — BO,

We also denote by mga) : Cgay — EM) (resp Fg : Cgay — EW) the
pull back of 7g : Cg — E (resp. #g: Cg — E) to EM), For sunphc1ty,

(0 (1)

we use the notation s; instead of s; and ;. Also by ¢’ and 0" we

denote the sections of #gn) : C, By — E® mduced from the sections ¢’
and ¢ of 75 : Cg — E.

Proposition 6.1.1. The family
(7g : Cg — E;0,,05,(p = 1,...,k),sg0), ,353))

is a local universal family of (N +2k)-pointed (not necessarily connected)
stable curves.

For the preparation of the next subsection we study the relation
between the family #ga) : Cgay — EM) and F1).
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For simplicity of notation let us assume that £k = 1. Hence, £ = D,
and E®) = DM, Put M =39 — 442N, 7 = 13,_,4n and

7: i:1,...,N
u; =
Ti—ny t=N+1,..., M.

Hence (uy,us,...,upn,7) are coordinates of BM) and E®) is defined by
the equation 7 = 0.

Lemma 6.1.2. If we choose B(Y) sufficiently small, then there ex-
ist local coordinates (ui,...,up,2) (resp. (u1,...,up,w)) of a neigh-
bourhood X ( resp. Y) of o'(EM) (resp. o"(EM)) in Cpuy and a

relative vector field £ € HO(CE(I),GEE(I)/E(I)(* Z;\;l s;(EM)Y)) which
satisfy the following conditions.

1) The sections o' and o" are given by the mappings

o (u,...,unm)— (U1, .., unm, 0) = (ur,- .., un, 2)
" (ury. .. up) = (U, .o un, 0) = (U, ..., upr, w).
~ 18 -~ 1 8

Proof. Let v : C, gy — Cg@) be the simultaneous normalization.
Let (u1,...,upm,z) (resp. (u1,...,un,y)) be local coordinates of X
(resp. Y') satisfying the condition 1). Since » is isomorphic (the identity
mapping) on Cx \ (¢’ (EW)Us"(EM)) = Cy\o(EM), by the proof of
Lemma 3.2.3, especially by (3.2-4) we have the following exact sequence.

0= 0c,,/m0 = y*(GgE(l)/E(l)(_U’(E(I)) - o"(EM))) 3 Ogay = 0

where the O ga)-module homomorphism a is given by

(7] 0 da(u,0)  0b(u,0)

Note that the stalk of V*(GEE "(EMW) — ¢"(EW))) at a point

(1)/E(’>(_0
o(u), (u) € EM) consists of a pair of local holomorphic vector field
(a(u,m)%,b(u,y)aﬂy) with a(¢,0) = 0, b(y,0) = 0 and the definition of

a is independent of the choice of local coordinates. The exact sequence
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induces an exact sequence

0 — H(Cpw),Oc,,, /0 (kSD))
- HO(CE(U,V*(@EE(I)/E(I)(V*(kS(l)) - o' (EW) - o"(EM))))
2 HY(EW, 0pn)) — H? (cE(l),ecE(l),Eu,(kS“)))

for every integer k, where

N
SW =3 "s;(EW).
=1
If k is sufficiently large, we have

H'(Cp,Oc,,, /m (kS1)) = 0.

Hence, by the above exact sequence there exists a relative vector field

ZE HO(aE(l),GEE(x)/E(l) (V*(kS(l)) _ O.I(E(l)) _ O'H(E(l))))
:HO(CE‘”’”*(GEE(l)/E(l)(V*(kS(l)) —d(EW) — g"(EWY))
such that
a(f) =1

= 0
L= a(u,:c)% on X
£ = b(u,y) 0 on'Y
= 'Y By
with
8a(u,0) n 8b(u, 0) _1
oz Oy
Adding an element coming from HO(CE@),GCE“)/E(I)(*S(I))) if neces-
sary, and choosing B(®), X and Y smaller, we may assume that —_Bafau, z)
z

(resp.

ab
——%;’—y)) has no zero on X (resp. Y). Now define z = z(u,z)
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and w = w(u, y) by

0 1
a(u,x)a—z = 5% 2(u,0) =10
5}
b(u,y)a—: =W, w(w,0) = 0.
Then, by choosing X and Y smaller, (uy,...,up, 2) and (u,...,up, w)
satisfy the above conditions 1) and 2). Q.E.D.

We let #40) : Cgay — E() be a local universal family obtained by
adding the first order infinitesimal neighbourhoods at ¢’ and ¢”. Lemma
6.1.2 says that at o’ and ¢ we can choose special coordinates 2z and w.
These coordinates induce the first order infinitesimal neighbourhoods of
o' and ¢”, hence, we have a holomorphic section

(6.1-1) j:EW 5 EW,
Let ¢; be a formal coordinate at s;(E()) such that

gl)(g:, mOd If (E(l))) = £.

i

d -
Let £;(£;)——be the formal Laurent expansion of { with respect to the

d¢;
formal coordinate ¢;. Thus we have £;(§;) € Ogw) ((€;)). Put

o n(ew) ).

(6.1-2) L= (tL(& dEn

d
)E:

Next we construct the family ZM from the family (Fgq) : C, Q) —
EWM), sgl), e sg\});f(ll), ... ,2(1\1,)). Using the notation of Lemma 6.1.2, we
may assume that

X={PeChw||2(P) <1}
Y={PeCpw||wP)<1}.

For a positive number € < 1 put

X.={PeCguw||2(P)<e}
Y., ={PeCgy | |w(P) <e}
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()
xy="T

Figure 4.

Fix positive numbers €; < €3 < 1 and let {Us}3<a<4 be a finite open
covering of Cga) \ (X, UY,,) such that

UaNX,, =8, Us,NY, =0

for any a = 3,..., A.
Now put
D={reC||rl<1}
So={(z,y9,7)€C¥lay=r1, |2| <1, |y <1, |7| <1}
S=8 xFE
Z={(P,7)€Cgu x D|P€eCgru\(XUY)
or P € X and |2(P)| > 7|}
W ={(P,7)€Cgay x D| P eCgu \(XUY)
or PeY and |w(P)|>|7|}.
On Z LU SUW we introduce an equivalence relation ~ as follows.

1) A point (P,7) € ZN (X x D) and a point (z,y,7’,u) € S are
equivalent if and only if

(z,y,'rl,u) = (Z(P)v %P)—’T’ %S)(P))

2) A point (P,7) € WN(Y x D) and a point (z,y,7’,u) € S are
equivalent if and only if

(,9,7'u) = (;(}—),ww), 7,75 (P)).
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3) A point (P,7) € Z and a point (Q,7') € W if and only if

(Pr) =(Q, 7).

Now put C(V) = ZU SUW/ ~ . Then it is easy to show that C(!) is
a complex manifold and there is a natural holomorphic mapping 7(1) :
¢ — EM x D. Moreover, since we can assume that s;(E())’s are

contained in Ce:) \ (X UY), we can define holomorphic sections s;’s by

85 EWxD - c
)~ (s(t),7) e 2.

By the same way we can define the first order infinitesimal neigh-
bourhoods £;. It is easy to show that (7(1) : ¢ — EM) x D;sy,...,sn;

t1,...,tn) is isomorphic to our original family s,
By the same method we can construct a family (# : ¢ — F x
D;s1,...,8y) isomorphic to (). Hence, in the following we identify

F and FY with the families constructed above.
For each point (u,7) € E() x D put

Clumy =7 ((u,7))
Ua(u,T)IUaﬂC(u,T), 3<a< A
Ul(U,T) =5NZnN C(u’.,-)
Uz(u, T) =Snwn C(u,r).
Then, for each 7 # 0, U(u,7) = {Ua(u,7T)}1<a<4 is an open covering of
the curve C(y 7).
Lemma 6.1.3. For each point (u,7) € E®) x D with T # 0, the

image p(T—g—) of a vector field T(’% by the Kodaira-Spencer mapping
T

p: T(u,r)(E(l) x D) — H' (C(uv"')’ ec(u‘f))

is given by a Cech cohomology class {fap(u,7)} € H*(U(x, 7),0¢, )
with respect to the covering U{u,T) given above, where

012(’&,7') = Z—a—;

021 (u,7) = —612(u, 7)

bop(u,7) =0 if (a,8) #(1,2) or (2,1).
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Proof. By the above equivalence relation, on Uy{u, 7)NUs(u, 7) we
have
-
Z=—.
w
If Uy(u, 7)NUg(u,7) # 0 and (a,B) # (1,2) nor (2,1), then the relation
between local coordinates of U, (u, 7) and Ug(u, 7) does not depend on 7.
Hence, by the definition of Kodaira-Spencer mapping (see, for example,

Kodaira [Ko, §4.2]) we have

_f?_) _ T 0 o
Ao = 4 or =75
(roes = v =~
P/ = Yoy oz
p(ra%)aﬂ =0 if(a,8) # (1,2) nor (2,1)

Q.E.D.
Let us consider the N-tuple of formal vector fields

d

I=((e) L -

P (§N)d

)

defined in (6.1-2). Since we have Zj(f,) € Ogw((&;)), we may regard

dg;
T as an N-tuple of formal vector fields on ), that is, £ (EJ)

Ogwxp((€5)):
Corollary 6.1.4. On B = EM x D we have

i ©

o~ 0
@) =r2
o) =T

where the mapping (1) is defined in Proposition 3.3.6.

Proof. Since both sides of the above equality in the corollary define
holomorphic vector fields on B(1), it is enough to prove the equality for

T #0.

Let us consider an exact sequence
0— 90(1)/3(1)(_5(1)) —>@C(1)/B(1)((m - 1)5(1))

m —m d
— &1L OFe; Opw; +k£ —0
M
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for a sufficiently large positive integer m. Zdeﬁnes an element I’ of
the third term of the exact sequence. On the other hand, for each

(u,7) € EW x D, 7 # 0, the meromorphic vector field {on 55;(1) defines

meromorphic vector fields £, , on Cy , \ {Uz(u, )\ (U1{u, 7) N Us(u, 7))}
~ 1 0

and £, , = 3W5, o0 Ua(u,7) such that both vector fields have the

same image I' in the above exact sequence. Hence, the image of v by

the mapping

O, & Opy €™ —— - Rl?ff«l)(@cu)/zsu)(—s(l))

d¢;
is given at a point (u,7) by an element
{aa,ﬁ(u’ T)} € H' (Cu,‘l" G)Cu,r)

where on U;(u,7) N Usz(u, 7) we have

012(", T) = z’u,‘rIUl(u,‘r) - Zlu,Tle(u,T)

1.8 1 8
~2%0: 2" ouw
8
“8z

21 (u, 7) = —612(u, 1)
and on U,(u,7) N Ug(u, 1) with (a,3) # (1,2), (2,1) we have
0aﬁ(u,r) =0.

Thus [ defines the cohomology class given in Lemma 6.1.3. Hence we
have the equality for 7 # 0. Q.E.D.

6.2. Locally freeness and factorization

The main purpose of the present subsection is to prove the locally
freeness and factorization properties of the sheaf of vacua V;(S“)) for a

local universal family §) = (#(1) : ¢ — B(1); sgl),sgl),.. . ,s%); f(ll),

{(21), cey ig\l,) ). We use freely the notation and convention in the previous
subsection.

Theorem 6.2.1. The sheaf Vx(§1)) is locally free.

Proof. By Corollary 5.3.4 the theorem is true for a local universal
family of smooth curves. Therefore, we assume that the local universal
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family $(!) contains singular curves. For simplicity we only consider
the case k = 1, that is, each singular curve has only one double point.
General case is reduced to this case by the induction on the number &
of the double points of a singular curve.

First fix an element p € P,.

Claim 1. There ezists a bilinear pairing
(1) H®Hu—C
unique up to the constant multiple such that we have
(X(n)ulv) + (u|X(—n)v) =0

forany X € g, n € Z, |lu) € H,, |v) € Hyr and (| ) is zero on
Ho(d) ® Hoi(d'), if d # d'.

Proof. Since V, ® V,t, considered as a g-module by the diago-
nal action, contains only the one-dimensional trivial g-module C|0,, ,t),
we have a bilinear form ( | ) € Homg(V, ® V,+,C) unique up to
the constant multiple. Assume that we have a bilinear form ( | ) €
Hom(F,H, ® F,H,t,C) with desired properties. For an element

X(—m)|u) € Fpr1H,, |u) € FH,, m>0
and an element |v) € Fp1H ,+ define
(X (=m)ulv) = —(u| X (m)v).

Note that since X(m)|v) € Fpy1_m™M,+, the right hand side is defined
already. It is easy to show that in this way we can define the bilinear
form (| ) satisfying the conditions of Claim 1. This proves Claim 1.

Now let us choose a basis {v1(d), ..., Vm,(d)} of H,(d) and the dual
basis {v'(d),...,v™(d)} of H,+(d) with respect to the above bilinear
form ( | ).

Using the holomorphic section j : (1) — E() defined in (6.1-1),we
put

(1) _ (1)
v#,;t' X,BM) =7V s ;4' A(&E(l))
) =HY @0, Opw.

2,EQ) B(1)

1
Then, v*‘ )u .

morphlc vector fields © (1) operates on it from right as the integrable

is locally free and by Theorem 5.3.3 the sheaf of holo-
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connection. Let (¥] be a section of VT(I)T Let us define an el-
wout X, B
ement (¥] € HI‘(IE)(U[[T]] associated with (¥|. For that purpose first
a

define (¥a| € H{) ) by

mq . .
(6.2-1) (Tal®) = D (Tlvi(d) ®v'(d) ® 8),

i=1

(1)
I >€ H E(l)

Now define (] € #{')) [[7]] b

(6.2-2) (T]8) = i (T4|®)r
d=0

This construction of ¥ is known as sewing procedure by phisisists

[So]. Now we shall show that (¥| satisfies the formal gauge condition. To
give the precise meaning of this statement, first we prove the following
Claim.

Claim 2. There is an Ogny-module injection
1M0ew (x8M) © %E(moal() )(*(a' + " + SO [[7]]
(1

f - ZZo:o fk'rk

where
fr € Fpw Oz (xS + k(o' + o).
e(1)

Proof. Choose a point P € Cg) which is a double point of a fibre of
T g . Then we can choose local coordinates (us,...,us—1, 2, w) of C(V)
with center P and those (ug,...,upm—1,7) of BY) with center 7(1)(P)
such that 71 is given by

(u1y...,up—1, 2z, w) — (u1,...,Uup—1,2W).

(See the beginning of 3.2.) Since f is holomorphic at P, we have an
expansion

f=f(ur,...,up—1,2,w) = Z Fan(w)z™w

m>0,n>0
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Define gp:(u, 1, 2) by

e o

gp(u,7,2) = f(u, z, —:—) = ng(u,z)Tk
k=0
where
(6.2-3) gx(u, z) = ifm,k(u)zm_k.
m=0
Define also hpn (u, 7, w) by
hp(u, 7, w) = f(u, %,w) = ki;ohk(u,w)rk
where
(6.2-4) hi(u,w) = ifk,n(u)w”“’“.
n=0

For a point Q € Cgu) which is not a double point of a fibre, we can
choose local coordinates (uy,...,up_1,7,2) of C) with center Q such
that 7(!) is given by the projection to the first M factors. Then we have
an expansion

o]
flu, ..., up—1,7,2) = Z fox(u, 2)TF.
k=0

It is easy to see that {gi(u, 2), hx(u, w), fo,x(u, 2)} defines a local holo-
morphic section of the sheaf T )« Oz (SN +k(a'+0")). This proves
e(1)

Claim 2.
Claim 3. For an element f € ) O, (+SM) let Y reo feTF be
the expansion defined in Calim 2. Then we have
N -~
D (T pi(X ® fi)r* =0.
j k

j=1

That is, (‘T’| satisfies the formal gauge condition.
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Proof. By definition, for any |®) € HY)  we have

X,EQ)
N _ [’}
STUE S pi(X ® fi)rk (@)
7=1 k=0
— 83 Y Tk+dz ¥|p;(X ® fu)lvi(d) ® v'(d) ® &)
k=0d=0 i=1 j=1
oo O Mg
= —TA"ZZ Z T Tp, (X © gi)
k=0d=0 i=1

+ por (X ® hy)lvi(d) ® v'(d) @ B).
By (6.2-3) and (6.2-4) we have

po(X D) = 3 Frms(t)per (X(m — B))

pa"(X ® hy) = ka,n(t)pa”(X(n — k).
n=0
Since we have
(X(m - E)oi(d)[v? (d — m + k)) + (vi(d)| X (k — m)v? (d — m + k)) =

we have

Zp, (m — k))|vi(d) ® v'(d) ® ®)

Md—m+k

+ Z por (X (=(m — k))|v;(d—m+k)@vi(d—m+k)® )

:0.

This proves Claim 3.
Let Opga) pay be the completion along EM | that is

~ . .
Opw/pm 2 1im Opq) [Tga,

where Iy is the ideal sheaf of EM)_ Then, there is an O gqu)-algebra
isomorphism
Opw gy = Ogmy[[ 7 ]]-
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In the following we identify 63(1)/}3(1) with O g [[ 7 ])-

Claim 4. Let VI(/I;(U be a sheaf of Ogw || 7 |}-module defined by

v;le(l) {(@l e H), M7 ]] ;Z@|Zp,X®f” =0

for all f € nMOea (xSM) 1.

Then, there is an Ogw) || 7 |]-module isomorphism

Vf(g(l)) R0 (1) 03(1)/;3(1) o~ VX/E(I)

Proof. Since the tensor product with 630) JEW 18 faithfully flat,
we have an isomorphism

VIE)®0, 4, Osm 50
= Homo 8(1) (VX(S(I)) 03(1)) ®OB(1) 58(1)/E(1)

~ Homg 51/ o Vi(3Y) @0, Opw /ew, Opa) /mm)-

Note that we have an Ogu)-module isomorphism

HY

~ D) A
55w = N3 80y Osoy/em

By Lemma 4.1.6 and faithful flatness we have
V;‘(g"(l)) B0, (905(1)/15(1)
~HY g o /(~({¥(1))'H(1)) ® o
=5 Q0,0 Yo,n /B g % Opry YO, 1)/ BW:
On the other hand we have
BEOIHY) ®0,4, Bo, 4y /zw = BED)HY) 0,4, Oo, ) /502
~ 1)1
9(3( ))H)‘ E(l)[[ ”

where the action of X ® f € §(F)) on ’Hf\lgm[[ ]| is given by

N
> pi(X ® fi)r*

=1
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where 3 fo7* is the element corresponding to f defined in Claim 2.
Hence we have

1)
VX(S( ) ®o B(1) o sy /B = HX E(l){ /8(30) H( sl 7]

This proves Claim 4.
Now we are ready to prove Theorem 6.2.1. Choose B(!) small

enough so that @#EPLVT( )f,\E(U is Opyy-free. Let {(¥1f,...,(¥a|}
ot 0 L {{Ty],...,(¥,|} be
elements of V;(%(l)) constructed in (6.2-2) from {(¥y|,...,(¥,|}. The

correspondence (¥;| — (¥;|, i = 1,...,n defines an Og)-module ho-

momorphism
. 1) i)
L GB V,L,,n,x,E(l) VA/E(l)
pneP,

be an O free basis of ®ucp,V 1)

First we show that (¥y],..., (¥,| are Ogw [ 7 |]-linearly independent.
Suppose we have a relation

Zai(f)@’il =0, ai(7r)€ Ogm][T]]

We may assume that one of a;(7)’s, say ax(7) satisfies the condition that
ax(0) # 0. If we put 7 = 0 in the above relation, we have

Z a;(0)(¥

Hence a;(0) = 0 for all 4. This is a contradiction. Hence, (¥1],..., (¥,

generate O g [[ 7 ]]-free submodule of vi(/lE(U

Now choose a point z € E() and s € B(") \ E(Y), Then, the above
argument and Corollary 5.3.5 show that

dimc Vx(s(l)) ® (0w ,/m,)
= dim¢ V;(S(l)) ® (Opmy,./ms)
>n= Z ranky'® _

popt X, B
HEP,

By Lemma 4.1.3 and Corollary 2.2.6 we have

dimg V;\‘(S(l)) ® (03(1)’:6/111 Z dim¢ V x(l))
nEP,
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Hence we have
dime V5(3M) ® (Ope . /m,) > dime Vi(F) ® (Opa) -/ Ma).

On the other hand, since V(F!)) is coherent and locally free on B\
EW | we have the inequality ‘

dime V5(FV) ® (Op0y ,/m,) < dime V5(FY) ® (Opa) o/ ™).
Hence we have the equality

dime V() ® (05 ,,/m,) = dime V() ® (Op) 2/ ™).
Hence Vi (1)) is locally free. Q.E.D.

Let £ be the meromorphic vector field given in Lemma 6.1.2 and [,
be the formal Laurent expansion of { at Q;. Put [ = (I;,...,1y). (See
(6.1-2).) Under these notations we have the following theorem. In the
following theorem we shall only prove that TA“<CI"| is a formal solution
but actually we can show that the formal solution converges. To show
this we need rather long discussions and we shall give a complete proof
in the forthcoming paper.

Theorem 6.2.2. Let (¥| be the formal power series defined in

(6.2-2). Then TA“<‘T/| s a formal solution of a differential equation of
the Fuchsian type

te~}j

~ d -
A
w(Bl(r =~
(F|(r 2 7l + af
Proof. Let us fix an element w € H*(C() ®0) C(O),w?}%)/B(O)(ZA))
such that w satisfies (5.1-8) and (5.1-9). By (5.1-4) we have

(FT(w)|@)du? € H(CO, w8y, (35M)).

~ 0
Let £ = l(z)a be the meromorphic vector field given in Lemma 6.1.2.
Then, for (u,7) € EM) x D, 7 # 0,

{(2)(¥|T(2)|®)dz



Conformal Field Theory 559

7

Figure 5.

is a meromorphic form on C,, , = Cy - \{(z,9,7) € So||z| < eor [y| <
€} for a sufficiently small positive number ¢ < 1.

The boundary of C,, , consists of two disjoint simple closed curves
Y+, ¥—. We choose the orientation of 4 in such a way that CL’T lies

in a right side of y3. Then by Proposition 2.4.2,(5.1-5) and (5.1-6) we
have

1 517 1 .
27“/?:[ /.Y+ e(z)<‘1’|T(z)!§>dz + m \/;* Z(’w)(‘I’lT(’w)l§>dw

Resq, (£(u)(¥|T(u)|@)du)

Mz

j=1

I
[V]z

(¥ 1p3(Res (6(6)T(¢5)dE;)) @)

1

[
1

N
—c Yy Elig%(lj(éj)Sw,j(ﬁj))(@lé)
j=17""
N

= (Tl (T14])|®) — a(D)(T|T).

i=1

d 1 d
On the other hand, on v, we have Z(Z)E =52 Hence, by (5.1.4)
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we have
1 —~ ~
2/ —1 /7+ Lz)(2|T(2)|®)dz
1 T —~
= i1 ), (ETER) - cssi()(@1%) d=

1 -
Syl 2(¥|T(2)|2)dz,

since S,(z)dz? is holomorphic at z = 0. Hence, by (6.2-1) and (6.2-2)
we have

ey ), (OETC)

%z_: +dz;/ 2(T4|T(2)|vi(d) ® v'(d) ® 8)dz
= %i 2t S, Lo (0(d)) @ v(d) © 2)
=0 i=1
%imz Ay + At (T glvi(d) © vi(d) ® @)
d=0 i=1

Similarly we have

1 ~ o~
2/ —1 /_ Yw)(2|T(w)|®)dw
= — igd:(A,ﬁ + d)T "'+d<\1’d|v;(d) R (d) ® Q),
d"'O i=1

Since we have A, = A+, we obtain

=

> (Elpi(Tt))|2) ~ a(B)(¥|2)
fﬁ i‘(Ap + )78+ (T glvi(d) ® v'(d) © &)

d=0 i=1
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On the other hand, we have

~ d
—|®
Fir--1#)
oo Mmyg

=33 (A + At (T lui(d) © v'(d) ® B).

d=0 =1

Hence, (‘:I"] is a formal solution of the differential equation

~ d -

U (r——-T ) =0.

(¥|(r— ~ T[] +a(D) = 0
This proves Theorem 6.2.2.

Corollary 6.2.3. V;(S(l)) is locally free. Moreover, for each point

s € BM) we have

VEEW) ®0, ) (Ose),4/ms) = VI(E).

Remark 6.2.4. Similar to Remark 4.1.7 we can define V;.(%(l)) by

the left hand side of the above isomorphism for X(1) = 369). Then we
have the canonical isomorphism

VI(ED) 2 yi(x()),

Corollary 6.2.5. The rank of V;(S(l)) can be calculated combi-
natorically from the fusion rules.

In this case, the fusion rules, which count the numbers of indepen-
dent solutions of type (g, N) = (0, 3), are given in Example 2.2.8. We
use the notation there. The number of the independent solutions is
given by N, ., = dim W, , ». By using N, , », the explicit formula for
the rank is given in the case of maximally degenerate curves (the corre-
sponding dual diagram is the ¢3-diagram) with g loops and N external
lines, which has 3g — 3 + N internal lines and 2g — 2 + N vertices, that

is,
rankv;(g(l)) = Z H N,y

fizinternal (a,8,7):vertices
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Figure 6.

(See [Ve].)

For each ¢3-diagram the above proof (see also the factorization prop-
erty, Theorem 6.2.6 below) gives a canonical basis of V;(S(l)), with
which the monodromy around the vanishing cycles are diagonalized.
The relation between the bases corresponding to two different diagrams
is described by a connection matrix. The matrix provides us the mon-
odromy representation of the braid group, the mapping class group or
some generalization of them ([TK1], [TK2], [F], [Val]).

The sheaf version of Proposition 2.2.5 is the following factorization
property.

Theorem 6.2.6. There exists an O

Fa) -module isomorphism.

@ v;,m,x(g(l)) = (V,Ti(&(l)) ®0,a) Opm) Q0L O%wy-
neP,

Proof. 'We use the notation in the proof of Proposition 2.2.6 freely.
Put

VX(S'(I))E(Q = (V:\'(g(l)) ®08(1) Orm) ®0E(1) 0E(1)

v;‘(g(l))ﬁm - (v;(g(l)) ®0,1) Opm) ®0,4) OFa)-

Then we have a canonical identification

fr(1 _ 1
Vx(g( ))Eu) - Homo;(,) (VX(S( ))Em’oi(x))-
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t )
For an element (¥| € V S’(E(l)

deﬁne I’I‘( ‘I’l) € MO (v,\(s )E(l)’ E(l)) by

) and an element |®) € vx(g(l))gm

H((2))(12)) = (10,1 © B).

This is well-defined and induces an O ,,-module homomorphism

EQ)

. 1)
(6'2“5) L @ wout, ’\(3E(1)) - HomOE(l) (VX(S(I))E(U’OEQ))'
pep,

For each point s € EA), put
C_, = OE(l),a/m"
By tensoring C, to (6.2-5), we have a C-linear mapping
1
lst @ ot X 3(E()1)) ®C, — Homc(Vx(g(l))g(l) ®C,,C).
HEP,

By Remark 4.1.7 and Corollary 6.2.2, the mapping ¢, is nothing but the
mapping in Proposition 2.2.6. Hence, ¢, is isomorphic. Therefore, ¢ is

an O, -module isomorphism. Q.E.D.
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