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Abstract. 

Some existence theorems of a complete Ricci-flat Kahler metrics 
on affine algebraic manifolds are established. As an application, we 
propose a picture describing the behavior of the Ricci-flat Kahler 
metrics under semi-stable degenerations of polarized K3 surfaces. 

§0. Introduction 

The theme of the present paper is the existence of a complete Ricci­
flat Kahler metric on certain class of affine algebraic manifolds. This 
paper is mostly of expository nature and is based on [B-K], but has 
some original results on the existence of a complete Ricci-flat Kahler 
metric with moderate volume growth. 

Affine algebraic manifolds which are expected to admit a complete 
Ricci-flat Kahler metric occur naturally in complex algebraic and differ­
ential geometry in many situations. First of all, we recall Yau's solution 
of Calabi's conjecture [Y2]: 

Theorem ([Y2]). Let M be a Kahler manifold. Suppose I is a 
real closed (1, 1)-form which represents 21rc1 (M). Then there exists a 
unique Kahler metric in each Kahler class such that its Ricci form is 1 . 

This theorem says that each admissible Kahler class contains a 
Kahler form which has a prescribed volume form. It opens a way to the 
investigation of complete Ricci-flat Kahler metrics. Namely we want to 
seek them as a singular perturbation of Kahler metrics with prescribed 
volume forms. Suppose that D is a hypersurface in a compact complex 
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manifold X such that c1 (X) = o:[D] with a> 0. For instance, let X be 
a compact complex manifold and D a hypersurface. Clearly there exists 
a Ricci-flat volume form V on X - D with poles of appropriate order 
along D. Consider a one-parameter family of smooth volume forms Vi 
on X such that limt_, 00 Vi= V. If c1 (X) is positive, i.e., Xis a Farro 
manifold (e.g., X = P n ( C)), then there exists a unique Kahler metric 
Wt such that [w] is proportional to c1 (X) and its volume form is Vi- We 
are interested in the limit as t --+ oo. We want to find conditions which 
guarantee the convergence of Wt to a smooth Kahler metric on X - D. 
If the convergence turns out to be true, then we will reach a Ricci-flat 
Kahler metric on X - D by a limiting process. We can easily construct 
such a family of Kahler metrics in the case of X = Pn( C) and D is a 
hyperplane. In this case, the limit metric is nothing but the standard 
flat metric of en. Although this approach seems to be natural, it has 
not yet been fully developed at this stage. Instead of following this line 
of argument, we will directly work on noncompact manifolds in Sections 
2.3.1 and 2.3.3 to establish existence theorems. Only in Section 2.3.2, 
we will compare two approaches. 

The well-known Eguchi-Hanson metric on the affine quadric surface 
is one of the first non-trivial examples of a complete Ricci-flat non­
flat Kahler metric. Calabi [Cal,2] generalized the Eguchi-Hanson met­
ric to the ODE construction of Kahler-Einstein metrics on the total 
space of certain holomorphic vector bundles over Kahler-Einstein man­
ifolds. Hitchin [Hitl] and Kronheimer [Kr] generalized Eguchi-Hanson 
metrics in other directions (twistor approach and hyperKahler quotients 
[Bes 2]) and clarified the close relationship between the ALE gravita­
tional instantons and the Kleinian singularities. The boundary behavior 
of Eguchi-Hanson metric, complete Calabi metrics, Hitchin-Kronheimer 
metrics are called ALE boundary condition. See Nakajima's survey in 
this volume. 

On the other hand, Hawking [Haw] and Gibbons-Hawking [Gib­
Haw] discovered the Euclidean Taub-NUT metric on R4 and its gener­
alizations which turn out to be complete Ricci-flat Kahler metrics with 
anti-self-dual curvature form on C 2 and An-manifolds. These metrics are 
classified in the category of ALF gravitational instantons. The Rieman­
nian geometry of the Taub-NUT metric differs from that of the standard 
flat metric in the following properties: 
(i) the volume of geodesic ball grows like r 3 , 

(ii) the asymptotic behavior of the metric is described by rescaled Berger 
sphere metrics, i.e., the size of the Hopf fiber is asymptotically constant 
and the volume of the base S2 grows like r 2 , 
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(iii) it interpolates the flat metrics of R4 and R3 by a one parameter 
family. We will discuss Taub-NUT type metrics in Section 2.2.4. 

Ricci-flat Kahler metrics also appear as canonical metrics on the 
moduli spaces of stable vector bundles [I] and magnetic monopoles [A­
H]. Recently Nakajima (see Nakajima's survey in this volume) investi­
gates the moduli space of Yang-Mills connections on ALE gravitational 
instantons and showed that the moduli space is again ALE if its di­
mension is four. Atiyah and Hitchin [A-HJ discovered that the moduli 
space of BPS monopoles of charge 2 with a canonical metric turns out to 
be an ALF gravitational instanton which differs from Gibbons-Hawking 
manifolds. 

These examples do not cover the simplest case of X - D where X is a 
Fano manifold and Dis a smooth hypersurface such that c1 {X) = o:[D]. 
Yau announced in [Bou] that if o: > 1 then there exists a complete Ricci­
flat Kahler metric on X - D. Bando and Kobayashi gave a simple proof 
for it under the assumption of the existence of a Kahler-Einstein metric 
on D. In Section 2.3.1 {see also 2.3.2) of Chapter 2, we review this proof 
in detail. In Section 2.3.3, we will consider the case o: = 1. Since the 
boundary D is a projective manifold with trivial canonical bundle, the 
Calabi-Yau theorem implies the existence of a Kahler-Einstein metric on 
D. So the Kahler-Einstein property at infinity is automatically fulfilled 
and the- background metric is easily constructed. But, in this case, 

2n 
the volume of the metric balls grows like r n+ 1 where n is the complex 
dimension of the manifold. In surface case, the induced metrics of the 
metric spheres realize the collapsing [Fu] of almost flat metrics on the 
3-dimensional nilmanifold to a 2-dimensional torus. In particular, the 
isoperimetric inequality does not hold for these metrics ( also for ALF 
metrics and metrics approximating type III K3 surfaces). We overcome 
this difficulty by introducing weighted Sobolev inequalities ( see Sections 
2.2.3, 2.2.4 and 2.3.3). 

This existence theorem in particular guarantees the existence of a 
complete Ricci-flat Kahler metric on affine cubic surfaces and more gen­
erally on type II degenerate K3 surfaces ( and it is not difficult to mod­
ify the arguments in Section 2.3.3 to show the existence of a complete 
Ricci-flat Kahler metric on type III degenerate K3 surfaces also). These 
metrics on type II (resp. type III) degenerate K3 surfaces seem to be in­
teresting objects in Riemannian geometry. The volume of geodesic ball 
grows like rt {resp. r2 ). In the case of type II degenerate K3 surfaces, 
the family of induced metrics on geodesic spheres realizes the collaps­
ing of almost flat metrics on a nilmanifold ( e.g. a Heisenberg manifold). 
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See Fukaya's survey in this volume. In the case of type III degenerate 
K3 surfaces, the asymptotic behavior of the metric is like that of the 
standard flat metric of C* x C*. 

In the surface case, we may consider some degenerate cases of (X, D) 
with a = 1 in which D is a degenerate curve. In fact, Gibbons-Hawking 
manifolds ([Gib-Haw] and [Hit2]), Atiyah-Hitchin manifolds ([A-H]), the 
Page-Hitchin manifold ( [Pa] and [Hit2]) and Dn-manifolds ( cf. [Pel) are 
realized as a complement of an anti-canonical curve D consisting of two 
smooth rational curves with one contact point. These manifolds with 
an ALF approximately Ricci-flat (in a similar sense as in Section 2.3.3) 
background metric are obtained from C x C* or C x C* /(±1) by suitably 
modifying the boundary. Ricci-flat Dn-manifolds with ALF boundary 
condition is also known to Kronheimer ( through twist or construction). 
If we consider a cycle of rational curves as a degenerate curve, we can 
cover type III degenerate K3 surfaces with a complete Ricci-flat Kahler 
metric of quadratic volume growth. The family of induced metrics on 
metric spheres realizes ( after rescaling) the collapsing of solvmanifolds 
([Fu]). 

Using the special feature of real 4-dimension, it would be possible 
to describe the behavior of Ricci-flat Kahler metrics under semi-stable 
degenerations of polarized K3 surfaces. Here, the special feature in 4-
dimension is, roughly speaking, the "quantitative" conservation law of 
the Euler number (instanton number, which is 8 ; 2 times the squared L2-

norm of the curvature tensor). That is, the defect of the Euler number in 
the degeneration is captured as concentrated curvature of gravitational 
instantons which glue different components in the degeneration. In Sec­
tion 2.3.3, although the mathematical footing is still vague, we propose 
a geometric picture describing this phenomenon in the spirit of implicit 
function theorem, i.e., approximating a K3 metric by gluing Ricci-flat 
Kahler metrics on affine algebraic manifolds. The gluing instantons turn 
out to be ALF gravitational instantons such as a Taub-NUT manifold 
in the case of Type II degenerations, and gravitational instantons with 
quadratic volume growth in the case of Type III degenerations. The lat­
ter instantons with quadratic volume growth are not known explicitly, 
but one can show a general existence theorem of these instantons ( see 
[K3]). The boundary of these instantons are like that of C* x C* with a 
standard flat metric. So, the degenerate Kahler-Einstein K3 surface is, 
roughly speaking, composed of rational surfaces with a complete Ricci­
flat Kahler metric on the complement of the double curve ( which is an 
anti-canonical divisor) and ALF gravitational instantons or "quadratic 
volume growth instantons" with concentrated curvature which glue ra-
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tional components. We note that this process approximates the Calabi­
Yau metrics on K3 surfaces near the end (cusp) of the moduli space of 
polarized K3 surfaces. 

For instance, a type III degenerate K3 surface of degree 4 consist­
ing of the tetrahedron of A ( C) 's approximates Ricci-flat metrics on 
a K3 surface as those Ricci-flat metrics which look like four copies of 
C* x C* with a standard complete flat metric glued together by twenty 
four "quadratic volume growth instantons" of Euler number 1 with con­
centrated curvature. In the tetrahedral picture, four "quadratic volume 
growth instantons" lie on each edge. Outside of these Taub-NUT instan­
tons, flat C* x C* 's are glued trivially by parts of flat ( C* x cylinder) 
and four flat solid tori corresponding to the four vertices. The conserva­
tion of the Euler number is clear in this picture. Namely, 24, the Euler 
number of a K3 surface, is the sum of 8;,_2 times the squared L 2 norm 
of the curvature tensor of the twenty four "quadratic volume growth 
instantons". 

Finally the author would like to say that the study of complete Ricci­
flat Kahler manifolds is only at a beginning stage. For instance, more 
general existence results should be established and the interactions with 
other Kahler-Einstein manifolds should be described. In particular, com­
plete Ricci-flat Kahler metrics on the complement of an anti-canonical 
divisor of rational surfaces often appear as bubble-off instantons in the 
process of degeneration in which simple elliptic singularities occur. It 
is desirable to make a firm mathematical footing which explains such 
phenomena ( cf. for the case of Kleinian singularities, see [B-K-N] and 
Nakajima's survey in this volume). 

Acknowledgement. It is the author's pleasure to acknowledge 
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§1. Some Kahler geometry 

l. We get the category of complex manifolds if we assume that 
everything is holomorphic in the formal theory of smooth manifolds. For 
instance, the notion of holomorphic maps between complex manifolds is 
defined. en' open sets in en' manifolds defined by analytic equations, 
Pn(e) (complex projective space), projective algebraic manifolds are 
typical examples of complex manifolds. 

2. Let X be a complex manifold and XR the underlying smooth 
manifold. There is a canonically defined ( 1, 1) tensor field J with J 2 = 
-1 on XR called the complex structure tensor of X. Let z~ = x~ + 
Hy~ be a holomorphic local coordinate for X. Then J is defined by 

(1-1) 
J(8/8x~) = 8/8y~ 

J(8/8y~) = -8/ox~. 

If we extend J complex linearly to the complexified tangent bundle 
Tc(X) = T(XR) 0 e, then we have the splitting as complex vector 
bundles 

(1-2) 

into .;=I and -.;=I eigenspaces of J. The bundle r(l,o)(X) is the bun­
dle of holomorphic vector fields and is locally spanned by holomorphic 
coordinate vector fields 8 / 8z~. 

3. Let M be an 2n-dimensional smooth manifold. Suppose M 
admits an almost complex structure, i.e., a (1, 1) tensor field J with 
J2 = -1 on M. Define the (2, 1) tensor N(J) by 

(1-3) N( J)(X, Y) = [J X, JY] - [X, Y] - J[X, JY] - J[J X, Y]. 

Then the Newlander-Nirenberg Theorem states that there exists a 
unique complex manifold X whose underlying smooth manifold is M and 
whose complex structure tensor coincides with J. 
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4. Let X be a complex manifold and J its complex structure tensor. 
A Riemannian metric g on XR is a Hermitian metric if J is an isometry 
with respect tog. We say that (X,g) is a Hermitian manifold. For a 
Hermitian metric g, we define a 2-form w by 

(1-4) w(X, Y) = g(X, JY) (X, YE r(TXR)). 

We call w the Kahler form of g. If we extend g complex linearly for 
complexified tangent vectors, we get a Hermitian metric h for r(i,o) X 

which is a section of the complex vector bundle r(I,o)(X) 0 T(l,O)(X). 

Let (z;,);1=1 ) be local holomorphic coordinates and set 

The Hermitian metric h for r(I,O) (X) is written as 

n 

(1-5) h = L 9a,;1dz~ 0 dzt 
i=l 

Then the original Hermitian metric g and the Kahler form w are respec­
tively the real part and the imaginary part of h: 

(1-6) 

It follows that if we fix the complex structure tensor J, then we may 
identify g, h and w via (1-4). 

5. Since A(V EB W) = A(V) © A(W), the splitting (1-2) extends to 
exterior algebra bundle: 

(1-7) 

The right side is the union of bundles A (p,q) of (p, q)-forms which consist 

of p dz;, 's and q dzl 's. The exterior differentiation d splits according to 
the splitting ( 1-7): 

(1-8) d = 8 + 8 : A (p,q) --+ A (p+I,q) EB A (p,q+l). 

d2 = 0 implies 82 = 0, 82 = 0 and 88 + 88 = 0. So we can consider the 
Dolbeault complex, etc. on a complex manifold. 

6. Let E --+ M be a smooth vector bundle of rank r over a smooth 
manifold X. A connection D for E is a device for comparing vectors 
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in E with different base points in the sense that a connection defines 
differentiation of sections for E along vector fields of M. More precisely, 
a connection D for E -> M is a linear map 

D: r(TM) X r{E)-> r(E) 

assigning to (X, o-) a new section Dxo- such that for any smooth function 
f on M, 

D1xo- = f Dxo-

Dx(fo-) = f Dxo- + (Xf)o-. 

We say a section a- is parallel if Do- = 0. For any smooth curve segment 
c: [O, 1] ->Mand a point v in Ec(O), we get a unique section c such that 
c{0) = v and D1:.c = 0. This is the horizontal lift of c through v. So, for 
any vector field X of M there is a unique horizontal lift XH E r(T E). 
Let M = UaEAUa be an open covering of M by such that for each Ua we 
have a local frame ea = ( ea1 , • • • , ear). Define a matrix valued 1-form 
(wa) on Ua by 

r 

(1-9) (Deai = ~ €ajWa{). 
i=l 

We say Wa = (wa{) the connection form for D with respect to the frame 
ea. The Christoffel symbol is the components of the 1-form wa{ with 
respect to local coordinates. The connection forms obey the following 
transition rules on overlaps Ua n U13: 

{1-10) 

Conversely, if we are given wa's with the transition rules (1-10), we can 
define a unique connection D by (1-9). Connections Di for Ei -> M 
(i = 1, 2) canonically induces connections for E1 EB E2, E1 © E2 and 
the dual bundles El -> M. This is based on the derivation rule and the 
commutativity with the contraction. Leth be a fiber metric for E-> M. 
Note that his a section of the bundle E* © E* (E* © E*) if Eis a real 
( complex) vector bundle. A connection D is called a metric connection 
for (E, h) if Dh = 0. The connection matrix of a metric connection 
satisfies the skew condition w + tw = 0 for real bundles and w + tw = 0 
for complex bundles with a Hermitian metric. 

7. Let E-> Mand D be as above. We use the covariant derivation 
D on sections of E and the exterior differentiation d on differential forms 
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to extend D canonically to operate on differential forms with values in 
D. We thus get the exterior covariant differentiation dD such that, for 
any 0 E r(E ® AP) and 11 E M 

(1-11) dD(0 /\ 11) = dD0 /\ 11 + (-l)P0 /\ d11. 

It is easy to check that Rv = dD o D: r(E)--> r(E © A2 ) involves no 
differentiation, i.e., Rv is an End(E)-valued 2-form. We call Rv the 
curvature-form of D. More generally we have 

dD o dD = Rv/\ 

on the space of E-valued differential forms. Locally, Rv is given by the 
system of matrix-valued 2-forms 

(1-12) 

with the transition rules 

(1-13) 

Since, for any vector field X, Y on M and an element e E E, we have 

the curvature vanishes if and only if the horizontal distribution in TE 
is locally integmble. 

8. Let E --> X be a holomorphic vector bundle of rank r over 
a complex manifold X and h a Hermitian metric for E --> X. Let 
D = D' + D" be the decomposition of D according to the decomposition 
(1-8). We say that Dis of type (1,0) if D" = 8, i.e., the connection form 
is of type (1,0) for a holomorphic frame. 

Proposition 1. Let (E, h) be as above. Then there exists a unique 
metric connection D of type (1, 0), i.e., D" = 8, Dh = 0. 

Proof. Let ea be a local holomorphic frame. Applying 8 to 
ha,{J = h(eai, eaj) and using Dh = 0 and D" = 8, we have 8ha,i"J = 
h(D' eai, eaj)· This shows the uniqueness 8ha,i"J = ha,k"Jwaf for the con­
nection form wa. It is easy to see that the 1-forms Wa fulfill the transition 
rule (10). 

The connection in Proposition 1 is called the Hermitian connection 
for (E, h). 

9. For the curvature of a Hermitian connection, we have 
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Proposition 2. Let (E, h) be a holomorphic vector bundle with a 
Hermitian metric h and D its Hermitian connection. Then the curvature 
form RD is of type (1, 1) with values in the bundle of skew-Hermitian 
endomorphisms of (E, h). 

Proof. This follows from the two facts: (i) the curvature form is 
skew-Hermitian 2-form, i.e., RD = _t RD with respect to unitary frames, 
(ii) dD"D" = fj2 = 0. We get (i) by differentiating h(e,e) = 1 twice 
where e is a local section with norm 1. We then have RD = dD o D = 
dD11 D' + dD' D". 

10. A Hermitian manifold (X, g) is called a Kahler manifold if the 
Kahler form w is a closed form: dw = 0. The following proposition is 
well-known (see, for example, [K-N] and [Gri-Har]): 

Proposition 3. The following four conditions on a Hermitian 
manifold (X, g) are equivalent: 
(1) (X,g) is a Kahler manifold, 
(2) The complex structure tensor J is parallel with respect to the Levi­
Civita connection of g, 

(3) For each point x E X, there are holomorphic local coordinates (zi) 
such that (i) xi(x) = 0 and (ii) g{:;(x) = Dij, dg;1(x) = 0, i.e., w = 
RI:~j=I O;jdZi I\ dzi + O(lzl 2 ), 

( 4) The Kahler form w is locally written as w = yCifJ[) f for some real 
valued function f, 
(5) The Hermitian connection of the holomorphic tangent bundle coin­
cides with the restriction of the Levi-Civita connection. 

We call coordinates as in (3) holomorphic normal coordinates and 
a function f in ( 4) a Kahler potential. For reader's convenience, we 
observe the meaning of (5). Let e; be a unitary frame and </J; be its 
dual coframe. Let w = w1; be the connection matrix of the Hermitian 
connection for (T<1,0l(X), g). We then have 

n 

De;= I:ejWji 
j=l 

and the dual connection Don (T(l,o)*(X),g) is determined by 

d(w(X)) = (Dw)(X) + w(DX). 
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This implies that the connection matrix w* of the dual connection is 
determined by 

This equation and the following two relations are used to compute the 
connection matrix w* and hence w: 

w = _tw 
n 

8</>i = D"</>; = L </>1 © (w*)'j;. 
j=l 

Hence we have 
d</>; = L Wij I\ </>j + T; 

j 

with T; a (2,0)-form. Since© has been replaced by/\, the (2,0)-form T; is 
the obstruction for the symmetry of the connection. In fact, if an affine 
connection is symmetric (i.e., I'}k = rt1), the exterior differentiation is 
the composition of the covariant derivative and the anti-symmetrization 
operator. Thus the (1,2)-tensor determined by Ti is the torsion ten­
sor. The vanishing of the torsion tensor T; implies that the Hermitian 
connection coincides with the Levi-Civita connection. So the condition 
( 5) is equivalent to the vanishing of the torsion tensor of the Hermitian 
connection. 

11. (1) en with the flat metric y'-188IIZll 2 is a complete Kahler 
manifold. 

(2) Pn(C) with the Fubini-Study metric 

y'-188log(l + IIZl\2) 

is a compact Kahler manifold, where Z = (z1 , ···,Zn) is the inhomoge­
neous coordinates. The Hopf fibration s2n+1 -, Pn( e) is a Riemannian 
submersion with respect to the standard metric of s2n+1 and (some 
constant multiple of) the Fubini-Study metric. 

(3) Bn, the unit ball in en, with the Bergman metric y'-188 log(l­
llZll2)-1 is a complete Kahler manifold. 

(4) A complex submanifold of a Kahler manifold is a Kahler mani­
fold. In particular, any projective algebraic manifold is a compact Kahler 
manifold. 

12. For the Levi-Civita connection and its curvature of a Kahler 
manifold ( X, g), we have the following Propositions ( see [K-N] and [ Gri­
Har]). 
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Proposition 4. (1) All mixed components of the connection form 
with respect to local holomorphic coordinates vanish, i.e., all Christoffel 

symbols except r;k = rh, 's vanish. This implies that the Levi-Civita 

connection v' restricts to the Hermitian connection of the holomorphic 
tangent bundle T(l,o)(X) with the Hermitian metric g. 

(2) The curvature form of the complexified Levi-Civita connection 
splits into the End(T( 1,0 l(X))-valued (l, l)-form and its complex conju­
gate. In particular, all remaining components of the curvature tensor 
are essentially of type R;f-r5 . 

If R]kl are the components of the curvature tensor of some Rieman­
nian metric, then the Ricci curvature tensor is defined by the contraction 

The following Proposition is very important m Kahler geometry be­
cause we can use cohomological and potential theoretic methods to study 
Kahler manifolds. 

Proposition 5. If p denotes the Ricci curvature tensor of the 
Riemannian metric g, then the Ricci-form ,(X, Y) = p(X, JY) is writ­
ten as 

(1-14) 1 = -j=188logdet(g), 

where det(g) is the volume element with respect to local holomorphic 
coordinates. In particular, 1 is a real closed (l, l)-form and coincides 
with the trace of the curvature form. 

13. It follows from (1) of Proposition 4 that, for C 2 functions f, 

(1-15) 

Therefore we have 

82/ 
v'-/---tJ - ,::i . ,::i - •• 

uz'uzl 

(1-16) 
1 n - 82 

6 (- of the Laplacian) = ~ g'1 -.-- .. 
2 . . 8z'8z1 

1.,1=1 

Proposition 6. Let (X,g) be a compact Kahler manifold of com­

plex dimension n. A real closed (1, l)-form 'T/ = AI: ai;dzi (\ dzi is 
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cohomologous to O in the de Rham cohomology if and only if there exists 
· 11 - · a2 h a real valued function h such that TJ = v -188h, i.e., a;1- = -8 8 .. 

Zi zJ 

Proof. The "if' part is clear. We prove the "only" if part. Let w 
n-1 

be the Kahler form of g. Since T/ is cohomologous to 0, TJ I\ (~-l)! = 
(trw TJ) I\";.~ is also cohomologous to 0. From the Hodge Theory, there 

exists a function h such that 6.h = trw TJ· Setting rf = H88h, we show 
rf = T/· Write rf = A"i:,a;;dzi I\ dzJ with °'i'j = 8 2 h/8zi[)zi. It follows 

from "2:, gii (a;1 - a;;) = 0 that 

(1-17) 
i,j i,j 

Since rf and TJ are closed, we have 

(1-18) 

and the same equality with -. It follows from (1-17) and (1-18) that 

(1-19) 8*(ri - TJ) =LL gk1v k(a;1 - a;,)di = o 
i k,j 

Similarly, we have 

(1-20) 8*(rj - TJ) = 0. 

From (1-19) and (1-20), rf-TJ is a coclosed form. But since it is an exact 
form, the Hodge Decomposition Theorem implies that rf - TJ = 0. 

Remark. Let T/ = "5:, TJ;;dxi I\ dxi be a 2-form (considered as an 
alternative tensor field) on a Riemannian manifold. Then d and its 
formal adjoint ( with respect to the L 2 inner product) d* are locally 
written (up to constant multiple) as 

(dTJ)ijk = V;TJik - V;T/ik + VkT/ii 

(d*r,)k = -giiviT/jk· 

14. Let E --t M be a complex vector bundle of rank r over a 
compact smooth manifold M; Choose a connection D and write RD 
for the curvature which is a 2-form on M with values in End(E). An 
invariant polynomial on glr( C) is a polynomial function P : glr ( C) --t 

C such that for all X, Y E glr(C), P(ad(X)Y) = 0, in other words, 
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P(GXG- 1 ) P(X) for all GE GLr(C). The determinant and the 
trace are the invariant polynomials. Recall that the ring of invariant 
polynomials on glr( C) is a polynomial ring generated by the polynomial 
functions 

(1-21) 

Indeed, it sufficed to check this for diagonal matrices. Therefore the 
elementary symmetric polynomials in the eigenvalues form a basis for 
the ring of invariant polynomials. But tr(A k X) is the k-th elementary 
symmetric polynomial in the eigenvalues of X. Note that 

(1-22) 

If we set X = RD, then we get a globally defined (2k)-forms ck(RD) on 
M defined by (1-21). 

Fact 1 (Chern-Weil correspondence). For any invariant polyno­
mial P, the differential form P( RD) is closed and the de Rham co ho­
mology class is independent of the choice of connection D on E. 

Proof. Let D, be a 1-parameter family of connections. The in­
finitesimal variation a = % of connections is a 1-form on M with 

values in End(E). Then the infinitesimal variation of curvatures d:.0 is 
dD a. Therefore 

d 1 dRD 
-d log(l + tRD) = t tr{(l + tRD)- -} 

s ds 
00 

= 2)-1/tk+ 1 tr(RtdDa) 
k=O 

Now we use the Bianchi identity 

(1-23) 

We then have from (24) that 

which implies that the cohomology class of det(l + RD) is independent 
of the choice of connections. Any connection is deformed locally to a 
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flat trivial connection. This implies that det(l + tRn) is locally exact, 
so it is closed. 

The cohomology class of ck (RD) is thus independent of the choice 
of connections and depend only on the vector bundle E -+ M. We call 
ck(Rn) the k-th Chern form and the cohomology class [ck(Rn)] the k-th 
Chern class. It is known that the Chern classes are in fact defined in 
H*(M; Z) (see [Hir], [M-S], [K-N] and [Gri-Har]). Although this dif­
ferential geometric approach does not see torsion parts, it is still very 
useful. It follows from the definitions that the first Chern class of the 
bundle E -+ M coincides with the first Chern class of the determinant 
line bundle Ar(E). If E -+ Mis the holomorphic tangent bundle of a 
n-dimensional compact complex manifold M, then the Chern classes of 
E -+ M are called the Chern classes of M. The first Chern class of 
M is the Chern class of the anti-canonical bundle Ki/, the line bundle 
of holomorphic n-vectors. Clearly the set of holomorphic line bundles 
forms a group Pic(M) (the Picard group) under the tensor product. The 
Chern class map 

c1 : Pic(M) --. H 2 (M; Z) 

is a group homomorphism, i.e., c1 (E ® F) = c1 (E) + c1 (F). 

15. Let L -+ X be a holomorphic line bundle over a compact Kahler 
manifold (X,g). Let h = (ha) be a Hermitian metric on L and u a 
holomorphic section of L. We choose the Hermitian connection of (L, h). 
The curvature form 

0 = -H88log ha= -H88log llu!l2 

is 21r times the Chern form. If we take a conformal change 

the curvature form changes as follows: 

0 --. e = 0 + paaa. 
The following proposition is the converse of the above fact and is a direct 
consequence of Proposition 6. 

Proposition 7. For any real closed real (l, l)-form 8 in the coho­
mology class of 0, there exists a Hermitian metric on L with curvature 

form 0. Such Hermitian metric is unique up to multiplication by positive 
constants. 
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If (X, g) is a compact Kahler manifold, then the Ricci form is the 
trace of the curvature form of the holomorphic tangent bundle with the 
Hermitian metric induced from the Kahler metric. So we have 

Proposition 8. The Ricci form of a compact Kahler manifold is 
21r times the first Chern form of X. 

16. Let D be a closed hypersurface in an n-dimensional compact 
complex manifold X. We can cover X = UU0 by open sets so that if 
D n U0 c/-0, there is a holomorphic function f O on U0 with D n U0 = 
{f O = 0}. We assign / 0 = 1 to U0 if U0 does not meet D. We thus 
get a holomorphic line bundle Lv defined by the transition functions 
9af3 = ff3f f 0 on U0 n Uf3 i- 0. The line bundle Lv does not depend on 
the various choices involved in its definition and is called the line bundle 
defined by D. The line bundle Lv has a canonically defined holomorphic 
section (J'D = (/0 ) with ((J'v = 0) = D. If D = I::=l a;D; (a; E Z) is a 
divisor of X, i.e., a linear combination of closed hypersurfaces in X, we 
set 

L r L®a· 
D = ®i=l D, '· 

Then clearly we have c1 (Lv) = I:;=1 a;c 1(LvJ- We write [D] E 

H 2(X; Z) for the Poincare dual of the homology class in Hzn-2(X; Z) 
defined by D. 

Proposition 9. Let D = I:;=1 D; be a divisor in a compact com­
plex manifold X. Then we have 

c1(Lv) = [D]. 

Proof. It suffices to prove this when D is a hypersurface. Choose 
a Hermitian metric h on L and a section (J'D with ((J'v = 0) = D. 
Then we have ci(Lv,h) = 2-n-F188logll(J'll 2 = -/,,.ddclogll(J'll 2 where 

de = 7 ( 8 - 8). From the de Rham Theorem, it suffices to show 

for arbitrary closed ( n - 1, n - 1 )-form on X. Let U a be an open set in X 
with holomorphic coordinates (z~ = zi) such that D n U0 = {z1 = 0}. 
Let XE = {11(!'11 2': t}. Let 1r : X - XE ---> D be a smooth retraction 
defined on relatively compact domains in the regular part of D. In a 
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neighborhood in D n Ua., we can write 

TJ = 1r*(r,\v) + Qa. I\ dz1 +Ra.I\ dz-1 + O(lz11) 
dz1 

de log I\ a-\ 2 = de log ha. + Im( - 1 ) . 
z 

From the Stokes' formula, we have 

where 0 stands for the argument of z1 . This completes the proof. 
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For example, the Chern class of the hyperplane bundle LH on Pn(C) 
is the Poincare dual of the hyperplane H. The Chern class map gives 
the isomorphism 

and we have 
K-1 _ Hn+i 

PN(C) -

c1(Pn(C)) = (n + l)[H]. 

17. We shall use the following vanishing theorem later. 

Proposition 10. Let L -t X be a negative holomorphic line bun­
dle with a Hermitian metric h such that 0 = -A( curvature form) > 0 
over an n-dimensional compact Kahler manifold with the Kahler metric 
0. Let 6.9 be the 8-Laplacian determined by the fiber metric h and the 
Kahler metric 0 acting on sections of L. If 6.9u + .Au = 0 for .A < n, 
then u = 0, i.e., any .A < n is not an eigenvalue of 6.9. If the Ricci 
curvature of 0 is nonnegative, then n itself is not an eigenvalue of 6.9. 

Proof. First let ( *) : 6.9u + .Au = 0 for .A < n. Writing 6. for the 
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Laplacian with respect to 0 acting on functions, we have 

0 = l -6h(u, u) = l tr 0 H88h(u, u) 

= l tre H8{h(D'u,u) + h(u,D"u)} 

= l tre H{h(dD" D'u,u) - h(D'u,D'u) 

+ h(D"u, D"u) + h(u, dD' D"u)} 

= l tre Hh(Rn(u), u) - JJD'ulli,2 - JJD"ulli,2 

-l tr0 H{h(dD' D"u, u) - h(u, dD' D"u)} 

= (,\ - n)JJuJJi,2 - JID'uJJi,2 ~ 0, 

where we have used 

0 = dD D = dD' D" + dD" D' 

60 = -8~8 = -D"* D" = tre HdD' D". 

So, if ,\ < n, then we have u = 0. Note that ,\ = n implies D'u 
0. Next, we assume ( *) with ,\ = n. Set v = 8u. Let h' be the 
Hermitian metric on the bundle A (o,i) ( L) defined by h and 0. Integrating 
-6 8 h'(v, v) over X, we get 

0 = l tre H{h'(Rh,(v),v) - IJD'vlli,2 - JID"vJJ},2 

+ l tre H{h'(v, dD' D"v) - h'(dD' D"v, v)} 

= - l h ® Ric(v 1) - JID'vJJi,2-

Therefore, if Ric ~ 0, then D'v = 0. So D'(8u) = 0 and the exterior 
covariant differential dD' D" u also vanishes. Combining this with D' u = 
0, we have B(u) = 0. We thus have u = 0. 

18. Finally we prove the Chern-Lu formula for holomorphic maps 
between Kahler manifolds. For details we refer to [Ch2] and [Lu]. Let 
M and and N be a Kahler manifold and a Hermitian manifold. We 
equip M and N with the Hermitian connections. Let f : M -. N 
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be a holomorphic map. Set u = 118/112, where 8/ E r(T•(l,O)M © 
1- 1T(l,O) N). We write RicM and BisectN for the Ricci curvature and 
the holomorphic bisectional curvature ( of the Hermitian connections) of 
M and N, respectively. The Chern-Lu formula is considered to be an 
infinitesimal Schwarz lemma. 

Proposition 11 (Chern-Lu). Let M, N and u be as above. Then 
we have 

6.Mu = RicM(8f,8f) - BisectN(8f,8f,8f,8!) + IID'8/ll2 -

Proof. Since f is holomorphic, we have D" 8 f = 0. Therefore we 
have 

H88(8f, 81) = A8((D"8f, 8/) + (8!, D'8f)) 

= R[(dD' D"8f, 81) - (D"8f, D"8t) 

+ (D'8f, D'8!) + (of, dD" D'af)] 

= (-RR(af),8!) + R(D'8f, D'af), 

because dD" dD' = R - dD' dD". Taking the trace with respect to the 
Kahler form of M, we get 

where R is the curvature form with respect to the Hermitian connection 
of the bundle T*(l,O) M@J- 1T(l,o) N with the metric induced from those 
of Mand N. Recall that it is of type (1,1). Writing down this in terms 
of the curvatures of M and N, we get the Chern-Lu formula. 

§2. Ricci-flat Kahler metrics on affine algebraic manifolds 

2.1. Calabi's construction 

In this section we review Calabi's construction of Ricci-flat Kahler 
metrics on the total space of holomorphic line bundles. We refer to 
[Cl] for more general constructions on holomorphic vector bundles. The 
basic idea is to use the Hermitian vector bundle structure over a Kahler­
Einstein manifold to reduce the Kahler-Einstein condition, which is gen­
erally a Monge-Ampere equation, to an ordinary differential equation. 
Let X be a compact complex manifold of dimension n - I (n ~ 2) and 
1r : L -+ X a holomorphic line bundle with a Hermitian metric h. Set 

t = -logh(s,s) (s EL) 

0 = H88t. 
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We assume that Blx = Bx is a Kahler-Einstein metric on X. Note that 
B = 1r*Bx. Consider the following condition (D): 

(D): c1(X) = (a - l)c 1(L), (Q 3 a?: 1), in H 2 (X; Q). 

In other words, 

where [X] is the Poincare dual of the 0-section X C Lin H;omp(L) ~ 
H2n_ 2 (L). Since Bx is assumed to be a Kahler-Einstein metric, the 
condition (D) holds in the differential form level: 

Ric(Bx) = (o: - l)Bx. 

Hence, (X, B) is a Kahler-Einstein manifold with positive Ricci curvature 
(if a > 1) or Ricci-flat (if a= 1). Kobayashi's Theorem [Kol] implies 
that X is simply connected if a > 1. We seek a Ricci-flat Kahler metric 
on Lin the form of ,J=I88F(t). Set f(t) = F'(Tf Then 

(2-1) wo = H88F(t) = f(t)B + f'(t)A8t I\ 8t. 

So 

(2-2) Wo = ( H88F(t)t = f(t)n-l f'(t)0n-l I\ A8t I\ 8t. 

If w0 is a Kahler metric, then its Ricci-form is 

Ric(wo) = -H88Iog(f(tt)' + (o: -1)8. 

The Ricci-flat condition then becomes 

log (r)' = (a - l)t + (pluriharmonic function). 

If {pluriharmonic function) = constant, then we have 

{2-3) f(t) = {Aexp{(o: - l)t} + B)¼ 

if o: > 1 and 

{2-4) f(t) =(At+ B)¼ 

if a = 1, where A > 0 and B are constants in both cases. It is easy to 
verify that w0 is a Ricci-flat Kahler metric on the region Ae(a-l)t+B > O 
if o: > 1, and on the region oo > At+ B > 0 if a= 1 both of which are 
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complete toward the 0-section X, i.e., X lies at infinity. If o: > 1, then 
w0 is explicitly written as 

(2-5) 
' o: - 1 Ae(a-1)t 

Wo = (Ae(a-l)t + B)n(0 + --A ( l)t Rat I\ &t), 
n ea- + B 

and 

(2-6) 

implies that w0 is a singular Ricci-flat volume form on a neighborhood 
of X in L with poles of order 2o: ldzl2 /lzl20 along X. If a= 1, then w0 

is explicitly written as 

(2-7) 
, A 11 -

Wo=(At+B)~(e+ (A )v-lat/\at), 
n t +B 

and 

(2-8) 

implies that w0 is a singular Ricci-flat volume form on a neighborhood 
of X in L with logarithmic poles ldzl2 /lzl2 along X. In both cases, the 
volume form w0 is equal to T] /\ ij where TJ is a canonically defined (multi­
valued) holomorphic n-form on L - X with poles of order o: along X. 
Indeed, if a > 1, then X is simply connected. This implies that the 
line bundle Lis obtained by covering and quotient operation from Kx1 • 

Therefore all cases o: > 1 are essentially the same because the condition 
a > 1 is preserved by covering and quotient operation. The case of a = 2 
corresponds to L = Kx1 • If o: = 2, then Wo with B > 0 extends smoothly 
across the oo-section of L which is the 0-section of Kx. Therefore the 
total space of the canonical bundle over a compact Kahler-Einstein Farro 
manifold admits a complete Ricci-flat Kahler metric and the 0-section 
is totally geodesic. This can be seen in the following way. If s' E Ki/ 
and h' is the Hermitian metric of Kx induced from that on L = Kx1 , 

then we have in a neighborhood of the 0-section X C K x, 

(2-9) ( '(' ') )'( 1 h'(s',s') 11 -) Wo = Ah s , s + B ~ 0 + - A ( ) v - lat I\ at , 
n h' s', s' + B 

where t = log h'(s', s'). This implies the extendability. From (33) we 
see that B involved in w0 parametrizes the volume of (X,wolx). As 
B -+ 0, X is blown down ,to a singular point. We observe an example. 
The tautological line bundle L = 0 Pn _ ,( C) ( -1) over P n ( C) is en with 
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the origin blown up. Therefore the Ricci-flat Kahler metric on L de­
scribed above is the standard flat metric on en. The canonical bundle 
Kpn_i(C) = Opn_i(c)(l - n) is the quotient bundle of L with respect to 

the action z -> exp( 2 1r~ )z of the cyclic group Zn. We have a family of 
complete Ricci-flat Kahler metrics w0 with a fixed volume form on the 
canonical bundle parametrized by B > 0. As B -> 0, the volume of the 
0-section goes to O and the curvature concentrates near the 0-section. 
The limit B = 0 corresponds to the flat orbifold metric of en/ Zn. 

Remark. Let X be a Fano Kahler-Einstein manifold of dimension 
n - 1. Let w be a complete a Ricci-flat Kahler metric with B > 0 on the 
canonical bundle K x. The following seems to be true ( see [B-K-N] or 
Nakajima's survey in this volume): The Ln norm of the full curvature 
tensor IIR(w)IILn is finite if and only if (X,w) = (Pn-1(e), the Fubini­
Study metric). 

2.2. Calabi's construction on affine algebraic manifolds 

Throughout this section, we assume that X is an n-dimensional Fano 
manifold, i.e., a compact complex manifold with ample anti-canonical 
bundle or equivalently, with positive first Chern class. Let D be a smooth 
hypersurface in X such that c1 (X) = a[D] with a > 1 or a = 1 in 
H 2 (X; Q), where [D] is the Poincare dual of D. We apply Calabi's 
construction in a neighborhood of D to get an approximately Ricci-flat 
complete Kahler metric on X - D. 

2.2.1. The case a > 1 

First of all, there is an upper bound for a E Q in this case. Namely, 
we have a ::; n + 1. In fact, [H-K] and [K-O] showed that if a 2: n + 1, 
then (X,D) is nothing but the hyperplane section (Pn(e),Pn-i(e)). 
We have the standard flat metric in this case by applying Calabi's con­
struction. From here on, we assume that a < n + 1. 

Throughout this subsection, we assume that D admits a Kahler­
Einstein metric. The adjunction formula tells us that 

(2-10) Kv = (Kx + Lv)lv 

and hence 

c1(D) = (c1(X) - [D])lv = (a - l)[D]lv > 0. 

Let CT be a section of L D with ( CT = 0) = D. From the assumption, we 
have 
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Lemma 1. The line bundle [DJ -> X admits a Hermitian metric 
h such that the curvature form 0 = -Ra8 log h( a-, a-) > 0 defines 
a Kahler metric on X and the restriction 0ID of 0 on D is a Kahler­
Einstein metric with positive Ricci curvature: Ric( 0 Iv) = ( o: - 1) 0 v. 

Following Calabi's construction, we set 

t = - log h(a-, a-). 

Then D is the oo-locus oft. Define 

(2-11) Wo = Roa a::.l exp ( a~l t) 

o:-1 o:-1 -= exp (--t)(0 + --Rat I\ at). 
n n 

From the assumption, w0 is a complete Kahler metric on X - D. The 
metric asymptotically looks like Calabi's metric with A = 1 and B = 0 
near D, i.e., at infinity. Let o: = ! with O < p, q E z. Since Lb is 

a pluri-anti-canonical bundle Kxq, there exists a a q-ple holomorphic 
n-form rJa(dz; I\··· I\ dz;)®q with poles of order p along D. By taking 

2 

lrJal •, we get a canonical Ricci-flat volume form Von X - D with poles 
of order 2o: = 2P. 

q 

Lemma 2. Define a smooth function f by w0 = efV. The func­
tion f extends across D to a smooth function on X and the restriction 
of f on D is a constant function. So we may assume without loss of 
generality that f ID = 0. 

Proof. In this case, 0 =jc 1r*0lv- This causes a trouble if B =I 0. If 
B =I O in w0 , then the differentiability of f in the directions normal to 

D no longer holds in general, because Alla-112 + Blla-112" appears in f. 
The term lla-112" is not necessarily differentiable in the normal direction. 
If B = 0 then f extends across D to a smooth function. Since 

(2-12) 
) 0: - 1 Wo = e<a-l t0n-l I\ --Rat I\ 8t(l + O(lzl)), 

n 

where a smooth function in { } vanishes on D. So we compute 

Ra8fv = RaB(logf)lv 

= R(a - 1)aat + Ra&log(0lvt- 1 

= (o: - 1)0ID - (o: - 1)0ID = 0, 
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by the Einstein condition of D. This implies !Iv= constant. 

It follows from Lemma 2 that f = O(llcrll)- Let a be a smooth 
function on X which vanishes on D. We alter the Hermitian metric 
h =II· 112 to ha= e-ah = e-all · Ila- Assume that the curvature form Ba 
of the new Hermitian metric e-a h is again positive. Then we get a new 
complete Kahler metric Wa on X - D by the same construction and a 
new function fa which also vanishes on D. 

Lemma 3. There exists a C 00 function a on X which vanishes 
on D such that the new Hermitian metric e-ah on Lv has the following 
properties: 
(i) the curvature form Ba is positive everywhere on X, 
(ii) the function fa satisfies la= O(llcrll!). 

Proof. It suffices to choose a so that 

fJ I a 
{Jc, l<r=O = 0, 

because this implies la = O(llcrll!)- We mean by ~l"=O a smooth 

section of Lr;11v determined locally by i!,-1",=o, where {cri = O} are 
local defining equations of D. Indeed, this system of smooth functions 
defined locally on D forms a smooth section of the bundle with transition 
function 9ii = :; . We choose a local holomorphic frame for Ln such 
that at p E D the connection form of the Hermitian connection vanishes; 
8loghi(P) = 0. The following computation is done at p ED. 

(0 + y'-IfJBat- 1 I\ (8(t + a)) I\ (8(t + a))(l + O(lo-;12 ) 

0n- 1 I\ fJt I\ fJt(l + O(lo-;12 ) 

8a fJI = (a- l)-+-
80-; 80-; 

{J 1 0;-1(l+D.0oa+···)/\l~l2(l+O(lo-;l)-o-;aa;. +···) + - og . , 
fJo-; 0;-l I\ 1~1 2 (1 + O(lo-;I)) 

fJa fJa 8f 
= l:.00 - + (a - 2)- + -, 

80-; fJo-; 80-; 
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where if (zf, · · ·, zf- 1 , u;) are local coordinates around D, then 00 is the 
part of 0 involving only dz;'s and dz;'s, the symbol O(lu;I) expresses the 
same thing in both numerator and denominator, and + · · · consists of 
terms with no contribution in the computation of 8 / 8u;. The Laplacian 
6.00 stands for the 8-Laplacian on L ; 1 determined by the Hermitian 
metric hand the Kahler metric BID· We want to solve the equation 

(2-13) 
8/ 

6.eos+(a-2)s+-a =0. 
O"; 

We can apply Proposition 10 by setting X = D and L = L; 1 . We infer 
that any >. < n - 1 is not an eigenvalue of 6.00 • Hence the operator 
6.00 + ( a - 2) is injective for a S n. Since the operator is self-adjoint, it 
is also surjective. So the equation (2-13) has a unique solution s. After 
multiplying a large constant to { u;} if necessary, we can easily find a 
smooth function a on X such that alD = O, ;;; =sand such that e-ah 
has positive curvature. 

From here on, we assume that the Hermitian metric h fulfills the 
conditions in Lemma 3. 

We proceed to study the asymptotic properties of the complete 
Kahler manifold (X - D, w0 ). Our situation is summarized as follows: 
(i) a pair (X, D) of a Fano manifold X and a smooth hypersurface D 
with c1 (X) = [D], 
(ii) u E H 0 (X, Ox(D)) with (u = 0) = D and a Hermitian metric hon 
LD such that if we sett= - log h(u, u), then 0 = H88t > 0 and BID 
is a Ricci-flat Kahler metric on D, 

(iii) w0 = ea;;-' (0 + 0 ; 1 Rat I\ 8t) is a complete Kahler metric on 

X - D which is asymptotically Ricci-flat in the sense that / = log 1 = 
O(h(u, u)). 
From the properties (i),· · ·,(iii), we have the following Lemma 4. Let 
d = d( *) = dist(p, *) denote the distance function from a fixed point 
o EX - D, B(d) the metric ball ofradius p centered at o and S(d) the 

(a-l)t a-1 
metric sphere 8B(d). Set p = e 2 n = llull---... 

Lemma 4. There exists a positive constant c such that 

(1) c(d + 1) < p < c- 1(d + 1), 
(2) cd2n < Vol(B(d)) < c- 1d2n, 

(3) cd2n-l < Area(S(d)) < c- 1d2n-l. 

Proof. Let p be a point in X - D with llull = e which is sufficiently 
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small with respect to lla-ll(o). It follows from (2-11) that 

! dr a-1 

d = dist(o,p):::::; a-1 :::::; c-~ 
c r~ + 1 

a-1 (a-l)t 

= lla-ll(p)--n = e 2n = p. 

and that asymptotically 

Vol(E(o, d)):::::; 1 ~~: :::::; lla-11-2(a-l):::::; P2n:::::; d2n_ 

and 
(a-l)t 1 2 Area(S(o,d)):::::; (e_n_)2+n-1:::::; p2n-1:::::; d n-1_ 

Definition. An m-dimensional complete Riemannian manifold 
( M, g) is of Ck•"-asymptotically flat geometry for k E N and O < a < 1 
if for any p E M with d( o, p) = r there exists a coordinate neighborhood 
U(p) and a harmonic coordinate map <Pp: U(p)-> Rm with coordinates 
x = ( x1, ... , xm) which have the following properties: 
(1) x runs over the unit ball Em C Rm and x(p) = 0, 
(2) there exists a positive constant a independent of p such that if g = 
L-%dxidxi, then (g;i)/(r 2 + 1) > a(O;j) > 0, 
(3) 11%/(r 2 + l)llck,a(B=) is uniformly bounded with respect to rand 
p. 

Definition. For a ck,a_function u on M and a positive constant 
6, set 

where Em is equipped with the standard fiat metric of Rm. 

Definition. A Ck•"-function u on M is said to be a weighted 
Ck•"-bounded function of weight 6 if llullck,a < oo. We write c;•0 for 

• 
the Banach space of all weighted Ck•"-bounded functions of weight 6 on 
M with norm II· ll0 k,a . 

• 
It follows from the above definitions that there exists a positive 

number c such that 

er < diam(Bm, g;j} < c- 1r 
C 

lcurvature(Em,9ii)I ~ r2 + 1 
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where r = dist(o,p). In particular, we have a decay estimate for the 
curvature: 

C 
lcurvature(p)I :?: . ( )2 • 

dist o,p +1 

If u is a weighted Ck•"'-boundecj. function of weight 8, then we have decay 
estimates for its derivatives: 

k 1 
IV u(p)I = O(dist(o,p)Hk) as dist(o,p)-> oo. 

To see this, we compute 

with respect to a harmonic coordinate system if>p around p with dist( o, p) 
= r and this implies 

1 
IVul = O(dist(o,p)Hl ). 

In this sense, a weighted ck,"'-function of weight 8 is f /dist(o,p) 5 with 
f sufficiently close to a constant function, and so it and its derivatives 
decay like 1/dist(o,p) 5 • 

Lemma 5. The complete Kahler manifold (X - D,w 0 ) has ck,a_ 

asymptotically fiat geometry for all k E N and O < o: < 1. In particular, 
the Riemann sectional curvature of w0 decays like d- 2 and the injectivity 
radius at a point p with d(p) = d is not smaller than cd for some constant 
c independeny of p. 

Proof. We look at 

(a-l)t _ 
Wo = e n (0 + A.at I\ at)= p2Woo ~ (dist(o,p))2woo, 

where the last approximation is valid only when dist(o,p) is large. The 
metric w00 locally looks like a product metric of a Euclidean metric of 
cn- 1 and a cylinder metric of c•. Pick a coordinate system ( z1 , z2 , • • • , 

zn) such that D is locally given by z1 = 0 and let p be a point in X - D 
with lz1 (p )I = c. Set ( = lO{log z1 -log c ). We can find z = (z2,- · ·, zn) 
so that ( (, z) runs over the unit ball Bn c en if and only if z 1 moves 
over a certain small neighborhood of c. The metric w00 is uniformly 
equivalent to bij with respect to a holomorphic coordinate system ( (, z) 
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and Ck,a_bounded as functions in((, z). Since p ~ dist(o,p), this implies 
(2) and (3) of the definition of ck,a_boundedness. 

Lemma 6. There exists a positive number o such that the junction 

f = log( Wo /V) belongs to c;+~ for any k E N and O < o: < 1. 

Proof. We have f = O(llo-112 ) = 0(1/ p 02':. 1 ) and }::,.1 > 2 since 
o: < n + 1. The decay estimates are easy to derive, because the metric 
w0 is approximately (dist(o,p))2w 00 where w00 looks locally as a product 
metric of C x c• in the asymptotic region. 

The following Lemma 7 is very important in the analysis on ( X -
D,wo). 

Lemma 1. Let (X - D, w0 ) and p be as above. Then we have the 
following estimates: 
(i) p- 5 E c;,a. 
(ii) For all o > 0, we have 

(2-14) 5 o:-10 0 25 6 p- < ----(n - 1 - -)p- - . 
wo - n 2 2 

(iii) For all sufficiently small o > 0, there exists a positive number c 
such that for all K > 0 and sufficiently large dist(o,p), the following 
inequalities hold: 

(2-15) 

Proof. 

(wo + Ra8Kp- 5 t::; (1 - cKp- 2- 5)w0 
(wo + RaEJ - Kp- 5)n ~ (1 + cKp- 2- 5)w'fi. 

(i) is clear. We compute 

11 - 5 11 - -6(a-1)i 
y-i.aap- = y-laae 2n 

= -o(o: - 1) P-2-5. p2(0 - o(o: - 1) Aat I\ EJt) 
2n 2n 

-o(o: - 1) o: - 1 o = -'----'-P- 2- 5 {wo - p2--(1 + -)Rat I\ EJt}. 
2n n 2 

This implies 

5 o(o: - 1) o 
A - < ---( 1 ) -2-5 
Llwo P - - 2n n - - 2 P 

Wo + H88Kp- 5 = p2{(1 - o(o: - l) Kp- 2- 5)0 
2n 

+ (1 + o2(0: - 1) Kp-2-5) o: - 1 Aat A EJt}. 
4n n 
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These immediately imply (ii) and (iii). 

Remark. In the case of X - D = Pn(C)- Pn-i(C) = en with the 
canonical flat metric, the equality holds in (ii). The essential point in 
the estimate (ii) is that if 6 > 0 is sufficiently small, then 

A -5 < -2-5 
0 woP _ -cp 

holds for some positive constant c. Moreover, if w0 is actually flat outside 
a compact set, then the optimal 6 > 0 with 6.woP SO is very important. 
If n = 2 then o = 2 is optimal: 

6.woP- 2 '.S 0. 

For the optimal o, since trw0 H88p- 5 = 0, the estimates (iii) turn out 
to be 

etc. 

Lemma 8. The isoperimetric inequality 

(2-16) 
2n.-1 

c(n) Vol(n)---.-;;-s Vol( 8n) 

holds for all compact subdomains n of a complete Riemannian manifold 
(X - D,w 0 ) where the isoperimetric constant c(O) is independent of 0. 

Proof. It is easy to modify Croke's isoperimetric inequality for com­
pact domains in (X - D,w 0 ). See [Cr] and [Y4]. 

Since the Sobolev inequality and the isoperimetric inequality are 
equivalent (see [F-F]), the Sobolev inequality holds for smooth functions 
with compact support on {X - D,w 0 ). Namely, we have 

2n.-1 

(2-17) c(n) (fn f 2~~ 1 )---.-;;- s fn 1v fl 

for all compact subdomains n c X - D and all smooth functions / with 
2n-1 

support in n. Replacing f by f ~ and applying the Holder inequality, 
we have: 

{2-18) 

In Section 3, we shall use the Sobolev inequality {2-18) to establish an 
existence of a complete Ricci-flat Kahler metric with maximal volume 
growth. 
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2.2.2. The case a:= 1 

Let X be a Farro manifold and D a smooth hypersurface in X such 
that 

c1(X) = [DJ 

in H 2 (X; Z). The adjunction formula tells us that 

Kv = (Kx + Lv)lv 

and hence 

c1(D) = (c1(X) - [D])lv = ([DJ - [D])lv = 0. 

Yau's solution to Calabi's conjecture [Y2J implies: 

Fact. Let M be a compact Kahler manifold with c1 (M) 0 in 
H 2 (M; R). Then M admits a unique Ricci-fiat Kahler form in each 
Kahler class. 

Therefore D admits a Ricci-flat Kahler form in the cohomology class 
21rc1 (Lv). Let CT be a holomorphic section of Lv with (rr = 0) = D. We 
then have 

Lemma 9. There exists a Hermitian metric h on Lv such that 
the curvature form 

0 = AaiJt (t = -logh(rr,rr)) 

is positive definite everywhere on X and the restriction 0 ID is a Ricci-fiat 
Kahler metric on D. 

Define 

(2-19) Wo = Aa8(t 1+¼) = (1 + ¼)t¼(B + {?at I\ 8t). 

Then w0 is a Kahler form in a deleted neighborhood of the hypersurface 
D. This is complete toward D. Since Lv = Kx 1 is ample, X - D be­
comes an affine algebraic manifold with D as a divisor at infinity. The 
growth order of the Kahler potential of the Kahler metric on X - D 
induced from the Fubini-Study metric is of order O(t) at infinity. This 

implies that the strictly plurisubharmonic function tl+ ¼ defined at infin­
ity extends as a strictly plurisubharmonic function on the whole X - D. 
Hence we may and do regard w0 as a complete Kahler metric on X - D 

with a globally defined Kahler potential which coincides with ti+¼ out­
side a compact set. The complete Kahler metric w0 is an approximately 
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Ricci-flat metric in the following sense. Let r, be a holomorphic n-form 
on X - D with logarithmic poles along D. Such r, is unique up to mul­
tiplication by non zero constants. Then V = r, I\ t; is a Ricci-flat volume 
form on X - D. Define 

(2-20) 

Then f extends to a smooth function on X. After some scale change of 
r, if necessary, we may assume 

(2-21) 

If we consider a sequence of Kahler metrics on Wi on X with Wi ex c1 ( X) 
such that limi-+oo Wi = wo on X - D, we see that 

(2-22) f (e-f - I)w; = 0. 
lx-D 

This becomes an integrability condition if we want .to seek a Ricci-flat 
Kahler metric in the form w0 + Aaliu. 

We now examine the asymptotic properties of the complete Kahler 
manifold (X -D,w 0). We fix a point o in X -D and let d(p) = dist(o,p), 
B(d) and S(d) be the distance of o and p and the metric ball and the 
sphere of radius d centered at o. 

. n.+1 

Lemma 10. Set p = t2n. Then 
(i) there exists a positive constant c and a compact set K in X - D such 
that 

cd(x) < p < c- 1d(x) 

outside K, 
(ii) the growth of the volume of metric balls is 

as d---+ oo ¢=> t ---+ oo, 
(iii) the growth of the area of metric spheres is 

Area{S{d)) = O(d:+~) = O(d 1-n!1 ), 

(iv) the decay of the Ricci curvature of wo is 
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( v) the decay of the sectional curvature of wo is in general 

1 2 I curvature I= o(t-n) = O(d-n+l ), 

and if the Ricci-fiat metric on D is fiat ( this is the case iff n = 2), then 
we have higher curvature decay: 

n+l 2 I curvature I= O(c..-) = O(r ), 

( vi) for large d, the metric spheres S( d) have a structure of an S1 -bundle 
over D and the induced metrics on S(d) blow up in the base direction and 
collapse in the fiber direction as d -. oo. More precisely, the diameter 

of S( d) grows like d ,,t1 and the length of the S1 fiber decays like d- ::;:~. 
In particular, the injectivity radius at a point p with d(p) = d decays like 

n-1 
d- n+l • 

Proof. We use the expression (2-19) which is valid outside a com­
pact set K. Set r = lzl for some holomorphic local coordinate z vanishing 
on D. For the distance function, we have 

! dr !!.±.!. 
d = 1 1 :=:::: t 2n , 

e (log ¼)•(1-;.)r 

which implies (i). For the volume, we have 

! rdr 2n 
Vol(B(d)) ~ - 2 ~ t ~ dn+1, 

e r 

which implies (ii). For the Ricci curvature, we have 

Ric(wo) = -Aaaiogw 0 = Aaaf 
= O{e-½(O + 8t I\ 8t)) = O(t1-¼e-½), 

since f is locally llull (smooth function on X). In (43), the term t¼O 
is the induced metric on S(d) in the base direction which blows up as 
t-. oo and t 1~¼ l8tl2 = ti~-f 1~12 is the fiber direction which collapses 

as z -. 0 ¢> t -. oo. See also Lemma 11. To prove (v), we consider a 
transversal coordinate (, i.e., D is locally given by ( = 0. Set ( = ev-Iz. 
If 1(1 is small, then z = x + y'-ly is belongs to the upper half plane. 
We recall (2-19), i.e., 

11 11"""1 -
w0 = (1 + -)tn(O + -v-18t I\ 8t). 

n nt 
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The metric 

J=If&t /\ 8t :=:-.:o /=Iidz /\ dz 

= y ( the Poincare metric on the upper half plane) 

lifted on the upper half plane is complete only in the direction y --+ oo. 

Since y :=:-.:o t, the decay of the curvature of the metric t ¼ ~t /=Iat /\ 8t is 

In particular, if D is flat, then the curvature of w0 has quadratic decay. 
If Dis not flat, the decay order is o(t-¼). 

In particular Lemma 10 implies that the Sobolev inequalities (2-17), 
(2-18) do not hold on (X - D,w 0 ) with a= 1 with a uniform constant 
c(S1 ). 

Definition. A complete Riemannian manifold (Mm, g) has quasi­
bounded geometry if 

(i) M is covered by open sets U a 's such that for each U a there is 
a smooth map 4>a : sm --+ Ua of maximal rank (not necessarily one to 
one) ( we call c/>a a quasi-coordinate map) 

(ii) there are positive constants c, Ak (k = 1, 2, · · ·) such that for 
any a the following estimates hold: 

c8;1 < 4>:g < c- 1 O;j 

IDP(j>:gl < AP for all multi-indices p with IPI ~ 1, 

where the derivatives are taken with respect to the quasi-coordinates 4>a 
defined on s=. 

Lemma 11. The complete Kahler manifold (X-D,wo) has quasi­
bounded geometry with respect to some holomorphic quasi-coordinate sys­
tem. 

Proof. Let ( be a transversal coordinate and set ( = ev'=Iz as in the 
proof of Lemma 10. Take two real numbers A and B with A< 0 < B. 
Suppose that N 2 +AN< Im(z) < N 2 + BN for a large positive integer 
N. Define 

z' = __!_(z - /=IN 2 ). 
N 

Then we have A< Im(z') <Band 

~lati2 = _l_ldzl2 :::-.:o _1 INdz'l2 = ldz'l2-
t Im(z) N 2 
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All the above imply that the holomorphic quasi-coordinates ( z1 , · · · , 

Zn-I, z') runs over a bounded domain in en and if we write g;-1 for 
the components of w0 with respect to this coordinates, then there exist 
positive constants a and b such that 

uniformly bounded. 

where Bn is a ball in en on which the quasi-coordinates (z, () are defined 
(see (2-19)). The Lemma follows from the above estimates. Indeed, to 
construct local holomorphic coordinate system which best describes the 
asymptotic geometry of (X - D,w 0 ), we modify the above construction. 

Suppose -A~ B ~ N-¼ in the above construction. Then we have 

I Im(z')I < cd- nil 

for some positive constant c. Define 

z" = dntl z' 

Z~=dntiz; (1 ::;:i ::;:n-1). 

1 

If we make an identification over Re(z") with period 21rd:;n ~ :":1 , we 
dn+l 

get a quasi-coordinates (z~, · · -, x~_ 1 , z") defined on the unit ball in en. 
Writing the metric w0 using this coordinate system completes the proof 
of Lemma 11. The above identification over Re(z") shows the statement 
on the injectivity radius in Lemma 10. 

We are now ready to define a Banach space e~,o: of weighted ek,o:_ 
u,c 

bounded functions on a complete Kahler manifold ( X - D, w0 ) which 
decay like C 0e-ct, where c (resp. 8) is a fixed positive real (resp. real) 
number. We will also define a Banach space e;,o: of weighted ek,o:_ 

bounded functions on (X - D,w 0 ) which decays like t- 0 , where 8 is a 
positive number. Since (X - D,w 0 ) has quasi-bounded geometry, there 

exists a system of holomorphic quasi-coordinate maps en :::i U '4 X - D 
such that U is a unit ball and ¢;w0 is ek,o:_equivalent to the standard fl.at 
metric, i.e., ek,°'-norms of the components are bounded by a constant 
independent of i. So we can define the Banach space ek,o: of ek,o:_ 
functions on X - D. 
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Definition. A ck,a.function u on (X - D,w 0 ) is said to be a 
weighted ck,a_bounded function of weight ( c, 8) if 

5_k+a . IDk</)~u(x) - Dkcp*u(y)I} + sup t. 27 ect• ' ' < oo 
_.L ' Ix - Yla ' 

x,yEU, x,ty,lx-yl<t, 27 

where t; = t(x;) for some fixed point X; E </);(U) and 1 = n:-_1 . We 

write c;:t for the Banach space of all weighted c;:t-bounded functions 
of weight (c,8) on a complete Kahler manifold (X - D,w 0 ). 

Similarly, we have 

Definition. A ck,a.function u on (X - D, w0 ) is said to be a 
weighted ck,a_bounded function of weight t5 if 

k 

llullc:,a ~f sup{L !It:+,!;;-D1</J7ullco(u) 
' l=O 

We write c;,a for the Banach space of all weighted c;,a -bounded func­
tions of weight t5 on (X - D, w0 ). 

Of course these definitions need a trivial justification m non­
asymptotic region. 

Remark. The norm llectt5ullck,a is not necessarily finite for a c;,'sa_ 
bounded function u. 

It follows from the definition that a weighted Ck':'-bounded function c,u 

u decays like 

lul = o(t-5e-ct) 

IVPul = O(CH~ e-ct), for any positive integer p 

1 

where 1 = n~l. Note that IVtl :=::o t2-r. 
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A weighted c;·°'-function decays like 

lul = o(t- 5) 

lv'Pul = Q(t-5- n~l ). 

The strange impression in ¼i comes from the fact that the asymptotic 
form of the metric w0 is 

t ¼ ( a metric of bounded geometry). 

It is easy to see the following Lemma. 

Lemma 12. Let f := log i be as in (2-20) and (2-21). Then 

f E c!·~ for any positive integer k and any O < a < 1. 
2' 

The Sobolev constants c(f!) in (2-16) of domains n of a complete 
Kahler manifold ( X - D, w0 ) are not uniformly bounded below away from 
0 and this causes an analytical difficulty. We overcome this difficulty by 
establishing a weighted Sobolev inequality in the next subsection. 

2.2.3. Weighted Sobolev inequalities 

In the previous section, we constructed a complete Kahler manifold 
(X -D,w 0 ) where Xis an n(2:'. 2)-dimensional Fano manifold and Dis a 
smooth hypersurface with c1 (X) = [D]. This complete Kahler manifold 
does not satisfy the (uniform) Sobolev inequality of the form (2-18). 
Moreover, there exists no barrier function at infinity (see (Gil-T], [B-K] 
and Section 2.2.1 of this paper). These mean first that we cannot use the 
Sobolev inequality in deriving a priori c0 estimates for Poisson equations 
and that we cannot use the maximum principle argument to control the 
behavior at infinity. These cause analytical difficulties if we want to 
deform w0 to a Ricci-flat Kahler metric (cf. [B-K]). To overcome these 
difficulties, we introduce a weighted Sobolev inequality in the following 
way: 

Set p = tW. Then pis asymptotically equal to the distance func­
tion from a fixed point. 

Proposition 12 (Weighted Sobolev Inequality). Let (X - D,w 0 ) 

be as above. Suppose Po is a sufficiently large fixed number. We consider 
a smooth positive function which is equal to p0 if p :s; p0 and equal to p 
if p 2:'. ½Po-Write this function simply asp. Then there exists a positive 
constant C such that for any compactly supported C1 -function v, the 
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following inequality holds: 

1 

(2-23) (/ p- n
2+1 lo~ p lvj21')-:; ~ CJ pn!1 (log p)(log log p)2 -¼ jdvj2 , 

where 1 = n~l. 

Proof. We follow the arguments in the proof of deriving the Sobolev 
inequality from the isoperimetric inequality (see [F-F]). Suppose v is a 
C 1-function which has compact support in the asymptotic region {p ~ 
Po} in X - D. We may further suppose that vis a Morse function. For 
0 ~ s, we set 

f!(s) = {x; lvl > s}. 

We now introduce the weighted volumes as follows: 

(2-24) 

w-Vol(f!) = p-n+1 --dµ 1 2n 1 

11 logp 

w-Vol(8f!) = { p-:::;:~(loglogp) 1-"tndA, 
lan 

which dµ and dA are defined with respect to the Riemannian metric 
corresponding to w0 • Then we have the weighted isoperimetric inequality. 
Namely, there exists a positive constant C such that for any relatively 
compact domain n in the asymptotic region {p ~ p0 } of X - D with 
smooth boundary, the following inequality holds: 

(2-25) 
2n-1 

w-Vol(n)--r.. ~ C · w-Vol(8f!). 

For geodesic balls and geodesic spheres, we have 

(Id 2n 1 n-1 ) 
2

~:l 

(w-Vol(B(d)));:::; p-n+1 -pn+1 dp 
logp 

;:::; (loglogd) 1-,~ ;:::; w-Vol(S(d)). 
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The coarea formula and (2-25) implies 

(2-26) 

c/p<+~(loglogp) 1--f,;-ldvl = c/ 00 dt r p-::;:~(loglogp) 1-,';, 
-oo lv-1 (t) 

= C 1_: w-Vol(on(s))ds 

~ 1_: w-Vol(n(s)) ·~: 1 ds. 

Let v. be the function obtained from v by truncation at heights s and 
-sand let 

u(s) = (Jp-,. 2+1 - 1-lv.l•~'.'..1) ·~:1 
log p 

Then a direct computation shows that for h > 0, 

u(s + h) - u(s) 

(/ 
2n 1 2n ) ·~:l 

- p-n+l --lv.1~ 
logp 

'5h (Jp-,. 2+1 - 1-x;~'.'..1) ·~:1 = h · w-Vol(f!(s)) 2
~:

1, 
logp 

where Xs is the characteristic function of n(s). We then have 

(2-27) 
d 2n-1 

ds u S w-Vol(n(s))-r,;-. 

From (2-26) and (2-27), we have 

(2-28) 

(/ p- n
2+1 - 1-1 v I 2~'.'.. 1 ) ·~: 1 = / 00 .!!._uds 

log p _ 00 ds 

-51_:.w-Voln(s) ·~:1 ds 

-5 C j p-::;:~ (log log p)1 -,';, ldvl. 
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2n-1 

Replacing v by v n- 1 in the above argument and applying the Holder 
inequality give (2-23). The weights in the definition of the weighted 
volumes are so chosen that (2-25) holds and that the weight that appears 

in the right side of (2-23) is pn!1 (log p )(log log p )1- 2~. 

There would be many applications of the weighted Sobolev inequal­
ity. For example, we shall use this in subsection 2.3.3 to estimate Green's 
function and to establish general existence theorems of complete Ricci­
flat Kahler metrics on X - D where (X, D) is as above. 

2.2.4. Weighted Sobolev inequalities and ALF gravi­
tational instantons 

This subsection is devoted to the introduction to ALF gravitational 
instantons and is independent of the rest of the paper. First we look 
at known examples of ALF gravitational instantons, i.e., Taub-NUT, 
multi-Taub-NUT, Page-Hitchin and Atiyah-Hitchin manifolds. Next we 
modify Calabi's construction [Ca] to these manifolds and construct a se­
ries of ALF asymptotically Ricci-flat complete Kahler metrics. Here we 
mean by Calabi's construction a method of constructing an asymptoti­
cally Ricci-flat complete Kahler metric ( we call this a background metric) 
on affine algebraic manifolds by modifying a simple model metric. We 
finally apply a weighted Sobolev inequality for complete Riemannian 4-
manifolds with ALF boundary condition to establish a general existence 
theorem of ALF gravitational instantons, including Dn-manifolds which 
are not known explicitly. Recently, Kronheimer showed the existence 
of Dn manifolds with an ALF hyperKahler metric using hyperKahler 
quotients ( cf. [Bes]). 

Definition ([Gib], [G-P-R] and [Pel). A complete Riemannian 4-
manifold is asymptotically locally flat (ALF) if outside a compact set 
the metric asymptotically approaches the metric 

ds2 = dr2 + r 2(eri +er~)+ er~ 

as fast as (distance)- 1 , where {eri} are right invariant 1-forms on r\S 3 , 

er3 corresponds to the orbit of the S 1-subgroup of SU(2) and r is a 
discrete group of isometries of this PSU(2) x U(l)-invariant metric of 
S 3 (i.e., the Berger sphere metric) acting from the left. 

The cyclic groups Zk in the S 1-subgroup and Die, the binary dihedral 
groups of order 4k exhaust the possibilities of such r. These corresponds 
to the standard left action of Zk and Dk subgroups of SU(2) on C2 • 
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(The right action of SU(2) is clearly an isometry of the Berger sphere 
metric. But here we pay attention to the left action of those subgroups 
(Zk and D;,) of SU(2) which preserve Hopf fibers. Note that the half of 
elements of DZ reverse the orientation of the Hopf fibers.) In particular 
the boundary (at infinity) is of the form r\S 3 • This r-parametrized 
metric is known as the Berger sphere, namely the family of metrics on 
S3 obtained by introducing a free real parameter r for the length of 
the Hopf fibers. In other words, Berger sphere is realized as the metric 
spheres in P2 ( C) with the Fubini-Study metric. Namely, the Hopf fibers 
become shorter and shorter as the metric spheres approach the cut locus 
and the induced metrics collapse to the standard metric of the cut locus, 
a 2-sphere P 1 ( C). 

We often consider r\S 2 x S1 , instead of r\S 3 , as a boundary of 
an ALF-space. While S2 x S1 is trivial as a S1-bundle over S2 and 
S3 generates non trivial ones, the same construction for the metric on 
an asymptotic region works for the boundary r\S 2 x S1 where r is a 
discrete subgroup of isometrics of this PSU(2) x U(l)-invariant metric 
of S2 x S1 (this was pointed out by Page [Pa-2]). 

2.2.4.1. The Taub-NUT metric 

The first examples of ALF instantons were constructed by Hawking 
[Haw] as the Euclidean version of the Taub-NUT metric and their multi­
center version. These are the first examples of complete half-flat Ricci­
flat non-flat 4-manifolds, hence of complete Ricci-flat non-flat Kahler 
surfaces (relative to the orientation in which the curvature 2-form is 
anti-self-dual). 

Since the Taub-NUT metric is considered to be a part of the Calabi­
Yau metric on a K3 surface, it is very important to have a good under­
standing of it. We here present two realizations of the Taub-NUT metric. 
One is to use Hawking's ansatz [Haw] (see also [G-H] and [E-G-H]): 

(2-29) 9m = V < dx,dx > +V- 1 (dr+w) 2 

where *dw = dV, x = (x1,x2,x3) E R 3 and V =-¾. + 21P with p = lxl, 
where m is a positive constant, so the Taub-NUT metric has a one­
parameter in its definition. We interpret this formula in the following 
way (see [Kr-1] and [L]). We consider the S1-bundle Mo over R 3 - {O} of 
Chern class -1 with a connection form w with curvature *dw = dV. Note 
that the pair ( T, w) is well-defined once one fixes a local trivialization of 
this circle bundle. This bundle with a connection is obtained by extend­
ing the Hopf fibration S3 ---t S2 with its natural connection radially to 
R3 - {O}. It is equivalent to considering the monopole magnetic field 
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grad V and its vector potential A (the Dirac monopole): rot A= grad V. 
Using the flat metric of R3 , this becomes *dw = dV. If we complete 
Mo by adding a one point ( corresponding the origin of R4 ), then the 
metric (2-29) extends smoothly across this point. LeBrun [L] identified 
the isometric families of Kahler structures relative to g with the sphere 
parametrizing directions in R3 . Pick a one direction in R3 , say the x1 -

axis with its positive direction. Then one can define a complex structure 
J by the formula 

(2-30) 

which turns out to be a Kahler structure with respect to the metric g. 
The corresponding Kahler form is explicitly 

(2-31) n = dx1 I\ (dr + w) + Vdx2 I\ dx 3 • 

As a Riemannian manifold, the Taub-NUT manifold is R4 with a com­
plete anti-self-dual Ricci-flat non-fl.at Riemannian metric. So the twistor 
construction [Be] works. Using this, Hitchin (see [Hit2] and [Bes]) explic­
itly constructed the Taub-NUT metric on C2 as a hyper-Kahler metric. 
In terms of coordinates z = xy and y ((x, y) are the standard coordinates 
of C2 ), the metric is 

(2-32) 
1 _ _1 2dy dz 2dy dz 

9m = -{'Ydzdz +, (- - 8-)(-_- - 8-::--)} 
16m y z y z 

where 
_ 1 2m 

'Y - + y'b2 + lzl2' 
b 

8 = 1 - ---;::;;:::==;:==.;:, 
y'b2 + lzl2 

and b is determined implicitly by the equation 

I 

In particular, the volume form of the Taub-NUT metric is identical to 
the volume form of the standard fl.at metric. LeBrun [L] showed this 
fact directly by showing that ( * ): Mo with this complex structure is 
biholomorphic to 

{2-33) [{C* x C*) II {C* x C*)]/"' 
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where 

(2-34) 
V 

(u, v) ~ (u, -). 
u 

To show ( *) amounts to showing that the holomorphic map H : Mo ----+ 

C, H = x 2 + ix 3 is converted to C2 - {O} ----+ C, (z, w) ----+ zw and 
this, in turn, is a topological consequence from our assumption that the 
S 1-bundle M 0 ----+ R3 has Chern class -1. 

Now we examine the symmetry possessed by the Taub-NUT metric. 
If we consider the Hopf fibers as the orbit of the S1-subgroup acting 
from the left, then the right action of SU(2) to itself induces an iso­
metric action of SU(2) on the Taub-NUT manifold. But this action is 
not holomorphic, but rotates complex structures. Indeed, since the ori­
entation of the Hopf fibers is preserved by this action, this reduces to 
the standard action of the rotation group on the 2-sphere (in the base 
R3 ) parametrizing isometric families of Kahler structures. On the other 
hand, the left action does not necessarily preserves Hopf fibers. Among 
subgroups of SU(2), the S1-subgroup preserves the oriented Hopf fibers 

and the element ( ~ 1 ~ ) preserves the Hopf fibers but reverses its ori­

entation. Thus the action of the S1-subgroup induced on the 2-sphere 

parametrizing isometric Kahler structures is trivial, while ( ~ 1 ~) 

acts as the anti-podal map. It follows that these groups act isometri­
cally and holomorphically on the Taub-NUT manifold. In terms of the 
complex structure, this is the natural action on C 2 of Zk and DZ which 
are finite subgroups of SU(2). 

We now observe the behavior of the Taub-NUT metric when the 
parameter m goes to infinity and zero. Let 111 , 112 and 113 be the basis of 
right invariant I-forms on S3 , where 113 corresponds to the orbit of the 
S1-subgroup. If we perform the coordinate change y = 4x in (2-29) and 

set r = 4p = (Yi + Y? + Yl) ½, we have ( cf. [E-G-H, pp.252-253]): 

(2-35) 
11 2 2 22 2 1 2 

9m = 16(- + -)(dr +4r (111 +11 2 )) + -1-- 2 113 , 
m r m+r 

which implies 

mgm ----+ the standard flat metric of R3 , as m ----+ 0 

and 
9m ----+ the standard flat metric of R4, as m----+ oo. 
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We choose the following orthonormal coframe: 

0 11 21. i 11 21. . 
e = -(- + -) 2 dr, e = -(- + -) 2 rCT; (z = 1, 2) 

4m r 2m r 
3 (1 2)_!. e = - + - 2CT3 

m r 

Then the curvature tensor of the metric ¼9c: is 

-4m 2 
Ro= -R2 = ----(eo I\ e1 - e2 /\ e3) 

1 3 (r + 2m)3 

-4m 2 
Rg =-Rf= ----(e 0 I\ e2 - e3 I\ e1 ) 

(r+2m) 3 

8m 2 
Ro= -R1 = ----(eo I\ e3 - e1 /\ e2). 

3 2 (r+2m)3 

It follows from this that if r = 0 

and if r > 0 

1 
llcurvature(mgm)II = 0(- 2 )-> oo, as m-> 0 

m 

llcurvature(mgm)II -> O, as m-> 0 
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This means that the curvature of mgm concentrates at the origin if m 
is small and collapse to the standard R3 as m -> 0. 

2.2.4.2. The multi-Taub-NUT metrics 

In this paragraph, we look at the multi-center (multi-Taub-NUT) 
metrics of Hawking [Haw] (see also [G-H]). These belong to the first 
discoveries of non-trivial anti-self-dual Ricci-flat complete Riemannian 
4-manifolds, which we are now interested in. This class of metrics is 
given explicitly by 

(2-36) 

with 

(2-37) 

9m = V(x) < dx, dx > +V(x)- 1 (dr + w)2, 

1 k 1 
V--+'°'--- c>O 

- m L., 2lx - a·J' 
i=l • 

*dW = dV. 

where { a;} are distinct k points in R3 and w is the vector potential 
for the superposition of k Dirac monopoles situated at { a;}, i.e., the 
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connection of the S 1-bundle over R3 minus k points obeying (2-37). The 
missing fibers over { a;} are completed with points to form a manifold 
Mk-I and the metric g turns out to be a smooth complete metric on 
it. The manifold Mk-I has a (k - 1)-chain C of 2-spheres sitting over 
line segments a;a;+1 in R3 • Thus Mk-I is diffeomorphic to the so called 
Ak-I -manifold, i.e., a manifold diffeomorphic to the minimal resolution 
of the Ak_ 1-singularity: xy = zk which is the quotient singularity Zk \ C2 

with Zk c SU(2). Just as the Taub-NUT manifold, this is a hyper­
Kahler manifold with S 1-action. As c ----+ oo, the metric ¼90 collapses 
to the flat metric of R 3 and its curvature concentrates at points a;. As 
in the case of the Taub-NUT manifold, LeBrun [L] realized Mk-I with 
Hawking metric as an affine algebraic surface 

( 2-38) 

in C3 , where o:; are the orthogonal projections of a; in some complex 
plane C determined by an oriented line in R3 (cf. (2-36), (2-37)). Later 
we realize Mk-I as a complement of an anticanonical reduced divisor 
of P2 ( C) blown up k times. The dimension of the moduli of Hawking's 
metric is 1 if k = 1 and 2 if k = 2 and 3k - 5 if k ~ 3. Indeed, the 
metric g0 for fixed c is completely determined by {a;} modulo Euclidean 
motions, which has 3n - 6 parameters. Once one fixes a complex struc­
ture, i.e., an oriented line l in R3 , then determining the metric for a 
fixed c is equivalent to determining the projection o:; modulo Euclidean 
motions ((2n - 3)-dimensional freedom) and the relative values of the 
coordinate along l ((n - 1)-dimensional freedom). LeBrun [L] showed 
that the latter is equivalent to determining a Kahler class by its periods 
over the ( k - 1 )-chain C of 2-spheres. 

2.2.4.3. The Page-Hitchin metric 

In this paragraph, we look at Page-Hitchin's approximate K3 metric 
[Pa-2l[Hit-2]. Let L = Z + Za 1 + Za 2 + Za 3 be a lattice in C2 and Y the 
complex torus C2 / L. The Kummer surface X = Km(Y) is the minimal 
resolution of Y/ < ±1 > and is a K3 surface. Let Lt = Z + t(Za 1 + 
Za2 + Za3), Yi = C2 / Lt and Xt = Yi/ < ±1 >. Consider the family 
of Kummer surfaces Xt with a Calabi-Yau metric 9t in the cohomology 
class of 

16 

(2-39) [wo] - L e[E;] 
i=l 

where w is the class of the orbifold metric coming from the standard 
flat metric of C 2 , E; are the exceptional (-2)-curves and c is some 
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positive constant. Page considered a singular limit limt-=(Xt, 9t) of 
K3 metrics. This is an ALF complete Ricci-flat non-flat Kahler met­
ric on the minimal resolution of Y 00 / < ± 1 > Sc: C x C* / a- having two 
A1 -singularities, where y 00 = C 2 I Loo with Loo a group of motions gen­
erated by (z1,z 2 )---+ (z1 + l,z 2 ) and a-(x,y) = (-x,l). It is an affine y 

algebraic surface x 2 - zy 2 = z or equivalently the complement of an 
anti-canonical divisor D of P2 ( C) blown up three times, where D con­
sists of a line blown up at a generic point p and a tangent smooth conic 
blown up twice at the point q such that the line pq is tangent to the 
conic. The boundary at infinity is S 2 x S 1 / a-where a-( u, t) = ( a( u), ¼) is 
an involution with a the anti-podal map of S2 . Hitchin [Hit 2J justified 
explicitly this singular limit process using the twistor method. We later 
propose an analytical (but implicit) justification of the existence of a 
complete Ricci-flat Kahler metric. According to our justification, Page­
Hitchin metric is approximately a superposition of two Eguchi-Hanson 
instantons localized on two exceptional ( -2 )-curves on the C x C* / a--flat 
background. For similar constructions, see [Pa-1],[G-PJ,[B] and [Ko-1] 
(for ALE gravitational instantons, see [Hitl], [Kr-2J and [B-K-N]). if we 
forget the symmetry, we see that the Page-Hitchin-metric involves 7 pa­
rameters which come from double three parametrizing the strength ( ¼ in 
(10)) of curvature concentration of two Eguchi-Hanson metrics and the 
freedom in specifying the direction of Hopf fibers of the Hopf fibration 
on the central 2-sphere, and one coming from the length of S1 in the 
flat metric of S 1 x R3 = C* x C (Note that the same counting yields 
57 parameters of the family of K3 metrics with a fixed total volume). 
Note that there are three dimensional symmetry acting effectively on 7 
parameters. So the Page-Hitchin metric has 4 effective parameters (the 
length of S 1 , the strength of two Eguchi-Hanson metrics and the relative 
"angle" of directions of the Hopf fibers). The "angle" is "zero" iff the 
metric has S 1-symmetry. 

2.2.4.4. The Atiyah-Hitchin metric 

Atiyah-Hitchin [A-HJ showed that the moduli space of BPS-magnetic 
monopoles of charge 2 with its natural £ 2-metric is an ALF Ricci-flat 
complete Kahler surface. It has S0(3)-symmetry which comes from 
the description of magnetic monopoles. Moreover this acts as rotations 
on S2 worth of isometric complex structures. Using this symmetry, 
Atiyah-Hitchin [A-HJ describes the metric explicitly (see also [G-P]). 
Their geodesics approximate low-energy scattering of 2-monopoles (see 
[A-HJ). Atiyah-Hitchin metric is defined on an affine algebraic surface 
x 2 - zy 2 = 1. This is the complement of an anti-canonical divisor D of 
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P2 ( C) blown up twice, where D consists of a line blown up at a generic 
point p and a tangent smooth conic blown up at the point q such that 
pq is tangent to the conic. Let E be the ( -1 )-curve cutting the conic 
at p and F a 2-sphere ( of self-intersection -1) through p with E · F = 1 
which cuts the other ( -1 )-curve outside a line. If we connect E and F 
with opposite orientations by a small tube around p, we get a 2-sphere 
of self-intersection number -4 which is disjoint from D. This 2-sphere 
can also be constructed by connecting two ( -2)-curves with opposite 
orientations in the Page-Hitchin manifold by a small tube. So, a tubular 
neighborhood of this 2-sphere is diffeomorphic to the whole space, i.e., 
the Atiyah-Hitchin manifold is diffeomorphic to the complement of the 
4-curve in the Hirzebruch manifold :E4 • In particular the boundary is 
Z4 \S 3 • Finally we remark that the Atiyah-Hitchin metric is invariant 
with regard to the free involution (x, y, z) -, ( -x, -y, z). So the quotient 
space also admits an ALF Ricci-flat complete Kahler metric, which we 
may call Atiyah-Hitchin manifold. 

2.2.4.5. Weighted Sobolev inequality 

We establish a weighted Sobolev inequality on an ALF complete 
Riemannian 4-manifold (M, g). In the next paragraph, we use this to 
show the general existence result of ALF gravitational instantons. Let 
n be a bounded domain in M with smooth boundary an. Let r be the 
distance function from a fixed point. We define weighted volumes by 

(2-40) 

and 

(2-41) w-Vol(an) = f r-½dA 
leo. 

where dµ and dA are measures on M and an induced canonically from 
g. If (M,g) is R 3 x S1 with the standard flat metric, then there exists 
a constant C such that for any bounded domain n in M a weighted 
isoperimetric inequality holds: 

(2-42) w-Vol(n)¾::; C · w-Vol(an). 

Then we can modify the arguments in [F-F] to get a weighted Sobolev 
inequality: 

(2-43) 
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for all compactly supported C 1 functions f. The Holder inequality im­
plies 

(2-44) 

for all compactly supported C 1 functions f. 
Since the metric of ( M, g) is finitely uniformized by 

dsa = dr 2 + r2 ( ui + ui) + u;, 

asymptitically, the Sobolev inequalities (2-43) and (2-44) are still valid 
for all compactly supported C1 functions on our ALF Riemannian man­
ifold (M,g). 

2.2.4.6. Compactification, Calabi's construction and 
the existence of ALF gravitational instantons 

Here, we observe natural compactifications of ALF gravitational in­
stantons and examine the effect of blowing up a point at infinity. As 
a result, we obtain a series of ALF complete approximately Ricci-flat 
Kahler surfaces. We then apply the scheme in [B-K], using a weighted 
Sobolev inequality in the previous paragraph, to show a general existence 
results of ALF instantons. We start with C x C* with a flat metric which 
is the complement of an anti-canonical divisor of Pa ( C) composed of a 
smooth conic and a line with an ordinary contact point. 

Figure 1 boundary of C x C* 

Let (X: Y: Z) be the homogeneous coordinates of Pa(C) and consider 
a line Y = 0 and a smooth conic X 2 - Y Z = 0. This forms an anti­
canonical divisor D. We consider a biholomorphic map of Pa(C) - D to 
C* x C given by 

(2-45) 
ya X 

(X: y: Z)-+ (x2 -YZ' y)-
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Then the flat metric is written as 

(2-46) 

The log part of this formula can be written as 

11,112 

logw, 

where r and er are the holomorphic sections of the line bundles defined by 
the line component and the conic component of D such that the divisor 
of r ® er is D. We have chosen Hermitian metrics of these bundles so 
that 

- 11,112 
aa1og w = o. 

We observe the effect of blowing ups at generic points of D. We 
distinguish two components of D according as whether the metric re­
stricted on a transversal disk has a logarithmic pole. If a component of 
D has this. property, we call it a logarithmic component. The conic is 
the logarithmic component with respect to the flat metric (2-46) while 
the line is not. We pick a point, say (0 : 1 : 0), on the conic which is 
not the contact point of D and blow it up. Namely, we introduce new 
coordinates ( s, t) by i = t and f = st. Let r' and er' be holomorphic 
sections of the line bundles defined by the components of the proper 
transform D' of D which vanish respectively on the line and the conic 
components. Note that for any smooth Hermitian metric II· II, 

- - 1l2:'.Jf 
1 - Paalog lio-11 

represents the {; ( Chern form) of the line bundle defined by - E where 
E is the (-1)-curve. We now want to consider a singular Hermitian 
metric in the following way. We consider t as an affine coordinate of C 
centered at En D'. Let </>(ltl) be a smooth positive function of itl such 
that </> ~ const. for itl < c and </> = itl for itl > 2c. Then we choose a 
singular Hermitian metric so that 

ll,'112 

II er' II 
1 

<l>(itl)ls - ti· 
There exists a function b(ltl) with the following properties: 
(i) the function b has a decay estimate 

as t --> oo, 
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(ii) the (1,1) form w0 defined by 

_/1- ll.::.'..ll:.2 ll.::.'..ll:. 1 (2-47) w0 - v -188{(log 11,,.,11 ) - 2(log 11,,.,11 )(log <t>(ltl)) 

+ (1 + b(ltl))ltl 2 } 

is a Kahler metric defined in a neighborhood of D' which is complete 
toward D' and its volume form is approximately Ricci-flat in the sense 
that, if V denotes the standard Ricci-flat volume form on the comple­
ment of D', then we have 

(2-48) 

where f is of exponential decay with regard to the distance from a fixed 
point. 

We note that w0 is prolonged to an ALF asymptotically Ricci-flat 
complete Kahler metric on the complement of D' and the resulting met­
ric fulfills the equation (2-48) with f of exponential decay. 

All the above imply the stability of approximately Ricci-flat Kahler 
potential at infinity under blowing ups of generic points of the conic. 
This leads us to conclude the existence of an ALF asymptotically Ricci­
flat complete Kahler metric on general An-manifolds (note that blowing 
up the conic (n + 1) times gives an An-manifold), which approximates 
the multi-Taub-NUT metric. 

A much simpler way to get a sequence of ALF complete approxi­
mately Ricci-flat Kahler An-manifolds is to start with C2 with the Taub­
NUT metric and take quotients with respect to the standard action of 
Zn C SU(2) (we glue an ALE An manifold to the An-singularity to mod­
ify the orbifold-Taub-NUT metric on the quotient space into a smooth 
metric on the minimal resolution (see [Koll)). 

_.:.L ..... /.\.·_·_·_·····--!'::: 
:_z_ , ' \ .. :- ..... 
• -Z • 
\, . ··. \ ... .. , : 

·----.:~j_: .. ~_./ 
Figure 2 Taub-NUT manifold and An-manifolds 

Next, we examine the effect of blowing up one generic point on the line. 
In this case, the above stability argument breaks down because of the 
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bad property of the metric along the line. Fortunately, the effect is 
essentially replaced by taking the factor space of C x C* with respect to 
the involution 

C X c· :l (x,y) f-------+ (-x, ~)-
y 

The quotient space has two rational double points of type A1. We glue 
two Eguchi-Hanson metrics to the singularities with the fl.at background 
metric (see [Koll) and get an approximate Page-Hitchin metric. 

' -,~ - - -:~ --

\-2 
- _-1 

- ' ,'-
: ' 

Figure 3 Page-Hitchin manifold 

The flat background metric can be written as 

Aa8{(log I~~: 1)2 + ( 1~ 1 )2 } 

in terms of the coordinates (x, y) such that the line and the conic are 
defined by y = 0 and y - x 2 = 0 ( cf. Paragraph 4). If (>,, µ) denote the 
canonically introduced coordinates in a neighborhood of the intersection 
point of the conic and the ( -1 )-curve, then the conic is defined by the 
equation .,\ = 1 and the above metric is written as 

In a neighborhood of the contact point, this can be written as 

Aao{(log I~~: 1)2 +Iii}, 

where the line and the conic are given respectively by y = 0 and y - x -
2 = 0. This implies that the conic is the logarithmic component. So, 
blowing up ( resp. down) successively at generic points ( resp. ( -1 )-curves 
normally crossing with the conic) may produce a series of ALF asymp­
totically Ricci-flat complete Kahler metrics w0 on the Atiyah-Hitchin 
and Dn-manifolds. We can see this in the following way. 



Ricci-Flat K iihler Manifolds 187 

Blowing up a point ,\ = 1, µ = 0 is equivalent to introducing new 
coordinates ( s, t) by ,\ = 1 + st and µ = t, in which the proper transform 
of the conic is s = 0. Let D' be the proper transform of the conic and 
the line. If .JX = 1, then the log part of the flat background metric is 
written as 

/=Ia8(log I (~~ 1l2 1)2. 

We replace t in the denominator by a smooth positive function ¢ with 
the following properties: 
(i) in a neighborhood of the proper transform of the conic, which has 
t as an affine coordinate, ¢ is a function of ltl such that ¢ = const. if 
!ti < c and ¢ = ltl if ltl > 2c, 
(ii) in a neighborhood of the line, which also hast as an affine coordinate, 
¢ = ltl. 

Such ¢ exists because t = oo at the contact point. See Figure 6. 
In coordinate (s,t), we consider the following (1,1) form defined in a 
neighborhood of D': 

(2-49) wo = A{(log I (~~ 1)21)2 + (log I (~~ 1)2 !)(log llr~ll2) 

1 
+ ( 1 + b( I YI ) ) I - I}, 

y 

where r' is a holomorphic section of the line bundle defined by the proper 
transform of the line and the Hermitian metric is chosen so that 

- 1 -
88log llr'll 2 = 288log ¢(1t1)-

holds in a neighborhood of the line and in the direction tangential to 
the proper transform of the conic. Then there exists a smooth positive 
function b(Jyl) of IYI such that 
(i) the function lb(IYl)I decays like IYI log 1!1 as IYI ___, 0, 

(ii) w0 is prolonged to an ALF asymptotically Ricci-flat complete Kahler 
metric in the complement of D', 
(iii) w0 obeys 

(2-50) 

where V is a canonical Ricci-flat volume form in the complement of D' 
and f is of exponential decay with regard to the distance from a fixed 
point. 

We successively perform this process and its inverse to conclude 
that the Atiyah-Hitchin, Page-Hitchin and Dn-manifolds admit an ALF 
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asymptotically Ricci-flat complete Kahler metric w0. obeying (2-50) with 
f of exponentially decay. 

Another way to get a series of ALF complete approximately Ricci­
flat Kahler metrics on Dn-manifolds (n 2:: 3)is the orbifold construction. 
We recall that the standard action of the binary dihedral groups on 
C 2 respects both complex structure and the Taub-NUT metric. Hence 
the factor space r\C 2 admits the orbifold Taub-NUT metric and hence 
(after gluing ALE Dn-manifolds to Dn-singularities) does an approxi­
mately Ricci-flat complete Kahler metric outside the configuration in 
Figure 4. 

' 
' ' 

-i_,/:-::~:r _ .......... :·--·-::r_\-:~:zf-··>: -~x-------· ~n 
----------------' 1-2:' 

., ____ ................................. ::~ .......................................................... ~ .... i .... ;' ____ ., ..... .. 
j l : , 

' .. 
' - -

Figure 4 Dn-manifolds 

0 

~.--.. -1 
-1 \ ·--., 

\ ...... 
-1 

Figure 5 

-1 \ 

Atiyah-Hitchin manifolds 

All of approximately Ricci-flat Kahler metrics defined on An, Dn, 
the Page-Hitchin and the Atiyah-Hitchin manifolds are modifications 
(see (2-47) and (2-49)) of the standard flat metric of C* x C. All of 
them are ALF. Therefore the weighted Sobolev inequality is valid on 
these manifolds, i.e., there exists a positive constant C such that 
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-2 
_______________ - - - t=general 

-- ···-- t=oo 

Figure 6 coordinate t 
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holds for any £\-function f with compact support, where r is the dis­
tance function from a fixed point. Yau [Y] used Sobolev inequality and 
Moser's iteration technique [M] to derive a c0 estimate for the solution 
of a Monge-Ampere equation on a compact Kahler manifold. In [B-K], 
Bando and Kobayashi used the Sobolev inequality for functions with 
compact support to get a c0 estimate on a noncompact manifold which 
is asymptotically a warped product dr 2 + r 2 g. Although the Sobolev 
inequality does not hold for ALF spaces, we have the above weighted 
Sobolev inequality. It is not difficult to modify the arguments of [B­
K] (see also [Ko2]) for these manifolds by using the weighted Sobolev 
inequality instead of the usual one. 

We solve the Monge-Ampere equation 

(2-51) 

with 

(2-52) 

where r is the distance function from a fixed point and V is a canonical 
Ricci-flat volume form on the manifold under consideration. We assume 

(2-53) 0<8<1. 

We define two Banach spaces B 1 and B 2 as follows. B 1 is the Banach 
space of all ck,a functions u such that lul = O(r- 5 ) and its derivatives 

decay as in the definition of c;,"' in [B-K] (see also [Ko2]). B 2 consists 
of ck- 2,a functions f such that Iii = O(r-( 2 Hl) and its derivatives 

decay as in the definition of c;_;;,"' in [B-K]. The reason of this choice 

of function spaces ( the value of 8) is that the function ~ ( 8 = 1) on R3 

is a harmonic function (Green's function), i.e., 6~ = 0 where 6 is the 
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Laplacian of the standard flat metric of R3 and : 6 is superharmonic if 
O < {; < 1. Since an ALF metric is asymptotically dr 2 + r 2 g1 + g2 , where 
g1 is a Riemannian metric of a compact surface and g2 is the standard 
metric of S1 , the function -\- is super harmonic in the asymptitic region 

r 
if O < {; < 1, more precisely, there exists a positive constant c such that 

(2-54) 
1 1 

6- < c6(6 - 1)-rc re 

holds if r is sufficiently large. So the function -!. plays the role of the 
barrier function in the sense of [B-Kj. Let O be the open set of B1 

consisting of those u E B 1 for which there exists a positive number C 
with 

Cwo < w + ./=I88u < c- 1w0 . 

Then we define 

(2-55) 
(w0 + ./=I88u) 2 

u 1---+ log 2 
Wo 

We use the continuity method to solve (2-51 ): <I>( u) = - f. Modifying 
the arguments in [B-K], we can see that there exists a constant C such 
that for a given f E B 2 , we can find a solution u E O for the equation 
<I> ( u) = f with estimate 

llulls, :C:: Cllflls2· 
To show a c0-estimate, we use the weighted Sobolev inequality. The 
condition f = O(r-< 2H)) with O < {; guarantees the existence of an 
a priori L 2P estimate of u for some sufficiently large p. We can start 
Moser's iteration scheme [M] with this estimate. To show decay esti­
mates, we use r- 6 as a barrier function as in [B-K]. 

Theorem 1. Let X be compact complex surface obtained by blow­
ing up P2 ( C) several times. Let D be an anticanonical reduced divisor 
composed of two rational curves with one ordinary contact point and 
without any other intersection. If one of the components of D has self­
intersection number O or 1, then the space X - D is diffeomorphic to 
one of the following manifolds and admits an ALF complete Ricci-fiat 
(hyper-)Kahler metric: 
(i) c2 

(ii) A;-manifolds (i = 1, 2, · · ·) 
(iii) D;-manifolds (i = 0,1,2.···), where Do and D 1 -manifolds are the 
Atiyah-Hitchin manifolds and D 2 -manifold is the Page-Hitchin mani­
fold. 
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2.3. Ricci-flat Kahler metrics on affine algebraic man­
ifolds 
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Let ( xn, D) be a pair of a Fano manifold X and a smooth hypersur­
face Din X. We assume c1 (X) = a[D] with a;:::: 1. In the last section, 
we have constructed an approximately Ricci-flat complete Kahler met­
ric w0 on X - D. In this section, we prove the existence of a complete 
Ricci-flat Kahler metric of the form w = w0 + Ff88u together with 
optimal decay estimates on u. To do so; we solve the Monge-Ampere 
equation 

(2-56) 

where f has decay estimate as in Lemma 6 if a > 1 or (2-21) (i.e., 

If I :::::: e-½) if a = I. We apply the continuity method (see [Bou] and 
[Y2]) to the family of Monge-Ampere equations 

(2-57) t E [O, l] 

We have shown in Section 2 that there exists a Ricci-flat volume form V 
such that f = log ~ fulfills the decay conditions in Lemma 6 if a > 1 

WO 

or (2-21) if a= I. 

2.3.1. The case a > 1 

Let O be an open set of a Banach space c;,a defined by 

0 = {u E c;•"; 3a > 0 with aw0 < w = w0 + Ff88u < a- 1wo} 

and consider the map 

;,;. ·. 0 ck,a 
~ - 2+c5' 

Then (2-57) is equivalent to 

(2-58) P(u) = -tf. 

As in Yau's solution of Calabi's conjecture, we solve (2-56) by the conti­
nuity method. The Sobolev inequality (2-18) enables us to overcome the 
difficulty arising from noncompactness. First of all, u = 0 is a solution 
at t = 0. We want to solve (2-57) at t = 1. It suffices to show the set 

C = {t E [O, l]; (2-57) has a solution at t} C [O, l] 

is open and closed. 



192 R. Kobayashi 

Openness. 
We show that the linearization of <I> has a bounded inverse. The 

linearization of <I> at w = w0 + ,;=I 88u ( u E O) is the Laplacian 6.w 
with respect to the metric w. Since w is asymptotically equal to wo, the 
Banach space c;·"' with respect to w is the same space as that defined 
from w0 and two norms are equivalent. Moreover, Lemma 7 holds outside 
a compact set, if we consider the function p, which was defined from w0 , 

with the background metric w instead of w0 • Set 6. = 6.w. From the 
implicit function theorem of differentiable maps between Banach spaces, 
it suffices to show that there exists a positive number c such that for all 

C k a h • g E 2+8 t e equat10n 

(2-59) 6.v = g 

has a solution V E c;+2 ,a with estimate 

(2-60) 

We solve (2-59) as a limit of Dirichlet problems on relatively compact 

domains in X - D. Since g E c;.;_"8 for a positive number 8, there exists 
a positive number 1 < q = q(8) < n such that g E U(X - D,w). If we 
set,= n:_1 and q' = *1, then we have q' > ,. Suppose vis a solution 

of (2-59) on some relatively compact domain with Dirichlet boundary 
condition. Multiplying the equation (2-59) by -lvlP- 2v and integrating 
by parts (with respect to the volume form o;,7 ), we have 

and hence 

/ I/Jlvl; 1
2 = - 4(:~ 1) / glvlP-2v. 

If p ~ P-1 = q''{_"I > 1, we have from the Sobolev inequality (2-18) that 

(2-61) 
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for some positive constant C independent of g, v, p and domains. Here­
after, C always represents such positive constant which may differ in 
different occurrences. We now have an estimate for the Lg-norm of g. 
Applying the Holder inequality to (2-61), we have 

If p = P-1, then P-1, = -+1-= q'(P-1 - 1) and 1 - 1,-= ..l.._ Setting q --y 'Y q Po 

Po= P-I'Y, we have 

(2-62) 

and thus we have 
v E £P0 (X - D,w) 

with estimate (2-62). We write C instead of Cp_1 in (2-62) from here 
on. Applying again the Holder inequality to (2-61), we have 

q p-q 

:S Cpllgll.f llglloo" llvll;-1 . 

Setting p = Pi = P-1,i+I =Po,;, we have 

(2-63) 

Iterating this process, we have 

(2-64) 

with 0 = -; . Computing the correct value of 0 directly is not easy. Here, 
we compute this by examining the effect of a scale change of the metric. 
Iterating the process (2-63) and using (2-62), we have 

llvllP,+1 :S Cllgll;·llgll~llvll;~ (a;+ bi+ c; = 1) 

:S Cllgll;; 11911~ (a~+ b; = 1). 

Taking the limit i ---+ oo, we have 

for some 0. 
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The scale change w -t aw transforms the equation (2-59) to 

L'iaw(a.v) = g 

with the estimate 

Comparing the exponents of a in both sides, we have 

and hence 0 = i. 
n 

We thus get a global a priori c0 estimate (2-64) for u. To get its decay 

estimates, we refer to Lemma 7. Since g E c;+~' we have from Lemma 
7 that outside a compact set K 

for some positive constant c, provided 8 is small. Hence if A > 0 is 
sufficiently large, we have 

(2-65) 
v + Ap-ti > 0 

v -Ap-ti < 0 

on the compact set Kand 

(2-66) 
.6.(v + Ap- 5 ) ~ (1 - Ac)lgl ~ 0 

.6.(v - Ap- 5 ) ~ (1 + Ac)Jgl ~ 0 

outside of K. The constant A depends on the maximum value of lgl, It 
follows from the classical maximum principle, (2-64), (2-65) and (2-66) 
that for the Dirichlet solutions of (2-59) on all sufficiently large relatively 
compact subdomains, we have 

(2-67) 

This gives a C~-estimate for the solution v of (2-59). The interior 

Schauder estimates [Gil-T, Chapter 6] (cf. Lemma 5) then gives a c;•a_ 
bound for v: 

(2-68) 

Thus .6: c;+2,a -t c;+~ has a bounded inverse with estimate (2-68). 
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Closedness. 
Let u E c;+2 ,o: and w = Wo + ..;=Ta8u. We assume that u fulfills 

the equation ( 46) 

and there exists a positive number a such that 

If we get c;+2 ,o:-estimates independent oft E [0, l] for all k E N and 
a E (0, 1), we are done because of Ascoli-Arzela's Theorem. To get a 
C2-estimate, we argue as in the proof of the openness. Multiplying the 
following equality 

(1 - e-tf)wo = Wo - Wn 

= (-88u) I\ (wo-l + wo'-2w + ... + wn-l) 

by lulP-2u (p 2". P-1) and integrating by parts, we have 

(2-69) 

/(1 -e-tf)lulp-2UWo 

= I -1u1P-2uRa8u I\ (wo'-l + Wo-2w + ... + wn-l) 

= 4(p - 1) / 08lulf /\ Blul f (wo'-1 + Wo-2W + ... + wn-1) 
p2 

2::4(pp~l) /1a1u1f12wo. 

Using the Sobolev inequality (2-18) as before, we have 

(2-70) (/ lulP-Y) f ~ Gp J lfllulp-l 

where we have used the volume form Wo and the Sobolev inequality (2-
18) with respect to w0 • Hereafter we use w0 as a background metric. 
Since (2-70) is formally the same as (2-61), we conclude as before the 
following: 

(2-71) llulloo ~ c11111:11111~0 with 0 = g__ 
n 

So far we have ignored the boundary terms in integration by parts be­
cause of its small contribution. More precisely, we should argue as fol­
lows: 
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Let <PR be a cut-off function such that <PR= I on B(R) and <PR= 0 
outside of B(2R). We consider the equation 

where u is the solution we started with and JR = f on B(R), JR = 0 

outside of B(2R). Since u E c;+2,a, we see that w0 + A8lJ( <jJ RU) > 0 
for sufficiently large R. By the same argument as in the proof of the 
openness, we have 

Letting R -+ oo, we conclude 

with O = <]___ 
n 

For the decay estimate, we use (iii) of Lemma 7. Let K be a sufficiently 
large positive number such that -Kp- 5 < u < Kp- 5 on a compact set 
and -cKp- 2 - 5 < f < cKp- 2- 5 on X - D, where c is as in Lemma 
7. Such K exists because of the c0-estimate (58) of u and the decay 

estimate off E c;+~-Set w0 = w0 + AalJKp- 5 ). Then Lemma 7 

implies w0 :=:; (1- cKp- 2- 5)w0. For such K, we compute 

( 
6.;;; (u - Kp- 5)) 

n log 1 + -~ 0----­

n 

2: log (wo + Aa~~u - K p-5)t =log~: 
wo wo 

2 - f - log(l - cKp- 2 - 5 ) 2 -f + cKp- 2- 5 2 0 

if p is sufficiently large, say p > N. Hence we have 

(2-72) 

for p > N. We may assume u - Kp- 5 < 0 on a compact set p :=:; 2N. 
And at infinity we have u - K p- 5 -+ 0. By the classical maximum 
principle for subharmonic functions, we have 

outside of a compact set. Similarly, we have 
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outside of a compact set. We thus have a crestimate for u: 

(2-73) llulicJ ~ Cllfll!llfii!; 0 with 0 = 2.. 
n 
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We now proceed to get a crbound. To get an ordinary C2-estimate for 
u, we need the Chern-Lu formula (Proposition 11): (cf. Yau's Schwarz 
lemma [Y3]): 

Lemma 13. Let (M,g) be a Kahler manifold, (N, h) a Hermitian 
manifold and f : M-+ N be a holomorphic mapping. Set u = ll8fll 2 . 

Then we have 

.61 Rieg( a f, Eil) Bisecth ( a f, Eil, a f, Eil) 
og u 2: lla/112 - 11°/ 112 · 

Proof. We get the desired inequality if we combine the Chern­
Lu formula with the following Schwarz-type inequality for holomorphic 
mappings: 

This inequality can be seen in the following way. We equip r(i,o) Mand 
T( l ,O) N with the Hermitian connections ( the Kahler condition is that the 
Hermitian connection agrees with the Levi-Civita connection.). Then we 
have the Hermitian connection on T*(i,o) M 0 1- 1r(i,o) N. Using this 
connection, we compute 

llalla/112 112 = ll(g@ r 1h)(D'af,af)ll 2 

( since D" = 8 and / is holomorphic) 

::; IID'a/ll 2 lla/ll 2 -

We use Lemma 13 to id: (X - D,w)-+ (X -D,w 0 ). We note that 

lla/112 = trwwo. 

Since 11 Ric(w)II = (1 - t)il Ric(wo)llwo and II Bisectw0 II is bounded, we 
have from Lemma 11 that 

.6logtrwwo 2: -Ci - C2trwwo 

where .6 = .6w and C/s are positive constants depending only on the 
initial metric w0 • Since 
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we have 

(2-7 4) 

We choose A so that A - C2 > 0. Since log trwwo - Au is bounded by 
assumption, we can use the following Yau's maximum principle [Yl]: 

Fact 2 (Yau). Let M be a complete Riemannian manifold with 
Ricci curvature bounded from below. Let f be a C2 function which is 
bounded from above on M. Then for all c > 0, there exists a point p in 
M such that at p, 

(2-75) lldfll < c, 6.f < c and f(p) > sup f - c. 

Since A - C2 > 0, we deduce from (2-74) and (2-75) that for all 
c > 0 there exists a point p in X - D such that 

logtrwwo(P) -Au(p) > sup(logtrwwo - Au)- c 

c +An+ C1 
trwwo(p) < A_ C2 • 

Letting c --+ 0, we get 

An+ C1 A( . f ) 
suptrwWo < A- C2 e supu-m u = C3. 

Here, we have used the a priori c0 estimate of u. This implies w0 < 
C3 w. Combining this with the equation (2-56), we have an ordinary 
C2-estimate of u: 

(2-76) 

for some positive constant a depending only on wo. We now recall the 
interior Holder estimates for second derivatives of solutions of certain 
fully non-linear elliptic equations: [Gil-T, Theorem 17.14], which we can 
apply to get a c 2,a-estimate for u in terms of the ordinary C2-estimate 
(2-76) of u: 

(2-77) llullc2 ,a < C 

where C is a positive constant depending only on w0 • Suppose there 
exists a solution fort E [0, t0 ) C [0, 1]. Differentiating the equation 

wn 
log - = -tf wn 

0 
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with respect to t ( at t < t0 ), we get 

From (2-76) the Banach spaces c;,a are independent oft < t 0 . Since 

/ E c;-1-~' we first get an a priori c:,a -estimate for ~~ independent of 

t < t0 • We thus get an a priori c;,a-estimate of u. Expressing the 
equation (2-58) in local coordinates 

det(9i:J + ui 1) 
log d ( ) = -tf 

et% 

and differentiating this with respect to zk, we get 

liJ ( ,(j {j) t f 
9 Uk,{j = -g + 9 9i"j,k - k 

where g~1 = 9iJ + ui 1. Applying the interior Schauder estimates and the 

c; ,a -estimate of u, we get a priori c~+2 ,a -estimates of u for l :S k by 

the bootstrapping argument. We thus get an a priori c;+ 2 ,a -estimate 
of u which is independent oft. 

Another way to get a c;,a -estimate for u is as follows. Consider 
a local coordinate system around a point p with dist(o,p) = r which 
appeared in the definition of asymptotically fl.at geometry. Define 

( - ) (-\wo + /=I88v)n 
Fx,aav =log r ( 1 ) 

r2WO n 

If we set v = r 8u and h = r- 2 -s, then the equation (2-56) is written as 

1 - 1 -/ 
-F(x, haav) = - -(ti)= -t(-). 
h h h 

Since we already have an a priori C 2-estimate for u and F(x, 0) = 0, 
the above equation fulfills the conditions of [Gil-T, Theorem 17.15] with 

respect to x and 88v. Now f is estimated, because f E c;:;,a. Thus, 
from the a priori CJ-estimate (2-73), we have a priori c 2,a-estimates 

for v. These are nothing but c;,a -estimates for u. 
This completes the proof of the existence of a complete Ricci-flat 

Kahler metric on X - D with a > 1. We sum up the arguments in the 
following theorems. 
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Theorem 2. Let (X, D) be a pair of a Fano manifold X and a 
smooth hypersurface D in X such that c1 (X) = a[D] with a > 1. As­
sume that D admits a Kahler-Einstein metric. Then there exists a com­
plete Ricci-fiat Kah/er metric on X - D. 

Theorem 3. Let w0 be a complete Kahler metric on an n­
dimensional (n 2: 2) noncompact complex manifold Y. Assume that 
w0 has ck,a -asymptotically fiat geometry with k 2: 2 and O < a < 1 
and the volume of the geodesic ball grows like d2 n. Assume moreover 
that there exists a function p which fulfills the properties of Lemma 4, 
( 1) and Lemma 7, outside of a compact set. If Y admits a Ricci-fiat 

volume form V such that Wo = efV with f E c;+~ and 8 > 0, then 

there exists a c;+2 ,a -bounded function U Such that Wo + Ff_afJu is a 
complete Ricci-fiat Kahler metric. 

Recently Nadel [N], Siu [Sl], Tian [Tl], [T2] and Tian-Tau [T-Y] 
proved the existence of a Kahler-Einstein metric on the Fermat hyper­
surfaces F of degrees n - 1 and n in Pn(C). 

Example 1. Let F be a smooth hyperquadric or a Fermat hyper­
surface of degree nor n -1 in Pn ( C). Then the space Pn( C) - F admits 
a complete Ricci-flat Kahler metric. 

The existence of a complete hyper-Kahler metric on the minimal 
resolutions Y of the Kleinian singularities C 2 /r is a direct consequence 
of Theorem 3, where r is a finite subgroup of SU(2). It follows from the 
remark just after Lemma 7 that the metric is ALE with the curvature 
decay O(r- 6 ). Next we consider the Milnor fiber [Krl] of C 2 /r. The 
compactified factor space P2 ( C) /r has quotient singularities at the ori­
gin and at some points on the image D of the line at infinity. We regard 
the image D as an orbi-curve with the Fubini-Study metric. Since a 
Milnor fiber Y' has the same boundary curve, we can apply the orbifold 
version of the proof of Theorem 2. We thus see that the Milnor fiber 
Y' admits a complete hyper-Kahler metric. Since the curvature is L 2 

integrable, the metric is in fact ALE with curvature decay O(r- 6 ) (see 
[BKN] or Nakajima's survey in this volume.). So, we get an analytical 
interpretation of a part of Kronheimer's result [Krl,2]: 

Theorem 4 (Kronheimer). Let Y' be a Milnor fiber of a Kleinian 
singularity C 2 /r. Then Y' admits a complete hyper-Kahler ALE metric. 

Remark. Kronheimer [Krl,2] classified all ALE gravitational in­
stantons. These are the minimal resolutions of the Kleinian singularities 
and their Milnor fibers. 
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2.3.2. Concentrating Ricci curvature at infinity 

Let (X, D) be as in 2.3.1, namely Xis a Fano manifold of dimension 
n ?: 2 and D is a smooth hypersurface admitting a Kahler-Einstein 
metric such that c1 (X) = a[D] with a > 1. In view of Proposition 9, 
we see that there exists a sequence 'Yi of real closed nonnegative (1,1)­
forms in 21rc1 (X) such that 'Yi -+ 0 outside of D and converges to aD 
as currents (cf. [Gri-Har, Chapter 3]). We now recall Yau's solution of 
Calabi's conjecture [Y2]: 

Fact 3 ([Y2]). Let M be a compact Kahler manifold and 'Y a real 
closed (1, 1)-form in 27rc1 (M). Then in each Kahler class of M there 
exists a unique Kahler form with 'Y as its Ricci form. 

Positive multiples of c1 (X) are Kahler classes of X. We can thus 
solve the problem of finding a Kahler metric Wi in a certain positive 
multiple of c1 (X) with a prescribed Ricci form 'Yi· This is a process of 
concentrating Ricci curvature at infinity. If we take the limit i -+ oo, we 
might reach a limit Ricci-flat Kahler metric on X - D. In this subsection, 
we give an alternative proof of Theorem 2 by showing that the sequence 
Wi in fact converges to a Ricci-fl.at Kahler metric on X - D. 

Lett, 0, V, f and w0 be as in Section 2.2.1 and suppose that the con­
ditions of Lemma 3 are fulfilled. We introduce a small positive number 
t:. Solving the equation 

Ric(we) = -A88log( ll~IIJ1:Ja' 
is ( up to scale changes) equivalent to finding a Kahler metric in a positive 
multiple of c1 ( X) with a prescribed volume form 

(2-78) 

Set 

where 

We =H88G 0 (t) 

=ge(t)0 + g~(t)Aat A 8t 

1 a-1 {o+(a-l)( ~-t )AatA8t} 
(e-t +c:)-;, n e- +t: 

1 
9e = (e-t+c:)"';;:1 

9e = G~(t). 
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Then we is a Kahler metric on X and satisfies 

lim We= Wo 
e--->O 

on X-D. 

By taking a scale change of Ve if necessary, we may assume 

We define a function fe by 

wn 
fe =log½. 

Since D admits a Kahler-Einstein metric Bv, we have 

fe=f+O(c). 

From this we infer that there exists a positive number q with o: - 1 < 
q < n such that 

(2-79) llfellL•(X,w,) < a constant independent of c. 

By [Y2], there exists a unique elliptic solution to the equation 

(2-80) 

with the normalization condition 

(2-81) 

Thus the prescribed Ricci form 'Ye of the Kahler metric We We + 
-J=Ta8ue is 

( 1 1 2 - 2) 
'Ye= O:c 110"1l2 + c B + l10"112(110"112 + c)2 8110"1I /\ 8110"11 > 0 

which concentrates along D ( at infinity) in the limit c ---+ 0. 

Gallot's isoperimetric inequality [Ga] implies that the Sobolev con­
stant c in (2-17) for functions with ff = 0 on a compact Riemannian 
manifold ( M, g) of dimension n is bounded below by 

V(g)¼ 
D(g) G(n,D(g)p(g)) 
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where V(g), D(g) and p(g) stand for the volume, diameter and the lower 
bound of the Ricci curvature of g. A direct computation shows that the 
quantity V 2'n / D is uniformly bounded for the family of Kahler metrics 
w,. So the Sobolev constants in (2-17) for functions f with ff = 0 are 
uniformly bounded for the family of compact Kahler manifolds (X, w,:). 
In particular, there exists a positive number c such that the Sobolev 
inequality (2-18) 

(2-18) C (! I/I n2
" 1 ) n:l ~ / ldfl2 

for C 1-functions with J fw";: = 0 holds for all (X,w,). 

Since, for some q < n, there is a Lq(X,wc:)-bound (2-61) for f, 
independent of c, the same argument as in the proof of Theorem 2 ( cf. 
"Closedness" part) gives us an a priori C0-estimate for the solution u, 
of (2-62) and (2-63) which is independent of s. We then get Cw, < w, < 
c- 1w, for a positive constant C independent of c by the same argument 
used in deriving an ordinary C 2-estimate in the proof of Theorem 2. 
The Holder estimates for second derivatives [Gil-T, Theorem 17.14] and 
the interior Schauder estimates imply that we get a smooth function 
u0 = lim,_, 0 u, on X - D. If we further apply the arguments in the 
proof of Theorem 2, we get the decay estimates for u0 = lim,_, 0 u,. 
This completes an alternative proof of Theorem 2. 

Theorem 2 corresponds to the limit of the procedure of concentrating 
whole Ricci form at infinity. It would then be natural to ask what occurs 
in the limit of concentrating only a part of Ricci form at infinity. To 
describe this process, we introduce a Kahler metric w,, 8 on X which is 
defined by replacing a by a - 8 in the definition of w" where 8 is a small 
positive number such that a - 8 > 1. Then we solve the Monge-Ampere 
equation 

~ - n _ 1117112 a 

(w,,8 + y -1.00U,,o) - (lluii2+,)a-6 V, 

where the Ricci form of the left side is given by 

Set w,,8 = w,,8 + F[88u,, 6 . Arguing exactly in the same way as 
above, we take the limit s --+ 0 to get a complete Kahler metric wo,8 = 
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limc-+O wc,o on X - D with 88 > 0 as its Ricci form. Clearly the complete 
Kahler manifold (X - D, wo,o) has ck,0 -asymptotically flat geometry for 
any admissible (k, o:). 

Of course the complete Kahler metric w0 ,8 is also obtained by solving 

where the background metric w0 ,6 = lim,: ..... 0 w0 , 8 is a complete Kahler 
metric with Kahler potential 

( ( o: - /j - 1 )t ) exp ----- . 
n 

Taking the limit /j ---+ 0 in the above process, we again get a complete 
Ricci-flat Kahler metric in Theorem 2. We sum up the above arguments 
in the following Theorem. 

Theorem 5. Let (X, D), o: be as in Theorem 2 and B a curvature 
form of L D which is positive definite everywhere on X and the restriction 
BD to D is a Kahler-Einstein metric. Suppose /j is a nonnegative number 
with o: - /j > 1. Then there is a smooth family of asymptotically fiat 
complete Kahler metrics w6 on X - D with positive Ricci-form 88 for 
/j > 0 and Ricci-fiat for /j = 0. 

Note. Recently Yeung [Ye] constructed more general examples of 
complete Ricci positive Kahler metrics on affine algebraic manifolds by 
a similar method of [B-K]. Yeung 's theorem gives examples of Ricci pos­
itively curved complete Kahler manifolds treated recently by Mok [Mok]. 

2.3.3. The Case o: = 1 and a geometric picture of de­
generation of Kahler-Einstein metrics of K3 sur­
faces 

Throughout this section, we work on the complete Kahler manifold 
( X - D, wo) where X is a compact complex manifold with positive first 
Chern class, Dis a smooth hypersurface with c1 (X) = [D] and w0 is a 
complete Kahler metric (2-19) on X - D arising from Calabi's construc-

tion. We assume that f = log !;
0
n satisfies (2-21) and so f E C~'~ for 

2, 

any admissible (k, o:). Let /j be a sufficiently large positive number. Let 

0;·0 be an open set of a Banach space c;,a defined by 

o;,a = {u E c;,"; :la> 0 with awo < w = w0 + 088u < a- 1wo} 
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and consider the map 

If u E c;,a for sufficiently large 6, then iI>(u) is contained in a "hyper­

surface" in c;;i'0 defined by a single equation 

f (e{>(u) - l)wo' = 0. 
lx-D 

The tangent space at if> ( u) is a closed subspace of c;;t' given by an 

equation 

which is equivalent to 

r gwn = 0. 
lx-D 

We want to solve the Monge-Ampere equation with integrability condi­
tions: 

( 2-82) 

iI>(u) = -f 

f ( e - I - l )wo' = 0 
lx-D 
r (e-f - l)wo' = O(e-Rn2+1 /2) 

jB(R) 

in a;,a for sufficiently large b and any admissible (k, a). Note that 

f E C½~2 ,a C c;-2 ,a. The decay estimate for f B(R/ e-f - 1 )w0 follows 

from the definition off and (2-21). 

From here on we assume that f is an arbitrary function in C~~ 2 ,a 
2, 

which satisfies the integrability conditions in (2-82). 
We want to show 

for any sufficiently large b > 0. We show this using the continuity 
method as in subsection 2.3.1., namely we consider the family of equa-
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tions with integrability conditions: 

il>(u) = log(l + T(e-f - 1)) 

(2-83) 
{ (e- 1 -l)w 0 =0 

lx-D 
{ (e-f - l)wo = O(e-Rn2+1 /2) 

JB(R) 

for T E [O, 1] and set 

C = { T E [O, 1]; (2-83) has a solution in o;,a}. 

Clearly O E C. To show 1 E C, it suffices to show that C is open and 
closed. We first consider the openness. 

Openness. 
To prove the openness, it suffices to show that the linearlization of il> 

has a bounded inverse. The linearlization of il> at u E o;,o: is the Laplace 
operator 6.w with respect to the metric w. Since w is asymptotically 
equal to w0 , the Banach space c;,o: defined from w is the same as that 
defined from w0 and two norms are equivalent. Set 6 = 6.w. It suffices 
to show the following Lemma 14 to prove the openness. 

Lemma 14. For any g E c1-;;2 ,a there exists a function v which 
2, 

vanishes at infinity and v E c;,o: for all sufficiently large positive number 
8 which solves the Poisson equation with the integrability condition: 

6.v =g 

(2-84) 
{ gw; = 0 

lx-D 
{ gw0 = O(R-,. 2+1 /2) 

jB(R) 

with estimate 

(2-85) 

where C 5 is a positive constant depending only on ( X - D, w) and 8. 

Proof. Let o E X - D be a fixed point and set p(x) = dist(o, x). 
To show the Lemma 14, we first solve the Dirichlet problem on B(R) 
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( the geodesic ball of radius R with center o): 

(2-86) 
6.VR = 9 

VRIB(R) = 0 
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and then let R -+ oo. If we would apply Moser's iteration technique to 
(2-86) with the help of the weighted Sobolev inequality (2-22) to derive 
an a priori c0-estimate for VR independent of R, the radial function 
t¾ would become an obstruction, since 6.t¾ is of exponential decay. 
This forces us first to estimate Green's function and then use Green's 
representation for the solution v R 

(2-87) v(x) = r GR(x,y)g(y)dµ(y) 
JB(R) 

where GR(x,y) is the Dirichlet Green's function for the domain B(R). 
As a function of y, GR(x, y) has a pole at x and positive. Therefore what 
we want to do is to analyze the behavior of GR ( x, y). More precisely, 
fixing x, we divide X-D into two parts U1 and U2 , where U1 is a compact 
part defined by p(z) < ½p(x), U2 is an asymptotic region defined by 
¼p(x) < p(z). Then we find a constant aR for each R with a growth 
estimate of the form 

(2-88) 
2 2 1 

laRI:::; c(n,p(x))Rn+ 1 (logR)(loglogR) -;;-

such that GR(x,y) - aR, as functions of y, converges uniformly on any 
compact set in X - D - { x} (We write c( n, p( x)) for a positive constant 
depending only on n and p( x) which differs in different occurrences, 
etc.). To get an effective estimate for limR-+oo(GR(x,y) - aR), we first 
use the weighted Sobolev inequality (2-22} to estimate aR and then 
we apply Cheng-Yau's local gradient estimate [C-Yl] to conclude that 
limR-+oo(GR(x,y) - aR) grows at most like 

(2-89} I lim (GR(x,y) - aR}I:::; c(n,p(x}}P(Yr° nd n 
R-+oo 

1 

on U2 • Since the diameter of 8B(R) grows like Rn+1 , successive use 
of Cheng-Yau's local gradient estimate and the maximum principle for 
harmonic functions imply an estimate on the compact part U1: 

(2-90} 

for any positive number 6. 
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We begin with deriving estimates for Dirichlet Green's function. Re­
call that, in [M-S-Y], it is shown that the Sobolev inequality, Harnack 
inequality and the Euclidean volume growth imply Green's function es­
timate. Now we have no Sobolev inequality and small volume growth. 
This time, we use the weighted Sobolev inequality (2-22) and Cheng­
Yau's local gradient estimate (see Yau's survey [Y4] for the importance 
of the gradient estimate). 

We follow Aubin's textbook [Au] to construct Dirichlet Green's func­
tion on a compact Riemannian manifold with boundary. Let Mm be a 
compact Riemannian manifold of dimension m with boundary. Fixing 
PE M, we set r(P, Q) = dist(P, Q). Let f(x) be a smooth nonnegative 
function on R such that f(x) ~ 1 in a neighborhood of O and f(x) ~ 0 
if x 2: Inj(P), where Inj(P) is the injectivity radius at P. Define 

H(r) = f(r) r:m_2 , 

where l:z:-~j~-• is the Green's function of Rm. Then we have 

in a small neighborhood of P (the size depends on the choice off only) 
and 

outside a small neighborhood of P. Set 

f1 (P, Q) = 6.qH(P, Q) 

and define ris, ( i = 1, 2, · · ·) recursively by setting 

Then it is easy to show that all ri(P, Q) vanishes if Q E fJM. It follows 
from the estimates for 6.qH that ri(P, Q) is C 1-smooth if i > T· Pick 
k > T and set 

k 

(2-91) G(P, Q) = H(P, Q) + L f;(P, Q) + F(P, Q). 

Then we have 

(2-92) 

i=l 

6.qF(P, Q) = fk+ 1 (P, Q), 
F(P, Q) = 0 if Q E fJM. 
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Suppose Mm = B(R) C X - D, P = x, and Q = y. Then we have 
G(P, Q) = GR(x, y). Set H(P, Q) = HR(x, y), I';(P, Q) = r R,;(x, y), 
r = rk+1 and F(P, Q) = FR(x, y). Then we can estimate HR(x, y) and 
rR,;(x,y)'s quite explicitly because of Lemma 10. Set p(z) = dist(o,z) 
and p( x) = p0 , where o is a fixed point. We estimate the maximum of 
IFR(x, y)I on B(R) using Moser's iteration technique, where R >> p(x). 
The weighted Sobolev inequality (2-22) and integration by parts imply 
that for p > 1 

(/ 
2n 1 ) ~ p-n+l --IFRIP'Y 

log p 

(2-93) 
--5:_C J pn! 1(logp)(loglogp) 2-¼ldlFRlt12 

--5:_CR n!, (log R)(log log R) 2-¼ / ldlFRI f 12 

--5:_CRni, (log R)(log log R) 2-¼ 4(:: l) / II'IIFRlp-l. 

Fix 1 < q < n and define p = P-I by PP--=r1 + ¼ = 1 ¢? p = q<;:~qI). Then 
we have p_ 1 > q. Set p0 = P-i r- Holder's inequality implies 

2 1 p 2 (/ 2n 1 ) PP-.,
1 

$_ CRn+ 1 (logR)(loglogR) 2 -;;-___ p-n+ 1 --IFRIP'Y " 
4(p -1) logp 

(/ 
2n ~ )¼ {pn+1logp} p-y 1r1q . 

Thus we have 

(2-94) 

where C depends also on the choice of 1 < q < n. Applying Holder's 
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inequality to (2-93), we have for any p > q 

(2-95) 

Setting p = Pi = p0 ,..,/ = p_ 1,i+l, we have from (2-95) the following 
recursive inequality: 

(2-96) 
2n 1 _1_ 

ll{p-n+l -}Pi+l FRII . ::::; log p P,+1 

{ C Rn! 1 (log R)(log log R) 2-¼p;}-:;-. 

It follows from Lemma 10 that 

n-1 
(2-97) 1r1 ::::; Cn(Pon+I )2n. 

Iterating the process (2-96) with (2-97) and the initial estimate (2-94) 
and letting i --. oo, we have 

(2-98) 
2n q 

IIFRlloo ::::; CnPo! 1 (log Po)(p~+i )2n ( nl-1) q ,;:-Rn!l (log R)(log log R) 2-¼ 
Pon+1 

= c(n, Po)Rn! 1 (log R)(log log R) 2-¼, 

2(n. 2 -2n-2) 

where c( n, Po) = CnPo n+i 
We choose a positive constant aR such that FR - aR takes its max­

imum value -1 at a point in Supp(r). The estimate (2-88) is now a 
consequence of (2-98). We now recall Cheng-Yau's local gradient esti­
mate [C-Yl]: 

Fact 4 [Theorem 6, C-Yl]. Let M be an n-dimensional complete 
Riemannian manifold. Let f be a non-negative differentiable function 
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defined on a geodesic ball B( a) of radius a. Suppose, for some c > 0, 
there are constants m 1 , m 2 , • • • , ms such that 

I (/\f)I 1 Li,jfli ~ I I ( 
"v u. ::; 2n l"v fl + m1 ~ Ti' !ii+ m2 "v f + m3 f + c), 

(2-99) 

1 IV /12 

D.f::; 4(2n+l) f+c +m4l"v/l +ms(f +c). 

Then we can find a constant an depending only on n such that 

(2-100) 
IVf(x)I 

f+c 

where r is the distance from x to the center of B(a) and K is the lower 
bound of the Ricci curvature of B(a). 

Now we have D.F = r, where r has compact support around x and 
can be estimated explicitly. Thus Cheng-Yau's local gradient estimate 
(2-100) implies that IFR - aRI, as a function of y, grows at most like 
some positive power (depending on n only) of p(x)p(y). So we have 
(2-89). Next, we examine the behavior of FR - aR in the compact part 
U1 . It follows from Cheng-Yau's gradient estimate that IFR - aRI is not 
larger than (p0 d)con•t n at any point which has distance d from Supp(f). 
Therefore we have 

on a geodesic sphere, where a is a positive number with a < 1. We 
write this constant constn = Cn, say. Since FR is harmonic outside of 
Supp(r), we have from the maximum principle 

on a geodesic ball. We now use Cheng-Yau's gradient estimate on the 
geodesic ball ofradius ap 0 (for some a< 1) contained in B(apo)- Since 
FR is harmonic there, we set m1 = m2 = · · · = ms = 0 in (2-99) 
and (2-100). Moreover, the Ricci curvature of w0 decays exponentially. 
Cheng-Yau's gradient estimate then implies that at the center of the ball 

l
"F' I constn Cn-1 
V R ::; --pO , 

a 
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1 

Since the metric sphere of radius Po has diameter p0+1 , we have for 
appropriate /3 < 1 

Notice that -1 + n~l < 0. Iterating this process, we have the series 
of estimates (2-90). This implies that the Dirichlet Green's function 
GR ( x, y) ( R > > p( x)), as a function of y, approaches a constant in the 
compact region p(y) < ½ p( x) inverse polynomially of any order with 
respect to p(x) = p0 • The estimates so far obtained for Green's function 
is already sufficient to derive an a priori decay estimate for VR· 

(2-101) 

v(x) = f GR(x,y)g(y)dµ(y) 
jB(R) 

k 

= f H(x, y)g(y)dµ(y) + f ~ ri(x, y)g(y)dµ(y) 
j B(R) j B(R) i=l 

+ f F(x,y)g(y)dµ(y). 
jB(R) 

Since g(y) is of exponential decay, the first two terms in the extreme 
right side is of exponential decay with respect to p0 • The third term is 
written as 

an f g(y)dµ(y) + f (FR(x,y) - an)g(y)dµ(y) 
jB(R) jB(R) 

= aR f g(y)dµ(y) + f (F - aR)gdµ + f (F - aR)gdµ. 
J B(R) lu1 lu2 

The integrability condition in (2-83) implies that the first term in the 
right side is of exponential decay with respect to R. Since g is of exponen­
tial decay, the third term decays exponentially with respect to Po· Now 
the oscillation of Fn(x, y) in y E U1 is of order C5p0° for any positive 
6 and IFn(x, y)I :::; Const ·Poonstn. Moreover, the integrability condition 

-2.!L 
implies that the integral of g over B(p 0 ) is of order exp(-p;+ 1 /2). It 
then follows that the second term in the right side of (2-102) is of order 
C0e- 0 • We thus have a decay estimate for the solution of (2-84). We 
get decay estimates of derivatives from the interior Schauder estimates, 
using the coordinates in Lemma 11. 
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The estimate (2-98) suggests that IFR(x,y) - aRI grows like 

c{n,p 0 )pnt 1 (logp)(loglogp). This is in fact the case, which we show 
in the following. First we observe 

Lemma 15. The radial function t¼ is almost a harmonic func­

tion, namely !:::,.t ¼ is of exponential decay. 

Proof. 

F'[88t 0 = a:t0 - 1 {(no: - n)(B + Ff at I\ 8t) - (no: - n - l}B} 
nt 

implies 

6t 0 = (1 + .!:._ )- 10:ta.-I-¼ {(no: - n}n - (n - l}(na: - n - 1)} + E 
n 

= {1 + .!:._ )- 10:t0 - 1-¼(na: - 1} + E 
n 

where E is a nonpositive exponential decay term. Putting a: = ¾, we 
get the Lemma. 

Lemma 15 and the proof of Lemma 14 imply that there exists a 
smooth function w which decays polynomially of any order 

such that Fo = t ¼ + w is harmonic in the complement of a compact set. 
Since t¼ is a radial function, we can modify F0 to be a function such 
that 

D O 'f 2 r O = const . > 1 p < 3 Po 

6Fo ~ p0°n•t > 0 if y E U(x) = { ~Po < P < ~Po} 

and Fo grows like a radial function t¼. We may assume that FR(x, y) > 
0 for y E U(x) by adding constn p~0 n• tn if necessary. From Green's 
representation formula for the Dirichlet problem on a geodesic ball B(R), 
we infer 

pgonst + Rnti '.S inf( ) FR(x, y) · p0°nstVol(U{x)). 
yEU a: 

This and Cheng-Yau's gradient estimate then implies that 

sup FR(x, y) '.S const .p~0 n• t n Rntl 
yEU(a:) 
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which improves (2-98). Since F0 is really a harmonic function 

which grows like t ¼ :::::: p n! 1 , the standard comparison argument ( cf. 
the proof of Theorem 2) implies that the function IFn - anl grows like 
constn p~onstn p n!1 . 

If the "weight" which appears in the right hand side of the weighted 

Sobolev inequality (2-22) is simply p n! 1 instead of p n! 1 (log p )(log log p ), 
then the estimate for an becomes better: 

2 

an::; c(n, Po)Rn+i. 

As before, successive use of Cheng-Yau's gradient estimates yield oscil­
lation estimates for Fn in the compact region U1 . Since there exists a 

2 
function which grows like pn+1 and is harmonic outside of a compact 
set, the standard comparison argument then implies the best possible 
estimates for Fn - an. 

Closedness. 

We first modify the weighted Sobolev inequality (2-22) so that the 
2 

weight in the right side is p n+1 . The weighted isoperimetric inequality 
is equivalent to the weighted Sobolev inequality 

(2-101) 

(/ P- .. 2+110~plul 2:'.'..i) 2

~;;-

1
::; Cw(wo) j p-;::;:~(loglogp) 1-.';.jduj. 

where Cw(wo) is the weighted isoperimetric constant of w0 • Let w be 
2n.-l 

a compactly supported function and set u = ¢,(p)jwj..-=r in the above 
inequality. From Holder's inequality, we have 
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and 

(2-103) J p<+i (log log p) 1 - 2'n </>lwl n':.l ldwl 

::; (/ p-n 2+1(loglogp) 2-¼¢>21wl/'.',) ½ (/ pn! 11dwl2 ) ½ 

We put ¢> = <f>(p) where ¢> = </>(p) is a decreasing function that satisfies 

with e > 0 and N > 0. If we choose e > 2n1_2 and N > 0 sufficiently 
large, we have 

(2-104) 
lf/ n 1 1 2 n Wo 

( ( 
,1/ ) 2n) ...L C ( ) J l~lpn+1(logp) 1-2n(loglogp) 1-~ < w2 

and 

2 1 2 1 2n 
(log log P) -;; </> < -<f>2n-l, 

log p 
(2-105) 

If we put u <f>w in (2-101) and apply Holder's inequality, the esti­
mates (2-102), (2-103), (2-104) and (2-105) imply a weighted Sobolev 
inequality: 

Proposition 13. Let (X - D,w 0 ) be as above. Then there exists 
a positive decreasing function </> = <f>(p) such that 

for some positive numbers e and N which fits into the weighted Sobolev 
inequality 

(2-106) 

for any compactly supported C 1 -function w, where C is some constant 
independent of w. 

We may assume that in (2-106) the weight in the right side is a 

harmonic function outside a compact set which grows like pn!1 :c:o t-¼. 
We use this inequality to derive an a priori c0 estimate for the solution 
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u E c;,a (8 is sufficiently large) of the Monge-Ampere equation (2-83). 
We first observe that (2-82) implies 

So we have D.u:::: n(e -nt -1). Arguing as in the proof of openness using 
Green's representation formula, we get an a priori majorant for -u: 

(2-107) 

The majorant of u decays inverse polynomially with sufficiently large de­
gree ( as one likes). Therefore we may assume that u is positive provided 
we replace the exponential decay of f and the integrals in (2-82) by in­
verse polynomial decay of sufficiently large degree. From here on until 
obtaining an a priori C0 estimate for u, we will work on this assumption. 

Let p > 1. Since 

and 

(1 - e-f)wo = Wo - Wn 

= -/=I88u I\ (w0- 1 + w0-2w + · · · + wn-l ), 

we have 
(2-108) 

p2 J pnt1 (1 - e-f)ululp-2Wo 
4(p - 1) 

=fpnt1{ -p /=I88(1ulp-2u2) 
4(p - 1) 

+ /=I8lul f I\ 8lul f }(w0-1 + ... + wn-1) 

:::: J pnti ldlul; l2wo 

- p J pntl /=I88(1ulp-2u2) /\ (wn-1 + ... + wn-1) 
4(p - 1) o · • 
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Since u E c;,o: for sufficiently large 6, integration by parts gives 

(2-109) 

We first consider the case n = 2. Then we divide the right hand side of 
(2-109) into two integral: 

(2-110) 

2 

where we may consider p n+1 as a harmonic function outside a compact 
subset, and 

p J lulv-1u/=I88pn! 1 I\ /=I88u 
4(p ~ 1) 

p 2 J - 2 p + 1 - 1 
=-,-----,----,--- /=I88pn+1 I\ {-/=I88(lulP- u) 

(p+ 1)2(p - 1) 4p 

(2-111) P+l - P+l - /=I8lul-2 I\ olul-2 } 

CJ 2 P+l 2 2 s-;; pn+1 ldlul- 2 I P-

S:~ J P;;¼,-lulldlulfl2p- 2 • 

From (2-108), (2-109), (2-110) and (2-111), we have the most fundamen­
tal inequality 

(2-112) J pn!1 !d!ui f 12 S: Gp J pn!111 - e-'ilulv-1 

+CJ l6pn! 1ilulP+ ~ J pn!i1u!idlulf1 2 • 

Set !lu!!00 = A and suppose pis large enough so that 

(2-113) 
AC 1 
-<-. 

p 2 

Under this assumption, the third integral in the right hand side of (2-
2 

112) is absorbed in the left hand side. Put B = ll6pn+ 1 !loo· Then 
B is an a priori constant determined by the background metric Wo. 
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Write g(p) = ¢(p) 2 ~'::. 1 in (2-106). Under (2-113), the weighted Sobolev 
inequality (2-106) implies 

(2-114) (/ 
2n 1 ) ~ p-n+l -g(p)lulP1' 

logp 

/ 

2 1 ABC 1 :::; Gp pn+l (11 - e- I+ -p-x)lulp- , 

2 2 
where x is the characteristic function of 6.p "+1 ( we regard p n+1 as a 

function that is harmonic outside a compact set and grows like p .. ti ). 
We choose p = p_ 1 > 1 so that (2-113) holds and define q by~+¼ = 1. 

Put Po = P-1,- Applying Holder's inequality to (2-114) gives 

-2n 1 1 

(2-115) ll{P"+1 -1 -g(p)}PDullPo 
ogp 

{ 
2n (l 1+1)(logp)) 1-¼} 1 ABC :::; CP-111 pn+i -. ;. -- (11 - e- I+ --x)llq, 

g(p) P-1 

where p_ 1 is of order llulloo = A up to multiplication of a priori constants 
and so ABC is of 0(1) as A ----t oo. It follows from (2-115) that the left 

P-1 
hand side is bounded above by A up to multiplication of a universal 
constant. Applying Holder's inequality to (2-114), we have a recursive 
inequality: 

-2n 1 1 1-..l.. 

ll{pn+l logl(p)}Piullp; Pi l 

where Pi= Po,i. We iterate the process (2-116) with the initial condition 
(2-113) :_~ < ½ and the corresponding (2-115) and let i ----t oo. Then 
we have 

(2-1171) 

where a1 is a positive number with a 1 < 1 that depends on A, and 
K1 > 0 is a positive constant bounded above by a constant Ko depending 
on wo and f only (independent of A). We then repeat the iteration 
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method with the initial condition KA O c < -21 and the corresponding 
P-1 

(2-115). We then have 

Iterating this process, we have 

llulloo :s; di: Kp:,+i a; )AIT:'=1 "'•. 

i=l 

Since K and a decrease as A decreases, we let m -+ oo to get 

(2-117 00 ) 

where a 0 is a universal constant with a 0 < 1, so Jin the right hand side 
is a universal constant. Examining the behavior of K:s in the iteration 
process, we have 

(2-118) llulloo :s; C(f), 

where C(f) depends on w0 and f only and as C(rf) -+ 0 as r -+ 0. 
We thus get an a priori c0 estimate for u in the case n = 2. Next, we 
consider the case n 2: 3. But if we note that the difference between n = 2 
and n 2: 3 lies essentially in the fact that ( 2-111) should be replaced by 

we can argue in a similar way to get an a priori c0 estimate of u. 

Once we get a c0-estimate, arguing just as in [B-K, Lemma 4] using 
the Chern-Lu formula (see the arguments below Lemma 13), we obtain 
an a priori constant C independent of r E [O, 1] such that 

(2-119) 

which is an ordinary C 2-estimate for u. From Lemma 10, (X - D,w 0 ) 

has quasi bounded geometry. Applying the Holder estimates for the 
second derivatives of a solution of a fully non-linear elliptic PDE [Gil­
T, Theorem 17.14], we get an ordinary C 2,°'-estimate in terms of the 
ordinary C 2-estimate (2-119) for u. Suppose that there exists a solution 
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to (2-84) for r E [0,r 0 ) C [0,1]. We can reach such a situation by 
successive applications of the implicit function theorem ( cf. Lemma 14). 
Differentiating the equation 

~(u) = -Tf 

with respect to r, we have 

(2-120) 

where w = w0 + /=I88ut. 
Since we have an ordinary C 2 •0 -estimate for u, we have the weighted 

Sobolev inequality (2-106) for w with the same constant as that for wo. 
We also have c0,0 -estimate for the coefficients of 6.w. Applying Lemma 
14 (decay estimates) to (2-120), we have decay estimates 

(2-121) 

for any positive 6. Integrating (2-121) with respect to r with the initial 
condition u( r = 0) = 0, we obtain a decay estimate {independent of 
r E [0, 1]) for u, which implies that u is of inverse polynomial decay of 
any order: 

(2-122) 

independent ofr. We then apply [Gil-T, Theorem 17-15] as in the proof 
of Theorem 2 to get a desired a priori estimate 

{2-123) 

Theorem 6. Let X be a Fano manifold and D a smooth hyper­
surface such that c1 (X) = [D]. Then the Monge-Ampere equation {2-82) 
with f E c!~2'0 (k ~ 5) has a solution u E c;,a for any positive number 

2' 

6. 

Theorem 7. Let X be a Fano manifold and D a smooth hyper­
surface such that c1(X) = [D]. Then there exists a complete Ricci-fiat 
Kahler metric w = w0 + /=I88u on X - D where u E c;,a for any 
admissible (k, a) with k ~ 5 and any positive 6. 
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Example 1. Let (X, D) be a pair of a cubic surface X with at 
worst simple singularities and a smooth hyperplane section D c Reg(X). 
Then X - D admits a complete Ricci-flat Kahler orbifold-metric. 

Example 2. Let (X, D) be a pair of a del-Pezzo surface X with 
at worst simple singularities and D a smooth curve in Reg(X) with 
c1 (X) = [D]. From the asymptotic behavior of w0 and a priori estimates 
for u, we have 

(2-124) - 1 f IIRll2 = e(X - D) - " (e(E ) - - 1 ) 
8rr2 lx-D ~ P IG I 

pESing(X) P 

where R is the Riemann curvature tensor of w, Ep (resp. Gp) is the 
exceptional set of the minimal resolution (resp. the local fundamental 
group) of p and e(·) stands for the Euler number. In particular, (2-124) 
gives an upper bound for the number of simple singularities in X - D. 

Example 3. Let (X, D) be a pair of a compact complex surface X 
with at worst simple singularities and a cycle D of rational curves which 
supports an ample divisor. Assume that c1 (X) = [D]. For instance, 
X = P2 ( C) and D = three lines or D = the nodal cubic curve. Then 
we can modify the proofs· of Theorem 1 and Theorem 7 to show that 
there exists a complete Ricci-fiat Kahler metric on X - D with quadratic 
volume growth. See [K3]. 

In the following examples, we propose a geometric picture of the de­
generation of Kahler-Einstein K3 surfaces. Although the mathematical 
footing is still vague in some points, we believe that our existence theo­
rem (Theorem 7) gives the first step toward understanding the singular 
perturbation of Kahler-Einstein metrics when K3 surfaces degenerate. 
We start with Friedman's point of view, namely, seeking the geomet­
ric objects corresponding to the toroidal compactifications of the coarse 
moduli space of polarized algebraic K3 surfaces (see [A-M-R-T], [B-B], 
[Fr] and [Gri]). 

Example 4. Let X - Ll. be a type-II degeneration of polarized K3 
surfaces such that the singular fiber over O consists of XU Y glued along 
a smooth elliptic curve C, which is an anti-canonical divisor in each (see 
[Ku], [P-P] and [Fr]). An example arises in the following way. Consider a 
family of sextic curves in P2 ( C) and suppose that Dt is smooth for t =I-0 
and Do is a smooth cubic curve of multiplicity two. Set X' = UtE~x:, 
where x: is the d01_;_ble plane branched exactly along Dt. Note that 
generic x: is a smooth K3 surface with a polarization of degree 2 (the 
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lift of the line in P2 ( C)). The singular fiber X6 = X' U Y' consists of 
two P2 ( C) 's glued along a smooth cubic curve Do. Note that X' has 
generically eighteen ordinary double points (i.e., A1 singularities) on the 
double curve in X 0 • We take small resolutions over these 18 points to 
get a smooth family X = UtE6.Xt ...... .6,.. Two possibilities in the choice 
of small resolutions corresponds to blowing up these points in X' or 
Y'. According to Friedman (see [Gri, p.205-206] and [Fr, Section 5]), 
there are essentially four possibilities for extending the polarization h of 
degree 2 on X 0 =XU Y. We first look at those (-1)-curves C among 
eighteen with h-C > 0. Only those have a meaning from the polarization 
point of view. It will turns out that those ( -1 )-curves with h · C = 0 
correspond to the Taub-NUT instantons bubbling-off at infinity. The 
four possibilities arise as follows (see [Gri, p.205, Fig.3]: 

(i) Take X = Y = P2 (C) and D, a smooth cubic curve, as a double 
curve, and h = a line in each component. 
(ii) Take two copies of P2 ( C) and a smooth cubic curve D as the double 
curve. In each component take cubic curves passing through 8 points 
on D with coincident ninth point and blow up resulting 16 intersection 
points on D in their appropriate components. Let X and Y be P2 ( C) 
with their 8 points blown up. The general member of h is the sum 
of the proper transforms of the cubics with 8 base conditions in each 
components (with self-intersection number 9 - 8 = 1). 
(iii) Start as in (ii). Take cubic curves in one component passing through 
7 points on D and lines in the other passing through one point. Sup­
pose the residual two intersection points for each curve are coincident. 
Blow up distinct 8 intersection points in their appropriate components. 
Let X (resp. Y) be P2 (C) with 7 points (resp. one point) blown up. 
The general member of h consists of a smooth elliptic curve in X with 
self-intersection number 2 (the proper transform of a cubic with 7 base 
conditions) and a rational curve in Y with self-intersection number 0 
(the proper transform of a line with one base condition) intersecting on 
D at the residual 2 points. 

(iv) Start as in (ii). Take conics in one component passing through 2 
points and twice the linear system of lines in the other passing through 
one point. Suppose that each curve intersects D with coincident another 
4 points. Blow up these 3 base points in their appropriate components 
and let X ( resp. Y) be P2 ( C) with 2 points ( resp. one point) blown up. 
Then the general member of h consists of a rational curve in X with self­
intersection number 2 and two rational curves in Y with self-intersection 
number O intersecting at the residual 4 points. 

We now apply Theorem 7 to propose a picture reconstructing Kahler-
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Einstein K3 surfaces from degenerations: 
Cases (i) and (ii): Let 9t be the Ricci-fl.at Kahler metrics on polarized 
K3 surfaces Xt (t # 0) with degree 2. There is a scale change 9t -t at9t 
such that at9t converge to the "union at infinity" of two complete Ricci­
flat Kahler manifolds X - D and Y - D. We can capture the defect 
24 - e( X) - e(Y) of the Euler numbers ( which is the defect in the limit of 
the curvature integra 8; 2 J IIRll2 ) "generically" as the curvature integra 
for Taub-NUT instantons with concentrated curvature "bubbling oft" to 
infinity. These Taub-NUT instantons corresponds to those (-1)-curves 
C with h · C = 0, i.e., all the eighteen (-1)-curves. Two complete Ricci­
flat Kahler surfaces X - D and Y - D may be glued almost trivially (i.e., 
cylindrically) at infinity. But since Do has self-intersection number 9 in 
P2 (C), there arise 18 points around which two solid tori should be glued 
to form 83 . The metric induced on this 8 3 is approximately a Berger 
sphere metric with very short Hopf fibers and so we fill this 8 3 with a 
metric ball in the Taub-NUT metric with highly concentrated curvature. 
Cases (iii) and (iv): In these cases (rescaled) polarized Kahler-Einstein 
K3 surfaces converges to a single complete Ricci-flat Kahler manifold. In 
both cases, this noncompact manifold is the complement of the singular 
locus fJ (~ Pi (C)) of a non-normal surface X obtained by contracting 
all curves C in Y with h · C = 0. This contraction gives rise to a 2:1 
holomorphic map of D on the ( -1 )-curve in Y. So there are 4 pinch 
points of X which lie on fJ. We may reconstruct Kahler-Einstein K3 
surfaces from the complete Ricci-flat Kahler metric in Theorem 7 on 
X - D = X - fJ (with Euler number 10 (resp. 5)), 10 (resp. 15) Taub­
NUT instantons corresponding to the ( -1 )-curves C in X U Y with 
h · C = 0 and 4 more Taub-NUT instantons corresponding to the 4 
pinch points in the case (iii) (resp. (iv)). 

The points here are Theorem 7 and the fact that the (rescaled) 
Berger sphere metrics are realized in the asymptotic region of the Taub­
NUT metric. 

Example 5. For type-III degeneration of polarized K3 surfaces, 
we can probably show the similar convergence (after suitable scaling) of 
Ricci-flat Kahler metrics on Xt (t # 0) to the union at infinity of those 
complete Ricci-fl.at Kahler surfaces stated in Example 3 glued together 
by instantons in Example 3. 

In both Examples 4 and 5, we may probably reconstruct an approx­
imately Ricci-flat Kahler metric Wt on a nearby fiber Xt from several 
number of pieces of Ricci-fl.at spaces, i.e., complete Ricci-flat Kahler sur­
faces corresponding to the irreducible components of the singular fiber, 
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and the Taub-NUT instantons or "quadratic volume growth instantons" 
"connecting" these pieces "at infinity". Now Theorem 7 guarantees that 
the approximation is sufficiently good, i.e., errors are confined in the in­
finity, so that we can estimate the perturbation Wt--+ Wt = Wt+.j=Ta8ut 
needed to reach a true Ricci-flat metric Wt. 

The author would like to come back to this problem in the near 
future. 
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