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§:o. Introduction 

The 2-dimensional conformal field theory was initiated by A. A. 
Belavin, A.N. Polyakov and A.B. Zamolodchikov [BPZ] and was developed 
by many physicists, e.g. [DF], [ZF] etc. In the paper [BPZ], the signi­
ficance of the primary fields for this theory is pointed out. V.G. Knizhnik 
and A.B. Zamolodchikov [KZ] developed the theory with current algebra 
symmetry, proposed the notion of primary fields with gauge symmetry, 
and gave the differential equations of multipoint correlation functions. 

Our aim in this paper is to give rigorous foundations to the work of 
[KZ], and to reformulate and develop the operator formalism in the con­
formal field theory on the complex projective line JP1. The space ;If' of 
operands is taken to be a sum £= L,.1/!o £ 1 of the integrable highest 
weight modules £ 1 of the affine Lie algebra g=.0[(2, C)®C[t, t- 1]EBCc of 
type A11>. We fix the value £ (positive integer) of the central element c 
of g on the space £. The Virasoro algebra 2' acts on each ;lf'J through 
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the Sugawara forms L(m), m e z. For each Xe ~f(2, C), the field operator 
X(z)= I:mez X(m)z-m-i obeys the equations of motion: 

[L(m), X(z)]=z"'(z ! +m+l )x(z). 

The currents X(z), Xe ~r (2, C) and the energy-momentum tensor 
T(z)= I:mez L(m)z-m- 2 preserve each g-module :lt'1• Thus each space :It', 
may be considered as a free theory. In order to introduce operators de­
scribing the interactions in the theory, we define the vertex operators due 
to V.G. Knizhnik and A.B. Zamolodchikov [KZ]. 

The vertex operators play a central role in this paper. In Section 2, 
we show the existence and the uniqueness theorem of the vertex operators. 
In Section 3 we get the differential equations satisfied by N-point functions, 
which have only regular singularities. The properties of vertex operators 
are derived from these differential equations (called the fundamental 
equations). First, we get the convergence of compositions of vertex oper­
ators. The commutation relation of vertex operators is equivalently re­
phrased in terms of the connection matrix of the fundamental equations, 
and is calculated explicilty in a special case. The monodromies of the 
fundamental equations give rise to representations of the braid group B N· 

We determine explicitly this monodromy representation in a more special 
case. In fact, it gives an irreducible representation of the Hecke algebra 
HN(q) of type AN_1, where q=exp (2rr,l=T/(£+2)). Here it is remarkable 
that the vacuum expectation values of the products of vertex operators 
provide canonical bases of these representation spaces and the commu­
tation relations of vertex operators give a 'factorization' of the monodromy 
representations. 

Fix a positive integer £ for the value of the central element c, and a 
half integer j with O-s,2j< £, then there is a unique (up to isomorphisms) 
irreducible highest weight left g-module :lt'1 with a highest weight vector 
uJ(j). The Lie algebra g has a decomposition g=m+E9gE9CcE9m_, where 
g=~f(2, C)=CFE9CHE9CE and m±=g©C[t± 1]t±1 (see Section 1.1) The 
subspace VJ={v e :lt'1 ; m+v=O} is an irreducible g-module of highest 
weight 2j, i.e. of dimension 2j+ l. 

We can define the corresponding irreducible highest weight right g 
(or g)-module :lt'j (or VJ) (and fix a highest weight vector u}(j)), and the 
nondegenerate bHinear pairing ( called vacuum expectation value) (I): :lt'j 
X:lt'r~C such that (u}(j)lu 1(j))=l and (valw)=(vlaw) for any v e 
:It'}, a e g, we :It'!. Its restriction on VJX V1 is also nondegenerate. 

Let :It'= I:'l~o :lt'1 and :lt't = I:3/~o :lt'j. By an operator we mean a 
linear mapping</): :lt'-.YP, where ff is a completion of :It'. Note that 
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an operator <lJ is characterized by a bilinear mapping <P: :/(t X £' -c 
defined by (v I <PI w) = (v I </J(w)) for any v e £'f and we£'. Two 
operators may not always be composable (see Section 2.1 for the defini­
tion of the composability). 

For a positive half-integer j, a multi-valued, holomorphic, operator­
valued function </J(z) on the manifold M 1 = C* is called a vertex operator of 
spin j if for any u e VJ and z e M1, </J(z): V1®£-£ satisfies the following: 

(Gauge Condition) [X(m), </J(u; z)]=zm<lJ(Xu; z) (Xe g, me Z); 

(Equation of Motion) [L(m), </J(u; z)]=zm{z i +(m+ l)Ll1}</J(u; z) 

(me Z), 

for any u e V1 and z e M1, where the number Ll1 =(P+ j)/(t+2) is called 
the conformal dimension of the vertex operator </J(z) and </J(u; z): £-£ 
is an operator defined by </J(u; z) (w)=<lJ(z) (u®w) for we£'. 

Remark (Proposition 2.4) that there are no vertex operators of spin 
j forj>.e/2. 

A triple v = ( /. ) of nonnegative half integers j 2, j 1 and j is called a 
lzli 

vertex. Put J( v) = LI J + LI 1, - LI J•· Then the Clebsch-Gordan condition 

V1-j2l<j<j1+j2 and j1+ jz+ j E Z 

for a vertex v is a condition for Hom 0 (VJ®V1,, VJ.)=;l=O. In this case 
Hom9 (VJ®V3i, VJ,)=C and vis called a CG-vertex. 

For a vertex v= (lj) withj 2, j 1 <t/2, a vertex operator </J(z) of spin 

j is called of type v, if </J(u; z)=IIJ 0</J(u; z)IIJi for any u e VJ, where lli is 
the projection of£' (or£) onto .Yf1, (or £1, respectively). Then we get 
the condition for the existence of vertex operators: 

Theorem 1 (Proposition 2.1 and Theorem 2.2). 
i) A vertex operator </J(z) of type v is uniquely determined by the 

form (initial term) </)0 e Hom 0 (VJ.®V;®VJi, C) defined by 

</Jo(v, u, w)=(z 1<vl(vj</J(u; z)\w))l.-o (v E VJ., u E vj, w E Vj,). 

ii) There exists a nonzero vertex operator </) of type v= ( /.) on£', 
Jzli 

if and only if the vertex v is an tCG-vertex, tha( is, it satisfies the .e-con­
strained Clebsch-Gordan condition: 
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Remark. i) The inequalities j 1+j 2 +j<t and lj1-j 2 i<j<j1+jz 
imply the conditionsj 1,j 2,j<£/2. 

ii) Nonzero vertex operators of a fixed type v are unique up to a 

constant multiple. For each £CG-vertex v= ( /.),we choose and fix a 
Jzli 

nonzero element 'Pv e Hom 6 (Vi8l VJi, VJ.)= Hom6 (VJ.® VA9 VJi, C) (~ C) 
and denote by ibv(z) the associated vertex operator of type v with the 
initial term ibv,o='Pv• 

For each £CG-vertex v= ( /.),introduce the g-module gJ(v) defined 
lzli 

by _gl](v)={ib/u; z); u e VJ}: Xibv(u; z)=ibv(Xu; z) (Xe g). 
We can show that any operators of the form X(C), Xe g, T(C) and 

vertex operators are composable. The composability of vertex operators 
is obtained by using the fact that the differential equations of N-point 
functions have only regular singular points. 

Introduce the space m(v) of operators on :If as the C-vector space 
spanned by the set 

{ 1 f .. ·f d(N·. -dCi(CN-z)mN,. ·(C1-z)m'XN(CN)· .. 
(2,r./=-f)N CN 01 

· · -X 1(( 1)ib(u; z); Ne Z..,0, X, e g, mi e Z (I<i<N), u e v1}, 

where C/s are contours around Ct-i such that O is outside CN and z is 
inside C1• 

Introduce a §-module structure and an 2-module structure in m(v) 
defined by 

and 

X(m)A(z)= bf dC(C-z)mX(C)A(z) e m(v) 
2,r - } C 

i(m)A(z) bf dC(C-z)m+IT(()A(z) e m(v) 
2,r C 

for A(z) e m(v), Xe g, me Z, and some contour C around z such that 0 
is outside C. 

Theorem 2 (Theorem 2.9). For each £CG-vertex v, the g-module 
mapping ib: V1 3 u,_,.ibv(u; z) e gJ(v) is extended to the §-isomorphism of 
:lf 1 onto m(v). 

Here we summarize the relations satisfied by vertex operators: 



Conformal Field Theory on P1 

Fundamental relations for vertex operators 

Let <!)(z) be a vertex operator of spin j. Then 

X(m)</)(u; z)=O 

X(O)<!)(u; z)=[X(O), <!)(u; z)]=<!)(Xu; z) 

i(m)<!)(u; z)=O 

i(O)<!)(u; z)=L1J<!)(u; z) 

i(-l)<!)(u; z)=i_<!)(u; z) az 
E(- 1y-2J+1<!)(u;(j); z)=O. 

(m;?:l,Xeg,ue VJ); 

(XE g, u E VJ); 

(m>l,ue VJ); 

(u E VJ); 

(ue VJ); 
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Remark that the last equation is derived from the structure of the 
irreducible g-module :YfJ by using Theorem 2. 

Now we call the vectors \vac)= uo(O) E £ 0 and <vac\=u6(0) e xi 
the Virasoro vacuum. They satisfies the equalities 

X(m)\ vac) =L(n)\ vac) =0 

<vac\X(m)=<vac\L(n)=O 

(XE g, m>O, n;?:-1); 

(XE g, ms 0, ns 1). 

For an N-ple J =UN, . · ·,j 1) of half integers with 0<2jis£, let 
Vv(J)= V[N©·. -@v;:, and let v;(J) denote the invariant subspace of 
Vv(J) under the diagonal g-action, where v; denotes the dual g-module 
of V1• Let <!)lzi) be a vertex operator of spin ji (l<isN), then the 
vacuum expectation value of the composed operator 

is considered as a Vv(J)-valued, formal Laurent series on (zN, · · ·, z1) and 
is called an N-point function (of spin J): If <!)lzt) is of type Vt (1 <i<N), 

N • <,n ( ) ,n ( )) n -4(v,) '\""' C -mN -m, 
WN ZN '' •'J/1 Z1 = zi L.J m , .. m,ZN '' ·Z1 , 

i=l N 

where CmN· .. ,ni E Vv(J) and the sum is taken over integers mk E Z (1 <k 
<N) with mN>O and m1<0. 

Let ;rt be the g-action on the i-th component of Vv(J) and introduce 
the operator Qtk defined by 

and !Ji=!Jtt is the action of the Casimir element !J=½HH+EF+FE on 
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the i-th component of Vv(J). Then Qik=½{(iri+irk)(Q)-Qt-Qk} (i-=/=k) 
and ,Qi=2(R+ ji) id on Vv(J). 

Then we get a system of differential equations and a system of al­
gebraic equations for N-point functions: 

Theorem 3 (Theorem 3.1). Let l[)i(zt) be a vertex operator of spinji 
(lsi<N), then the N-pointfunction (@N(zN)· · .l[Ji(z1)) satisfies thefollow­
ing equations: 

( I ) (projective invariance) Form= - I, 0 and I, 

(II) (gauge invariance) For any Xe g, 

(III) For each i= 1, · ·., N, 

(IV) For each i (I sisN) and any Uk E Vik (k-=/=i), 

I:(Li )I: (zk-zi)-m•(@AEmNuN; ZN)· · . l[)i(ui,(ji); zt) · · . l[)i(Em'U1; Z1)) 
m, mi k'Fi 

=0, 

where m,=(mN, ... 'mi, ... 'ml) E (Z;;,oy- 1 with I:k*imk=Li=£-2ji+ 

+ 1 and (~) is the multinomial coefficient. 

Consider the systems E (J) of differential equations and B (J) of al­
gebraic equations for v;(J)-valued functions l[)(zN, .. ·, z1) on the mani­
fold XN={z=(zN, · · ·, zi) e CN; zt=f=zk (i-=/=k)}: 

E(J): OsisN), 

for each i(lsisN)and any uke vjk(k-=!=i), where mi=(mN, ···,mt, 
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· · ·, m1) E (Z 20 )N-i with I;k,,ei mk=Li= £-2ji+ I. 
Introduce the set &,lJ) defined by 

&e(J)={JP=(PN, .. ·,Pi,Po);pi E _!_z>O Vi=( ji ) E (CG)g, 
2 - PiPi-1 

where (CG)e is the set of all £CG-vertices. For each JP e &e(J), the N­
point function 

of type lP is a formal Laurent series solution of the joint system E(J) and 
B(J), moreover 

Theorem 4 (Theorem 3.3). 
i) For any JP e &,lJ), the Laurent series (JJ/zN, · · ·, z1) is absolutely 

convergent in the region ~.={(zN, · · ·, z 1) E CN; \zN\> · · · >\z1 \} and is 
analytically continued to a multivalued holomorphic function on the mani­
fold XN. 

ii) {{J)JzN, · · ·, z 1); JP e &lJ)} gives a basis of the solution space of 
the joint system E(J) and B(J). 

As a corollary of Theorem 4, we get 

Theorem 5 (Theorem 3.4). Let {J)lz;) be the vertex operator of spin 
ji and ui E Vj, (1::;:i::;:N). Then the sequence {{J)AuN; zN), · · ·, {/}i(u1 ; z1)} 

is composable in the region ~.,o={(zN, · · ·, z 1) E CN; \zN\> · · · >\z 1\ >O} 
and the composed operator (JJN(uN; zN)· · ,(/)i(u1 ; z 1) is analytically continued 
to a multivalued holomorphic function on the manifold MN= { (z N, · · · ,z 1) E 

XN; zi*O}. 

For £CG-vertices v 2 = (i3k) and v 1 = (7/j)' the composed operator 

(/Jv2(w)(/Jv,(z) of the vertex operators (/Jv,(w) and (/Jv,(z) is multi-valued holo­
morphic on the manifold M 2 • 

For a quadruple J=(j 4,j 3,j 2 ,j 1) of half integers with 0<2j 1 ::;:£, 
introduce the set /e(J) of intermediate edges, defined by 

/.(J) = { k e 21 Z; o::;:2k< £, vlk) = ( !ak) e (CG)e, 
}4 

vi(k)=(f 1) E (CG)i}· 
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Let J =(j 4,j 2,j 3,j 1), then we get the g-isomorphism T: Vv(J)-Vv(J) 
defined by 

( T cp) ( U4 ®u2®ua{8)u1) = cp( u4@ua®uli9u1) 

for cp e Vv(J) and U4Q9UzQ9U3Q9U1 e V(J). 
For an intermediate edge k e Il1), similarly define the .eCG-vertices 

vz(k)= (jzk) and vi(k)= (/' 1) and consider the composed operator 

<b.,20,i(w)<b.,1 ,lii(z) of the vertex operators <b.,,0,i(w) and <b .. 1 ,iii(z). 
Assume that IiJ)*~- For a point (w, z) e 12={(z2, z1) e R2 ; z2> 

z1>0}, let <Dv,<ki(z)<b .. 1ckiCw) denote the analytic continuation of the compo­
sition <bv,<ki(w)<b .. 1 ,k,(z) of the vertex operators along the path b(t), where 
the path b(t)=(7)(t), C(t)) from the point (w, z) e / 2 to the point (z, w) e 
l2={(z2, z1) e R2 ; z1>z 2>0} on the manifold M2 is defined by 

(t) - w+z + ~J=ti w-z 7J --- e --, 
2 2 

C(t)= w+z -e~J=ti w~z (t e [O, 11). 
2 2 

Then 

Proposition 6 (Proposition 4.2). i) There exists a constant square 
matrix C(J)=(C!(J))ker,<JJ,iier,(J) such that for each intermediate edge k e 
IlJ), 

ii) Let J =(t,j 3,j 2,j 1, s), then the braid relation holds: 

C(js,jz,j1, s)C(t,ja,j1,jz)CU1,js,jz, s) 

= C(t,js,j2,j1)C(jz,js,ji, s)C(t,jz,j1,ja)• 

Now our fundamental problem is: 

Fundamental Problem. Determine the matrix C(J)=(q(J)) for any 
quadruple J with IiJ)*~-

In Section 4.2, we solve the fundamental problem for the case where 
j 3=½ in J. For generalj 3, we can solve it in principle by the fusion rule 
(see Section 5.4). 

Now we takej 2=ja=½- Then the conditions for the nontriviality, 
V;;'(J)*O, are divided into the following cases: 

(D2)2 
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Proposition 7 (Proposition 4.8). Let q=exp(2ir-l=T/(£'+2)). 
i) For j e ½Z with 0<2j<£, 

[ 

-1 

C . 1 1 . _314 r:;.1 [2j+ 11 
J,-,-,1 =q 

( 2 2 ) ( r: 1) ~[2jJ [2j+2J 

~ q[2jl[2j+2] 
[2j+l] 

where [11] denotes the q-integer 

q• 1 
[11] =---=­

q-I 
and 

q2j+1 

[2j+l] [2j+ 1] 

r(+2j+1) 
- £+2 

ii) c(i, ~. ~, i)=c(o, ~. ~,o)=-q- 3'4. 

1·1·1·) c( ·+ 1 1 1 ·)- c( · 1 1 1 ·)- 114 1 ' 2' 2' 1 - ]- ' 2' 2' 1 -q . 
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Let N';22 and fix a half integer t (target edge) with 0<2t<£. Put 
Jt=(t, ½, ···,½)and introduce the set 

[l}Je(N; t)={P=(PN, · · ·,Pi,Po);pN=l,Po=O,pi E ~ Z, OS:,2p;S:,£, 

IPi-Pi-1I= ~ (I<iS:,N)}. 

For each p e [l}Je(N; t), define the v;(Jt)-valued, multi-valued holomorphic 
function 1/f/zN, · · ·, z1) on XN by 

1/f/zN, · · ·,Z 1)(v,uN, · · ·,u 1)=<11(v)J<Pv)uN;zN)· · ·<Pv1(u1;zi)[vac) 

for v e Vt and ui e V112 (I <i<N), where the vertex vi is defined as v/p) 

= ( 112 ) (1 < i ~ N) and II is the isomorphism 11: V;--* V] defined in 
Pi Pi-I 

Section 2.3. 
Then the function 1/f P (zN, ... , z1) satisfies the systems E(N; t) and 

B(N; t) derived from the systems E(Ji) and B(Jt), where Jt=(t, ½, · · ·, ½) 
(see Section 5.2). Moreover we get that the solution space W(N; t) of 
the systems E(N; t) and B(N; t) has a basis {lffizN, · · ·, z1); p e [l}JlN; t)}. 
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The braid group BN acts on this space W(N; t) as monodromies. 
The commutation relation of vertex operators gives a 'factorization' of this 
monodromy representation (tr1>1,i, W(N; t)). By the explicit formulae of 
the representation trN,t obtained from Proposition 7, we get 

Theorem 8 (Theorem 5.2 and Proposition 5.3). Let q=exp( 2tr-f=1) . 
.e+2 

i) The monodromy representation q 814trN,t of the braid group BN on 
the space W(N; t) gives an irreducible and unitarizable representation of 
the group B N· 

ii) This representation factors through a representation of the Hecke 
algebra HN(q) of type AN-i· 

iii) Our representation (q814trN,t• W(N; t)) of the Hecke algebra HAq) 
is equivalent to the representation (1d2•8+2l, Vi2•e+2l) constructed by H. Wenzl 
[W], where ..:l. is a Young diagram l=[N/2+t, N/2-t]. 

Notations 

g=~r(2, C)=CFEBCHEBCE, where F=(? g), H=(6 -?) and E= 

(g 6) 
g = g®C [t, t- 1]EBCc: the affine Lie algebra of type A Pl 
g=CH(O)EBCc: the Cartan subalgebra of g 
X(n)=X®tn for Xe g and n e Z 
m±=g®t±C[t±], n+=m+EBCE(O), n_=m_Ef)CF(O), +>±=m±Ef)gEf)Cc: 

subalgebras of g 
£'=I; Ce,.+ Ce~: the Virasoro algebra 

nEZ 

f2=½H 2 +EF+FE e U(g): the Casimir element of g 
:X(m)Y(n): : the normal ordered product for X(m), Y(n) e g®C[t, 1- 1] 

X(z)= I; X(n)z-n- 1 (z EC*, Xe g): a current 
nEZ 

T(z)= I; L(m)z-m- 2 : the energy momentum tensor 
mEZ 

.e: the central charge (we fix .e e Z>o throughout the paper) 
IC=.e+2 
VJ, VJ: the irreducible left and right g-modules of spin j for j e ½Z~o re­

spectively 
v;=Hom(VJ, C): the dual (right) g-module of VJ 
£ 1 =.l'fi.e), .l'fj=.l'fj(.e): the integrable highest weight left and right §­

modules respectively 
< I ) : VJ X Vr-~C, £j X £ r-+C: the vacuum expectation values 

8/2 8/2 A t/2 A 8/2 

£=I; JfJCf=I; JfJ; £t=I;£}c£t=I; .#J. 
j=O j=O j=O j=O 
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V = {v = ( /.); j, j 1, j 2 e _!__.z~0}: the set of vertices 
U lzli 2 

Vc={v EV; j1, jz< 1} 
(CG)={v EV; Vi- jz\~j ~j1+ jz, j 1+ j 2+ j e .Z}: the set of all CG­

vertices 
(CG)c={v e (CG);j 1+ j 2+ j~£}: the set of all £CG-vertices 

L1 J = j2 + j : the conformal dimension of vertex operators of spin j 
IC 

Ll( v) = L1 J: the conformal dimension of a vertex v 
J(v)=L1J+L1h-L1Jz for a vertex v 
'i"'(v)=Hom 0 (V],®VJ®Vh; C) 

<pv e Homg(VJ®VJi, VJo)~'i"'(v): the nonzero element for each v= ( /.) 
Jz]1 

e (CG) fixed in Appendix I 
(/)v(z): the Vertex Operator of type V Whose initial term (/)v,O is <pv for each 

v= ( /.) e (CG)c (considered as VJ@£' 31-+£\ 2) 

Jzli 
(J)(u; z)=W(z)(u®-)= ~ (J)n(u)z-n-J(v): the homogeneous decomposition 

nEZ 

of a vertex operator <P(z) of type v 
Let W = W1® · · · ® WN the tensor product of g-modules Wk, then 

;r 1 : the g-action on the i-th component of W 
L11" = n1 + n": the diagonal action on the i-th and k-th components of 

w 
Qik = f1ri(H)1riH) + 1rJE)1riF) + 1rJF)1riE) 

J = (j N, • • ·, j 1): an N-ple of half-integers with O ~ 2_j1 ~ £ 
V(J)= vjN®·. -@V31, v~(J)= v;:,@-. -@v;: 
v;(J): the space of all g-invariant elements in V~(]) 

Y'(J)={JP=(PN, .. ·,Pi,Po); V/JP)=( ji ) E (CG),PN=Po=o} 
P1 P1-1 

Y'c(J)={JP=(PN, · · ·, P1,Po) E Y'(J); vi(p) E (CG)c} 
J = (j 4, j 3, j 2, j 1): a quadruple of half integers with O < 2j 1 ~ £ 

/(J)= {k e ~ .Z; 0<2k~£, vz(k)= (i3k) e (CG), 

vi(k)=(/ 1) e (CG)} 

Jc(J)= {k e ~ .Z; O~2k<£, vz(k) e (CG)c, vi(k) e (CG)i} 

p(k)=(v 3, v 2(k), vi(k), v 0) E Y'c(J) for k e /c(J), where v 3 =(/ 4j) 

and Vo=(lo) 
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.diJ)=.d(v2)+ .d(v1)=£11i + .::1J, +.::1J.-£11, 

J,(J)={r e ~ Z; 0<2r<£, w(r)=C:j) e (CG),, 

w(r)=(, jsjJ e (CG),} 

e0(J)=_!_(j,+ js+ j 2+ j 1+ 1), ei{J)=eo(J)-_!_(2jt+ 1) (i= 1, · · ·, 4) 
K K 

J 1 =Ji(N)=(t, ~, ~, · · ·,~):an (N+l)-ple with 0<2t<£, 2t e Z 

!!J',(N;t)={P=(PN, ···,Pt,Po);pN=t,po=0,pte ~ Z, 0<2Pt~g, 

IPt-P1-d= ~ (l<i<N)}. 

J,,,=J 1,,(N)=(t, ~, · · ·, ~, s): an (N+2)-ple with t, s e ~ Z;,;o and 

g 
t,s<--2 

!!J',(N; t, s)={P=(PN, · · ·,Pt,Po);pN=l,po=S,p 1 e ~ Z;,;o, 

0<2pt<£, IPt-P1-1I= ~ (l<i<N)} 

XN={(zN, · · ·, z1) e CN; Zt=l=-Zt (i=l=-k)} 
u 
MN={(zN, · · ·, z1) e (C*)N; zt=f=.zk (i=/=-k)} 
Bl,={z=(zN, · · ·, z1) e CN; lzNI> · • • >lz1l}CXN 
u 
Bl,,o={(zN, · · ·, Z1) e CN; lzNI> • • • >izd>O} 
u 
lN={(zN, · · ·, Z1) e RN; zN> • · • >z 1>0} 
6N: the N-th symmetric group 
B N: the braid group with N-strings of C 
HN(q): the Hecke algebra of type AN-i 
-<=Lt;,·. ·,/2): the Young diagram such that the number of nodes of the 

i-th row is/;, (ft>···>/;.) 
lvac)=u 0(0), (vacl=u!(O): the Virasoro vacuums 
(({)N(zN)· · ,([Ji(z1))=(vacj([JN(zN)· · ,([Ji(z1)jvac): the N-point function of 

vertex operators {({)N, · · ·, ({)1} 

I'(z): the gamma function 
F(a, /3, r; z): the Gauss' hypergeometric function 
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q• I [v]q=-----=--(q:;f= 1), 1,1 (q= 1): a q-integer (1,1 e Z) 
q-1 

(;) LI ---- : the multinomial coefficient for m = (m N• , , , , m1) with 
mN!,,,m 1 ! 

L=I:m,. 

§ 1. Affine Lie Algebra of type Af!> 

In this section, we recall facts on the affine Lie algebra g of type Af1> 

(see V.G. Kac's book [Ka]). 

1.1) Lie Algebra of type A1 and its finite-dimensional modules 
Let g = ~((2, C) the Lie algebra of type Ai, that is, g is a Lie algebra 

(1 0) (0 1) (0 0) spanned by H = 0 _ 1 , E = 0 0 and F = 1 0 . The subspace lj = CH 

is a Cartan subalgebra of g. Its dual lj* is spanned by the element a, de­
fined by a(H)=2. Put Ba=CE and !:l-a=CF, then g has the root space 
decomposition 

Let ( , ) : g X g-+C be the invariant symmetric bilinear form, defined 
by (X, Y)=tr XY, where tr means the trace as 2X2-matrices. Then 
(H, H)=2, (E, F)= I and (H, E)=(H, F)=O. 

The Casimir element Q of g is defined as 

Here we summarize the facts on finite dimensional modules of g: 

Proposition 1.1. Fix a half integer j e ½Z:?;o· 
I) i) There exists a unique irreducible left g-module V1 ( called of spin 

j) with highest weightja. 
ii) V1 is of dimension 2j+I and has a basis {ui(m); m=j,j-I, · · ·, 

1- j, - j} satisfying the relations 

Huim)=2muim) 

Euim)= -v'U+m+ l)(j-m) uim+ 1) 

Fut<m)=-v'U+m)(j-m+ 1) utCm-1) 

(- j<S,m<j); 

( - j<S,m <i); 

(-j<m<j). 

iii) Euij)=O, Puij):;f=O (O<n<2j) and F21+ 1uij)=O. 
iv) t2=2U2+ j) on v,. 
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II) i) There exists a unique irreducible right g-module VJ ( called of 
spinj) with highest weight ja. 

ii) VJ is of dimension 2j+ l and has a basis {u](m); m=j, j-1, · · ·, 
1- j, - j} satisfying the relations: 

(VJ) 

u}(m)H = 2mu}(m) 

u}(m)E= ,./(j+m)(j-m+ 1) u}(m-1) 

u}(m)F= ,./(j+m+ l)(j-m)u}(m+ 1) 

(-j<m<j); 

(- j<m~j); 

(-j<m<j). 

iii) u}(j)F=O, u}(j)E"=!=O (O~n<2j) and u}(j)E2i+1=0. 
iv) D=2(j2+j) on VJ. 
III) There exists a unique bilinear form (called vacuum expectation 

value) 

< I ): v;x vj~c 

such that l) <ua Iv)= <u I av) for any a e g, <u I e VJ and Iv) e VJ, and 2) 
<u}(m)ju/m'))=om,m'· Moreover this bilinear form is nondegenerate. 

1.2) The affine Lie algebra of type A?> 
Let § be the affine Lie algebra of type A?>, that is, § is defined by 

with the following wmmutation relations: 

[X(m), Y(n)]=[X, Y](m+n)+(X, Y)mom+n,oc 

and 

c e center of §, 

where X(n)=X®tn. 

(X, Ye g, m, n e Z), 

The Lie algebra g is included in § by identifying X with X(O). Intro­
duce the subspace g(n) = g®tn of§ for any n e Z, and subalgebras m± = 
:Z:::n;,,i g(±n), then§ is decomposed into 

§ =m+ EBgEBCcEBm_. 

The subspace ~ = CH(O)EBCc is a Cartan subalgebra of g. The dual 
~* of~ is identified with C2 ::i (J, µ), by the formulae: 

(A, µ)(c)=A and (l, µ)(H)=2µ. 

Now we summarize the facts about the integrable highest weight 
modules of the Lie algebra §. 
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Proposition 1.2. Irreducible integrable highest weight modules of g are 
parametrized by (£,j) E Z::,oEiHZ;:,o with 2j<£. Fix such (£,j). 

i) There exists a unique irreducible left §-module £7 / £) with a nonzero 
vector\£, j) (called vacuum) such that 

m+\£,j)=E\£,j)=O, c\£, j)=£ \ £,j> and H\ £,j> =2j\ £,j). 

ii) There exists a unique irreducible right §-module£}(£) with a non­
zero vector <j, £\ (called vacuum) such that 

G, £\m-=G, £\F=O, <j, £\c=£<j, £\ and <j, £\H=2j<j, £\. 

iii) The subspaces {\v) E £/£); m+\v)=O} of £/£) and {<vi E 

£J( £); < v \ m _ = O} of£}(£) are g-stable and are isomorphic to the irreduci­
ble g-modules Vj and VJ respectively. 

The vacuums\ £,j) and G, £\can be identified with ulj) and uJ(j), and 
£/£)and£}(£) are generated by Vj and VJ respectively. 

iv) There exists a unique bilinear form (called vacuum expectation 
value) 

< I ) : £}( £) X £/ £)---->C 

such that l) <j,t\£,j)=l, and 2) <ua\v)=<u\av) for any aeg, 
<u\ E £}(£) and\v) E £/£). Moreover this bilinear form is non-degenerate, 
and its restriction on VJX VJ coincides with the vacuum expectation value as 
g-modules (Proposition 1.1). 

1.3) Segal-Sugawara form 
In this paragraph, we give the actions on£/£) and£}(£) of another 

Lie algebra 2 called Virasoro Algebra, where 2= .6nez CenEBCe6 is the 
Lie algebra defined by the relations: 

ms-m ' 
[em, en]=(m-n)em+n+ 12 Dm+n,oeo (m, n e Z); 

[e6, em]=O. 

Definition 1.3. Define the normal ordered products of .elements of 
g@C[t, t- 1] by 

i X(m)Y(n) (m<n) 

:X(m)Y(n): = ~ {X(m)Y(n)+ Y(n)X(m)} (m=n) 

Y(n)X(m) (m>n). 
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Definition 1.4. 
i) For each Xe g, we define the formal Laurent series 

X(z)= I; X(n)z-n- 1 (z e C*). 
nez 

ii) Energy-momentum tensor; Segal-Sugawara form ([Se] and [Su])) 
For z e C*, define 

T(z) 

that is, 

L(m) 

1 {_!__ : H(z)H(z): +: E(z)F(z): +: F(z)E(z):} 
2(2-t-c) 2 

= I; L(m)z-m-z, 
mez 

l I;{_!__ ;H(-k)H(m+k):+:E(-k)F(m-t-k):+ 
2(2+c) kez 2 

+:F(-k)E(m+k):}. 

Then we get 

Proposition 1.5. 
i) For any j e ½Z.,0 with 2j<£, the operator L(m), me Z, and L'(O) 

=(3.e/(2+£))id act on .?lfit) and .?lf1(£). 
ii) For any m, n e Z, 

m8-m 
[L(m), L(n)]=(m-n)L(m+n)+ 12 Om+n,oL'(O). 

iii) For each m e Z and X e g, 

[L(m), X(z)]=zm(z ~ +m+I)X(z); 

[L(m), X(n)]=-nX(m+n) (n e Z). 

iv) The modules .?it'lt) and .?If}(£) have the eigenspace decompositions 
with respect to the operator L(O): 

where .?lt'J,a(.e) and ,n1,a(£) are the eigenspaces ofthe eigenvalue L1,+d, and 
L1,=(P+ j)/(£+2). In particular, .Yt'.1,0(£)= Vi and .?lf}.0(£)= VJ. Moreover 
dim .?If,, a(£)= dim .?If}. a(£) < oo. 
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v) Jlt'ti.e)J_Jlt'J,a'(.e) unless d=d', and (I) is nondegenerate on 
.n"L,;( .e) X Jlt'J,i .e). 

vi) For any Xe g, m e Z and d>O, 

and 

Jlt'},i.e)X(m), Jlt'},a(.e)L(m) C Jlt'},a+m(.e). 

In the following of this paper, we fix an integer .e>I, put tc=.e+2, 
and omit .e in the notations Jlt'i(.e), Jlt'J,i.e) etc. (Note that Vo=Jlt'o(O)=C.) 

§ 2. Vertex Operators (Primary fields) 

Throughout this paper we fix the value .e (a positive integer) of the 
central element con the spaces Jlt' and Jlt't, and use the value tc=.e+2 for 
convenience. 

2.1) Field operators 
Fix a half integer j with 0<2j<.e. Introduce the product topology 

to the products £1= na;;,o.n"J,d and £J= na;;,o.n"},a, then the vacuum 
expectation (I): Jlt'} X .n"r-+C is uniquely extended to continuous bilinear 
pairings (I): .n"}X£'r-+C and £}X.n"J---+C, and there is a topological 
linear isomorphism £J~Hom 0 (.n"1 ; C), where Hom 0 (Jlt'1 ; C) is equipped 
with the weak topology. The actions of the Lie algebra g on Jlt'1 and Jlt'} 
can be extended to these completions. 

Consider the direct sums of these modules: 

Denote by Il 1 be the projection to thej-th component: 

Ilt: Jlt'~Jlt' 1, £~£i; J"c"f~Jlt'}, £J~£J, 

then IIJ o Ilk=Ilk a IIJ and II; commutes with the action of g. 
An operator A on Jlt' means a linear mapping A: Jlt'~£, which is 

equivalent to give a bilinear map A: .;,t't X Jlt'---+C, and also to give a linear 
mapping At: Jlt't_~yf,t by the condition that for any (vie .;,t't and jw) e Jlt', 

(vlAw)=(v]AI w)=(vA.) w). 

In order to define compositions of operators, fix dual bases 
{lua,1), · · ·, iua,mc1)} of ~f! 0 Jlt'1,a and {(va,1], · · ·, (ua,,nal} of ~f!o.n"J,a 



314 A. Tsuchiya and Y. Kanie 

with respect to (I), where md, = I:'l!o dim .Yt'J,d = _I:o/!0 dim .Yt'J,d· 
A sequence {AN, · · ·, A 1} of operators on £' is called composable, if 

the series 

I mit 1 1ndm-1 

d1,··-~-1:2:0 ~1 ••• jf=l <v I Anmlud,,._,,J .. -,> 

< udm-1,im-,\ An,,._,, udm-o,Jm-•> • • • <ud,,J,\ An,\ w> I 
is convergent for any ordered subset {nm, ... , n1} of {N, ... , 2, 1} with 
2<m<Nand any vectors (v\ e .Yf't and lw) e £'. Then the composed oper­
ator AN· · · A 1 is defined by the values 

for (v\ e .Yf't and \w) e £'. 

An operator-valued function A(z): £'----+£' on a complex manifold M 
is called holomorphic with respect to the variable z e M, if the function 
< u I A(z)\ v > is holomorphic with respect to z e M for any ( u I e .Yf't and 
Iv) e £'. 

Example. Operator-valued functions X(z) (Xe g) and T(z): £'----+£' 
are single-valued and holomorphic on C* = P1\ {O, oo }. 

Let Alzi) be an operator-valued function on £' parametrized by a 
complex manifold Mi for each i with 1 <i<N, and assume the sequence 
{AN(zN), · · ,, Ai(z 1)} is composable for any (zN, · · ·, z1) e MNX · · · XM 1• 

Then the composed operator AN(zN)· · -Ai(z 1) is holomorphic on the com­
plex manifold MNX · · · XM 1• 

2.2) Vertex operators 
Now we give the notion of vertex operators (or primary fields) which 

is introduced by V.G. Knizhnik and A.B. Zamolodchikov [KZ]. 
For a positive half integer j, a multi-valued, holomorphic, operator­

valued function (P(z) on the manifold C*( = C\{O}) is called a vertex opera­
tor of spin j, if 

satisfies the conditions: 

(V2) [X(m), (P(u; z)]=zm(P(Xu; z) 
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(V3) [L(m), (l.i(u; z)]=z"'{z ~ +(m+ l)Ll,}(l.i(u; z) 

for Xe g, u e V1, me Z and z e C*, where the number Ll1=(P+i)/,c is 
called the conformal dimension of the vertex operator (l.i(z) and (l.i(u; z): 
:;/f-+J'f is the operator defined by 

(l.i(u; z)(w)=(l.i(z)(u®w) (u e V1, w e :;ff). 

Remark. (V2) is the gauge condition for the field (l.i(z) and (V3) 
means the equations of motion. 

Introduce sets V and V, defined by 

V ={v= ( / .);j,}1,iz e _!_ Z;;,;0} :::,V,={v= ( / .) e V;j1,i2<.!:_}· 
JzJ1 2 . . Jz]i 2 

An element v of Vis called a vertex. For a vertex v= ( /.) e V, we 
Jzl1 

call j 1 an incoming spin, j 2 an outgoing spin and j an outer spin, and set 
Ll(v)=Lli (=(P+i)/,c) and J(v)=Ll 1+Llh-Ll 1,. 

v: r 
jz i1 

For a vertex v= ( /.) e V,, a vertex operator (l.i(z) of spin j is called 
Jz]1 

of type v, if (l.i(u; z)=Il 1,(l.i(u; z)Il 11 for any u e Vi. 
Then we get the following (the proof will be given in Section 2.3): 

Proposition 2.1. 
i) Any vertex operator (l.i of type v ( e V,) has a Laurent series ex­

pansion 

(l.i(u; z)= I: (l.i,,.(u)z-n-J(v) 
nez 

and (l.i,,.(u) satisfies 

(n e Z), 

that is, 

(n e Z). 

ii) Introduce a trilinear form <p: VJ.®V 1®Vii-+C defined by 
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~(v, u, w)=(vld>o(u)lw)=(vl(/)(u; z)lw)z4<v1 l,=o 

then ~ is g-invariant: 

(v E VJ,, w E VJ,), 

~(vX, u, w)=~(v, Xu, w)+~(v, u, Xw) (XE g). 

iii) A vertex operator (f) of type v is uniquely determined by the form 
~ e Hom 0 (VJ,®VAsWJ,, C) de.fined in ii). We call~ the initial term of the 
vertex operator d> and sometimes denote d>=d>'P. 

For each vertex v= ( /.) e V, introduce the space 't'"(v) defined by 
lzl1 

't'"(v)=Hom 0 (VJ.®VJ®VJi, C)=::Hom 9 (VJ®VJi, VJ.). 

It is well-known in the s/2-theory that 't'"(v)=C or 0, and 't'"(v)=C, if 
and only if v satisfies the Clebsch-Gordan condition: 

U1-j2l<j<j1+j2 and j1+j2+jeZ. 

Call such vertex a CG-vertex and denote by (CG) the set of all CG vertices: 

The following is the key lemma for the existence theorem of vertex 
operators: 

Lemma 2.2. For a vertex v= ( /.) e (CG) n V,, take a nonzero 
]2]1 

element ~ e 't'"(v). Then the following conditions are equivalent. 
i) j+ j 1+ j2<t. 

ii) ~(v, E 1- 2Ji+ 1u, uJ,U))=O for any v e VJ. and u e VJ. 
iii) ~(u}2(j 2), P- 2J•+ 1u, w)=O for any u e VJ and we VJ,· 

A vertex v = ( /.) e V, is called an £CG-vertex, if it satisfies one of 
12]1 

the conditions (called the £-constrained Clebsh-Gordan condition) in Lemma 
2.2 denoted by (CG), the set of all £CG-vertices, i.e. 

Remark2.2'. i) The inequalitiesjj 1-j 2 J<j<j 1+j 2 andj+j 1'+j2 
<£ imply the inequalities j,j 1,j 2<.ej'J. In particular, outer spins of 
£CG-vertices are not greater than t/2. 

ii) By the above rem~rk and the proof of Lemma 2.2, one of the 
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conditions of Lemma 2.2 is also equivalent to the condition: 

cp(v, u/j), Ee-zj+ 1w)=O for any v e VJ. and we V1i. 
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Now we get the existence condition for vertex operators (the proof 
will be given in the paragraph 2.3): 

Theorem 2.3. There exists a nonzero vertex operator (J) of type v = 

( /.) E Ve on .Yf, if and only if the vertex v is an &CG-vertex. 
]2 Ji 

Moreover, nonzero vertex operators of a fixed type v E (CG)e are 
unique up to a constant multiple. 

As a corollary, we get 

Proposition 2.4. i) For any J> £/2, there are no vertex operators of 
spinj. 

ii) Let (J)(z) be a vertex operator of type v = ( /.) E (CG)e- Then as 
12 Ji 

formal Laurent series, 

(J)(u; z)=zL<Ol-•1(J)(u; I)z-L<o) 

Proof ii) Let (J)(u; z) be a vertex operator of spin j. Then the 
condition (V3) for m = 0 reads as 

[L(O),(J)(u;z)]={z ! +Llj}<P(u;z). q.e.d. 

2.3) Proof of Proposition 2.1 and Theorem 2.3 
We define the parabolic subalgebras 1)± of gas 1:J± =m±EB3EBCc, and 

the Verma module .,ltJ as the g-module .,ltJ = U(§)®v+ Vj ( = U(m_) Vj), 
where the g-module VJ is considered as a 1) + -module by setting m+ VJ= 0 
and c=&idv;- Then the irreducible g-module ;/fj is obtained as the 
quotient of the Verma module .,ltJ modulo the maximal proper submodule 
f J (see V.G. Kac [Ka] (10.4.6)). 

This §-submodule f 1 is also generated by the single vector I JJ) = 
E(-1y-zJ+ 1uh) and f 1 = U(PJIJj>· Moreover m+IJj)=E(O)IJj)= 
F(0) 2e-z1+31JJ)=O, H(O)IJ 1)=2(£-j+ l)IJ 1), and U(g)[J1) is g-isomorphic 
to Ve-J+i· Denote by re1 the canonical projection re1 : .,/tr-~.Yfj. 

The right g-module .Yf} is analogously obtained as .Yf} = f}\.,Jt}, 
where .,it} is a right §-module .,It}= VJ®v-U@ (the g-module VJ is con­
sidered as a p_ -module by setting VJm_ =0 and c= £ idv}), and its maximal 
proper g-submodule f} is generated by a vector (J 1 [=u}(j)F(I)e-2 1+1• 

Denote by re} the canonical projection re}: .,/t}-+.Yf}. 
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The Verma modules ..,1{1 and .,It} have also eigenspace decompositions 
with respect to the operator L(O): 

..,1{1= I:; ..,l{M and .,It}= I:: ..,lt},<1, 
d~O d~O 

where the eigenvalue of L(O) on ..,lt1,d and ..,lt},<1 is L11 +d. 
In preparation of the proof, we introduce the filtrations in ..,1{1, .Yf1, 

.,It} and .Yf} : 

V1 =Fa.Yf,=Fc..,lt1CF1..,1t,c · · · and VJ=Fo.Yf}=Fo..,1t}cF1..,1t}c · · · 

where FP..,lt 1 and FP..,lt} are space spanned by the sets 

and 

respectively, and 

FP.Yf1 =rriFP..,lt1) and FP.Yf}=rr}(FP..,ltD. 

Proof of Proposition 2.1. 
i) Expand @(u; z) as a sum of homogeneous components: 

@(u; z)= I:; (/)n(u; z), 
nEZ 

then 

By (V3), we get 

z3:._([JnCu; z)= -(,d(v)+n)@nCu; z). 
dz 

ii) The condition (V2) for m=O implies 

[X, (/)(u, z)]=@(Xu, z) 

iii) Let (/) be a vertex operator of type v, and assume that <p e 
Hom 0 (VJ.®VAs>V1,, C) defined in ii) vanishes. We want to show (/J(z)=O. 

Now we show by the induction on n=p+q that for any u e V1, 

(vj(/J(u; z)lw)=O for (vie FP.Yt}. and jw) e Fq.YfJ.. 

Assume that the assertion is valid for all n<n 0• It is sufficient to show 
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(vlXp(mp)· · ,Xi(m 1)!'P(u; z)Yq(-nq)· · · Y1(-n 1)lw)=O 

for p+q=n 0+I, m,., n,.>I, (vie VJ. and lw) e V3i, 
We may assume thatp::2::1 (if p=O, we can take q>l). Then 

(vlXp(mp)· · ,Xi(m 1)!'P(u; z)Yq(-n 11)· • • Yi(-n 1)lw) 

= zm1( v I Xp(mp) · · · Xz(m2)!'P(X1u; z) Yq( - nq) · · · Yi( - n1)I w) 

+(vlXp(mp)· · -Xlm 2)!'P(u; z)Xi(m 1)Yq(-nq)· · · Yi(-n 1)lw) 
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=0. q.e.d . 

. Proof of Theorem 2.3. Proposition 2.1 shows that a vertex operator 
!P(z) of type v defines a form cp e ~(v) and is uniquely determined by cp. 
In particular, the existence of a vertex operator implies the Clebsh-Gordan 
condition for v. 

Let cp (*O) e ~(v)=Hom 8 (VJ.®VJ®VJ,; C). We want to construct 
a form dJ(z) e Hom(.,//}.®VJ®.,//Ji; C) such that 

(Ml) 

(M2) 

(z e C*), 

dJ(vX(m), u, w; z)-dJ(v, u, X(m)w; z)=zmdJ(v, Xu, w; z) 

(me Z, Xe g), 

and 

(M3) dJ(vL(m), u, w; z)-di(v, u, L(m)w; z) 

=zm{z; +(m+l)LIJ}dJ(v, u, w; z) (meZ) 

for any (vie.,//}., u e VJ and lw) e .,//Ji, where L1=L1(v). 
(We use the notation di(v, u, w; z)=di(u; z)(v, w)=di(z)(v, u, w).) 

Step 0. (Ml) defines dJ(z) on VJ.®VJ®VJi satisfying (M2) for m=O. 
Step 1. Define dJ(z) on VJ.®VJ®Fq.,1/Ji inductively as 

dJ(v, u, X(-m)w; z)= -z-mdJ(v, Xu, w; z) 

for m>O, Xe g, v e VJ., u e VJ, w e Fq_1.,//Ji, then we get di(z) on VJ.® V1 

®.,1th satisfying (Ml) and (M2) for m<O. 
Step 2. Define dJ(z) on FP.,/t},®VJ®.,/tJi inductively as 

dJ(vX(m), u, w; z)=zmdJ(v, Xu, w; z)+dJ(v, u, X(m)w; z) 

for m>O, Xe g, v e Fv_1.,1t}., u e V1, we .,/(Ji, then we get di(z) on .,It}.® 
V1®.,/t1i, The well-definedness of dJ(z) and the condition (M2) can be 
verified again by the induction on p. 
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Step 3. Verify (M3) for <P(z) defined in Step 2. 
Let v©u@w E ..4j,,d,©VJ®.A'",di• then z3-d,+d1<P(v, u, w; z) is proved 

to be constant by the construction of <P(z). On the other hand, 

<P(vL(O), u, w; z)-<P(v, u, L(0)w; z)={L1J,+d 2 -L11i-d 1}<P(v, u, w; z) 

={z ! +.::1,}&(v, u, w;z). 

Thus we get (M3) for m = 0. 
Recall that L(0)\v 1=.Q/2K\v1=L1, idvJ' L(0)\v}=L1, idv}, and the expan­

sion of L(m): 

L(m)=- 1 I; {.l:H(m-j)H(j): + :E(m-j)F(j): + :F(m-j)E(j):}. 
2K JEZ 2 

Then on each component .A'}.,d,©V,©.A'Ji,di we can show (M3) for any 
me Z from (M3) for m=0 by case-by-case computations. We give here 
its proof in the case m = 2n + 1 > 0, d2 > d1 ( other cases are similarly 
obtained). In this case, 2KL(m)=2 I:k:2:-n I:i=1 X 1(-k)Xlm+k), where 
X 1 =2X 1 =H, X 2 =X 3 =E and X 3=X 2 =F. 

{ d }- -2K z dz +L1, <P(v, u, w; z)=(2d 2+ l)<P(v, .Qu, w; z) 

d1 3 _ do 3 _ 

+2 I; z-k I; <P(v, Xiu, Xi(k)w; z)+2 I; zk I; <P(v, X1u, Xi(-k)w; z). 
k=l i=l k=O i=l 

And 

2K{<P(vL(m), u, w; z)-<P(v, u, L(m)w; z)} 

3 d1-m ,,., 

+2 I; I; z-k<P(v, X'u, Xi(m+k)w; z) 
i=l k=-n 

dg {- 3 _ } 
=2z"' k~n <P(v, .Qu, w; z)+ ~ zk<P(v, Xtu, X,(-k)w; z) 

3 <11 _ 

+2z"' I; I; z-k(b(v, X1·u, Xlk)w; z). 
i=l k=n+l 

Hence 
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2.t [VP(uL(m), u, w; z)-<P(u, u, L(m)w; z)}-zm{z t +LI,} <P(u, u, w; z)] 

=(2n+ l)zm<P(u, Qu, w; z) 

+2zmt;_{J!n zk<P(u, Xtu, Xl-k)w; z)-"ti_z-k<P(u, Xtu, X/k)w; z)} 
=mzm<P(u, 2.tLl,u, w; z), 

thus we get (M3). 
Step 4. Now we get <P(z) e Hom (.A}.® VAs>-A,,; C) satisfying (Ml) 

-(M3). If <P(z) factors to <P(z) e Home (.n"}.® V,®.n""; C), then the bi­
linear form <P(u; z) (u e V,) on .n"},®.n"Ji defines an operator from .n"1, to 
.# i• satisfying the conditions (V2) and (V3). 

We must show that <P(z) factors through Home (.n"},® V,®.n" 1,; C), if 
and only if the vertex v is an .eCG-vertex. 

~rom the condition (M2), we get by the induction on p for FP.A}. 
that <P(u; z) factors through .A}2®.n"1,, that is, 

for any u e .A}. and u e V1, 

if and only if 

for any u e VJ. and u e v,. 
In fact, /1i= U(m_)U(g)\J1,) and m+\J11)=EIJ1i)=0. 

Since \J1,)=E(- 1y-21•+1u,,(j 1), the last condition is equivalent to 

for any u e VJ. and u e Vr 

Similarly we get that <P(u; z) factors through ff},®.A,,, if and only if 

for any u e V1 and we VJi. 

Step 5. Apply Lemma 2.2. q.e.d. 

2.4) Normalization of vertex operators and Proof of Lemma 2.2. 
The right g-module VJ can be identified with the dual (right) g-module 

v; = Hom ( V1, C) through the vacuum expectation values: 

u(u)=(vlu) for u e VJ and u e v,. 
There exists an isomorphism J.J: Vr-~VJ defined by JJ(uim))=(-1) 1-mx 
uJ(-m), then J.J is an isomorphism over (g, ll): 

J.J(XI u))= -J.J(ju))X (ju) e v,, Xe g), 
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where v: g-.g is the anti-automorphism defined by v(X)= -X. More­
over 1,1 can be extended to the isomorphism 1,1: £' J -..Yf} such that 
v(X(m)!v))= -v(!v))X(-m) (Iv) e £'J, Xe g, me Z). 

In Appendix I, we fix the element 'Pv e f(v)=Hom 0 (VAsWJi, V1o) 

(=C) for each CG-vertex v=( / ·)· This notation will be used through­
lzJ, 

out this paper. And for each .eCG-vertex v, denote by (/)v(z)=(/)'l'v(z) the 
vertex operator of type v whose initial term is 'Pv· 

In a special case, we get 

Proposition 2.5. 

i) Letj be an half-integer with 0<2j<.e and put v=(/ 0). Then 

v e (CG),, J(v)=0, and cpv=idv; e f(v)=Hom (VJ, VJ). Hence 

lim (liv(w; z)!uo(0))=!w) 
z'-,.O 

ii) Letj be an half-integer with 0<2j<.e and put v=(/j)· Then 

v e (CG),, J(v)=2LIJ, and 'Pv=v e f(v)=Hom (VJ, VJ). Hence 

lim z24J(uJ(0)!(tJv(v; z)=(uJ(0)lcpvCv)=(v(v)I 
•/'~ 

By the symmetry, it is sufficient to show the following for the proof 
of Lemma 2.2: 

Lemma 2.2". For a vertex v=( /.) e V,, assumef(v)=/=-0 and take 
Jzl, 

its nonzero element cp. Then the following conditions are equivalent: 

(0) 

( 1) for any V e VJ. and u e vj. 

Proof Decompose the tensor product V3o® VJ into the sum of the 
irreducible components: VJ•® V1 = ~t Wt, where Wt= Vi, fork e ½Z with 
[j-jzl<k<j+ j2 and k+ j+ j 2 e Z. By the assumption on cp, we may 
assume that cp(W11®V 11):;t=0 and cp(Wt®V11)=0 for k:;t=j1. 

Since V11 is generated by the vector u11(j 1) and cp is invariant, there 
exists a vector we WJ,,-Ji such that cp(w®u1i(j1)):;t=0 and cp(W3i,11.®uJi(j1)) 
=0 for any h>-jl' 

Put L1=.e-2j 1+ 1. Assume that j 2+ j+ j,<.e. Let v e V1o,1i, and 
u e V1,11.. Since h2+h+L 1~l-j 1, cp(v, EL1u, u3i(j1))=0. Thus (0) implies 
(1). 
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Now express the vector w as w= I;,,, a,,,v,,,@u,,,, where a,,, e C, v,,, e 
VJo,-n-J, and u,,, e VJ,n· Since n_w=O, we get that a,,,::f=.0 for - j ~ h < 

j 2 -j 1 by the induction on h. Hence rp(vi2-it' uh-it' u1,(j 1))-::j::.0. 
Assume thatj 2+ j+ j,>£. Then we getj 2+ j+j,>£+1 and so 

Hence the vector u=FL•u 12_h does not vanish and uJ2-h=bEL 1u for some 
nonzero constant b. Thus (1) implies (0). q.e.d. 

2.5) Operator product expansions 
The notion of operator product expansions in the 2-dimensional con­

formal field theory is due to A.A. Belavin et al. [BPZ]. 

Proposition 2.6. 
i) Ordered pairs {X(,), Y(z)}, {X(,), T(z)}, {T(,), X(z)} and {T(,), 

T(z)} of operators are composable for 1,1>izl>O (X, Ye g), and their 
compositions X(,)Y(z), X(,)T(z), T(,)X(z) and T(,)T(z) are analytically 
continued to single-valued, operator-valued holomorphic functions on M 2 = 
{(,, z) e (C*) 2 ; , -::j::.z}. As operators on .?If, the following identities hold: 

( I ) 

(II) 

(III) 

X(,)Y(z) = £(X, Y) id+- 1-[X, Y](z)+R 1 (X, Ye g). 
c,-z) 2 ,-z 

1 1 a T(,)X(z) =--X(z)+--X(z)+Rn (Xe g). c,-z)2 ,-z az 
T(,)T(z) = 3£ id + 2T(z) +_l _ _l__T(z)Rm, 

2A:(,-z) 4 c,-z) 2 ,-z oz 

Here R1, Rn and Rm are regular at, =Z e C*. 
Moreover 

T(,)T(z)=T(z)T(,), T(,)X(z)=X(z)T(') and X(,)Y(z)= Y(z)X(,). 

ii) Let <fJ(z) be a vertex operator of spin j and u e VJ. Ordered pairs 
{X(,), <fJ(u; z)}, {<fJ(u; ,), X(z)}, {T(,), <fJ(u; z)} and {<fJ(u; ,), T(z)} of oper­
ators are composable for 1,1>JzJ>O (Xe g), and their compositions 
X(,)<fJ(u; z), <fJ(u; ,)X(z), T(,)<fJ(u; z) and <fJ(u; ,)T(z) are analytically con­
tinued to multi-valued, operator-valued holomorphic functions on M 2• As 
operators on .?If , the following identities hold: 

(IV) 1 X(,)<fJ(u; z)=--<fJ(Xu; z)+Rrv ,-z (Xe g). 
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(V) T(t;)<J)(u; z)= LIJ <J)(u; z)+- 1-~<J)(u; z)+Rv. 
(t;-z) 2 t;-z az 

Here R1v and Rv are regular at t;=z EC*. 
Moreover X(t;)<J)(u; z) and T(t;)<J)(u; z) (Xe g) are single-valued and 

holomorphic function on t; e P1\{0, z, oo} for any fixed z e C*, and 

X(t;)<J)(u; z)=<J)(u; z)X(t;) and T(t;)<J)(u; z)=<J)(u; z)T(t;). 

Proof All cases are obtained similarly, so we deal here with the 
case ii). 

Let (})(z) be a vertex operator of type v. By Proposition 2.1 i), <J)(u; z) 
has the expansion 

<J)(u; z)= ~ z-n- 4<J)n(u) 
nez 

(X e g, m, n e Z) · 

and 

[L(m), <J)nCu)]={(m+ I)LIJ-m-n-Ll}<J)m+nCu) 

Here we show (IV). For ICl>izl>O, 

X(t;)<J)(u, z)= ~ r;-m- 1z- 4 -"X(m)<J),.(u) 
m,nez 

= ~ r;- 1z- 4 -k ~ (£...)m <J)iXu)+R1v 
kEZ m;;,o {; 

(m, n e Z). 

- r;-i ~ z- 4 -k<J)iXu)+Riv=- 1-<J)(Xu; z)+R1v, 
1-z/f;kez t;-z 

where 

is regular at t;=z. 
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For lzl>l(l>O, we get 

m 1 -1 m w(u;z)X(()=-[<!J(u; z), X(O)]+Rrv=-w(Xu; z)+Rrv, 
z-( z-( 

for the same Laurent series Rrv· Hence for any < ul E Jlf't, I u) E Jlf' and 
fixed z e C*, the holomorphic function <u!X(()<!J(u; z)lv) defined on 
{(EC; !(l>izl} can be analytically continued to a (single-valued) holo­
morphic function on P\{O, oo, z} which coincides with the function 
<ul<!J(u; z)X(()lv) on {C jz\>l(!>O}. q.e.d. 

Proposition 2.6 is generalized as follows: 

Proposition 2.7. Let u e V1 and <JJ(z)=<!J..,(z) be the vertex operator of 

type v= ( _j.) e (CG)e- Let AN(zN), · · ·, Ai(z 1) be operators of the form 
Jzl1 

T(z), X(z) (XE g) or <JJ(u; z), and assume that there is a number i0 such that 
Ai 0(zi 0) = <JJ(u; zio) and AtCzi) is not a vertex operator for i =/=-i0• 

Then {AN(zN), · · ·, Ai(z1)} is composable in the range jzNI> · · · >!z 1 j, 
and the composed operator AAzN)· · -Ai(z1) is analytically continued to a 
multivalued and holomorphic function on MN={(zN, · · ·, z1) E (C*)N; zi =/=-z1 

(i=/=-j)}. If we fix (zN, · · ·, zJ, · · ·, z 1) (j=/=-i0), then this function is single­
valued in zJ e lP1\{ oo, zN, · · ·, zJ, · · ·, Zi, O}. 

2.5) Actions of g and st' on vertex operators 

For an .eCG-vertex v = ( /. ), introduce the g-module 9'1(v) defined 
hli 

by 

(XE g). 

In this paragraph, we fix v e (CG)e and say <JJ(z)=<!Jv(z). 
Now introduce the space @(v) of operators on Jlf' as the IC-vector 

space spanned by the set 

{ 1 f .. ·f d(N·. -d(1((N-z)mN .. ·((1-zr 1XN((N) 
(2irr-"T)N GN G1 

"• -Xl(1)<JJ(u; z); NE Z;,:o, xi E g, mi E z (l:=;:i::;:N), U E vj}, 
where the contours Ci (1 :=;:i<N) are taken fl.S follows: the origin O is out­
side CN, Ci is inside Ci+t and z is inside C1• 

Let A(z) e CD(v), Xe g and me Z, then define 



326 A. Tsuchiya and Y. Kanie 

A 1 f X(m)A(z)= -1=1 dr;(t;-z)"'X([;)A(z) e (!)(v) 
2n- -1 0 

for some contour C around z such that O is outside C. Then by Propo­
sition 2.6, 

Proposition 2.8. Let v be an tCG-vertex. 

i) The assignation X(m)-X(m) and c-£ id defines the g-module 
structure on (!)(v). 

ii) Let u e V1, then 

X(m)</Jv(u; z)=O (m>O, Xe g, u e V1); 

X(O)</Jv(u; z)=[X(O), </Jv(u; z)]=</Jv(Xu; z) (Xe g, u e V1). 

iii) The assignation V1 :1 u-</Jv(u; z) defines the g-isomorphism of V1 

onto the space .91(v), and it is extended to a surjective g-module mapping 
<fJ=<fJv: ...ltr-~m(v). 

Define the action of the Virasoro algebra .f£' on (!)(v) by 

L(m)A(z)= .J-=-rf d[;([;-z)"'+ 1T([;)A(z) 
2n- -1 0 

(meZ) 

for some contour C around z such that O is outside C, Then by Proposi­
tion 2.6, we get 

i) for any u e V1 

L(m)</J(u; z)=O (m>l); 

L(O)</J(u; z)=L1 1</J(u; z) and L(-1)</J(u; z)=.E...<fJ(u; z). az 
ii) the well-definedness of this .fc'-action: (A(z) e <'.9(v)) 

i(m)i(n)A(z)- L(n )L(m )A(z) 

A ma-m 
=(m-n)L(m+n)A(z)+ 12 Om+n,oA(z). 

iii) the compatibility of g-action and .fc'-action: 

i(m)X(n)A(z)-X(n)L(m)A(z)= -nX(m+n)A(z). 

iv) this .fc'-action coincides with the one induced from the Sugawara 
form 



Conformal Field Theory on P1 327 

i(m)A(z)=_!_ ~ {l.:B(-k)H(m+k):+:E(-k)F(m+k): 
2,r; kEZ 2 

+: F(-k)E(m+k):}A(z). 

Theorem 2.9 (Nuclear Democracy*l). For each £CG-vertex v= 

( /. ), the §-mapping (/) gives the §-isomorphism of£\ onto @(v). 
hli 

Note. The following fact is important for this theorem: The only 
one additional relation of Jl{'i to the Verma module vl{J is the equality 
E(- 1y-2i+ 1uij)=0. 

Proof of Theorem 2.9. For each v e (CG)e, set <p=<pv and (f)(z)= 
(/)v(z). Since the kernel of the projection of vi{ J onto Jl{'i is generated by 
a vector jJ1) e vlt1 over U(g), it is sufficient to show that (f)(jJi); z)=0. 

Step I. Recall that I J) = E(- I)e-2J+ 1 u1(j), m+ I J1 > = 0, and 
U(g)jlj) = ~l<,!01+1l CF(0)kjJ 1), hence m+ U(g)jlj) = 0. Since (/) is §­
linear, 

X(m)W(z)=0 

for any m>0, Xe g and W(z) E U(g)(f)(jl1); z). 
Step 2. Let W(z) e <P(v) such that X(m)W(z)=0 for any X(m) em+, 

then 

[X(O), W(z)]=X(O)W(z) and [X(m), W(z)]=zm[X(0), W(z)] (me Z). 

In fact, by Proposition 2.6, we get X(()W(z) = W(z)X((), so 

[X(m), W(z)] = )=i-f d( (m X(()W(z) 
2,r -1 C 

for some contour C around z such that O is outside C, and by the assump­
tion we get 

X(()W(z) = _l_. X(0)W(z) + ~ X( -k-1 )W(z)((-z)k. 
(-z k;,,o 

Step 3. Since v e (CG)e, we get by Remark 2.2'ii), 

(v E VJ,, w E Vii). 

By the induction on n, we get that for any v e VJ. and w e Vii 

*> We owe the naming of Nuclear Democracy to Prof. T. Eguchi. 
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<v I E((1) · · · E((n)(l>(u/j) ;z)I w) = [I (;-1z- 4<vl\D(v, u/j), Enw), 
i=l 

so 

hence by Steps 1 and 2. 

<vlW(z)Jw)=O 

for any W(z) e U(g)<l>(IJJ); z). 
Since Yt"j, = VJ,U(mJ and .Yt"J, = U(m_) VJt, we get 

<£},I W(z)I.Yt"Jt)=O 

for any W(z) e U(g)<P(IJ); z), hence U(g)<P(IJJ); z)=O. 

Here we summarize the relations satisfied by vertex operators: 

Fundamental relations for vertex operators 
Let <P(z) be a vertex operator of spin j. Then 

q.e.d. 

X(m)<l>(u; z)=O 

X(O)<l>(u; z)=[X(O), <l>(u; z)]=<P(Xu; z) 

i(m)<l>(u; z)=O 

(m2I,Xeg,ue VJ); 

(XE g, u e VJ); 

(m2I,ue VJ); 

L(O)<l>(u; z)=LlJ<P(u; z) (u E VJ); 

i(- l)<l>(u; z)=~<P(u; z) az (u E VJ); 

and 

E(- I)e-zJ+1<J>(u/j); z)=O. 

§ 3. Differential Equations of N-point Functions and Composability of 
Vertex Operators 

In this section, we will give the system of differential equations of N­
point functions and show the composability of vertex operators. 

3.1) N-point functions and their differential equations 
The vacuums uo(O) and uJ(O) of £ 0 and .Yt"J are of special importance 

( and are called Virasoro vacuums): denote I vac) = u0(0) and < vac I= uJ(O), 
then 

lJ+lvac)=O and L(m)lvac)=O (m2 - I); 
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(vacjj:)_=0 and (vacjL(m)=O (m<l). 

For an operator A on£, define its vacuum expectation value by 

(A)=(vacjA\vac). 
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Introduce the g-module .'J°= I:.-E<CGlc &(v), defined by the g-action 

X(O)<P(u; z)=<P(Xu; z) (XE g). 

Denote by Llik (I <i, k<N) the g-diagonal action on the i-th and k-th 
components of the N-th tensor product gi@N, that is, Lltk = irt + irk, where 
n:t is the g-action on the i-th component of g,@N. Introduce the operator 
Qtk on g,@N defined by 

and 

(i=fak, XE g,j=fai, k). 

For any half-integer j (0<2j<£), denote by v; the dual g-module 
of VJ" For any N-ple J =UN, · · · ,j 1) of half-integers with 0<2ji~.e, 
let vv ( J) = v;N® ... ® v;;, and let v; ( J) = ( v;N® · · · ® V7:)0 the space of 
all g-invariant elements in Vv(J). Then the operators Qik act similarly on 
Vv(J) and on v;(J). 

Let (li tCzt) be a vertex operator of spin ji (I~ i ~ N), then the vacuum 
expectation value of the composed operator 

is considered as a Vv(J)-valued, formal Laurent series on (zN, · · ·, z1) and 
is called an N-pointfunction: lf<Pi(zJ is of type vi (l~i~N), 

where 
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The aim of this section is to show that N-point functions are conver­
gent in some region and analytically continued to a multivalued holo­
morphic function on MN. 

First we get a system of differential equations of N-point functions: 

Theorem 3.1. Let (J\(zt) be a vertex operator of spin .it (1 <i<N), 
then the N-point function (<J)N(zN) · · · <J)i(z1)) satisfies the following equations: 

(I) (projective invariance) Form= -1, 0 and l, 

(II) (gauge invariance) For any Xe g, 

(III) For each i= I, · · ·, N, 

where ,c=£+2. 
(IV) For each i= l, . · ·, N, 

(<J)N(uN; zN)· · ·(E(-l)l- 21'+1<J)tCu1;Ut); zJ) · · -<Pi(u1 ; z1))=0 

for any uk E V1• (k=l=-i). 

Proof These equations are obtained from the fundamental relations 
of vertex operators, the Sugawara form of L(m) and the properties of the 
Virasoro vacuums. Here we give a brief proof of (III). First, note the 
identity: 

(XE g). 

Let X 1=2X 1=H, X 2 =X 3 =E and X 3 =X 2 =F, then the Casimir 
operator Q is expressed as Q= .Z:::!-1 XkXk. By Proposition 2.6 and the 
relation L( - l )<J)(z) = (a/az)<P(z), we get 

,c--3_<[).(ut; z,)= lim {± Xk(z)<P.(Xkut; z;)-- 1- <PlQut; z;)} 
azi z',z; k-1 z-zi 

(l<i<N). 
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Hence for each i with 1 <i<N, 

Thus we get the equation (III) by taking the limit z',,h 

Remark 3.2. 
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i) The equations (I)-(III) are obtained by V.G. Knizhnik and A.B. 
Zamolodchikov [KZ]. 

ii) The equations (II) mean that <ifJN(zN)· · -ifJi(z1)) e V;;'(J). 
iii) The equations (II) and (III) imply the equations (I). (Key is the 

property of the operators Qik: I:f=1 Qik=O on V;;'(J).) 
iv) The system (III) of differential equations is completely integrable. 

This complete integrability of (III) is reduced to the infinitesimal pure braid 
relations of Qik: 

(if i, k, m, n are mutually disjoint); 

and 

(if i, k, m are mutually disjoint). 

These infinitesimal pure braid relations were originally noted by K. Aomoto 
(see [Al] and [A2]). Moreover these pure braid relations are equivalent to 
the classical Yang-Baxter equations for ~r2 obtained by C. N. Yang [Y] 
and A.A. Belavin-V.G. Drinfel'd [BD]. 

v) N-point functions are translation invariant (Corollary of (I)): 

vi) The equations (IV) are equivalent to the algebraic equations: 
for each i (l <i:=;;:N) and any uk e Vik (k=l=i), put Li= £-2ji+ l. 

I: (Li) n (zk-zJ-m•<if)N(EmNuN;zN)·. -ifJiuj,(jJ;zi)· .. if)i(Em1u,;z,)) 
lmil =L; mi k*i 

=0, 

where mi=(mN, ···,mi, · · ·, m1) e (Z:2:0Y- 1, !mt I= I:k*i mk and (~J is 

the multinomial coefficient. 
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3.2) Solutions of fundamental equation 
Consider the systems E(J) of differential equations and B(J) of 

algebraic equations for V;;'(J)-valued functions <J)(zN, · · ·, z1) on the mani­
fold XN={(zN, • • ·, z1) e CN; zi=t=-zk (i*k)}::JMN: 

E(J): (l<i<N) 

and for each i (l<i<N) and any uk e VJ> (k*i), 

B(J): I: (Li) n (zk-zitmi<J)(zN, '' ', Z1)(E'"-NuN, '' ', uJ,(ji), '' ', Em1u) 
I mlf = L; fili k,;,i 

=0, 

where mi= (m N• • · ·, mi, · · · , m1) e (Z:,,0)N-1, Im. I= I;k,;,t mk and L, = £ -
2ji+l. 

By Remark 3.2, the system E(J) is completely integrable. 
Introduce the set &i'(J) defined by 

VN-1 • • • • • • • • Vt · • • • • • • • • • V2 

• · • P2 P1 

For each p e &i'(J), define the vector <pp of V;;'(J) from the (fixed) 
elements <p .. , e Hom8 (V!/8WJ,®VP1_ 1 ; C)~(V:7:®Hom(Vp,-,, VP,))8 (1::;;:i 
<N), as the trace of <p .. N® · · · ®<p .. ,: for each uN®' • ,(8)u1 e V{J), 

Then the set {<pp; p e &i'(J)} gives a basis of the space V;;'(J). 
Introduce the operators tl:,,= I:is:i,;,J,;;m QiJ on V"(J) for m (2<m 

<N), then 

where Q,._ is the diagonal action of Q on V1 .. ®· · -@v;;, and by the pure 
braid relations (Remark 3.2 iv), we get that [Q:;;, D;;-]=0. 

In the basis {<pp; p e &i'{J)}, these operators are diagonal: 
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where 

In fact, for each i=2, •... , N, 

fJtfpp=2,ct1PlPP and Qiicpp=2,cJJ/Pp· 

Now introduce the subset .9'1e(J) of .9'1(J) defined by 

.9'1e(J)={JP=(PN, · · ·,Pt,Po) e .9'1(J); Vt=v;(p)=(Ptt_) e (CG),}, 

then for each JP e &1e{J), the N-point function 

(!)izm • • •,Z1)=((!)v/zN)• • .(!)vJz1)) 
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of type JP is a formal Laurent series solution of the system E(J) and B(J) 
by Theorem 3.1, where its Laurent series expansion is given as 

N 
(!) (zN ••• Zi)= TI z:-4(v,l ....., ... ....., ... ....., C zN-mN •. ·Z1-m' 

P ' ' i L..J L-J L.J m.N•••m1 
i=l mN;;,;O m,ez m1,;:;0 

where 

Moreover 

Theorem 3.3. Consider the region[]£, in the manifold XN, defined by 

Then 
i) for any JP e .9'1,(J), the Laurent series (!)p (zN, · • ·, z1) is absolutely 

convergent in the region []£., and is analytically continued to a multivalued 
holomorphic function on XN. 

ii) {(!).JzN, • · ·, z1); JP e .9'1e(J)} is linearly independent and gives a 
basis of the solution space of the joint system E(J) and B(J). 

Proof. The system E(J) of differential equations is equivalent to the 
Pfaffian system: 
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P(J): 

Now we change coordinates z tow by 

wN=zN; wi=zi/zi+ 1 (l<i<N-1). 

Then the region PA. transforms bijectively onto the region 

where the inverse transformation is given as 

Zi=WN·. ·W, (l<i<N). 

And introduce the region fiAw={w e CN; 1 >lw,I (1 <i<N-1)}::::ifiAw,o· 
The system P(J) is written in the coordinates was 

where di(w)=(l>(z). 
Hence by using the operators Q':;., the system E(J) turns to be 

E{J): 

where 

(2<m<N-l), 

Since A,,,(w)'s are holomorphic in the region fiAw, the system E(J) is 
with regular singularities along the divisors Dt={w,=0} for i=2, · · ·, N. 
The basis {cpp; p e &'(J)} of V;;'(J) diagonalizes the principal parts of the 
system E(J) with the exponents {.J;(p); l<i<N} corresponding to cpp. 

The formal Laurent series solution diiwN, · · ·, w1)=(l>/zN, · · ·, z1), 

p e &',CJ), of the system E(J) is written as 



where 

S/wN, · · ·, w1) 

N 
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= n W-14Pl(W}(O)<J),,N(l)w}~l<b,,N_l(l)' ' '<b,,.(l)wf(O)<J>v,(1)) 
i=l 

is a formal power series in w, since wf<0>=wtp;+c1 id on .Yt'p,,a· 
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By the theory of partial differential equations with regular singular 
points (see e.g. [CL] Chap. 3 and [Kn] Appendix B), the function <Piw) is 
a solution of the system E(1) of differential equation in the region P-lw,o 
for each p e .9'g(1). Hence the formal power series SP(w) gives a holo­
morphic function in P-lw, and so the function <P/wN, · · ·, w1) is holo­
morphic in the region &lw,o· Thus the N-point function <bizN, · · ·, z1) is 
holomorphic in P-l. for any p e .9'e(1). 

ii) By the remark before the statement of the theorem, for each p e 
.91l1) 

SiO, · · ·, O)=(vacl<bvN,o( · )<b,,N,..,,o( ·) · · · <b,,,,o( · )<P,,.,0( • )!vac) 

=(VaCISovNSo"N-i'' 'Sov,Sov,IVaC)=(VaCISoPIVaC) E v;(1). 

This implies the linear independence of {<bizN, · · ·, z1): p e .9'e(1)}. 
Finally we want to show that the dimension of the solution space of 

the joint system E(1) and B(1) is not greater than l*.9'e(1), where B(1) is 

the system B(J) written in the coordinates w: for each i with I<i<N, let 
L=t-2jt+I, 

BtC1): t (L) I: (L-,K)( ~,) CT w;x-m1+1:"-mt(l+O(w)) 
K=O K lm'l=L-K m m k=i 

lm"l=K 

X <P(wN, ... 'W1)(E"'NuN, ... 'U1,Ut), ... 'Em'u1)=0, 

where m' =(mN, · · ·, mt+1) e (Z.,0)N- 1, m" =(mt-i, · · ·, m1) e (Z.,0)t-i and 
O(w) is a convergent power series in P-lw and 0(0)=0. 

For each p e .91(1), take a solution 

(p E .91(1)) 

of the system E(1), where Tiw) is a convergent power series in P-lw with 

the constant term TiO)=Sop· Apply BtC1) to '//f iw) for i>2, then its 
leading term must vanish, and the term is obtained by taking K=L, since 

N N 
I: (K+m1+1+ · · · +mk)=(N-i+ I)K+ I: (k-i)mk 
k=i k=i+l 
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and 
N 

K+ I: mk=L. 
k=i+l 

Hence 

0= I: ( L,,)r/O)(uN, ... 'Ui+1' uj;(ji), Em<-•ui-1• ... 'Em'u1) 
lm"l=L fil 

=cp/uN, · · ·, ui+i, uJ,(ji), EL(ui_ 1Q9 • • · ®u 1)). 

By Remark 2.2' ii), we get that £> ii+Pi+Pi-1, that is, vie (CG)i for 
i>2. Hence p e g.>i(J), since v 1 e (CG) 8 automatically. 

Introduce a partial order -< in the set g.>(J) defined by 

iP-<iP', 

Let 7/f(w) be a solution of the systems E(J) and B(J), and express it 

as 7/f(w)= I:PE"'w cp7/f iw), where g.iw ={iP e g.>(]); cp=,t::O}. Apply B;(J) 
to 7/f(w), then by the linear independence of solutions ofE(J) with different 
exponents modulo 'Z,N, the leading term for 7/f iw) must vanish for any 
minimal pin g.>w, Hence any minimal p e g.>w belongs to g.>i(J). Since 

<Piw) satisfies B(J) for any p e g.>i(J), 7/f(w) must belong to the space 
spanned by {<Piw); p e g.>i(J)}. q.e.d. 

3.3) Composability of vertex operators 
As a corollary of Theorem 3.3, we get the following 

Theorem 3.4. Let tfJ;(zi) be a vertex operator of spin ii and ui e VJ, 
(l<i<N). Then the sequence{<PN(uN;zN), · · ·, <Pi(u1;z 1)} is composable 
in the region ~., 0={(zN, · · ·, z1) E CN; lzNI> · · · >lzd>O} and the com­
posed operator tfJAuN; zN) · · ·1Pi(u1 ; z 1) is analytically continued to a multi­
valued holomorphic function on MN· 

Proof We may assume that tb;(ui; z;)=IPv, (ui; zi) for some vertex 

vi=( ii ) E (CG)i, Put 1=(PN,iN, · · ·,i 1,p 0), then P=(O,pN, · · ·, 
Pi Pi-I 

A, Po, 0) E g.>i(J). 

For the vertices VN+i=VN+i(iP)=(/;J and v 0=vo(p)=(p: 00), we 

get by Proposition 2.5, 

lim 1Pv0 (w; z)lvac)=lw) 
z'-,.O 

and 
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The (N+2)-point function ((J)vN+i(vN; ZN+i) (J)v/uN; zN)· • .(J)v/u1; z,) 
(J).,o(w; z0)> is holomorphic in &lf+2={(zN+1> · · ·, z0) e CN+2 ; lzN+d> · • • 
>lz 01}, so it is an absolutely convergent Laurent series in the region &lf+2• 

Hence 

(v(v)l(J)v/uN; ZN)·· .(J)v,(u,; z,)lw) 

=Iim Iim Z24"1f ((J)vN+i(v; ZN+1)(J)viuN; z) · · · (J)v,(U1; z,)(J)v0(w; Zo)) 
to',.O ZN+t/= N+ 

is absolutely convergent at any point (zN, · · ·, z1) e Bl,,o for any v e VPN+•' 
u, e VJ, (1 <i<N) and we vpo• 

For general v e .n"1N+i and we .n"P•' we may put 

for some Vo e VPN+i' Wo e VP•' Yi, xi e g, mi, ni >O. 
Then it is sufficient for the convergence of the function (vl(J)AuN; zN) 

· · · (J)i(u1 ; z,)I w) to note 

Iim Xl-n 1)· • -X,(-n,)(J)v 0(w0 ; z)jvac)=lw), 
z',.O 

and 

Remark 3.5. If we take the value f, of the central element c of g as 
f, ~ Q, then we can construct an analogous theory without the !,-constraint 
condition. In this case, the Verma module ..111 (defined as in the top of 
Section 2.3) is irreducible for any nonnegative half integer j, and the space 
.n" is taken as .n" = :E ..It 1, where j runs over ½Z:2:o· Then there exists a 

vertex operator on .n" of type v e V, if and only if v= ( /.) e (CG). In 
' hh 

this case, 0(v);;;;;...lt1, so the last equation E(-I)'- 21+1(J)(u/j);z)=O is 
eliminated among the the fundamental equations for vertex operators. 

§ 4. Commutation Relations of Vertex Operators 

4.1) Formulation of the problem 

For a quadruple J =(j 4,j 3,j 2,j 1) of half integers with O< 2ji < l, 
introduce the set IlJ) of intermediate edges, defined by 
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Ie(J)={k e ~ Z; 0~2k<£, vz(k)=C! 3J e (CG)e, 

vi(k)=(/ 1) E (CG)i}· 

For each k E Ie(J), put p{k)=(v 3, vz(k), vi(k), v 0) E .9'e(1), where v 3= 

(o\) and Vo=(lo). And put .JiJ)=.d(v2)+.d(v1)=.d1i+L1;.+L11. 

- LI 1, (independent of k). 

p(k): r r .. .. • 
j4 k jl 

V2 V1 

Assume le( J) * 0, then we get two vertex operators (/) vz(ki( w) and 
(/)v,<ki(z). By Theorem 3.4, they are composable in the region 9f2={(w, z) 
E (?; \ w\> \z\> O} and the composed operator (/)iw, z)=(/)v 2(w)(/)v,(z) is 

analytically continued to a multi-valued holomorphic and operator­
valued function on M 2={(w, z) e (C*)2; w*z}. Introduce a v;(J)-valued 
holomorphic function 1Fiw, z) on M2 defined by 

In the region 9f2, this function has a convergent Laurent expansion: 

with the initial term (J.i(U4)\9v.(u3)\0v,(u2)\u1) for any Ui E VJi' 

By Propositions 2.1, 5 and Theorems 2.3, 3.3, we get 

Proposition 4.1. Assume Ie(J)*0· Then for each k e Ie(J), 
i) the operator ([)iw, z) on :If is uniquely ldetermined by the v;(J)­

valuedfunction lF.{w, z). 
ii) The function 1Fiw, z) satisfies the joint system E'(J) and B'(J) of 

equations: 

E'(J): {tc a - !213 - !223 }1Fiw, z)-{tc a - !212 - !223 }1Fiw, z)-0. 
aw w w-z az z z -w 
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and 

B'(J): 

I: (L 4)lJTk(w, z)(ui 4(j 4), Em•u3, Em2u2 , Em•u1)=0, 
lml- L4 ffl 

where Li=i-2ji+I (l<i<4) andm=(m 3, m2, m1) E (Z;,,0)3. 
iii) The family {lJTiw, z); k e Ie(J)} gives a basis of the solution space 

of the systems E'(J) and B'(J). 

Now assign a new quadruple J =(.j 4,j 2,j 3,j 1) to the quadruple J = 
(j 4 ,j 3,j 2,j 1) of half integers with 0<2k::;: £, then we get the g-isomorphism 
T: V"(J)-+ V"(J) defined by 

( T <p )(uli9uz(Z)ug(?9u1) = <p( u/i!)u/2)u/;i!)u1) 

for <p e V"(J) and u/2)u/2)u/2)u 1 E V(J). Since T(V;;'(J))= V;;'(J), we get 
dim V;;'(J)=dim V;;'(J). Note Lll1)=L1iJ) and #le(J)=#le(J). 

For an intermediate edge k e Ie(J), similarly define the vertices vz(k) 

= (/zk ), vi(k)= (f\) E (CG)i, the composed operator <P;;(w, z) of the 

vertex operators <Pv.cicJ(w) and <Pv,<ici(z), and the V;;'(J)-valued holomorphic 
function iP\(w, z) on M 2• In the region qt 2, this function iP\(w, z) also has 
a convergent Laurent expansion: 

. . 1 j3 f 2 _ _ v2 v3 
p(k)~.___J__ p(k~.__l___ 

j4 k j1 j4 k, j, 

Now introduce the path b(t)=('Y)(t), W)) from a point (w, z) in the 
set l 2 ={(w, z) e R 2 ; w>z>O} to the point (z, w) in the set l2={(z, w) e R 2 ; 
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w>z>O} on the manifold M 2, defined by 

1)(t)= wiz + er./-=it w~z, C(t)= wiz _ er./-=it w~z (t e [O, I]). 

---+--1)(-+-t)e---+--- 00 

I z w 
0 

C(t) 

Denote by 'lfflz, w) the analytic continuation of the convergent 
Laurent series 'lff lw, z) in the region &l2 along the path b(t) and consider 
'lff,.(z, w) near / 2, then the V;;'(J)-valued function T'lff iz, w) satisfies the 
equations E'(J) and B'(J), so it is expressed as a linear combination: 

T'lfflz, w)= I; W;;(w, z)C!(J), 
iieie(JJ 

where C{J)={C!(J)),.er,<JJ,iier,m is a square matrix. 
Hence by Proposition 4.1, 

Proposition 4.2. i) Let J = (j 4,j 8,j 2,j 1) with Ie(J) * 0. Then for 
each intermediate edge k e Ie(J) and (w, z) e / 2, 

where the operator in the left hand side is considered as the analytic continu­
ation of the composition of the vertex operators (/)v.(w) and (/)v,(z) along the 
path b(t) in the manifold XN. 

ii) Let J =(t,j 8,j 2,ji, s), then the braid relation holds: 

C(js,jz,j1, s)C(t,js,ji,jz)C(ji,js,j 2, s) 

= C(t,j3,jz,j1)C(j2,js,j1, s)C(t,jz,j1,js), 

(s) (t) (s) (t) 
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Now our fundamental problem is: 

Fundamental Problem. Determine the matrix C(J)=(C!(J)) for any 
quadruple J with /e(J):,e:0. 

4.2) Reduced Equation 
Take an intermediate edge k e //J) and introduce a variable t; =z/w, 

then the V;;"(J)-valued function zJ•<mJJ\(w, t;w) is independent of w, since 
by Theorem 3.1, I, 

{ w~ +z~ -LllJ)}Wk(w, z)=O. aw az 
So we abbreviate zJ•<1JWiw, t;w) to Wit;), then the V;;"(J)-valued 

function Wit;) (called reduced 4-point function) has a convergent Laurent 
expansion 

Wit;)(u/i?)u3@ui8)u1)=t;-l<v,(k)) ~ (i;(u4) I <J)v,,nCua)<J)v,, -nCu2) iu1)(n 
n:C:O 

int; EC* with the initial term (i;(u4)1Sov,(u3)<pv,(u2)ju 1) for ui E VJi. Then 
by Proposition 4.1, 

Proposition 4.3 (Reduced equation). The V;;"(J)-valuedfunction Wit;) 
satisfies the joint system RE( J) and RB( J) of equations: 

RE(J): 

and 

RB(J): ,t
0 

(~ 1 )r;mWit;)(U4, Emu3, EL,-mu2, uh(j 1))=0, 

f (Lm2)(-'-)mWit;)(u4, Emu3, U1,U2), EL•-mui)=O, 
m=O {;-1 

f (La)(- 1-)mWi()(u 4, u13(j 3), Emu2, ELs-mu1)=0, 
m=O m l-{; . 

~ (L4)Wk(t;)(u1,(j 4), Em•u3, Em•u2, Em'u1)=0, 
lml=L4 fil 

where Li=£, - 2ji + 1 (1 < i < 4) and m = (m3, m2, m1) E (Z:2:0)3. 

Proof The system E'(J) of equations turns to a single differential 
equation RE(J), since .Q12 +.Q 13 +.Q 23 = -diJ). q.e.d. 

In the following, we want to solve the fundamental problem for the 
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case where j 3 =¼ in J. For this aim, we investigate first the reduced 
equation RE(J) in detail for each quadruple J =U4,, ½,j2,j 1) with V;;'(J)*O 
and thereafter take the equation RB (J) into account. For the investiga­
tion of the reduced equation RE(J), introduce the set I(J) defined by 

I(J)={k e _!_z:.e0 ; vlk)=( /s ) e (CG), vi(k)=( j 2_)= (CG)}. 
2 14k k1i 

First note that #l(J)=dim V;;-'(1)<2. And dim V;;-'(1)=2 if and 
only if 

(D2) I . . I< . 1 . + 1 < . +. 11-12 _14-2, 14 2-li Jz 

In this case, I(J)={k±=j 4 ±!}. 

d . . 1 +· z an 11+12+- 14 e . 
2 

The case (D2) is divided into three cases (D2), such that #le(J)=i 
(i = 0, 1, 2). Introduce the number eo( J) = (j 1 + j 2 + j 4 + !-)/ K, then 

(D2)2 e0 <I; thenj 1,j 2,j 4< 1--; 1 and Il1)={k±=j 4± ~}, 

(D2)1 e0= 1; Ie(1)={k-=j 4 - ~ }, (D2)0 e0> 1; I,(1)=0. 

• 

1~ 
4 • r • 

j4 k± jl 

Moreover dim V;;'(J)= 1, if and only if either of the following condi­
tions (DI) holds: 

j1=j4+l.+j2; (Dl)2 j2=j4+ _!_ +j1; (Dl)s j4= l.+j2+j1, 
2 2 2 

And I(J)={j 4+¼} for the case (Dl)i, 2 and I(J)={j 4 -½} for the case 
(D 1 )3• Note that one of the conditions (D 1 ), implies #le( J) = 1. 

Denote by (DO) the case where V;;'(J)=O, i.e. I(J)= 0. 

Now consider the equation 

RE(J): 
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for v;;(J)-valued functions W(t;,) on r;, e C*. The coordinate change r;, H­

r; = 1/t;, makes the equation RE(J) into 

(,._!!___ D13 -~)w(l..)=o. 
dr; r; r;-1 r; 

Case (D2). First we get three bases { u~>}, { u~>} and { Ut>} of V;;'(J) 
such that they diagonalize the operators Q12, /J23 and Q18 respectively (see 
Appendix I): 

and 

u~>(u4, U3, Uz, U1)= -v'2;4+1 (v(u4)ISovo(kJus)Sov1(k±i{Uz)lu1) 

for u/f9u/f9uz(i9u1 e V(J), where 

rco)_ 214-l 
- - -21C ' 

r~=> = .i1, r~=>=.i1+1 . 
IC -IC 

r (t) _ .iz +--, 
IC 

r~>= .iz+l ' 
-IC 

Introduce the differences r<'>=r~>-r~> (i=0, 1, oo), then O<r<'><t, in 
particular, they are not integers: 

r<0) and r<=> = 211 + 1 
IC 

(1C=t+2). 

The transformation matrices s<t,k> between the bases {U~'} and 
{ u~>} are given as 

where 

s<0, 1>=s<1,0>=(~ -1), s<0,=>=s<=,O)=(-~:: !;;) e O(2)\SO(2), 

s<=,1> =ts< 1,=> = (~: -!;) e SO(2), 

and the constants A - B" are given as 
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where 

e0 =eo(J) and et=! {j 1+j2+j4+ ~ -2jt} (i=l, 2, 4). 

Now we get the fundamental solutions of the linear differential equa­
tion RE(J) with regular singular points at C=O, 1 and oo by means of the 

· Gauss' hypergeometric function F(a, f3, r; C) (see Appendix II for the 
proof): 

Proposition 4.4. Introduce the constants a=e 0, f3=e1, 13<=>=e4 and let 
'lJl"~>(C) be the fundamental solutions of the equation RE (J) normalized at 
C=i (i=O, 1, oo): 

Then 

(i) So~~(C)= ( 7':'(l-CY'l'F(a, /3, r<0>; C); 

sa~i..(C)=c~'C1+r1'(1-C)7'l'F(a+l, f3+1, 2+r< 0>; C); 

So~~(C)=c~>(1+70!'(l-Q 7!..!'F(-a+l, -f3+1, 2-r< 0>; (); 

sa~i..(C)= cr0!'(1-C)7!..!'F(-a, -/3, -r< 0>; (). 

(ii) sa~~(C)= t;r':'(I-C) 7'l'F(a, /3, r<11; 1-C); 

gi~i..(C)=c~>(7':'(l-t;) 1+r'l'F(a+l, f3+1, 2+r(I); 1-C); 

sa~~(t;)=c~>cr0!'(1-C)1+r!..!'p( ..:...a+ 1, -/3+ 1, 2-r' 1>; 1-C); 

gi~!..(C)= cr0!'(l-C) 1!..!'F(-a, -/3, -r< 11; 1-(). 

(iii) gi~00J(C)= ,-r~®'( 1- ~ Y'l' F( a, [3<00 >, r<=>; ~); 

sa~002(C)=c~=),-l-r~®'(1- ~ f 1'F(a+l, 13<=>+1, 2+r<=>; ~ ); 

gi:..00J(C)=c:..=>c-1·r'-00
'( 1- ~ )7!..!' 

xF(-a+l, -13<=>+1, 2-r<=>; ~ ); 

gi:..002(()= . t;·r:..®'(1- ~ )7!..!'F(-a, -13<=>, -r<=>; ~ ), 
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where 

(i=O, I, oo). 

Note. The reduced 4-point function ?Fk±(C) is the solution of RE(J) 
with exponent re:> at C=O, so by the normalization of UC:>, ?Fk±(C)= 
./2j 4 + I ?FC:>(r;). 

Case (DI). Since dim V;;'(J)= I, the choice of basis vectors of V;;'(J) 
is not of importance. But from the compatibility with the case (D2), we 
choose basis vectors {U<1); i=O, 1, oo} of V;;'(J) such that 

u<0)= ij(l)= u<=) for (D1)1,3; u<0>= U(I)= -u<=) for (Dl)z. 

The exponents r<0>, r<1> and r<=l of the equation RE(]) at i'.;=0, I, oo are 
given as 

ro)= 3+2j4' r<t>= jz, r<=l=_j1+I' 
21C IC IC 

(D1)2 
r<O)= 3+2j4 r<l)=- l+jz' r<=) = .i1 , 

21C ' IC IC 

(D1) 3 
r(O)= 1-2j, r<l)= j2, r<=) = .i1 . 

' 21C IC IC 

Then we get 

Proposition 4.4'. The fundamental solution ?F<1l([;)= u<il<p<1l([;) of the 
equation RE(J) normalized at C=i (i=O, 1, oo) is given as 

(D1)1,a 

and 

(DI )2 <p(Ol(T;) = <p(ll(T;) = r;r'"(l -T;)r'", <p(=l(T;) = q (J, + 1)/Z<p(Ol([;), 

where the exponents r<il are corresponding ones and q=exp (2rrr-T./IC). 

4.3) Connection matrices for J =(j 4, ½,j 2,j 1) 

The path b(t) from a point (w, z) E / 2 to (z, w) e 12 on M 2 introduced 
in Section 4.1 corresponds a path from the point i:; =z/w in the set J, = 
{i'.;eR; I>C>O} to the point 1/T; in the set J1={CeR; C>I} on the 
manifold C*. If z tends to zero, then the corresponding path tends to the 
path b(t) from Oto the infinity figured below: 
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0 1 -----------•------------ 00 

Now take an intermediate edge k for a quadruple J =Uo f,j 2,j 1) with 
1(1)=1'=0. We want to know the analytic continuation of the reduced 
4-point function 1flit;) along the path b(t). 

For the case (Dl), we get easily the connection matrix (scalar) K(J) 
of the fundamental solution 1J!<0>(t;) at r; =0 to 1J!<00 >(t;) at r; = oo of the 
equation RE(J): s<0• 00 >cp<0>(t;)=cp'00 >(t;)K(J) as follows: 

(D1) 1,3 K(J)=q 1•12; (D1)2 K(J)= -q-< 1+J.>t2 ( q=exp ( 27t':=1") ). 
Now we deal with the case (D2). By the formulae for connection 

matrices of the hypergeometric functions, we get the connection matrix 

K(J)=(f~ fD of the fundamental solutions (1f!T>, 1J!:<!>) at t;=0 to 

(1J!~00 >, 1]!~00 >) at t; = oo of the equation RE (J): 

that is, 

sc 00 ,o)(SoT~(t;) cp:'!~(C)) = (cp~00J(t;) cp~00J(C))(K! K<:.). 
c;oT:.(t;) cp:'!:.(t;) cp~00~(t;) cp~~(t;) K-;. K: 

(see Appendix II for more details): 

Proposition 4.5. 

K!=-q~u1+1,+s12>12 ___ -. , ( r (O)r(oo) )1/2 I'(r(Ol)I'( r(oo)) 

e1e4 I'(e1)I'( - e,) 

The conditions (D2), (i=2, 1, 0) and {Dl) for J are equivalent to 
(D2)t and (D1) for J respectively. Intermediate edges for J must be K= 
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j 1 ± ½ under the condition (D2)2, and the intermediate edge for J must be 

- . 1 
k=1i--; 

2 

From the three bases {U~l=U~l(J); i=O, 1, oo} of V;;'(J), put 

then they are three bases of V;;'(J) such that 

D12U~> =,ci'~'U~>, D2aUi> =,c,i>ui>, D1aUt> =tc(i'~=) -JiJ))U;,=>, 

i'~'=r~=>, i'~)=r~i, ,~='=r~i, 

and 

By Proposition 4.1, the composition <1\(w, z) of vertex operators is 
determined by the V;;'(J)-valued function lFiw, z) which is written as 
lFiw, z)=z-A•<1>1F1.(z/w) by the reduced 4-point function lFiC). And the 
composed operator iJJ;Jz, w) is also determined by the V;;'(J)-valued func­
tion W,.(z, w)=w-A•(J)W,.(w/z). 

The functions lFiC) and W r.(r;) satisfy the differential equations RE (J) 
and RE (J) with the initial conditions: 

c2<v.(k))lp'iC)(u., Ua, Uz, U1) li:-o = (v(u.) lsav.Cua)Sov,(u2) I U1) 

and 

/<v,(icl)lff r.(r;)(u4 , U2, U3, U1) 1~-o = (v(u.) I Sov2(u2)<j0v1(ua) I U1)• 

By the relations among the exponents {r~l} and {i'~l} of the equations 
RE(J) and RE(J), we get 

T?F~l(C)= CA•(J)W~=)( ~) and T1F~=l(C)=CA•<1 >7ff~l( ~ ), 

where 7ff~l(r;) denotes the fundamental solutions of the equation RE (J) 
similarly obtained as in Proposition 4.4. 

By the note after Proposition 4.4, we get 
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Hence by Propositions 4.1, 5, we get 

Proposition 4.6. Let J =(j 4, ½,j2,j 1) with /(J):f:0. Then 

(D1) C(J)=Cf(J)=K(J), where k e /(J) and k e /(J). 

(D2)1 C(J)=C~:(J)=K:(J), where k_=j 1 - ~ and k_=j 4 - ~. 

(D2)2 C(J)=(Cf(J))ker<Ji,1:erm=K(J) as 2X2-matrices. 

Remark. In the case (D2)2, all entries of the matrix C(J)=K(J) do 
not vanish. In the case (D2)10 e0= 1 implies K:'.:(1)=0, hence the matrix 

K(J) is of the form(: ~). 

4.4. Case J =Uo ½, ½,j1) 

As a special case, we takej 2 =j 3 =½, then the conditions (D2) and <Dl) 
read as 

and 

(D1)1 j4=j1+ 1; 

Under the assumption (D2), the constants r~i, et and the matrix K(J) 
turns to be the following (herej=j 1=j 4): 

r~i= 2j+3, r~i= 2j-l, r~i=_1_, r~'=-3-, 
21C - 2... 21C - 21C 

r~oo) =i_, r~"''= j+ 1 ; roi=r(oo)= 2j+l' 
IC 

r(l)_ 2. --, 
IC - IC IC 

_ 2j+2 
Eo----, 

IC 

r(¥)r(~) 
Kt=-(2j+l)q-J- 3

1
4 r(!)r(--:1 ) , 

r( 2j+1 )2 
2j+l -IC 

K:'.: = 2-/ j(j+ 1) q-1/4 r( 2_~~2 )r( 2_!1C) , 
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r(2j;1 )2 2 ·+1 ,. 
K-;.= 2-v fcj+l) q-1/4 _r_(_2_\_+_2_)_r_(_2/C_j_)' 

and 

r(~)r(~) 
K:=(2j+ l)qJ+l/4 r(! )r( ~1) 

Now recall the notion of q-integers for q e C*: for each integer l.l e Z, 
introduce the q-integer [l.l]=[l.l]q defined by 

Then 

(q=/= 1) 

(q= 1). 

Lemma 4.7. 
i) [O]q=O, [l]q=l and [2]q=l+q. 

ii) [-l.l]q= -q-v[l.i]q and [l.i]11q=q1-v[l.i]q (J.i E Z). 

iii) [l.i]q=O, if and only if qv= I. ([!C]q=O if q=exp(2ir~).) 

iv) limq-1 [l.i]q=l.i for any l.i E Z. 

Then in the case (D2)2, the matrix K(J) can be symmetrized by means 
of q-integers: 

Proposition 4.8. For j e ½Z with 0<2j<£, 

where 

K(j, ~' ~' j) 

[ 

-1 
[2j + 1) 

r: 1) J q [2j][2j + 21 
[2j+l] 

r( 2j+~ 1) 

,v q [2j][2j + 2] ] 
[2j+lJ (r+ ) 

q2J+I r _ 
[2j + 1] 

( 2ir-v=T) q=exp JC and [l.i]=[l.i]q. 
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We can get the connection matrix ( =scalar) K(J) in the cases (D2)1 

and (D1): 

Proposition 4.8'. Let q=exp (21r~/1e). 

i) K(~, ~, ~, ~)=qHI1 4/[£+l]q=-q- 314_ 

ii) x(o, ~, ~ ,o)=-q-314. 

1·1·1·) K( . 1 l l ·) K( · 1 l l ·) 114 
1 + '2' 2' 1 = 1 - '2' 2' 1 =q . 

Remark. These values are also obtained from the calculations in the 
case (D2)2• K:;:(0, ½, ½, 0) = 0 and K!(0, ½, ½, 0)= -q- 314. For J ± = 
(j± 1, ½, ½, _j), K!(J ±)=K:(J ±)=0 and K~(J +)=K:;:(J J=q 114. 

§ 5. Monodromy Representations of Braid Groups 

In this section, we construct representations of braid groups on the 
spaces of multi-correlation functions, and show that they give the same 
representations of Hecke algebras constructred by H. Wenzl. 

5.1) Braid groups and Hecke algebras 

Recall our XN is a complex manifold defined by 

XN={(zN, zN-i, · · ·, z1) e CN; zi-:t=z1 (i-:t=j)}. 

The N-th symmetric group @;N acts on the manifold XN as (zN, · · ·, z1)a= 
(zcN)a, · · ·, z0 >.) (a e @;N), then we get a covering space rrN: XN-+XN= 
XN/@;. Let fcN: xN-xN be a universal covering manifold o( XN, then 
ftN=fcN O rrN: xN-xN is also a universal covering of XN. 

Now recall the braid groups according to J. S. Birman [Bi]. The 
fundamental group rr1(XN, PN) of the manifold XN is called the braid group 
with N strings of the manifold C, that is, the classical braid group of Arlin, 
and is denoted by BN, where we take the base point as PN=rrN(PN)- The 
composition of i- 1 and i- 2 in the group BN is figured as 

1 2 3 N-2 N-1 N 

C5 I 
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N....:.2 N-1 N 

The fundamental group :ir1(XN, PN) of the manifold XN is called the 
pure braid group with N strings of the manifold C, and is denoted by P N, 

where PN is a base point of XN, e.g. PN=(N, N-1, · · ·, 1). Then the 
group P N is the kernel of the natural homomorphism p of B N onto @?N. 

It is well-known.that the group BN has a system {bi; I<i<N-1} of 
generators with the fundamental relations 

(BR) · b~b1=b 1bi (li__:jl>2) and bibt+1bt=bi+lbibi+1 (l<i<N-2). 

where bi is figured as a geometric braid by 

1 2 i. i+1 N-1 N 

I I I I 
The subgroup PN has a system {ail; l<i<j<N} of generators, defined 
by 

Introduce a subset IN of the manifold XN defined by 

IN={(zN, • • ·, Z1) e RN; zN>zN-1> • • • >z1>0}. 

Specify a base point PN of the manifold XN such that ftN(PN)=PN, then 
there is a subset iN of XN such that PN e iN and IN is homeomorphic to iN. 

For a finite dimensional @?N-module W, denote by (!}(XN; W) the 
space of all W-valued holomorphic functions on XN. The values of cp e 
0(XN; W) on the whole XN are determined by the values of cp in iN, which 
we call the principal branch of the multi-valued function cp on XN. For a 
point (z N• • · ·, z1) e IN• sometimes we write cp(z N, · · ·, z1) = cp(p), where 
ft e IN such that ftN(p)=(zN, · • ·, z1). 

The action of the braid group BN on the space 0(XN; W) is defined 
as follows: Let !' e BN=:iri(XN). For each cp of 0(XN; W) and ft e XN, 
put 
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(-ccp)(fi) = p(-c) ·cp(fi. -c) 

where the group BN acts on each fiber tt .. i/(ti'N(fi)) as the covering transfor­
mation Of xN-xN• 

We will give more explicitly the principal branch of -ccp for a generator 
-c=bt (1 S:,i <N-1). For each ft e IN, let jJ=ftN(fi) e IN and (zN, · · ·, Z1) 

=if:N(fi) e IN, 

(bicp)(P)=(i, i+ l)·cp(ft·bt) 

where (i, i + I) denotes the transposition, and cp(fi · bt) is nothing but the 
analytic continuation of the principal branch cp(zN, · · ·, z1) along the path 
(CN(t), • · ·, C1(t)) in XN (t e [O, 1]): C,.(t)=z,. (k=l=-i, i+l), 

01 Z1 Z2 

'··~ 
Zt+2 ZN . Zi Zt+t 

. Ci(t) 

Related to braid groups, the notion of Hecke algebras is important 
(see e.g. D. Kazhdan-G. Lusztig [KL] and V. H. R .. Jones [Jo]). 

Let N>2 and q e C*. Then the Hecke algebra HN(q) of type AN-i 
is defined as the associative complex algebra with generators 1, T1, • • ·, 

TN-t with the defining relations: 

(Hl) TtTi+tTi=Ti+ 1TtTi+1 for i=l, 2, · · ·, N-2. 

(H2) TtTJ= TJTt for ji-j !>2. 

(H3) (Tt-q)(Tt+l)=O, that is, n=(q-l)Tt+q. 

Note that (Hl) and (H2) are nothing but the braid relations (BR), 
hence there is a natural epimorphism of the group algebra C[BN] onto 
HN(q). For q= 1, the Hecke algebra HN(l) is isomorphic to the group 
algebra C6N of the N-th symmetric group 6N, by sending Ti to the trans­
position (i, i+ 1). If q is not a root of unity, it is known by H. Wenzl [W] 
that there exists an isomorphisms of Hq(N) with the group ring C[6N] as 
algebras. 

Assume that [2]q=l=-0, that is, q=/=--1. Then we can give another 
system {1, e, · · ·, eN_1} of generators of HN(q) consisting of idempotents: 



Conformal Field Theory on P1 353 

- q-T, e1 ---, i.e. T,=q-[2]qet (i=l, · · ·, N-1). 
[2Jq 

Then the defining relations (Hl)-(H3) translate to 

(Hl)' e,et+1e, - _q_e,=et+ 1e,et+1 __ q_e 01 for i= 1, 2, · · ·, N-2. 
[2]! [2]! 

(H2)' e,eJ=eJe, for li-jl>-2. 

(H3)' e:=e, for i= 1, 2, ... , N-1. 

5.2) Monodromy representations 

Let N>2, .t=£+2, q=exp(21t./=T/.t) and fix a half integer t with 
0<2t<£ which we call a target edge. Introduce an (N+l)-ple J 1 = 
(t, ½, · · ·,!),and consider the systems E(N; t) and B(N; t) of equations 
for V;;'(J1)-valued functions on the manifold XN: 

E(N; t): 

B(N; t): ~ ( L, ) CT (z,.-z,)-',,.t 
m1 m, ~;! 

X 1Jl"(z)(uN+1• EmNuN, .•. 'uJ,(j,), •.• 'Em 1u1)=0 

for 1 <i <N, and 

~ ( LN+l)1Jf(z)(uJN+1UN+1), EmNuN, ... 'Em'u1)=0 
mN+l IDN+l 

where m,=(mN, ···,m,, ···,m 1)e(Z~ 0)N-t (l<i<N) andmN+i=(mN, 
· · ·, m1) e (Z~ 0)N with lm,l=L,=£-2j 1+ 1 (l<i <N+l). 

Let W(N; t) be the solution space of the joint system E(N; t) and 
B(N; t). Then by Theorem 3.3, the space W(N; t) has a basis {1Jf/zN, · · ·, 
z1); JP e fll'e(N; t)} defined as follows: Let 

fll'tCN; t)={JP=(Pm · · ·,Pt,Po);pN=t,po=O,p, e ~ Z, 0<2p 1<£, 

IP,-P,-d= ~ (l<i<N)}. 

For each JP e fll'tCN; t), define the V;;'(J1)-valued, multi-valued holomorphic 
function 1JfizN, · · ·, z1) on XN by 
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l/f/zN, ' ' ', Zi)(v, UN, ' ' ', Ui)=(v(v) !Wv/uN; ZN)· '' wv,Cu1; Z1) I vac) 

for v e Vi and ui e V112 (1 < i < N), where the vertex v 1 = v i(p) is defined 

asvt=( ½ )(l<i:::;;N). 
PtPt-1 

The braid group BN acts on this space W(N; t) as monodromies. 
The commutation relations of vertex operators give a factorization of this 
monodromy representation (rcN,i, W(N; t)). The @?N-module structure of 
the space V;;'(J) is defined by 

(<p E V;;'(J), (J E @?N), 

and the EN-module structure on the space of V;;'(J)-valued functions on 
XN is defined in Section 5.1. By Propositions 4.8, 4.8' and 5.1, we will 
give this representation re= rcN,t explicitly. 

For each i (1 <i <N-1), the action rc(bi) of the generator bi of the 
group BN on the space W(N; t) is given as follows. 

At first, divide the set fle(N; t) into the four parts: Let p=(PN, 
PN-1, ···,Pi, · · · ,Pi,Po) E fle(N; t), PN=t, Po=O. 

PE flf(N; t)~Pt+1=Pi-1=0. 

p E Plf(N; t)~IPt+1-Pi-1l=l. 

p E PIHN; t)~.!_>Pt+1=Pt-1>0. 
2 

Then the operation rc(b;) is given on the basis vectors {l/f p; p e flc(N; t)} as: 
a, d) If p e PlfiCN; t) or p e flf(N; t), rc(b;)lf!p= -q- 3141/f p. 

b) If p E Plf(N; t), rc(bi)lf!p= q1!4l/f p. 

c) If p e fl1(N; t), there is only one p' e fl1(N; t) such that p,.=p~ for 
any kc=j=i and !Pt-P:l=l. We define the action rc(bi) for which Cl/fp+ 
Cl/fp, is invariant. We modify the notations as P±=(t,PN-i, · · ·,Pi+i, 
pf,Pi-1, ···,Pi), where Pt=max(p;,P;) andK=min(p;,p;). Then the 
action rc(bt) on Cl/f P+ +Cl/fp_ is given as rc(b1) = K(p, ½, ½, p), where 
0<P=Pt+1 =Pt-1 <£/2: 

[ 

-1 
[2p+l] 

r: 1) J q[2p][2p +2] 
[2p+l] 

J p[2p][2p+ 2] 

[2p+ l] 
q2p+1 

[2p+ 1] 
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where 

r( 2p~l) 

In each case, { q, -1} are only possible eigenvalues of the operators 
q3141C(bt). Thus the actions q3141C(bt) on the space W(N; t) satisfy the rela­
tion (H3) of the Hecke algebra HN(q). 

Theorem 5.2. The monodromy representation q3141CN,t of the braid 
group BN on the space W(N; t) gives a representation of the Hecke algebra 
HN(q), where q=exp (21CJ"=T/tc). 

Remark. It is remarkable that our representations are obtained for 
the Hecke algebra HN(q) with a root q of unity, since the algebra HAq) is 
not semi-simple for a root q of unity (cf. V. F. R. Jones [Jo]). 

5.3) Wenzl's representations of Hecke algebra 
H. Wenzl [W] constructed irreducible representations (1C,, V,) of Hecke 

algebras HN(q) for any q not being roots of unity, parametrized by the 
set AN of all Young diagrams on N nodes. If q=exp(21CJ"=l/tc) with 
tc ( = .e + 2) >4 (i.e . .e > 2), he also constructed irreducible representations 
(1Cik·•>, V1k,•l) of HN(q) parametrized by the set A<k,•) of all (k, tc)-diagrams 
on N nodes. Note that the representations 1C?·•) are unitarizable as repre­
sentations of the group B N· 

In this paragraph, we show that our representation (1CN,t, W(N; t)) of 
the Hecke algebra HN(q) (q=exp (21CJ"=T/tc)) is equivalent to the repre­
sentation (1C12·•), V?·•)). 

Let A~ be the set of all Young diagrams J. on N nodes with depth (A) 
<2. For each J. e A~, d(J.) denotes the difference of the number of the 
first row of J. and the one of the second. Introduce the set A~··) of all 
(2,tc)-diagrams on Nnodes, defined by A~··)={J. e A~; d(J.)<tc-2(=£)}. 
Any J. e A~··) is written as [N/2+t, N/2-t] for some half-integer t>O. 

We shall write µ<J., if the Young diagram µ can be obtained by 
taking away appropriate nodes of J.. For each J. e A~··>, let 

.9e(J.)={p=(AcNJ, ···,Ao)); A(i) EA?·•), J.(i)<J.cJ+1), AcNJ=J.}. 

H. Wenzl defines an irreducible representation (1C?··>, V12·•)) of the 
algebra HN(q) for each J. e A~··>, where V?·•) has the form EBP e ,g,,,c,)Ci\. 
This gives a unitary representation of the group BN. 

Note that for each N, the number d(}.) determines the Young diagram 



356 A. Tsuchiya and Y. Kanie 

A e At uniquely. For each p=(AcNi, · · ·, A(I)) e .9'e(l) with A e AJJ·•', let 
K(p)=(t, ½d(lcN-iJ), · · ·. ½d(l(!J), 0) e g,t (N; t) with t=½d(A). Then the 
mapping K gives a bijection of .9'll) with .9'lN; ½d(A)). 

For each p=OcNi, · · ·, 4(1)) e .9'll), introduce the numbers r/p) (1< 
i ~ N - 1) defined by 

rh)= I, if d(A(i+l))=dO(i-1))=0 or \d(A(i+l))-dO(i-1))\=2, 

r( a!1) 
rh)=-( r-( a-!2-)r-(-!))-112 ' 

and 

r( a~IC1) 
rh)= -( r-( d-~IC-2 )-r(--:-) )-112 , 

Define the mapping K: V12·•J--+W(N; ½dO)) by 

for p E .9'e(A). 

(note ri(p)= I for any p e .9'e(l).) 

Then the mapping K intertwines Wenzl's representations (,d2·•J, V?··') 
and our (l't'N,t, W(N; t)): 

Proposition 5.3. For each A e AJJ·•l, set t=½d(A). Then 

Note 1. If we construct the theory for £ $ Q as in Remark 3.5, we 
get the monodromy representations of the Hecke algebra HN(q), q= 
exp (2l't'.f=}/(£+2)), which are isomorphic to the representations (it',, V,) 
parametrized by A e AJJ>. 

Note 2. By means of A?J-modules, we obtained here the repre­
sentations (l't'i2·'l, V12··) of the algebra HAq) parametrized by the (2, JC)­
diagrams. For general k>2, Wenzl's representations (l't'?··l, V?··') are 
obtained by means of integrable highest weight modules of affine Lie 
algebras of type A;.1' (n >I). We will discuss them in our succeeding paper. 

5.4) Fusion rule 

For a quadruple J =(j 4,j 3,j 2,j 1), introduce the set Je(J) defined by 
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w(r)= (. '.) e (CG),, 
hli 

w(r)=(/ 1) e(CG),}, 

357 

and consider the fusion of vertex operators <Pv,<ki(w) and <PvickiCz) for 
k e //J) to <PwcriCz) (the first term of the short range expansion of the 
product <bv,(ki(w)<bv,(ki(z)): 

Now we restrict ourselves to the case j 3 = ½-Assume that V;;' ( J) =I= 0, 
then in cases listed in Section 4.2. we get 

(D2)2 1/J)={k±=j.± ~ }, J/J)={r±=j2± ~ }, 

(D2)1 //J)={j4- ~}, Je(J) = {jz- ~ }, 

(D1)1 /e(J)={j4+ ~}, J/J) ={jz+ ~ }, 

(D1)2 //J)={j4+ ~ }, Jg(J) = {jz- ~ }, 

(D1)3 /c(J)={j4- ~ }, Jg(J) = {jz+ ~ }· 

Here we discuss the case (D2), since other cases are much simpler. 
In this case, fix notations 

and note the relations: 
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Then 

Proposition 5.4. Ford quadruple J =(j4, f,jz,j1) in the case (D2)z and 
for each. k e IiJ), 

1 ·f ( . z)-r'll-1m ( . )m ( . ),r. . · r---:; W- · ± Y'vs(k) Us, W Y'vz(~) U2, Z uW 
2n-v -1 a • . ·•· 

where c. is a.contour around z such that O is outside C., and the coefficients 
F; =Ft± ar,/given in Proposition A. 2. 

e C,3W 
"' .. ,.,_, ..... ·. ,., . .. " ~-" ~ 

' 

0 

Proof The composition tPiw, z) of vertex operators tPv,<1<,(w) and 
tPv,<ti(z) is determined by the V;;"(J)-valuedfunction 'IFiw, z) on M 2 defined 
in Section 4.1 for each k e /e(J). By Propositions 4.3 and 4.4, we get 
the expansion of 'IFiw, z) near w~z as 

'IFiw, z)=(w-z)r't'{,v'2j 4+ 1 F{U~'+O(w-z)} 

+(w-z)r!.!'{,v'2j 4+ I F;U~'+O(w-z)} 

where O(w-z) is holomorphic near w=z and vanishes on {w=z}. 
Now introduce the operator Bt(u 3, u2 ; z) of £ 31 to £ 1, defined by 

the integral 

/:i'±( . )- 1 f ( )-r'll-1m ( . )m ( . )d '-'k U8, Uz, Z - r---:; W-Z ± Y'vs(k) U3 , W Y'vo(k) Uz, Z W. 
2n-v -1 a, 

And define an operator Bt(z) (v)=Bt (v; z): .Yf'1,-+Yl' 1, parametrized by 
VT± as follows: For any vector v e Vr± is written as a linear combination 
V= ~tCtSow<r±,<u:, un for some u:@ui E V1.®V1,· Then put Bt(v; z) 
= ~' ctB:(u;, u;; z), then Bt(z) is independent of the expression of v, and 
is a vertex operator of type w(r ±), that is, of spin r ± (note -L1, ± = r~' -
L111-L11.). In fact, for Xe g and me Z, 

[X(m), B:(u 8, u2 ; z)]=z"'[Bt(Xu 3, u2 ; z)+Bt(u 8, Xu2, z)] 
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and 

[L(m), Ef(u 3, U2, z)] 

= 1 J (w-ztr~'-t{wm+I~ +zm+t_!__ 
2rrr-T a. ow oz 

+(m+ l)(A1,wm+ Lf 1,zm) }<1iva(k,(ua; w)<1Jv.cklu2; z)dw 

=zm{z ! +(m+l)(J 1,+Lf,.)}Et(u 3, u2 ; z) 

- ~ f ~{(w-ztr~'-twm+l}<lJv,<k>(ua; w)<1ivo<k>(uz; z)dw 
2rr -1 a, ow 

Thus E{(z) is a vertex operator of type w(r ±), so it is a constant 
multiple of <1iw(r±,(z). 

Hence we get the proposition, by computing the initial term of 
(ljw(r ±l'Pw<r±,(Us, Uz); Z): 

(1,1(u4)l'Pw<r±l('PwcrJUs, Uz), u,))=v'2j4+l U~'(u4, U3, Uz, u1). q.e.d. 

Let N>2. Fix an N-ple J =<½, ... , ½) and half integers t (target 
edge) ands (source edge) with 0<2t, 2s<£, and put 1e,,=(t, ½, · · ·, ½, s). 

Consider the systems E1,,(J) and Be,,(J) of equations for V;;'(Je,,)­
valued functions W(z) on the manifold MN: 

Ee,,(J): (l<i<N) 

and for any uk e v,k UN=t,ji=½ (l<i<N-1),jo=s), 

B1,,(J) : I; (Lo) 11 z;;mkW(z)(EmN+iuN+i• EmNuN, · · ·, Em1u0 u,(s))=O, 
mo filo k=l 

r;(Li) 11 (z,.-zi)-m 1?r(z)(uN+t• EmNuN, · · ·, u1ij,), · · ·, E"'0u0)=0 
mt m, k=l 

k=i 
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where mt=(mN, · · ·, m1, • • ·, m0) e (Z;;,:0)N (O<i<N) and mN+i=(mN, 
· · ·, m0) E (Z;;,:o)N+i with lmtl=Lt=.e-2j 1+ 1 (O<i<N+l). 

Let W(N; t, s) be the solution space of the joint system E1,,(J) and 
B1,,(J). Then Theorem 3.3 implies that the space W(N; t, s) has a basis 
{W/zN, · · ·, z1); p e f!J'e(N; t, s)} defined as follows: Let 

f!J'e(N; t, s)={P=(PN, · · · ,Pi,Po);pN=f,Po=S, Pt E ~ Z;;,:o, 2pt<.e, 

IPt-Pt-11= ~ {l<i<N)}. 

For each p e f!J'e(N; t, s), define the V';;' (1 1,,)-valued, multi-valued holo­
morphic function W/zN, · · ·, z1) on MN by 

(v(v)IW/zN, · · ·, Z1)(uN, · · ·, U1)lw)=(v(v)l(l)v/uN; ZN)·· .(/)v1(u1; Z1)lw) 

for v e V1, ut e V112(l<i<N) and we V., where vi{p)=( ½ ) {l<i 
Pt Pt-I 

<N). 

:The diagram of crossing symmetry: 

t s 
w(p, q) 

Now introduce the set !l,e(N) defined by 
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For each p e gJc(N; t, s), CJl e !2,c(N) and i (2<i<N), define the quadruples 
Q;(p, CJl)=(Pi, ½, qi_1, s), these quadruples Qlp, CJl) satisfy one of the con­
ditions (D2)1,2, (Dl) 1,2,3 and (DO). Moreover, define numbers rt (p, CJl) 
and Ft (p, CJl) as follows: if Qi (p, CJl) satisfies the condition (D 1 ), let 

If Q/p, CJl) satisfies the condition (D2)1, let 

r;(p, CJt)=r~l(Q/p, CJt)) and F/p, CJt)=F:(Q/p, CJt)). 

Assume that Q/p, CJl) satisfies the condition (D2)2• If Pt-i-Pt= ±½, 
then put k= ±, and if qt-qt-1= ±½, then put k= ±, Let 

r/p, CJ1)=r~1l(Q/p, CJt)) and F/p, CJt)=FZ(Q;(p, CJt)). 

If Q/p, CJl) satisfies the condition (DO), let F/p, CJ1)=O. 
Then we get 

Proposition 5.5. For each p E gJe(N; t, s) and CJl E !2,e(N;f) such that 
Vo(Q/p, CJt))*O, i.e. Q/p, CJl) E (D2)1,2 U (Dl)1,2,a, 

for each ui E Vi,' where C/s are contours around Ct-i (3<i~N) such that 
0 is outside CN and C2 is around z. The vertices w and Wt (2<i<N) are 
defined as 

w=w(p, CJ1)=C1J, f=qN, wt=w/CJt)=( ~ ), 

qi qi-I 

Appendix I. Bases of Tensor Products of §[-modules 

Here we use notation on the Lie algebra g=§f(2, C) and its modules 
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given in Section 1. 
Since the vacuum expectation value on VJX V; is nondegenerate, we 

can identify the dual right g-module v; of V; with VJ. The basis {cpim); 
m=j,j-1, · · ·, -j} of VJ dual to the basis {uim)} is identified with 
{u}(m)} by cp/m)(u/m'))=<u}(m)luim'))=om,m'· 

The isomorphism 11: Vr-+VJ is defined by 11(u;(j))=u}(-j) and 
11(Xlv))=-v(jv))X (jv) e V1, Xe g). Then 

11(u/m))=(-I)J-mu}(-m)=(-l)'-mcp/-m). 

Introduce the C-bilinear forms ( , ) on V1, VJ and v; for which the 
bases {u/m)}, {u}(m)} and {cp/m)} are orthonormal, then E and F are 
mutually adjoint with each other and His self-adjoint in all cases. 

Here we refer to the famous textbook [LL] of L.D. Landau and E.M. 
Lifshitz. 

Now for each vertex v= ( /.) e (CG), we choose and fix the element 
h]1 

'Pv of Homs (VAsWj,, Vj,)=(Vj,Q?>V;<8>V"!,)8 as 

'Pv= I: C!,;,r;;,,•uh(m2)®cp/m)®rp 1,(m 1), 
m1+m=m2 

where the Clebsch-Gordan coefficients Cfn~'!/n; are real numbers and expressed 

by the well-known Wigner's 3j-symbols (j 1 j 2 j 3)as m1 m2 m3 

Wigner's 3j-symbols are defined for half integersk:2=:0 with j 3 +j 2 +j 1 e Z, 
U2-j1 i<k:;:jz+ j1,ji-mi E Z, and satisfy the following: 

i) If I ji I <mi for some i, or m3 + m 2 + m1 :;t= 0, then (j 1 jz js) = 0. m1 m2 m3 

ii) (jz j1 js) = (j1 js jz) = ( j1 jz js ) 
m2 m1 m3 m1 m3 m2 -m 1 -m 2 -m 3 

=(- l)ft+Jz+Js(j1 jz js), 
m1 m2 m3 

iii) (~ -~ g)=(-I)1-m(2j+ 1)-112• 

In particular, if j 1 = 0, then j 2 = j and 

j j 

<p(/o) = m~J C5 ;:uim)®rp/m~®rpo(0)= m~J u/m)®rp/m)=idvr 

Ifj 2=0, thenj 1=j and 
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J i 
'P(/,) = m~J c::__::.u0(0)®rp;(-m)®rp;(m)= m~J (-l)i-mrp;(-m)®rp;(m) 

is identified with the isomorphism 1,1: Vr~v; which is given by 1,1(u;(m))= 
(-1).f-mrp;(-m). 

For a quadruple J =U4, js, j 2, j 1) of half integers j1, >-O, there are 
three orthonomal bases {U1~!;j12 e J(J)}, {UJ!!; j2s e /(j 4,ji,j 8,j 2)} and 
{UJ:;>;j1a e I(joj2,j 8,j 1)} of V;;'(J) defined by 

and 

<p 1.( - m4)®rp J,(ma)®rp 1.(m2)®rp Ji(m1), 

then the operator .Q12 = ½[L112(.Q)-.Q 11 -.Q 22] is diagonalized by this basis 
{UJ~!;j,2 e J(J)} as 

Q12 UJ~~ = t.(L1J,.-L110 -L1 Ji) UJ~!-

The operators .Q23 and .Q13 are also diagonalized by these bases { UJ!!} and 
{ UJ:;>} respectively as 

Moreover the basis vectors UJ~! are expressed by the fixed cpv's as 

UJ~!(u4, Us, U2, u1) = ,/2j~ + I (11(u4)Jcpv.cJioiCua)cpv,(Jtoi(u2)l U1) 

for any U1, e V.f,· 
The transformation matrices s<1, 0>=(S1!!), sc=,0>=(SJ::), sc=,1>= 

(S1!:) between three bases of V;;'(J) defined by 

U(O) " U(l) SJ.. u<o) - " u<=) Siu 
Ju= L...i 1 .. h•' ;..- L...i Ju ho• 

iu iu 
U(1>=" u<=>shs J•• L...i Ju Joa 

Ju 
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are real orthogonal matrices and are given as 

and 

S}~;=(- I)Ji+J.+Js+J•,v(2j12+ 1)(2j23+ 1) {!1!2! 12}, 
lshha 

s~:;= ( -1)2Ji-h+Js+Jwi12,v(2j12 + 1)(2j13 + 1) {!2!1!12}, 
Js}4frn 

where {!1! 2!3} is the 6j-symbol or Racah coefficient which is defined by 3j­
hJ5Je 

symbols as 

In the case (D2) for a quadruple J =(j 4, ½,j2,j 1), then /(J)={j 4 ±½}, 
l(j4,ji,j2, ½)={j2±½} and /(j 4,j 2, ½,j1)={j 1±½}. Denote 

then we get easily the formulae in Section 4.2, by using some values of 
6j-symbols (see [LL] Section 108): 

{o b b}={a b c} 
ace Och 

(-l)a+b+c 

,v(2b+ 1)(2c+ 1) 

Let s=a+b+c+½, then 

{c ½ c+½}-{½ c c+½}-( l)'( (s-2b)(s-2c) ) 112 
b a b+½ a b b+½ - - (2b+ 1)(2b+2)(2c+ 1)(2c+2) ' 

{c ½ c+½}-{b ½ b-½}-( l)'( (s+l)(s-2a) ) 112 
b a b-½ - c a c+½ - - 2b(2b+ 1)(2c+ 1)(2c+2) ' 

and 

{c ½ c-½}=-(-l)'( (s-2b)(s-2c) ) 112 
b a b-½ 2b(2b+ 1)2c(2c+ I) · 
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Appendix II. Connection Matrices of Reduced Equation 

A.11.1) Solutions of reduced equation 

365 

For a quadruple J =U4, ½,j 2,j 1) of half integers, we will give funda­
mental solution of the reduced equation 

RE(J): Q22 )wcc)=o 
(-1 

for v;(J)-valued functions W(C) on Ce C*. The coordinate change (~YJ 
= 1/C makes the equation RE(J) into 

In this section we deal only with the case (D2) and prove Proposition 
4.4, since the case (DI) is much simpler. 

Write a solution W(C) as 

(i=O, 1) 

where {U~>; i=O, I, co} are three bases {U~>; i=O, I, co} of v;(J) such 
that 

and the exponents r~) are given in Section 4.2. The differences rcil = r~> 
- r!!J of exponents are given as 

rco)= 2j4+1, r<l) 2j2+1 and r(oo)= 2j 1 + 1 (1C=£+2). 
IC IC IC 

Since the transformation matrices sci, kJ between the bases { U~l} and 
{ U;'.'l} are given in Section 4.2, we get the matrix forms of the equations 
RE(J) and RE(J)oo: 

RE(J);: _!'!_w<i)(C)=A\C)W<i)(t;)= (a~~(C) a~~(C))wci>(C) 
d( a~~(C) a~~(C) 

(i=O, 1) 

and 
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where the coefficient matrices At are given as 

and 

r(O) 7(1) cfl 
ao (,.)=-+-+ + -

++.., C C-1 ' 

r(O) 7(1)+ 0 

a~_(C)=-t+ ,_t , 
a~_(C)=a:.+(C)= b1, 

' 

ao= EoE1 
ro) ' 

a1= eoe1 
r<I> , 

ho ./e 
=~· 

bl .;-;-
=-yci:>' 

r<o> - ai 7<1> 
a1 (f")- + + + 

++..,- C C-1' 

r (O)+ I r(I) 

a:._(C)= -, a+ ,-=1· 
a~_("I)) =a:+("IJ)=~, 

"lj-1 

a"°= EoE4 ' 
r<oo) 

b"°= ./ e 
r<oo) (e=e 0e1e2e4). 

Now look at the function cp~'(C). The equation RE(J) 0 turns into 
the equation for cp~'(C): 

- (O)(C)= + - + + - - (O)(C) d2 ( r<0> + r<0> r<1> + r<1> 1 ) d 
dC2 So+ C C-1 d(P+ 

{r~>(l+r~>) r~>(r~>+a 0 -l)+r~>(r~>-a 0) r~>r~)} (0) 
- C2 + C(C-1) + (C-1) 2 'P+ (C), 

which is a second-order equation of Fuchsian type. 
Now recall that a second-order equation of Fuchsian type is of the 

form 

d2cp (C)=(A+A'-1 +µ+µ'-l)dcp(C) 
dC2 . C C-1 dC 

{ AA' w'-AA'- µµ' µµ' } 
- 7+ C(C-1) + (C-1) 2 cp(C), 

where A, A';µ,µ'; 1,1, 1,1' are exponents at C=O; 1; oo respectively. The 
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solution space of this equation is denoted by the Riemann P-function r I ~+ P .:i µ 

.:i' µ' 1/ 

The equations RE(J)i for other functions are also reduced to 
Fuchsian equations of similar forms. Then we get 

Proposition A.1. 

~f(C) e P{ r~• 
1 00 

+ ~'"(0 e P{ r~' 
1 00 

+ r~i r~""i r~) r:...""i 
. 1+r~i r~i r:...""l 1+r~) r~) r~"") 

~~'(C) e +~> 
1 00 

+ ~~'(C)e+~> 
1 00 

+ r~) n"") r~) r:..."") 

r~i 1+r~i r:...""i r~i 1+r~) r~"") 

and 

~\"'(~)e +~' 
1 00 + ~,-,(~) e +~> 

1 00 

+ r~) r~"") r~) r:...""l 
r~) r~) 1+r:...""l r~) r~) 1+r~"") 

Before we give the proof of Proposition 4.4 we recall the facts on the 
hypergeometric function F(a, /3, r; ,) (see e.g. [E]): 

F(a, /3, r; ,)=1+ ~ a<nJf3<n)'n=t+ I'(r) f I'(a+n)I'(f3+n) en' 
n=I n! r(n) I'(a)I'(/3) n=I I'(r+n) n! 

where 

a<nl=a(a+l)· · ·(a+n-1)= I'(a+n). 
I'(a) 

i) If r ~ Z:,;o, F(a, /3, r; C) is a solution of the Gauss~an equation: 

that is, 

F(a, /3, r; C) E p{ ~ ~ 
1-r r-a-/3 /3 

00 

a 



368 A. Tsuchiya and Y. Kanie 

ii) F(a, /3, r; C) and c1- 7F(a-r + 1, {3-r+ 1, 2-'-r; C) give a basis of 

the solution space P{ g b '; c} of the Gaussian equation. 
1-r r-a-{3 /3 

iii) F(a, /3, r; C)=(l-Cy-a-.SF(r-a, r-{3, r; C). 
iv) (d/dC)F(a, {3, r; C)=(a/3/r)F(a+l, {3+1, r+l; C). 
v) F(a, {3, r; C)=(l-C)F{a+l, /3+1, r+l; C) 

+ {a~~~l)r) CF(a+l, /3+1, r+2; C). 

vi) (r + 1 )F(a, /3, r; C) 
={(r+l)-(a+f3+ l-(a/3/r))C}F(a+l, /3+1, r+2; C) 

+ (a+ l)(/3+ l) C{l-C)F(a+2, /3+2, r +3; C). 
r+2 

vii) (1-C)F(a, /3, r; C) 

. ) a+/3-r-1 ( 1. ) =F(a-1, {3-1, r, C +-~---<CF1 a, /3, r+ , C. 
r 

viii) F(a,{3,r+l;C)= a/3 (1-C)F(a+l,{3+1,r+l;C) 
(a-r)(/3-r) 

+ r(r-a-{3) F(a, /3, r; C). 
(a-r)(/3-r) 

ix) ;g =!~ F(a+ I, /3, r +I; C) 

=F(a, /3+ 1, r + 1; C)+ r(a-{3) F(a, /3, r; C). 
{3(r-a) 

x) F(a, /3+1, r+I; C) 

a-{3 (1 2 ) =F(a+I, {3, r+l C)+--CF +a, 1+/3, +r; C. 
i+r 

xi) F(a, /3, r; C) 

- I'(r)I'(a+ {3-r) (1-"')T-a-.SF(r-a r- tJ r-a- Q+ 1 · 1-"') 
I'(a)I'(/3) .._ ' I:'• I:' ' .._ 

+ I'(r)I'(r-a-{3) F(a f3 a+{3-r+l· l-C). 
I'(r -a)I'(r -/3) ' ' ' 

xii) F(a, /3, r; C) 

I'(r)I'(/3-a)(-c)-aF(a a-r+1 a-{3+1 1/C) 
I'({3)I'(r -a) ' ' ' 

+ I'(r)I'(a-{3)(-c)-.S(I-(1/C)Y-a-.s 

I'(a)I'(r-{3) XF(l-a, r-a, {3-a+ 1; 1/C). 
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Proof of Proposition 4.4. Similarly as Theorem 3.3, we get the func­
tions cp~~(,) in a neighbourhood of,= 0 such that 

7[((0)(,-)=(U(O) U':':_l)(cp~~ ('))· 
+ ~ + ' cp~)_ (') ' 

7Jf':':.>(r) = (uco> U':':.l)(sa':':.~ (')) 
~ + ' cp':':_)_ (') 

such that So~l(') have the expansion with respect to , as 

<p~~(,)=,r'.?'(I+ .. ·), So~)_(,)=,r'.?'(c,+ .. ·), 

and 

sa':':.~(,)=,r~'(d,+ ... ), cp':':_)_(,)=,r~'(I + ... ), 
where c and d are some constants. 

Then by Proposition A.I, 

f~\(Cl, f~\(O e P{ r~' 
1 00 

+ r~) r~oo) 

I+r':':.) r~) r~oo) 

and 

f~C(C), f~C(Q e P{ r~' 
1 00 

+ r~i r~oo) 

I+r~i r~i r~oo) 

Hence 

and 
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where a, f3 and r=r< 0> are given in the proposition. Then by the formulae 
iv)-vi) above, we get the statement (i) of Proposition 4.4. Other state­
ments of Proposition 4.4 are similarly obtained. 

A.II.2) Connection matrices of reduced equation 

We must prove Proposition 4.5 on the connection matrix of the 
fundamental solutions of the reduced equation RE(J) along the path from 
0 to oo figured in Section 4.3. Fortunately the formula xii) of the hyper­
geometric function gives its connection matrix along the same path. And 
we may take ( -C) 2 = exp (- ln--v'=1)C2 by the choice of the path. Then 
it is sufficient for the proof of Proposition 4.5 to note the following rela­
tions among constants in Section 4.2: 

B" A" -c~>r<tl(l ±r<il)=-{e =/3/3'®l A" =a(r'®l_ p<®l),ir 

=af3~=(r-{3)(a-r) B 
B A 

for i=O, 1, oo. 

Similarly we get the connection matrix of the fundamental solutions 
of the reduced equation RE(J) along the path from O to 1 figured below. 
The formula xi) of the hypergeometric function also gives its connection 
matrix along the same path. 

0 1 

Then by relations above, we get in the case (D2): 

Proposition A.2. Denote by F(J)= (:~ :D the connection matrix of 

the fundamental solutions ('IJl'~l, IJl'~>) at C = 0 to (IJl'~l, IJl'~>) at C = 1 of the 
equation RE( J): 

(IJl'(O) IJl'(Ol) = (IJl'(l) IJl'(ll)(F! F~) 
+ ' - + ' - . F--;_ F: 

that is, 

Then 
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Remark. Since e0= 1 in the case (D2)1, F~(J)=O and F(J)=F:(J) 
=[(2j 2+ 1)(,c- l-2j 2)/(2j 4 + 1)(,c- l-2j 4)] 112• By Proposition 4.4', it is 
obvious that F(J)= 1 in the case (Dl). In the case (Dl), the matrix F(J) 

in the proposition A.2 is written as F(J)= (6 ?) in the case (Dl) 1 and F(J) 

=(? 6) in the case (Dl) 2 , 3• 
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