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§/0. Introduction

The 2-dimensional conformal field theory was initiated by A.A.
Belavin, A.N. Polyakovand A.B. Zamolodchikov [BPZ] and was developed
by many physicists, e.g. [DF], [ZF] etc. In the paper [BPZ], the signi-
ficance of the primary fields for this theory is pointed out. V.G. Knizhnik
and A.B. Zamolodchikov [KZ] developed the theory with current algebra
symmetry, proposed the notion of primary fields with gauge symmetry,
and gave the differential equations of multipoint correlation functions.

Our aim in this paper is to give rigorous foundations to the work of
[KZ], and to reformulate and develop the operator formalism in the con-
formal field theory on the complex projective line P'. The space s of
operands is taken to be a sum =3} Y2, 5, of the integrable highest
weight modules 7, of the affine Lie algebra §=38l(2, C)YRCI[t, t -] Cc of
type A{®. We fix the value ¢ (positive integer) of the central element ¢
of § on the space #. The Virasoro algebra % acts on each J#; through
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the Sugawara forms L(m), m € Z. For each X e 3[(2, C), the field operator
X(2)=> ez X(m)z=™" " obeys the equations of motion:

d

z_-+m+1)X(z).
dz

[LGm), X(@)=2"

The currents X(z), X e 8((2, C) and the energy-momentum tensor
T(2)=> nez L(m)z~™"* preserve each §-module s#;. Thus each space 5,
may be considered as a free theory. In order to introduce operators de-
scribing the interactions in the theory, we define the vertex operators due
to V.G. Knizhnik and A.B. Zamolodchikov [KZ].

The vertex operators play a central role in this paper. In Section 2,
we show the existence and the uniqueness theorem of the vertex operators.
In Section 3 we get the differential equations satisfied by N-point functions,
which have only regular singularities. The properties of vertex operators
are derived from these differential equations (called the fundamental
equations). First, we get the convergence of compositions of vertex oper-
ators. The commutation relation of vertex operators is equivalently re-
phrased in terms of the connection matrix of the fundamental equations,
and is calculated explicilty in a special case. The monodromies of the
fundamental equations give rise to representations of the braid group By.
We determine explicitly this monodromy representation in a more special
case. In fact, it gives an irreducible representation of the Hecke algebra
H,(q) of type A, _,, where g=exp (2rv/— 1/(£+2)). Here it is remarkable
that the vacuum expectation values of the products of vertex operators
provide canonical bases of these representation spaces and the commu-
tation relations of vertex operators give a ‘factorization’ of the monodromy
representations.

Fix a positive integer £ for the value of the central element ¢, and a
half integer j with 0<2j< /4, then there is a unique (up to isomorphisms)
irreducible highest weight left §-module s#; with a highest weight vector
u,(j). The Lie algebra § has a decomposition j=m,DgDCcdm_, where
g=38l(2, C)=CF®CH®CE and m, =gRC[¢*"¢** (see Section 1.1) The
subspace V;={v e #;; m,v=0} is an irreducible g-module of highest
weight 2j, i.e. of dimension 2j+1.

We can define the corresponding irreducible highest weight right §
(or g)-module S (or V}) (and fix a highest weight vector u!()), and the
nondegenerate bilinear pairing (called vacuum expectation value) {|): %
X #;—C such that (u}(j)|u;(j))=1 and {va|w)={v|aw) for any v e
A, aed, we ;. Its restriction on V] X V; is also nondegenerate.

Let o#=3 %2, and H#'=3 %2, . By an operator we mean a
linear mapping @: #— s, where s is a completion of 5. Note that
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an operator @ is characterized by a bilinear mapping &: #'x #—C
defined by (v|@|w)=<(v|P®(W)) for any ve #' and we#. Two
operators may not always be composable (see Section 2.1 for the defini-
tion of the composability).

For a positive half-integer j, a multi-valued, holomorphic, operator-
valued function @(z) on the manifold M,=C* is called a vertex operator of
spinjif forany u e V; and z € M,, &(2): V,Q# — # satisfies the following:

(Gauge Condition) [X(m), O(u; 2)]=z"D(Xu; z) Xeg,meZ);
(Bquation of Motion) ~[L(m), &(u; z)]=zm{z;l‘§+(m+1)aj}@(u; 2)
(me 2Z),

for any u e V; and z e M,, where the number 4;,=(j*+ j)/(¢+2) is called
the conformal dimension of the vertex operator @(z) and ®(u; z): H#— A
is an operator defined by @(u; z) (w)=D(z) (u@w) for w e .

Remark (Proposition 2.4) that there are no vertex operators of spin
jfor j>4]2. ,

A triple v= (ij) of nonnegative half integers j,, j, and j is called a

2J1

vertex. Put A(v)=4,+4;,—4,, Then the Clebsch-Gordan condition

|hi—R|I<i<ji+/, and htihtieZ

for a vertex v is a condition for Hom, (V,®V,,, V;)+0. In this case
Hom, (V,®V;,, V;)=C and v is called a CG-vertex.
For a vertex v= ( j]j) with j,, j;<4/2, a vertex operator @(z) of spin
2J1
Jjis called of type v, if O(u; z2)=11,P(u; z)II,, for any u e V,, where II, is
the projection of # (or s2) onto s, (or ##, respectively). Then we get
the condition for the existence of vertex operators:

Theorem 1 (Proposition 2.1 and Theorem 2.2).
i) A vertex operator @(2) of type v is uniquely determined by the
form (initial term) @, ¢ Hom, (V],@V,QV;,, C) defined by

Dov, u, W)= |DOu; )\ WH),o  @e Vi, ueV,weV,).

il) There exists a nonzero vertex operator @ of type v=<jj j) oni#,
2J1
if and only if the vertex v is an {CG-vertex, that is, it satisfies the ¢-con-
strained Clebsch-Gordan condition:

h—R|l<i<hi+ i Jthtie Z and ji+j+j<e.
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Remark. i) The inequalities j,+ o+ <4 and |j,— j|<j<ji+J
imply the conditions j,, j,, /<< 4/2.
ii) Nonzero vertex operators of a fixed type v are unique up to a

constant multiple. For each /CG-vertex V=< J ) we choose and fix a
2J1

nonzero element ¢, ¢ Hom, (V,®V;,, V,)=Hom, (V],QV,®V,,C)(=C)
and denote by @ (z) the assomated vertex operator of type v with the
initial term @, ,=o¢..

For each {CG-vertex v= ( j] i ), introduce the g-module #(v) defined

2J1
by Pv)={®fu;z); ue V;}: XO[u; 2)=0 (Xu; z) (X ¢ g).

We can show that any operators of the form X (§), X e g, T({) and
vertex operators are composable. The composability of vertex operators
is obtained by using the fact that the differential equations of N-point
functions have only regular singular points.

Introduce the space ¢(v) of operators on s as the C-vector space
spanned by the set

e P [ dtydt@u—am @

: ‘Xl(C1)@(u; z); Ne sz X,eg,me V4 (1_<_i£N): ue Vj}’

where C,’s are contours around C,_, such that 0 is outside Cy and z is
inside C,.

Introduce a §-module structure and an #-module structure in O(v)
defined by

2 @)= —— j dC— "X (A € O)
and
Lmd@) =5 71— jd:(c TR A() € O)

for A(z) e O(v), X e g, m € Z, and some contour C around z such that 0
is outside C.

Theorem 2 (Theorem 2.9). For each {CG-vertex v, the g-module
mapping D: V,; 5 u—@(u; z) e P(v) is extended to the §-isomorphism of
H; onto O(v).

Here we summarize the relations satisfied by vertex operators:
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Fundamental relations for vertex operators

Let @(z) be a vertex operator of spin j. Then

X(m)®(u; z)=0 m>1,XegueV);

X(0)D(u; 2)=[X(0), D(u; 2)]=D(Xu; z) XegueV);

Lm)®(u; z)=0 m=>1ueV);

E(O)@(u; 2)=4,0(u; z) weV,);

L(—1)®(u; z)=5a-¢(u; z) weV,);
z

E(—=1y"""'0(uy(j); 2)=0.

Remark that the last equation is derived from the structure of the

irreducible §-module s#; by using Theorem 2.
Now we call the vectors |vac)= u,(0) € #, and {vac|=u}(0) e A}
the Virasoro vacuum. They satisfies the equalities

X(m)|vac>=L(n)|vac>=0 Xeg, m>0,n>—1);
{vac|X(m)={vac|L(n)=0 (X eg, m<0,nLl).

For an N-ple J=(jy, ---,j) of half integers with 0<2j,< /4, let
V()=V;®- - -®VFj, and let V';(J) denote the invariant subspace of
V~(J) under the diagonal g-action, where V" denotes the dual g-module
of V,. Let @,z,) be a vertex operator of spin j, (1<i<N), then the
vacuum expectation value of the composed operator

{Dx(2y)- - - Di(2)) ={vac|Py(zy) - - - Pi(z))|vac)

is considered as a V(J)-valued, formal Laurent series on (zy, - - -, z,) and
is called an N-point function (of spin J): If @,(z,) is of type v, (1 <i<N),

¥y
(Dy(zy)- - - D(z))= I:Il z7 40 3 CoyoeomiZy™ 220 ™,
where C, ..., € V7(J) and the sum is taken over integers m, € Z (1<k
< N) with my, >0 and m, <0.
Let 7, be the g-action on the i-th component of ¥~(J) and introduce
the operator 2,, defined by
1
‘Q'Lk=5‘ 7, (H)a(H) + m(E)ro(F) + 7 (F)z(E),

and Q,=0,, is the action of the Casimir element Q=1HH-+ EF+ FE on
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the i-th component of V™' (J). Then Q,,=(x,+7)(2)—Q2,— 2;} (i+k)
and Q,=2(j2+7j,)id on V(1.

Then we get a system of differential equations and a system of al-
gebraic equations for N-point functions:

Theorem 3 (Theorem 3.1). Let @,(z,) be a vertex operator of spin j;
(1<i<N), then the N-point function {@(zy)- - - @(z))> satisfies the follow-
ing equations':

(1) (projective invariance) For m=—1,0 and 1,

27

(I1) (gauge invariance) For any X e g,

)@z D z)y=0.

(0D, D=0,

(Ill)  For each i=1, ---, N,

(

(AV) Foreachi(l <i<N) andany u, e V;, (k=+i),

Z )@N(z,o B ()5 =0.

H i

S5 VS G20 OBy 23) 00, (03 20O E ™ 2)

k#1

=0,

where m;=(my, « - -, Wy, + - -, ) € (Ls )" with 3 .y my=L,=0—2j,+

+1 and ( ) is the multinomial coefficient.

Consider the systems E (J) of differential equations and B (J) of al-
gebraic equations for V' (J)-valued functions @(zy, - - -, z,) on the mani-
fold Xy={z=(zy, - - -, z,) e C¥; z,#z, (i#k)}:

B (- E B )G, =0 a<izh),
BO): 3 (5 ) LGz ™0y, - 2) (E™t, -y, () E™)
=0,

for each 7 (1<i<N)and any u, € ¥V, (k=i), where m,=(my, - - -, 1,
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oo my) € (L) with 3y my=L;=£4—2j,+1.
Introduce the set #,(J) defined by

‘@e(J)={]D=(PN, <o, DL D) D; € %Zzo Viz( I > e (CQ),,

1P -1
PN=P0=O}a

where (CG), is the set of all 4CG-vertices. For each p e #,(J), the N-
point function

O (zys - +» Zl)=<@vN(ZN)' < 0,(z))

of type pis a formal Laurent series solution of the joint system E(J) and
B(J), moreover

Theorem 4 (Theorem 3.3).

i) For any p e #(J), the Laurent series @ (zy, + - -, 2,) is absolutely
convergent in the region R,={(zy, -+-,z) e C¥;|zy|> - >|z|} and is
analytically continued to a multivalued holomorphic function on the mani-
fold Xy.

i) {@.(zy, -+, 2); D e PAJ)} gives a basis of the solution space of
the joint system E(J) and B(J).

As a corollary of Theorem 4, we get

Theorem 5 (Theorem 3.4). Let @,(z,) be the vertex operator of spin
Jiand u, e V;, 1<i<N). Then the sequence {@y(uy; zy), - -+, D(u;; )}
is composable in the region X, ,={(zy, - - -, z) € C; |zy|> - - - >|2| >0}
and the composed operator @ y(uy; zy)- - - @,(u,; z,) is analytically continued
to a multivalued holomorphic function on the manifold My={(zy, - - -,z)) €
Xy; 2,0}

For 4CG-vertices V2=( Js ) and V1=( S >, the composed operator

Jik k j;

0,,(W)D,,(2) of the vertex operators @, (w) and @, (z) is multi-valued holo-
morphic on the manifold M,.

For a quadruple J=(j,, s, j,,j,) of half integers with 0<2j,</,
introduce the set I,(J) of intermediate edges, defined by

0= {k e %Z; 0<2k< £, vy(k)= (jfsk) ¢ (CG),,

4

vi(k)= (k jl) c (CG)l}.
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Let J=(j,js» jur i), then we get the g-isomorphism T: V(J)—V>(])
defined by

(TSD) (uQu,Qu,Qu,) = ?(u4® U, Quy,Q u1)

for ¢ € V7(J) and u,Qu,Qu,Qu, & V(J).
For an intermediate edge k e I,(J), similarly define the £CG-vertices
A < (IF Js
Doy ey WDy, 5, (2) of the vertex operators @, (w) and @, ;,(2).
Assume that I(J)=0. For a point (w, z) € L={(z,, z)) e R?; z,>
z, >0}, let @,,,(2)®,, (W) denote the analytic continuation of the compo-
sition @, ., (W), ,(2) of the vertex operators along the path b(z), where
the path b(t)=(3(t), {(¢)) from the point (w, z) e I, to the point (z, w) e
L={(z,, z,) ¢ R*; z,>>2z,>>0} on the manifold M, is defined by

) and consider the composed operator

w2z rvT W2 w42z s W—2
)=——"+ AN, N=— 1" — = (tel0, 1]).
77( ) > e ) £ 5 e 5 (tel0, 1D

Then

Proposition 6 (Proposition 4.2). i) There exists a constant square
matrix C(I)=(CEIer,n.5erom such that for each intermediate edge k e

Q)
T9q, 1\ DDy, 1y (W) = e%:( 5 Doy (W), 5(2) CH(T).
il) Let 3=, js Jo» J1» 5), then the braid relation holds:
C(Js» Jo> Jis S)C(E, Jas J15 J)Cliss Js Jos 5)
= C(1, Jos Jos JIC s Jos J1» YT, Jos J1s Jo)-
Now our fundamental problem is:

Fundamental Problem. Determine the matrix C(J)=(C¥J)) for any
quadruple J with I,(J) 0.

In Section 4.2, we solve the fundamental problem for the case where
j:=%in J. For general j,, we can solve it in principle by the fusion rule

(see Section 5.4).
Now we take j,=j;=2. Then the conditions for the nontriviality,

¥V (J)+#0, are divided into the following cases:

(D2), -§—>jl=j4>0; (D2), —ﬁ-=jl=j4;
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@D, j=i+1; (DD, ji=j=0; DD, ji=j+1.

Proposition 7 (Proposition 4.8). Let g=exp 2y —1/(£+2)).
i) Forje 37 with 0<2j<¥,

=1 YeRjIRj+2

v B i1 :
(i) (P )| o BT ()
22 SO YRR g T
[2j+1] [2j+1]
where [v] denotes the g-integer
2j+1)
r(£2+
[]_q__”—l and Te= f+2
AR )
442 442

11) C(—": T ‘_>= C(O, 'l‘, l, 0)“_" _q—SH'
227272 2°2
, 1 1 . . 1 1 .
C( 19 bt Roat) )’:C( _13 rat Rt >= 1,
iif) Jt1 o J 55 )=

Let N>2 and fix a half integer ¢ (target edge) with 0<<2t<{¢. Put
J,=(@ 4%, - - -, }) and introduce the set

Z(N; f)={p=(pzv, “+ P Do) Py=1,p,=0, p, € %Z, 0<2p,< 4,
1 .
lpi'—pi—1|=‘i" (1£1_<_N)}.

For each p € Z(N; t), define the V' (J,)-valued, multi-valued holomorphic
function ¥ (zy, - - -, z,) on Xy by

wp(ZN9 <oz, uy, -, u)= (V)| CDVN(MN; Zy)- 'djvl(uﬁ z,)|vac)

forve V, and u, e V;;, (1<i<N), where the vertex v, is defined as v,(p)

=(p 1{3 )(1gi_<_N) and v is the isomorphism y: V,— V] defined in
i £74-1 .

Section 2.3.

Then the function &, (zy, - - -, z,) satisfies the systems E(N;t) and
B(N; t) derived from the systems E(J,) and B(J,), where J,=(#, 4, -- -, &
(see Section 5.2). Moreover we get that the solution space W(N;t) of
the systems E(N; t) and B(N; t) has a basis {¥' (zy, - - -, 2); D € Z(N; 1)}
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The braid group B, acts on this space W(N;t) as monodromies.
The commutation relation of vertex operators gives a ‘factorization’ of this
monodromy representation (zy ,, W(N; t)). By the explicit formulae of
the representation r, , obtained from Proposition 7, we get

27/ —1 )
o+2 )
i) The monodromy representation q**r , of the braid group By on
the space W(N; t) gives an irreducible and unitarizable representation of
the group By.
ii) This representation factors through a representation of the Hecke
algebra H,(q) of type Ay _,.
i) Our representation (q**wy,,, W(N; t)) of the Hecke algebra H,(q)
is equivalent to the representation (x{***2, V{#¢*D) constructed by H. Wenzl
[W1, where 2 is a Young diagram 2A=[N/24t, N/2—t].

Theorem 8 (Theorem 5.2 and Proposition 5.3). Let g= exp(

Notations
g=3((2, C)=CF@®CH®CE, where F=<‘1) g) H:(é _‘1’) and E—

(00)

00

§=gQ®CIt, t~'1@®Cc: the affine Lie algebra of type A

H=CH(0)®Cc: the Cartan subalgebra of §

X(m)=X®i"for XegandneZ

m, =g®tic[ti], n,=m, @CE(O)’ n_=m._ ('BCF(O)a po=m, @g@CC
subalgebras of §

Z=73%Ce,+Ce: the Virasoro algebra

neZ

Q=1H*4+ EF+FE ¢ U(g): the Casimir element of g
:X(m)Y (n): : the normal ordered product for X(m), Y (n) € g®Cl[z, t ']
X@)=>X(mz ""'(ze C* X eg): acurrent

nezZ

T(2)= ) L(m)z~™*: the energy momentum tensor
mezZ

£: the central charge (we fix £ € Z., throughout the paper)

g=4+2

V,, V}: the irreducible left and right g-modules of spin j for je $Z., re-
spectively

V;=Hom (V;, C): the dual (right) g-module of V;

H;=H,8), A=2"(£): the integrable highest weight left and right §-
modules respectively

> VIXV,—C, #x #,—~C: the vacuum expectation values

4/2 42, 2/2 N 92,
K= H,C =2, R H'=1, HCHh'=), A
7=0 7=0 i=0 j=0
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V= {V=< j.);j, JiJo € iZZO}: the set of vertices

U JoJi 2

ng—“{v € V; jl:» ]Qé’g‘}

CO)={v e Vi |ji—p|<j<)i+jos i+i4jeZ): the set of all CG-
vertices

(CG),={v e (CQ); ji+ jo-+ < £}: the set of all LCG-vertices

2 | s
4; =7"+7 . the conformal dimension of vertex operators of spin j
I3

4(v)=4;: the conformal dimension of a vertex v
Av)y=4;+4,,—4,, for a vertex v -
7" (v)=Hom, (V1,®V,QV,,; C)
¢, € Hom (V,QV,,, V,,)=7"(v): the nonzero element for each v= (j]j)
2J1
€ (CG) fixed in Appendix I
D ,(2): the vertex operator of type v whose initial term @, , is ¢, for each

V= < jjj) e (CG), (considered as V,Q#,,—#;,)
2J1
O(u; 2)=0(2)u®-)= Y, O,z "?™: the homogeneous decomposition
neEZ

of a vertex operator @(z) of type v
Let W=W,®---QW, the tensor product of g-modules W,, then
w, . the g-action on the i-th component of W
4., =mn,+m,: the diagonal action on the i-th and k-th components of
w
Q= 3m,(H)m(H) + 7 ,(E)mo(F) 4+, (F)m(E)
J=(jy, -+ -, Jj1): an N-ple of half-integers with 0<2j,< ¢
V5 (J): the space of all g-invariant elements in V7 (J)
Z(J)= {p=(pm o P Po); Vi(p)= (ptjlj._) € (CG), pN=po=0}
2N ={p=(pw, -+ Py Po) € Z(J); v(p) € (CG),}
J=(jss jo» Jo» j1): @ quadruple of half integers with 0<<2j,< ¢

()= {k ¢ %Z; 0<2k<1, Vz(k)=<jj3k> e (CG),
to-(y) ol
1(J) = {k c %Z; 0<2k< 4, vy(k) € (CG),, v,(k) € (CG)E}

D)= (vay VoK), vi(K), vo) € Z4T) for k e I(T), where V3=(0j* j4>

and v,= (jj]O)
1
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Aat(])=j(V2)+j(Vl):A71+A12+A13_Aj4
1, e
J,(])_{r € > Z: 0<2< b, W)= (J.4 J.1> € (CG),,

W(r)=(r Js ].Z> ¢ (CO).}
eo(J)=';1‘(j4+js+jz+j1+1), ei(JT)zeO(JT)——Ilc—(Zji—[-l) (i=1, ---,4)

JTt:-JIt(N)=<t, _;_ % . %) an (N+ 1)-ple with 0<21< 4, 2 ¢ Z

1
Z(N; t)={1p=(p.w, <o, D DY) Pa=tp,=0,p, € —Z, 0<2p, <4,

|Pi—Peal =5 (<I<W)].

J,..=7J, (V)= ( 1, . s>: an(N+2)-plewitht,se—;—Zzo and
fs<t
2

1
Z(N; t, S)={1p=(pzv, <oy D1y Do) Pv=1, D=5, D, & —Z‘Zz()a

0<2p, <, lpi—pi-1!=—;— (1<i<m}

XN-'—‘{(ZN» cenyz) e CY; 2,2, (i-'#k)}

U

MN::{(ZNa ) Zl) € (C*)N, Zi:#Zk (l.qﬁk)}

R,={z=(2x, + -+, 2) e CV; |zy|> -+ >z }C Xy

U

'%3,02{(21\1’ trTy Zl) € CN’ |ZN]> e >[21]>0}

U

INZ{(ZN’ e z)eRY zy > >21>0}

©y: the N-th symmetric group

By : the braid group with N-strings of C

H,(q): the Hecke algebra of type 4y _,

A=[f1, -+, fu]: the Young diagram such that the number of nodes of the
i-throwis f; (fi=--- >/

|vac)= uo(O) (vacl—u(O) the Virasoro vacuums

(D(zy)- - - D(z2))={vac|Dy(zy)- - -Dy(z,)|vac): the N-point function of
vertex operators {@y, - - -, @1}

I'(z): the gamma function

F(a, B, 7; z): the Gauss’ hypergeometric function
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[u]q=%i_:11— (gD, » (@=1): a g-integer (v & Z)

! . . . .
(L) =__—L-'——-—_: the multinomial coefficient for m = (my, - - -, m,) with
myle - my!

§ 1. Affine Lie Algebra of type A"

In this section, we recall facts on the affine Lie algebra § of type 4
(see V.G. Kac’s book [Ka]).

1.1) Lie Algebra of type A, and its finite-dimensional modules
Let g=3[(2, C) the Lie algebra of type A4,, thatis, gis a Lie algebra

spanned by H= ((1) _(1)), E= (8 (1)) and F= ((1) 8) The subspace j=CH

is a Cartan subalgebra of g. Its dual §* is spanned by the element «, de-
fined by a(H)=2. Put g,=CF and g_,=CF, then g has the root space
decomposition

g§=0.DY)Pg_..

Let (, ): gXg—C be the invariant symmetric bilinear form, defined
by (X, Y)=tr XY, where tr means the trace as 2 X 2-matrices. Then
(H, H)=2, (E, F)=1 and (H, E)=(H, F)=0.

The Casimir element 2 of g is defined as

0= _;_H2+EF+ FE e U(g).

Here we summarize the facts on finite dimensional modules of g:

Proposition 1.1.  Fix a half integer j € 37..,.

I) 1) Thereexists aunique irreducible left g-module V, (called of spin
J) with highest weight ja.

il V, is of dimension 2j+1 and has a basis {u,(m); m=j,j—1, - - -,
1— j, —j} satisfying the relations

Hu (m)=2mu(m) (—j<m<j);
7y Euj(m):x/(j+m+1)(j—m) u(m+1) (—jm<));
Fu(m)=v({+m(j—m+1D)um—1)  (—j<m<)).

if)) B (/) =0, Fru,(j)#0 (0<n<2) and F*+u,(j)=0.
iv) Q=2(j*+j) on V,.




310 A. Tsuchiya and Y. Kanie

II) i) There exists a unique irreducible right g-module V| (called of
spin j) with highest weight je.

i) V] is of dimension 2j+1 and has a basis {u}(m); m=j, j—1, - - -,
1—j, —j} satisfying the relations:

ul(m)H=2mu’(m) (—j<m<j);
@) u(mE=~(+m(j—m+Dulm—1)  (—j<m<j);
ufm)F=+ (j+m+D(j—mujm+1)  (—j<m<}j).
iil) wj()F=0, uf()E"#0 (0<n<2j) and u(j)E**'=0.
iv) 0Q=2(j+j) on V1.

III) There exists a unique bilinear form (called vacuum expectation
value)

Ly VIxV,—C

such that 1) (ua|v)y={u|av) for any a e g, {u| e V} and |v) e V;, and 2)
{ul(m)| uy(m’)) =0,,,. Moreover this bilinear form is nondegenerate.

1.2) The affine Lie algebra of type A"
Let § be the affine Lie algebra of type A", that is, § is defined by

§=a®C[z, 17@Cc
with the following commutation relations:
[X(m), Y(]=[X, YIm+n)+X, YImé,,n.c (X, Yeg, mneZ),

and
¢ € center of §,

where X (n)=X®1".

The Lie algebra g is included in § by identifying X with X(0). Intro-
duce the subspace g(n)=g®t?" of § for any n e Z, and subalgebras m, =
> 1 8(%n), then § is decomposed into

f=m,DgBCcBm_.

) TAhe subspace §=CH(0)®Cc is a Cartan subalgebra of §. The dual
b* of } is identified with C* 5 (, ), by the formulae:

A, (=2 and @, p)(H)=2p.

Now we summarize the facts about the integrable highest weight
modules of the Lie algebra §.
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Proposition 1.2.  Irreducible integrable highest weight modules of § are
parametrized by (4, j) € Z» @32 ~, with 2j< 4. Fix such (4, ).

i) There exists a unique irreducible left §-module H# (¢) with a nonzero
vector |4, j (called vacuum) such that

m,|6,/>=E|6,jY=0, c|4,jy=4|4,j> and H|{,j>=2j|¢,7>.

ii) There exists a unique irreducible right §-module #’%(¢) with a non-
zero vector { j, 4| (called vacuum) such that

Gy l\m_o=(, L|F=0, {j, ble=44j, 8| and {j, | H=2j{j, £|.

iii) The subspaces {|v) e #y(£); m, |v)=0} of H(£) and {{v|e
HUE); {v|m_=0} of H#1(8) are g-stable and are isomorphic to the irreduci-
ble g-modules V; and V] respectively.

The vacuums | ¢, j) and {j, £| can be identified with u,(j) and ul(j), and
H [(4) and HY(8) are generated by V; and V] respectively.

iv) There exists a unique bilinear form (called vacuum expectation
value)

(O U)X A (H)—>C

such that 1) {j, |4, jy=1, and 2) {ua|v)y=<{u|av) for any ace§,
{ule AW(L)and|v) e H (£). Moreover this bilinear form is non-degenerate,
and its restriction on VI X V; coincides with the vacuum expectation value as
g-modules (Proposition 1.1).

1.3) Segal-Sugawara form

In this paragraph, we give the actions on 5#,(¢) and s#%(¢) of another
Lie algebra Z called Virasoro Algebra, where £ =3, ., Ce,®Ce¢; is the
Lie algebra defined by the relations:

m?—m
[em’ en] = (m - n)em+n +—‘—_

D Oming€s (M, neZ);

[es, e,,]=0.

Definition 1.3. Define the rormal ordered products of elements of
g®CIz, 7] by

X(m)Y (n) (m<n)
XY () = XY )+ YO} (=)
Y(n)X(m) (m>n).
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Definition 1.4.
i) For each X e g, we define the formal Laurent series

X@)= >, X(n)z~"* (z e C*).

ii) Energy-momentum tensor; Segal-Sugawara form ([Se] and [Su]))
For z e C*, define

1
T(z)= S04e ){ “H(2)H(z):+:E(2)F(2):+: F(Z)E(Z)}
= >, L(m)z=™"?,
that is,
Lim)=5 + 5 {  H(—R)H (m-+ )+ 2E(— K)F(m-k); +
+:F(—k>E(m+k):}.
Then we get

Proposition 1.5.
. 1) Foranyje$Z., with 2j<4, the operator L(m), m ¢ Z, and L'(0)
=(34/2+£))id act on A (£) and A ().
ity For any m,ne 7,

m*—m

[L(m), Lm}=(m—n)L(m+n)+———0,.,,,L'(0).

iii) Foreachme Z and X ¢ g,

(L0, X@]=2"(z - +m+ 1)X@);
[L(m), X(n)] = —nX(m-n) neZ).

iv) The modules o (¢) and H#(4) have the eigenspace decompositions
with respect to the operator L(0):

H (8= ;é:o H; 8 and HNE= 2;6 A (£).

where S, () and A} 4(6) are the eigenspaces of the eigenvalue 4;+d, and
A, =G +NIE+2). In particular, # ; (£)=V; and A (£)=V]. Moreover
dim 2%, ,(£)=dim "} ,(£) < oo.
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v) A (8] ;. (8) unless d=d’, and {|> is nondegenerate on
K} d(O) X H 5,4(£).
vi) Forany Xeg, me Z and d>0,

X(m)‘%j,d(g)s L(m)%j,d(g)C%j,d—m(g)
and
H, (DX (m), A (HLMCTHY 4., (8).

In the following of this paper, we fix an integer £>1, put x=4£42,
and omit ¢ in the notations 5#,(¢), 57, ,(£) etc. (Note that V,=:#,(0)=C.)

§2. Vertex Operators (Primary fields)

Throughout this paper we fix the value £ (a positive integer) of the
central element ¢ on the spaces 2 and #", and use the value x=£-42 for
convenience.

2.1) Field operators

Fix a half integer j with 0<{2j<C 4. Introduce the product topology
to the products 52 ,=[] 450 #;,0 and # =[] 45, #" 4, then the vacuum
expectation {|): 575 X o ,—C is uniquely extended to continuous bilinear
pairings (| ): #1X #,—C and A X #,—C, and there is a topological
linear isomorphism o }=Hom,(+#,; C), where Hom,(#,; C) is equipped
with the weak topology. The actions of the Lie algebra § on 5#, and 7
can be extended to these completions.

Consider the direct sums of these modules:

/2 uyr /2 N o2,
H= " H,CHh=> ) =, A CH'=> £
7=0 7=0 Ji=0 7=0
Denote by /I, be the projection to the j-th component:
I,: #—H,, #——f;; H—Ht, Kl H#),

then I7, o II, =11, o Il; and II; commutes with the action of §.

An operator A on # means a linear mapping 4: ##—> 2, which is
equivalent to give a bilinear map A: #' X #—C, and also to give a linear
mapping A': #'— " by the condition that for any (v| e #"and |w) e 7,

(] Awy={v]d|w)y={vd |w).

In order to define compositions of operators, fix dual bases
{lug s <« o> Mamed} OF 2572050 and {{vayl, - - - (laymgl} OF 20520 #a
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with respect to (| ), where m,= 3 /2,dim o, ,=> %2, dim ] ,.
A sequence {4y, - - -, 4,} of operators on S is called composable, if
the series

may

My —1
Z e Z 1<UIA7Lm|udm—ly.fm—1>

A1,y dm—1201 j1=1 m—-1=
<udm—1vjm—llA7L7n—1| udm-—z,im-—2>' : '<ud1,hIAn1I W>
is convergent for any ordered subset {n,, ---,n} of {N, --., 2,1} with

2<m< N and any vectors {v| e #"and |w) ¢ #. Then the composed oper-
ator Ay- - - A, is defined by the values

mdy MmN —1
Qldy---Aifwp= >0 > 21 (vl Ay|Uay_yiyos)
dyyeee,dN—120 j1=1 JN—-1=1

<udN—-1=JN—-llAN—1I udN-z»iN—a>' : '<ud1,hlA1‘w>
for (v|e #" and |w) € .

An operator-valued function A(z): s#— s on a complex manifold M
is called holomorphic with respect to the variable z e M, if the function
{u| A(z)|v) is holomorphic with respect to z e M for any {u|e #* and
V) e .

Example. Operator-valued functions X(z) (X e g) and T(z): #— A
are single-valued and holomorphic on C*=P"\{0, oo}.

Let 4,(z,) be an operator-valued function on ## parametrized by a
complex manifold M, for each i with 1<<i<N, and assume the sequence
{Ax(zy), - -+, 4)(2)} is composable for any (zy, - -+, z) e MyX -+ X M,.
Then the composed operator 4,(z,)- - - 4,(z,) is holomorphic on the com-
plex manifold M, X - - - X M,.

2.2) Vertex operators

Now we give the notion of vertex operators (or primary fields) which
is introduced by V.G. Knizhnik and A.B. Zamolodchikov [KZ].

For a positive half integer j, a multi-valued, holomorphic, operator-
valued function @(z) on the manifold C*(=C\{0}) is called a vertex opera-
tor of spin j, if

D(z); Vj®9’f—-—>7?
satisfies the conditions:

(V2) [X(m), O(u; 2)]=z"0(Xu; 2)
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v3) [L(m), @(u;z)]=zm{z—j—+(m+1)4,}¢(u;z)
Z

for Xeg,ueV,,meZ and ze C*, where the number 4,=(j*+j)/x is
called the conformal dimension of the vertex operator @(z) and O(u; z):
H#— i is the operator defined by

O(u; 2)(W) =D(2)uQ@w) weV;, we).

Remark. (V2) is the gauge condition for the field @(z) and (V3)
means the equations of motion.

Introduce sets V and V, defined by

V={V= ( ,J ,);jsjujz € }‘“Zzo} DVJ_:{V: ( .] ) € V§j1, ]zéﬁ}
J2 J1 2 J2 1 2

An element v of V is called a vertex. For a vertex v= (J.j j) eV, we
2J1
call j, an incoming spin, j, an outgoing spin and j an outer spin, and set

A =4, (=(*+))/k) and Av)=4,+4,,—4,,.
J

< <
< <

Je J
For a vertex v= (j]j) e V,, a vertex operator @(z) of spin j is called
2J1

of type v, if O(u; 2)=11,,9(u; z)II,, for any u e V,.
Then we get the following (the proof will be given in Section 2.3):

Propeosition 2.1,
1) Any vertex operator @ of type v (e V,) has a Laurent series ex-

pansion
O(u; 2)= 3, 0,z "4 (weV)
neZ
and @,(u) satisfies
[LO), 2,@)]=4;,—4;,— )P, ()  (ne2),
that is,
D,(u): H jyya—>H 4330 ns Hhyya—>H % a4m (ne?).
i) Introduce a trilinear form ¢: V},QV,®V,; —C defined by
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o0, u, W)= (0| B Wy ={v| O(u; WYz, (Ve Vi, we V),

then ¢ is g-invariant:
o(VX, u, wy=op(v, Xu, w)+o(v, u, Xw) (X eg).

iiiy A vertex operator @ of type v is uniquely determined by the form
¢ € Hom, (V1,QV,QV;,, C) defined in ii). We call ¢ the initial term of the
vertex operator @ and sometimes denote P=09,.

For each vertex v= (ij> eV, introduce the space ¥"(v) defined by

2J1
¥ (v)=Hom, (V1,QV,®V,,, Cy=Hom,(V;QV,,, V,,).

It is well-known in the s-theory that ¥"(v)=C or 0, and ¥"(v)=C, if
and only if v satisfies the Clebsch-Gordan condition:

h—nl<i<j+j and ji+j+je Z.

Call such vertex a CG-vertex and denote by (CG) the set of all CG vertices:

€O={v=(/,) e Vili-il<i<ithi+iti e Z}.
The following is the key lemma for the existence theorem of vertex
operators:

Lemma 2.2, For a vertex v= (jjj) e(CGNY,, take a nonzero
2J1
element ¢ € V" (v). Then the following conditions are equivalent.
) jt+iati<e.
i) o, EC¥ "y, u, (7))=0 foranyveV},andueV,.
i)  @l,(j,), F2*u, w)=0 foranyueV;andweV,,.

A vertex v= <j]j) eV, is called an £CG-vertex, if it satisfies one of

2J1
the conditions (called the £-constrained Clebsh-Gordan condition) in Lemma

2.2 denoted by (CG), the set of all /CG-vertices, i.e.
(€G)={v=(/,) e O +i+ize}.

Remark 2.2. i) The inequalities |j,— j,|<j<j,+ /. and j+j,+j
< { imply the inequalities j,j,, j,<<¢/2. In particular, outer spins of
£CG-vertices are not greater than £/2.

ii) By the above remark and the proof of Lemma 2.2, one of the
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conditions of Lemma 2.2 is also equivalent to the condition:
o, u)(j), E*-"*'w)=0 foranyve ¥V}, and we V..

Now we get the existence condition for vertex operators (the proof
will be given in the paragraph 2.3):
Theorem 2.3. There exists a nonzero vertex operator @ of type v=
(].Jj) e V,on 2, if and only if the vertex v is an £CG-vertex.
2.J1
Moreover, nonzero vertex operators of a fixed type v e (CG), are
unique up to a constant multiple.

As a corollary, we get

Proposition 2.4. 1) For any j>£/2, there are no vertex operators of
Spin j.
iiy Let O(2) be a vertex operator of type v= (J'zj]]) € (CG),. Thenas
formal Laurent series,
O(u; 2) =z~ 4P(u; 1)z~ +® meV)).

Proof. ii) Let @(u;z) be a vertex operator of spin j. Then the
condition (V3) for m=0 reads as

[L(0), P(u; 2)] — {z_ddz_+ 4, }q)(u; 2). ged.

2.3) Proof of Proposition 2.1 and Theorem 2.3

We define the parabolic subalgebras p, of § as p, =m_ @3PCc, and
the Verma module 4, as the §-module #,=U@)R,.V,(=Um._)V)),
where the g-module V, is considered as a p,-module by setting m,V,=0
and ¢=¢id,,. Then the irreducible §-module 5, is obtained as the
quotient of the Verma module .#; modulo the maximal proper submodule
F, (see V.G. Kac [Ka] (10.4.6)).

This §-submodule #, is also generated by the single vector |J,>=
E(—1y¥*u,(j) and #,=U(p)lJ,>. Moreover m.|J,y=E(O)J,>=
F(0)*-2+3J,%=0, HO)|J,>=2(¢6—j+1|J,;>, and U(g)|J,> is g-isomorphic
to V,_,,.. Denote by z, the canonical projection r,: .#;—#,.

The right §-module 57 is analogously obtained as = _¢i\ .41,
where .#% is a right §-module ./ =VI®, U(§) (the g-module ¥} is con-
sidered as a p_-module by setting VJm_=0and c=¢ idV}), and its maximal
proper j-submodule #% is generated by a vector {J;|=ul(j)F(1)* %+,
Denote by =, the canonical projection #%: A4 — 7.
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The Verma modules .#, and .#% have also eigenspace decompositions
with respect to the operator L(0):

'ﬂj=2ﬂj,d and q./ﬂ}-_: Z‘/ﬂ}d’
4=0 >0 ’

where the eigenvalue of L(0) on .#; , and A} , is 4;+d.
In preparation of the proof, we introduce the filtrations in #;, 5,
MY and A

V,=FX,=FM,CFM;C--- and V]=F#'=FMCF.H}C---
where F, 4, and F,. 4" are space spanned by the sets
{(Yi(ny)- - - Y (n)lw); |wpy e V;, 0<qg<p, Yi(ne) € § 1<k<q)},
and
{Ku] X(my) - - - Xi(my); {v] e V], 0<g<p, Xi(my) € § (1<k<g)}
respectively, and
F ot ;=n(F,#;) and F#\=n\(F,4}).

Proof of Proposition 2.1.
i) Expand @(u; z) as a sum of homogeneous components:

Q(u5 Z)= 'n% ¢n(u; Z), @n(u‘) Z): %hsd_—_)‘;fh,d -n(d 20)~

then
[L(O)’ @n(u; Z)] = (Ajz - Ah - n)@n(u; Z)'

By (V3), we get
zi@n(u; 2)= — (") +n)d,(u; 2).
dz

ii) The condition (V2) for m=0 implies
[X, @(u, 2)]=D(Xu, z) XegueVl).

iii) Let @ be a vertex operator of type v, and assume that ¢ e
Hom, (V1,®V,;®V;,, C) defined in ii) vanishes. We want to show @(z)=0.
Now we show by the induction on n=pq that for any u e ¥,

v|@(u; 2)|w)y=0 for (v|e F, ¢}, and |w)e Ft,,.

Assume that the assertion is valid for all n<<n,. It is sufﬁcient to show



Conformal Field Theory on P! 319

(o] Xy(my)- - - Xy(m)P(u; 2) Y (—np)- - - Yi(—n)|wy=0

for p4+q=n,+1, my, m, >1, {v| e V}z and [w) e V..
We may assume that p>1 (if p=0, we can take g>1). Then

| Xy(my)- - - Xy(m)@(u; 2)Y (—np)- - - Yi(—n)|w)
=2"(u| Xy(m,) - - - Xo(m)D(Xyu; 2)Y (—np)- - - Yi(—n)|w)

+<v]Xp(mp)' - - Xy(my)D(u; 2)X\(m,) Yq(_nq)' - Y1('—n1)‘ w)
=0. q.ed.

Proof of Theorem 2.3. Proposition 2.1 shows that a vertex operator
O(z) of type v defines a form ¢ € ¥"(v) and is uniquely determined by ¢.
In particular, the existence of a vertex operator implies the Clebsh-Gordan
condition for v.

Let ¢ (#£0) € 7" (v)=Hom, (V],QV,;®V;,; C). We want to construct
a form &(z) e Hom (A}, ®V,@.#,,; C) such that

M1) d()| e ier, =2 (ze C»,

M2) DX (m), u, w; 2)— D, u, X(m)w; z)=z"d(v, Xu, w; z)
(meZ,Xeyg),

and

M3) DWL(m), u, w; 2)— O(v, u, Lm)w; z)

=z"‘{z—d‘—i—+(m+ l)A,}@(v, U, w; z) (meZ)

for any (v|e A%, ue V,; and |w) e M,,, where 4= A(v).

(We use the notation @, u, w; 2) =(u; 2)v, w)=D@)(V, u, w).)
Step 0. (M1) defines &(z) on V1.QV,QV;, satisfying (M2) for m=0.
Step 1. Define &(z) on V},QV,®F 4 ,, inductively as

d(v, u, X(—m)w; 2)= —z=™P(v, Xu, w; z)

form>0,Xeg,ve V],,ueV,, we F,_,#;, then we get d(2) on ViQV;
®.4, satisfying (M1) and (M2) for m<0.
Step 2. Define @(z) on F,4},QV,;Q.#;, inductively as

WX (m), u, w; 2)=z"d(v, Xu, w; 2)+ D(v, u, X(m)w; z)
form>0, Xeg,ve F, .M, ueV, we M, then we get &(z) on A1,Q@

J2?

V,QM;. The well-definedness of @(z) and the condition (M2) can be
verified again by the induction on p.
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Step 3. Verify (M3) for &(z) defined in Step 2.
Let v@Qu®w € MY, 1,QV, Q.M 5, 4, then z3-9+4P(v, u, w; z) is proved
to be constant by the construction of @(z). On the other hand,

D(L(0), u, w; z)— D(v, u, LO)Ww; z)={A,2—|—dz—Ah—dl}Q3(v, u, w; z)
:{zi+A,}@(v, u, w; z).
dz

Thus we get (M3) for m=0.
Recall that L(0)|,,= 2/2¢},,= 4, id,, L(O)]VE =4, idy1, and the expan-

sion of L(m):

Lom=—— 3 - Hn—pHG): +: En—)FQ): +: Fan—)EG).}.

Then on each component /4%, ,,QV,Q.#,, ,, we can show (M3) for any
m e Z from (M3) for m=0 by case-by-case computations. We give here
its proof in the case m=2n41>0, d, >d, (other cases are similarly
obtained). In this case, 2kL(m) =2 s _, 2 5-1 X (— k)X (m+ k), where
X'=2X,=H, X*=X,=F and X*=X,=F.

Let v@®u@w e A, ;,QV Q.M ;, 4,, then (M3) for m=0 reads as

% {z_dd_+ A,}é(v, u, w; 2)=2d,+ (v, Qu, w; 2)
y4

+2 i z F Zsl &, Xu, X,(k)yw; 2)+2 5—'2 z* }3: D, Xtu, X(—kyw; z).
k=1 i=1 k=0 i=1
And
2e{@(L(m), u, w; z)— D(v, u, L(m)w; z)}

=237 3% (2o, X X, w3 2)+ 25 B(o, X', X(—ow; )}

i=lk=-n
+2 i dl}j “k@(v, Xtu, X,(m+k)w; 2)
i=1k=—
=2z™ Z‘i {@(v, Qu, w; z)—{—z Z*O(v, X'u, X(—k)w; z)}
k=—n i=1

3 di ~ 3
+2z™ 3 z7 @, X'u, X (k)w; z).
] 1

Hence
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2 [{@(vL(m), u, w; 2)— (v, u, Lim)w; z)}—zm{zi_—k 4 j} v, u, w; z)]
dz
=2n+ Dz"d(v, Qu, w; z)
+22’"§{ i 2*@(v, X'tu, X,(—k)w; z)—ﬁz"‘i)(v, X'u, X,(k)yw; z)}

=mz"‘(.5(v, 2kdu, w; 2),

thus we get (M3).

Step 4. Now we get &(z) € Hom (A1, QV,RM,,; C) satisfying (M1)
~(M3). If &(2) factors to &(z) € Hom, (#1,QV,Q#,,; C), then the bi-
linear form @(u; z) (u e V,;) on #, @, defines an operator from £, to
o, satisfying the conditions (V2) and (V3).

We must show that @(z) factors through Hom,(#,QV,Q#,,; C), if
and only if the vertex v is an {CG-vertex.

From the condition (M2), we get by the induction on p for F, 41,
that @(u; z) factors through #1,®#,,, that is,

@(v, u, #,)=0 foranyve A%, andueV,,
if and only if
A, u, |J,>)=0 foranyve Vi, andue V,.

In fact, 7, =Um_)U(@)|J,,> and m |J, >=E|J,)>=0.
Since |J;,) = E(—1)*"**"!u, (j,), the last condition is equivalent to

oV, B4y, u, (7)) =0 foranyve V],andue ¥V,
Similarly we get that @(u; z) factors through HQM,, if and only if
ol (7o), Fo4ty, w)=0 foranyueV,andwe V.
Step 5. Apply Lemma 2.2. g.e.d.

2.4) Normalization of vertex operators and Proof of Lemma 2.2,
The right g-module ¥} can be identified with the dual (right) g-module
Vi =Hom (V,, C) through the vacuum expectation values:

v(u)y={v|u) forveViandueV,.

There exists an isomorphism v: V,—V} defined by v(u,(m))=(—1)"""X
ul(—m), then v is an isomorphism over (g, v):

WX|v))=—uv))X  (vyeV, Xeyg),
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where y: g—¢ is the anti-automorphism defined by v(X)=—X. More-
over v can be extended to the isomorphism y:J#;— " such that
v(X(m)|v)) = —v(v)X(—m) (v) e H#,;,, Xeg, meZ).

In Appendix I, we fix the element ¢, € ¥ (v)=Hom, (V,®V,, V},)
(=C) for each CG-vertex v= (].J ) This notation will be used through-

21

out this paper. And for each ¢/CG-vertex v, denote by @ ,(z)=0», () the
vertex operator of type v whose initial term is ¢,.
In a special case, we get

Proposition 2.5.
1) Let j be an half-integer with 0<2j< ¢ and put V:(jjo). Then
v € (CG),, 4(v)=0, and ¢,=idy; € ¥ (v)=Hom (V,, V;). Hence

lim @,0v; (@) =|w> (v e V)

il) Let j be an half-integer with 0<2j< ¢ and put V=(0jj>. Then
v € (CQ),, 4(v)=24,, and p,=v € ¥"(v)=Hom (V,, V}). Hence

lim Z¢u(O012.(v; )= Ol )= W) e ).

By the symmetry, it is sufficient to show the following for the proof
of Lemma 2.2:

Lemma 2.2”/. For a vertex v= (].Jj> e 'V, assume v (v)+#0 and take

2J1
its nonzero element ¢. Then the following conditions are equivalent:

(0) St i+ <L
(1) o, E My, u, (7))=0 foranyveV,anducV,

Proof. Decompose the tensor product V, @V, into the sum of the
irreducible components: V,,@V,=3", W,, where W, =V, for k e {7 with
lj—i|<k<Lj4+j, and k+ j+j, e Z. By the assumption on ¢, we may
assume that p(W,,®@V,)#0 and o(W,®V,)=0 for k= j,.

Since V,, is generated by the vector u,(j,) and ¢ is invariant, there
exists a vector w e W, _,, such that o(w®u,,(j))=#0 and (W, ,®u,,(j,))
=0 for any 4> —j,.

Put L,=/4—2j,+1. Assume that j,+j+ /<4 LetveV,, and
ueV;, Sinceh+h+L,>1—j, o(v, E¥u, u, (j))=0. Thus (0) implies
.
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Now express the vector w as w=> ., @,v,Qu,, where a, e C, v, €
Vi -n-j, and u, € V; .. Since n_w=0, we get that a,0 for —j<h<
J.—Ji by the induction on 4. Hence ¢(v,,_,, t;,_;,» 4;,(J1)) 0.

Assume that j,+ j+4j,>#¢. Then we get j,+j+j,>¢-+1 and so

Je—h—L>ji+j,—4¢—1>—].

Hence the vector u=F*wu;,,_,; does not vanish and u,,_; =bE*u for some
nonzero constant b. Thus (1) implies (0). q.e.d.

2.5) Operator product expansions
The notion of operator product expansions in the 2-dimensional con-
formal field theory is due to A.A. Belavin et al. [BPZ].

Proposition 2.6.

i) Ordered pairs {X(0), Y(2)}, {X(©), T(2)}, {T (), X(2)} and {T(),
T(2)} of operators are composable for |{|>|z|>0 (X, Yeg), and their
compositions X(0)Y(2), X(OT(2), T(Q)X(z) and T(C)T(2) are analytically
continued to single-valued, operator-valued holomorphic functions on M,=
{@€, 2) e (C*); =2}, As operators on A, the following identities hold:

(1) X(C)Y()—fé_": P ER (Ve

X(@)+ —l—iX(z)JrRu (X e g).
{—=z oz

I TOX@E=

)2

3¢id 27(2) ——T R
2x(c—)+(c z)2+c 7oz | DR

Here Ry, Ry and Ry are regular at L=z e C*.
Moreover

TOT@Q=T@ATE), TOX@D=X@TE) and X©Y(@)=Y(XQ).

Imn  TOTE =

ii) Let @(z) be a vertex operator of spin j and u € V,. Ordered pairs
X, 0@; 2}, {0 O, X@), {T(Q), Ou; 2)} and {(u; 0, T()} of oper-
ators are composable for |(|>|z|>0(Xegq), and their compositions
X©OPu; z), O(u; OX(2), TQD(u; z) and O(u; {)T(2) are analytically con-
tinued to multi-valued, operator-valued holomorphic functions on M,. As
operators on 3 , the following identities hold:

aw)  xXQodw; Z)=%_ZQ(X”; H+Ry  (Xeg).
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)= 19
(V) IO 2)= 2 03 D05 2+ Re.

Here Ry, and Ry are regular at L=z ¢ C*.
Moreover X()D(u; z) and TQ)P(u; z) (X & g) are single-valued and
holomorphic function on { € P'\{0, z, oo} for any fixed z e C*, and

XOPw; 2)=0(w; X () and TQ)P(u; 2)=D(u; 2)T(Q).

Proof. All cases are obtained similarly, so we deal here with the
case ii).

Let @(z) be a vertex operator of type v. By Proposition 2.11), &(u; z)
has the expansion

Ou; 2)= >,z "9, (u) weVl)
nez
where 4=A(v)=4,+4,,—4,, Then we get
[X(m)9 @n(u)]:[X(O)’ d)m+n(u)]:@m+n(Xu) (X €g,mne Z) '

and
L), D, ()] ={m+ )4, —m—n—MDOD,,.. @)  (m,neZ).
Here we show (IV). For |{|>>|z]|>0,
X(OP(u, 2)= m;e LT Xm0, )
= k; C—IZ-A—km;Z (_g_)mX(m)@k )]
= B0 5 (£) . 0+ Rey
= Low et 5 (E) oo+ R
- ¢ —a-
I—Z/C kZé]ZZ 0, (Xu)‘f‘RIv—-C—(D(Xu ; 2)+ Ryy,
where

Re= D¢z 5 (£) Hme o+ 5(£) 0w xem)

is regular at {=z.
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For |z|>|{]|>0, we get
O(u; DX(Q) = [u; 2), XO)]+ Ry =-— L 0(Xu; )+ Ryy,
z—§ z—¢

for the same Laurent series R;y,. Hence for any {u| e 57, |v) e o and
fixed z e C*, the holomorphic function {u|X({)®(u;z)|v) defined on
{€ e C;|¢|>|z]} can be analytically continued to a (single-valued) holo-
morphic function on P"\{0, oo, z} which coincides with the function
(u|Ou; X Q|0 on {¢; |2 >[Z]>0}. ge.d.

Proposition 2.6 is generalized as follows:

Proposition 2.7. Let u e V, and O(z)=D(z) be the vertex operator of

typev:(J.]j) e (CQG),. Let Ay(zy), - -+, A(z) be operators of the form
2J1

T(2), X(2) (X € g) or O(u; z), and assume that there is a number i, such that
A, (2,)=D(u; z,,) and A,(z,) is not a vertex operator for i+i,

Then {Ay(zy), - - -, A(z,)} is composable in the range [zy|> - - - >|z,],
and the composed operator Ay(zy)- - - A(z) is analytically continued to a
multivalued and holomorphic function on My={(zy, - - -,2) ¢ (C¥"; z,+#z,
G#=N}Y Uwefix (zy, -+, 2y -+ -, 2,) (JF1y), then this function is single-
valued in z; e P'\{o0, zy, - -+, £, - -+, 2, O}.

2.5) Actions of § and . on vertex operators
For an 4CG-vertex v= ( iJj ), introduce the g-module £(v) defined

J2 J1

by
PV)={O@u;2);uecV,} and XO,(u;z2)=0(Xu;z) X eg).

In this paragraph, we fix v € (CG), and say &(z) =0 .(z).
Now introduce the space ¢O(v) of operators on s as the C-vector
space spanned by the set

{(27W 1_T);‘J‘CN o ¢ dly- - - dGCy—2)™ - - (G —2)™ Xy(Cy)

te 'XI(C1)®(u; Z), Ne sz Xz €qg, m; e Z (léi_<_N)s ue Vj}a
where the contours C, (1< i< N) are taken as follows: the origin 0 is out-

side Cy, C; is inside C,,, and z is inside C,.
Let A(z) € O(v), X e g and m e Z, then define
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S j dL(C— "X A(2) € O()

for some contour C around z such that 0 is outside C. Then by Propo-
sition 2.6,

Proposition 2.8, Ler v be an {¢CG-vertex.
i) The assignation X(m)y—X(m) and c—4¢ id defines the §-module
structure on O(v).
i) LetueV,, then
X(m)d (u; 2)=0 m>0,Xeg,ueV,);
XD (u; 2)=[X(0), D,(u; 2)] =D (Xu;2) (Xeg,ueV).
i) The assignation V; » u—® (u; z) defines the g-isomorphism of V,

onto the space P(v), and it is extended to a surfective §-module mapping
=0, M, —0(v).

Define the action of the Virasoro algebra % on 0(v) by
L) =;—1=| dsc—2"TQ4@)  me2)

for some contour C around z such that 0 is outside C. Then by Proposi-
tion 2.6, we get
i) foranyueV;

Lomdu; 2)=0  (m=1);
f(O)@(u;z):Aj@(u;z) and L(—1)®(u; z)=§-@(u;z).
z

ii) the well-definedness of this #-action: (4(z) € O(v))

Lm)L(n)A(z) — L(n) L(m)A(2)

m—m

=(m—n)Lim+n)A@2)+ €O s, 0A(2).

iii) the compatibility of §-action and #-action:
Lm)X(n)A(z) — X(n)L(m)A(2) = —nX(m+n)A(2).

iv) this #-action coincides with the one induced from the Sugawara
form



Conformal Field Theory on P! 327

Lm)A(z)= 2lz {%:H(—k)ﬁ(m+k>:+:E‘(—k)ﬁ(m+k>:
+:F<—k)é(m+k):}A<z).

Theorem 2.9 (Nuclear Democracy®). For each (CG-vertex v=

(j]j ), the §-mapping @ gives the §-isomorphism of #; onto O(v).
2J1

Note. The following fact is important for this theorem: The only
one additional relation of s#; to the Verma module .#, is the equality
E(—1)"%""u(j)=0.

Proof of Theorem 2.9. For each v e (CG),, set p=¢, and O(z)=
@ (z). Since the kernel of the projection of .#, onto J#, is generated by
a vector |J,» e A, over U(§), it is sufficient to show that @(J,»; z)=0.

Step 1. Recall that |J,)=E(—1)*"%*'u,(j), m,|J;>=0, and
U@,y = > 3% 7+ CF(0)J,), hence m, U(g)|J;» =0. Since @ is §-
linear,

Xm¥(z)=0

for any m>0, Xeg and ¥(2) e U(g)d)(iJj); 2).
Step 2. Let ¥(z) e O(v) such that X(m)¥'(z)=0 for any X(m) e m,,
then

[X(0), T@l=X(0)¥(2) and [X(m), ¥(D)]=z"[X(0), ¥(2)] (meZ).
In fact, by Proposition 2.6, we get X(Q)¥(2)=¥(2)X({), so

), @)= [ XY@

for some contour C around z such that 0 is outside C, and by the assump-
tion we get

X(C)W(z)=c—};f<0)mz>+ 2 (k= DT C—2)"

Step 3. Since v e (CG),, we get by Remark 2.271i),

o, u,(j), E¥*'w)=0 (ve V]

2%

weV,).

By the induction on n, we get that for any ve V], and we ¥,

* We owe the naming of Nuclear Democracy to Prof. T. Eguchi.
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WIEQ)- - ECIOu():alwy= [T &z (v, u()), E™W),
so
0=CUIE(=1Y"¥"0(u (j): D) = (0|00, Dlw),
hence by Steps 1 and 2.
WIT@wy=0

for any ¥'(z) e U(g)P(J,>; 2).
Since #1, =V}, U(m,) and o#,,=U(m_)V,,, we get

(LN 1,)=0
for any ¥(z) € U(g)D(J,>; z), hence U(g)D(J,>; z)=0. g.e.d.
Here we summarize the relations satisfied by vertex operators:

Fundamental relations for vertex operators
Let @O(2) be a vertex operator of spin j. Then

X(m)d(u; z)=0 (m>1,XegueV);
X(0)0(u; 2)=[X(0), D(u; )] =P(Xu;z)  (Xeg,ueV);
Lm)®(u; z)=0 (m>1,ueVy;
LOY(u; 2)=4,0(u; 2) (weVy;

(=10 2)=-20(u: ) (e V);

and
E(—1)y~"'0(u()); 2)=0.

§ 3. Differential Equations of /N-point Functions and Composability of
Vertex Operators
In this section, we will give the system of differential equations of N-

point functions and show the composability of vertex operators.

3.1) N-point functions and their differential equations

The vacuums #,(0) and #}(0) of o, and s#} are of special importance
(and are called Virasoro vacuums): denote |vac)=1,(0) and (vac|=u}(0),
then

p,vacy=0 and L(m)vac)=0 (m>-—1);
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{vaclp_=0 and <{(vac|L(im)=0 (m<1).
For an operator 4 on 4, define its vacuum expectation value by
{A4)Y={vac|A4|vac).
Introduce the g-module #= > vec e, #(v), defined by the g-action
X0)0(u; 2)=0(Xu;z) (X eg).

Denote by 4,, (1<i, k<N) the g-diagonal action on the i-th and k-th
components of the N-th tensor product #®¥, that is, 4,,=nr,+r,, where
m; is the g-action on the i-th component of #®¥, Introduce the operator
2,, on %Y defined by

Qik=%ni(H)nk(H)m(E)nk(FHm(F)m(E)
and denote 2,=0,,=r,(£2), then

Qik%um(m—ﬂt—@k}

and
[“Qilu Aik(X)]:[‘Qik’ WJ(X)]‘—:O (i#k, Xe g, 1, k)-

For any half-integer j (0<2j<¢), denote by V7 the dual g-module
of V,. For any N-ple J=(jy, ---,/;) of half-integers with 0<2j,<¥¢,
et WI)=V7,8 - -QV;, and let Vi ()=(V7,®---QV;)* the space of
all g-invariant elements in ¥~(J). Then the operators £2,, act similarly on
V~(J) and on V{(J).

Let @,(z,) be a vertex operator of spin j, (1<i<N), then the vacuum
expectation value of the composed operator

(Dy(zy)- - - Dy(z))
is considered as a V' (J)-valued, formal Laurent series on (zy, - - -, z;) and

is called an N-point function: If @,(z,) is of type v, (1 <i<N),

N
Bule) - By = [543 5 ooe T Coprm ™5™

my=0 mEEZ m1<0

where

szv---mlz<VaC]@N,mN(')@N—-l,my_l(')' * '@Z,mz(')d)l,m1(')‘vac> € VV(JI)'
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The aim of this section is to show that N-point functions are conver-
gent in some region and analytically continued to a multivalued holo-
morphic function on M. '

First we get a system of differential equations of N-point functions:

Theorem 3.1. Let @,(z,) be a vertex operator of spin j, (1<i<N),
then the N-point function {@(zy)- - - O,(z,)) satisfies the following equations:
(I) (projective invariance) For m=—1,0 and 1,

N
320 (22 (e D)4, Bz - B2y =0.
v= 1

(II) (gauge invariance) For any X e g,

5 R0+ 0,(z))=0.

(III) For each i=1, --., N,

(E—__— i Lu )(QN(ZN) D,(z)>=0,

k=1
9z, i ZiT %

where k=4£{-+2.
(IV) Foreachi=1, ---, N,

(Dyluty; zy)- - - (E(= DD, (u,,(ji); 7)) - - - Dyl 2) =0
Sfor any u, e V,, (k+1).

Proof. These equations are obtained from the fundamental relations
of vertex operators, the Sugawara form of L(m) and the properties of the
Virasoro vacuums. Here we give a brief proof of (III). First, note the
identity:

N

XDy (zy)- - - Oi(z)) =2, p, lz T (XK Du(zy)- - - Di(z)) (X eg)
t=t4—4y

Let X'=2X,=H, X*=X,=F and X°=X,=F, then the Casimir

operator {2 is expressed as Q=3 :_, X*X,. By Proposition 2.6 and the
relation L(—1)0(2)=(5/02)P(z), we get

e 20 2)=lim {3 X@0Xri 2)— L 0, (0u; 2)
0 k=1 z—2z,

Z;

(I1<i<N).
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Hence for each i with 1<i<N,

ki:l (XD (z3)- < - (XD )(z) - - - Difz))

=33 L& (R0 0@ 02D
S1j=1zZ—2z,;

o P e ML M I NCR R YENS
z—2z, 77—z,

Thus we get the equation (ITI) by taking the limit 2\ z,.

Remark 3.2.
i) The equations (I) ~(III) are obtained by V.G. Knizhnik and A.B.

Zamolodchikov [KZ].

ii) The equations (IT) mean that {@y(zy)- - - D,(z)> e Vi (T).

iii) The equations (IT) and (III) imply the equations (I). (Key is the
property of the operators 2,,: > &, 2,,=0 on V;(J).)

iv) The system (III) of differential equations is completely integrable.
This complete integrability of (IT1) is reduced to the infinitesimal pure braid
relations of Q,:

[2,6,2,.]=0 (if 7, k, m, n are mutually disjoint);
and »

[200 24+ 24n]=0 (if £, k, m are mutually disjoint).
These infinitesimal pure braid relations were originally noted by K. Aomoto
(see [A1] and [A2]). Moreover these pure braid relations are equivalent to
the classical Yang-Baxter equations for 3{, obtained by C.N. Yang [Y]

and A.A. Belavin-V.G. Drinfel’d [BD].
v) N-point functions are translation invariant (Corollary of (I)):

<QN(ZN+Z)' . '¢1(21+Z)>=<@N(ZN)' - Dy(z))).

vi) The equations (IV) are equivalent to the algebraic equations:
for each i (1<i<N) and any u, € V,, (k=4i), put L,=¢—2j,+1.

m,

(2

3 (B L2 Oy E s 22 -0, (0: 20 - OE™ iz
=0,

o - L\ .
where m; = (my, - - -, My, ++ -, my) € (L)V™Y, My |= 3 g, and (mi) 18

the multinomial coefficient.
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3.2) Solutions of fundamental equation

Consider the systems E(J) of differential equations and B(J) of
algebraic equations for ¥ (J)-valued functions @(zy, - - -, z,) on the mani-
fold Xy={(zy, - -+, 2) € C¥; z,#z, (i#k)} D My:

)@(zN, L, z)=0  (I<i<N)

EQ): (

1z—-zk

and for each i (1 <i<{N) and any u, € V, (k1),

B(JI) Z < ) n (Zlc—zi) Mk@(ZN’ Tt zl)(EMNuN’ Tt uj;(ji)! D] EMIM)

|mgl=Lg

=0,

where m;=(my, « - -, iy, - <+, m;) € (L), | my|= 3 ppmy and Li=4—
2j,+1.

By Remark 3.2, the system E(J) is completely integrable.

Introduce the set #(J) defined by

9’(11)={1D=(pm---,pl,po);vi(p)=( Je )e(CG),pN=po=0}-

DiPia
VN V.V—l ........ V‘i .......... 'vz Vl
D: 1]2\7 szv-: s {]i T +J2 1’]1
py=0 Dy Dy.g =+ Dy pi—l RN /) Dy 0=p,

For each p e #(J), define the vector ¢, of V;(J) from the (fixed)
elements ¢ , ¢ Hom, (V},QV, QV,,_,; O)=(V;®Hom (V,,_,, V) (1<Li
< N), as the trace of 0x®- - -Ro,,: for each uy® - - -Qu, e V(J),

oty « - -5 u)=Lvac|p, (Uy) o,  (Uy_i)o -« op,(u)vacy.

Then the set {p,; p € #(J)} gives a basis of the space V().
Introduce the operators £, => 1 ;x;<m @:; o0 V(J) for m 2<m
< N), then

Py

_1,=Zl ‘Qii’

where 0, is the diagonal action of 2 on ¥V},®- - -®V;, and by the pure
braid relations (Remark 3.2 iv), we get that [Q,, 2,]=0.
In the basis {p,; p € #(J)}, these operators are diagonal:
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2o =2x4,(D)p, (P:(pN, Py D) vi=( Je )),
DiPi
where
Li@)=4,,— 2 dy=— 2 4v)  @<m<N)
In fact, for each i=2, .-, N,
‘Qi90p=2kdmgop and ‘Qiiﬂop=2’CAji90p'
Now introduce the subset Z,(J) of #(J) defined by

ZJ)= {p= (P> -5 PuP) € (D) vi=v(P)= ( pi{;i -1) € (CG),},

then for each p e #,(J), the N-point function
D (zy, + s Zl)=<@vN(ZN)' - 0,(z))

of type p is a formal Laurent series solution of the system E(J) and B(J)
by Theorem 3.1, where its Laurent series expansion is given as

N N
D (zy, s Zl)=~U Z7 200 S S 3 Coeeem ZR ™ e Ze™

mN20 mi€Z  mi<0

ﬁ -An< LO) P, (1)(22, 1>L<0)@VN_1(1). _ (’?) o, (I)Z—L(0)>

i=1 N 2
where

C Mppee m1—<vacl@"1v mN( )QVN—I"”LN 1( ) Vz,mz( )@ Vi, ml( )]V30> € vV (\]I)

Moreover

Theorem 3.3.  Consider the region &, in the manifold X, defined by

'%=={Z=(ZN’ A Zl) € CN; lzND' : >lzll}
Then
i) for any p e #(J), the Laurent series @, (zy, - - -, z,) is absolutely
convergent in the region X,, and is analytically contmued to a multivalued

holomorphic function on Xy.
i) {Dy(zy, - -+, 2); P e PJ)} is linearly independent and gives a
basis of the solution space of the joint system E(J) and B(J).

Proof. The system E(J) of differential equations is equivalent to the
Pfaffian system:
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P(J): wdd(z)— 3 A Zk)g 0(z)=0.

W Z,—
Now we change coordinates z to w by
Wy=2y; W; =22, ., 1 KI<N—-1).
Then the region %, transforms bijectively onto the region
Ry o={W=Wy, - - -, w) € CV; wy=£0, 1>|w,|>0Q2<i<N-1), 1 >|w,l},
where the inverse transformation is given as
z,=wy---w, (1<Ii<N).

And introduce the region Z,={w e C¥; 1 >|w,| (1 <i<KN—-D}DZ, .
The system P(J) is written in the coordinates w as

B o 1 Wimy W - W
): /:Z——dwi_ S, 57 0,6 Zdw T MQ,E@,

morw,  kdiEm kdm<i 1 —w,_q- Wy

where &(w)=0(z).
Hence by using the operators 2., the system E(J) turns to be

EQ): {2/: az —@+Am(w)}q3(w)=o Q<m<N),

m w‘IIL

{2;:-8%—}-A1(W)}d3(w)—_—0

where

~

A (w)y= 3 Yz Ve We g 2<m<N-1),

k<m<i 1—- A "'wk

92,+§j___'wz_w9ﬂ and  Au(w)=0.

— iz3 ] — W 1 oW,

A1(W) =

Since A4,,(w)’s are holomorphic in the region %, the system E(J) is
with regular singularities along the divisors D,={w,;=0} for i=2, - .-, N.
The basis {p,; p e Z(J)} of V7 (J) diagonalizes the principal parts of the
system E(J) with the exponents {4;(p); 1 <<i< N} corresponding to ¢,.

The formal Laurent series solution @D(WN, ce,w)=0.(zy, -, Z),
p € Z(J), of the system E(J) is written as

~ N v
Q)p(wl\h Tty w1)= '1_[2 ng (p)Sp(wNa ) Wl)’
i=
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Sp(wN’ Tt Wl)

= [[ winwg @0, (Dwi49d,,_,(1)- - - D, (Dwf V0, (1))

i=1

is a formal power series in w, since wf @ =wj?i*%id on H#,, ,.

By the theory of partial differential equations with regular singular
points (see e.g. [CL] Chap. 3 and [Kn] Appendix B), the function @ (w) is
a solution of the system E(J) of differential equation in the region £, ,
for each p e #(J). Hence the formal power series S,(w) gives a holo-
morphic function in #,, and so the function d~5p(wN, -+, w,) is holo-
morphic in the region #,,. Thus the N-point function @ (zy, - - -, z,) is
holomorphic in Z, for any p € Z,J).

ii) By the remark before the statement of the theorem, for each p ¢
Z,J)

Sp(Oa Tty 0)= <VaC|@VN,0(')@VN-1,0(') tt e Q)vz,o(')@v1,0(')ivac>
={VaC|pvyPvy_; * Pupv|vac) ={vaclp,|vacy e V5 (J).

This implies the linear independence of {@,(zy, - - -, z): p € Z(I)}.
Finally we want to show that the dimension of the solution space of

the joint system E(J) and B(J) is not greater than #2,(J), where B(J) is
the system B(J) written in the coordinates w: for each i with 1<<i<{N, let
L={— 2j % + 19

B 2 (%) 5 (5 )(E) [ weeerensmi000)

|m/[=L-K
Im”|=K

Xé(WN, M) wl)(EmNuN: ct s uji(ji)> ) Emlul)::o,

where m’=(my, - -+, m;,,) € (Zzo)N_la m”=(m,_, -+, my) € (Zzo)i‘1 and
O(w) is a convergent power series in %,, and O(0)=0.
For each p € #(J), take a solution

N v
wp(wNa Y wl)= n ng ® Tp(wlv's Y wl) (]p € ‘@(\]]-))
1=2
of the system E(J), where T,(w) is a convergent power series in #,, with

the constant term 7,(0)=¢,. Apply B,(J) to ¥ (w) for i>2, then its
leading term must vanish, and the term is obtained by taking K= L, since

N N
,Z.‘i(K"‘min'i' coedm)=(N—i+ 1)K+kZI(k—i)mk

=i+
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and

K+ ff‘, m,=L.

k=1i+1

Hence

L ’ .
0=l Z|:=L (m'l)TP(O)(uNa cees Upyys uji(]i)’ E™=wy, g, -, E™uy)

=§0p(u1va ey Uy uji(ji)a Efu,_,Q- - - Quy)).

By Remark 2.2’ ii), we get that £>j,+p,+p, ., that is, v, e (CG), for
i>2. Hence p e Z,J), since v, e (CG), automatically.
Introduce a partial order < in the set #(J) defined by

p<ps i Uy(@)—AuD)s - -5 (D) —4(D)) € (Z20)"

Let ¥(w) be a solution of the systems E(J) and ]§(If), and express it
as T(W)=1,cs, ¢, ¥,(W), where Zy={p ¢ #(J); ¢,+0}. Apply B,(J)
to ¥'(w), then by the linear independence of solutions of E(J) with different
exponents modulo ZY, the leading term for ¥ (w) must vanish for any
minimal p in &,. Hence any minimal p ¢ &, belongs to #(J). Since

D (w) satisfies B(J) for any p e Z,J), ¥(w) must belong to the space
spanned by {@,(w); p e Z,(J)}. g.e.d.

3.3) Composability of vertex operators
As a corollary of Theorem 3.3, we get the following

Theorem 3.4. Let O,(z,) be a vertex operator of spin j; and u, eV,
(1<i<N). Then the sequence {@(uy; zy), -+ -, Oi(uy; 2,)} is composable
in the region X, ,={(zy, - - -, z) € C¥; |zy|> - - - >|2,|>0} and the com-
posed operator @, (uy; zy) - - - O:(u,; z,) is analytically continued to a multi-
valued holomorphic function on M,.

Proof. We may assume that @,(u,; z,)=9,, (u;; z,) for some vertex
AL :(piﬁ'—l) € (CG)J' Put \]I:(pNa jNa e 7j15 Po)a then pz(opra R
D1 Do, 0) € Z(J).

For the vertices VNH———VN“(]D):(OPZN) and Vozvo(p)=(pf°0), we
get by Proposition 2.5,

lim @, (w; 2)|vacy=|wy ~ (weV,);
2\0

and
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lim 2*»x {vac| Dy, (U; 2) = (V)| e Vo)
2/
The (N+2)-point function (@, ,(Vy; Zy.1) Do, (Uy; Zx) - - - D, (uy; 2,)
@, (w; z,)> is holomorphic in Z¥**={(zy,1, -+, 2) € C"*% |zy 4| > -
>|z,i}, so it is an absolutely convergent Laurent series in the region %2 *2,
Hence

)| D, (U5 zy) - - - Dy (s )| W)

=hgo Nlirg 2 Doy (V3 2w )Doy(Us 2) - - - B (13 20D (W3 20))
is absolutely convergent at any point (zy, +--,z) e &%, ,foranyve V,
eV, (1<i<N)andweV,.

For general ve 5}, and we

N+1°

we may put

N+1 Do>

v=<”(vo)1 Yq(mq)' --Yy(m) and w=X(—n)-- 'Xr(—nr)i Wy

for some v, € Vi, o Wo € Voo Yy, X, € g, my, 1, 2>0.
Then it is sufficient for the convergence of the function (v|@y(uy; zx)
-+« @,(u;; z)|w) to note

lim X,(—n)- - - X (—n,)D,(w,; 2)| vacy=|w),
2\0
and
lim z¥zx {vac|(¥ (m,)- - - ¥ (m)D,,, (vy; 2)=(v]. g.e.d.
z/'

Remark 3.5. If we take the value 4 of the central element ¢ of § as
£ ¢ QQ, then we can construct an analogous theory without the £-constraint
condition. In this case, the Verma module .#, (defined as in the top of
Section 2.3) is irreducible for any nonnegative half integer j, and the space
2 is taken as =), M, where j runs over $Z.,. Then there exists a

vertex operator on S of type v ¢ V, if and only if v= ( jjj) e (CG). In
' 2J1

this case, O(v)=.#,, so the last equation E(—1)¢"¥*'@(u,j);z)=0 is
eliminated among the the fundamental equations for vertex operators.

§4. Commutation Relations of Vertex Operators

4.1) Formulation of the problem

For a quadruple J=(j,, s, jo,ji) of half integers with 0<2j, </,
introduce the set I(I) of intermediate edges, defined by



338 A. Tsuchiya and Y. Kanie
IZ(JI)={k e Lz.0<ok<y, Vz(k):( s ) ¢ (CG),
2 Ji k

vyl = (kf : ) e (CG)Z}.

For each ke I(J), put plk)=(v,, vy(k), vi(k), v,) e #,(J), where v,=
(Oﬁj 4) and w’oz(J{‘()). And put A(T)=A(vy)+A(v)=d,+4,,+ 4,
—4,, (independent of k).

Js J2

p(k):

Js k Ji
V2 Vi

Assume I,(J)s= @, then we get two vertex operators @,,,,(w) and
D, (2). By Theorem 3.4, they are composable in the region %,={(w, z)
e C*; |w|>|z|> 0} and the composed operator @, (w, 2)=0, (W), (z) is
analytically continued to a multi-valued holomorphic and operator-
valued function on M,={(w, z) e (C*)*; w=z}. Introduce a V' (J)-valued
holomorphic function ¥,(w, z) on M, defined by

7w, 2)(u,QuQuyQu) = (p(ug) | D, (us; W)Dy (15 2) [u) (€ V).
In the region Z%,, this function has a convergent Laurent expansion:
T (w, 2)(u,Qu,Qu,Ru,)
=z 5 (E) )0 ),

n=0
with the initial term {v(1,)|p,,(Us)p, (4s) |1, > for any u, e V,.
By Propositions 2.1, 5 and Theorems 2.3, 3.3, we get

Proposition 4.1.  Assume I(J)== . Then for each k e I(T),
i) the operator @, (w, 2) on S is uniquely |determined by the Vy (J)-
valued function U (w, z).
i) The function ¥ (w, z) satisfies the joint system E'(J) and B'(J) of
equations:

E(D): {,;__i—__}wk(w, D)= {xi—ﬁlz—_gﬁ_}wk(w, 2)=0.
ow w w—z

0z z Z—Ww
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and

B’'(]):

L

=

I~

1>w—mzm— I yk(w’ Z)(u4a Emus’ ELl_muz, ujl(jl))=03

(
(
(

L .
5 (52 )Fa D), Bty B, B =0,

3
1

B~
5

~

2>(w__z)—m(__z)m—szk(W’ Z)(u4: Emus’ ujz(j2): Eerul):O:

3
il

I
I~ 3

)(Z__W)—m(__w)m~st‘k(w, z)(u,, ujg(j.'i)’ E™u,, ELs_m”l)—:O’

3
I
=

| m

where L= £—2j,+1 (1<i<4) and m=(my, my, m,) € (Z5,)".
iii) The family {U.(w, 2); k e I(J)} gives a basis of the solution space
of the systems E’(J) and B'(J).

Now assign a new quadruple J=(j,, j,, j:, j;) to the quadruple J=
(Ju J3s Jo» Jo) Of half integers with 0<{25, < ¢, then we get the g-isomorphism
T: VY(3)—V(J) defined by

(Tp)(ut, S QuyQuty) = (4, Rty Qui; Q)

for ¢ e V7(J) and u,Qu,Qu,Qu, € V(J). Since T(Vy ()=V7(J), we get
dim Vy(J)=dim V' (J). Note 4,3)=4,JT) and £1,(T)=#I,J).
For an intermediate edge k ¢ I,(J), similarly define the vertices v,(k)

= (j4j ZIE)’ v,(k)= ( Ej 3]1) ¢ (CG),, the composed operator @z(w, z) of the

vertex operators @, z(w) and @, ;,(z), and the V' (J)-valued holomorphic
function ¥z(w, z) on M,. In the region %,, this function & ;(w, z) also has
a convergent Laurent expansion:

TE(W, Z)(u4®uz®u3®ul)
z \n=42)
= 744 Z (___) <p(u4)|@vZ(E>’n(M2)@v1(E), —n(“3)lu1>7
w

nz0

with the initial term {v(t,}| @, U)@e (s} |4,y for any u, e V.

o 2 Js
} ple): l 1

Js
p(k): l
j4 k jl j4 E jl

V2 V1 Vs Vi

Now introduce the path b(¢)=(y(¢), {(¢)) from a point (w, z) in the
set ,={(w, z) ¢ R*; w>z>>0} to the point (z, w) in the set ,={(z, w) e R*;
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w>>z>>0} on the manifold M,, defined by

n(r):%“—z-ww?ﬂ-zi, c<r)=l;i—ew-“”ﬁgi (t [0, 1))

(¢ )/4\

0 z w

£

Denote by ¥,(z, w) the analytic continuation of the convergent
Laurent series ¥',(w, z) in the region %, along the path b(¢) and consider
U (z, w) near I, then the V7, (J)-valued function T (z, w) satisfies the
equations E’(J) and B’(J), so it is expressed as a linear combination:

TV (z, w) =EEIZ(J)?C;(W, z)Ci(D),

where C(I)=(C¥IMer,m.ier,a IS 2 square matrix.
Hence by Proposition 4.1,

Proposition 4.2. i) Let J=(j, js, j», js) with I(3)#~@. Then for
each intermediate edge k ¢ I(J) and (w, z) e I,

TD,,(2)®,, (W)= _ EIZ:J) Doy (W) Doy (2) CE(D),
k&ly

where the operator in the left hand side is considered as the analytic continu-
ation of the composition of the vertex operators @, (w) and @, (z) along the
path b(t) in the manifold X,,.

il Let J=(t, s, jo Ji» 5), then the braid relation holds:

C(jssjmjn S)C(taj39j15.j2)c(j17j37j29 S)
= C(t, s Jos JOC (s Jas Jis SYC (s Jo» Ji» Jo)-

0 1 2 3 4 0 1 2 3 4
11?3 L-—\;“ Tm ':1‘:_.]
R

) ® ) ®
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Now our fundamental problem is:

Fundamental Problem. Determine the matrix C(J)=(C¥J)) for any
quadruple J with I(D)+@.

4.2) Reduced Equation

Take an intermediate edge k e I(J) and introduce a variable {=z/w,
then the V'(J)-valued function z#M¥ , (w, {w) is independent of w, since
by Theorem 3.1, 1,

3 .9 B
{WEVF +2l - 44(1)}11fk(w, 2)=0.

So we abbreviate z#4POT,(w, Lw) to T(Q), then the V7 (J)-valued
function ¥",({) (called reduced 4-point function) has a convergent Laurent

expansion
(O, Qu,Quy@uy =~ Avaton é@ V)| Dy, (U Dy, () | Y™

in £ e C* with the initial term (u(u,)|p,,(U)p,, () |u,> for u, € V,,. Then
by Proposition 4.1,

Proposition 4.3 (Reduced equation). The V' (J)-valued function ¥ ()
satisfies the joint system RE(J) and RB(J) of equations:

REQ): (g — Lt Lo hr 00
and
RBA): 3% (1) B0, By Bt 1, () =0,
> (ﬁ)( ) O B 0, (1), B"u) =0,

3 () () P w), B, 5y =0,

=0

L .
(Hrf)%(f;)(un(h), E™sy,, E™u,, E™u,)=0,
jm|= La

where L,=£—2j,+1 (1<i<4) and m=(m,, my, m)) &€ (Z,)".

Proof. The system E’(J) of equations turns to a single differential
equation RE(J), since Q,, 4 215+ 2ps = — £4,(J). q.e.d.

In the following, we want to solve the fundamental problem for the
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case where j,=% in J. For this aim, we investigate first the reduced
equation RE (J) in detail for each quadruple J=(j, %, /i, /) with V3(J)+#0
and thereafter take the equation RB(J) into account. For the investiga-
tion of the reduced equation RE(J), introduce the set 7(J) defined by

10)= {k e %ZZO; VoK) = (ij) € (CG), vy(k)= (kaj 1) = (CG)}.

First note that $I(J)=dim Vy(J)<2. And dim Vi (J)=2 if and
only if

D2) ul—jzlgj;—%, j4+%gjl+jz and jl+jz+-;—+j4ez.

In this case, I(J)= {k =j,+3}
The case (D2) is divided into three cases (D2), such that #7,(J)=i
(i=0, 1, 2). Introduce the number &,(J)=(j,+/,+j.+ %)/, then

D2,  &<I; thenjl,jz,ﬂslizi and IZ(J)={ki=j¢-§-},
D2), =1; IZ(JI)={k_=J;—%}, D2), &>1; D=0

1 Je

< < <
. < -t . < 4 <+ [

Ja k. Ji
Moreover dim V5 (J)=1, if and only if either of the following condi-
tions (D1) holds:
.. 01 P | ,
(DI1), h=jit 5t D), j=jit+ = T D), Jj,= ——+J2+J1

And I(J)={j,+3} for the case (D1),, and I(J)={j,—3%} for the case
(D1),. Note that one of the conditions (D1), implies #7(J)=1.
Denote by (D0) the case where V;(J)=0, i.e. I(J)=

Now consider the equation

, d = Quted(J) O
RE(): @ _ V() —
D (" dec z ¢—1) ©=0
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for V' (J)-valued functions ¥'({) on e C*. The coordinate change {—
n=1/¢ makes the equation RE(J) into

(e e ()

Case (D2). First we get three bases (U}, {UL} and {UE} of V(D)
such that they diagonalize the operators 2,,, £2,; and 2,, respectively (see
Appendix I):

QUO =k —ATNUY, QU= PUL, QUL =V,

and

1
UD(uy, uy, ty, )= m <”(“4)|§Dvg(ki)(us)90v1(ki)(u2) \u1>

for u,Qu,Qu,Qu, ¢ V(J), where

>

7O — 2j4+3 , 7O — 2.i4_1 T@—‘—‘—ji, Tg>=j2+1 ,
* 2k —2 £ —K

o=t po ikl
* K —K
Introduce the differences ¥ =r% —r® (i=0, 1, o0), then 0y <1, in

particular, they are not integers:

T(O)_; 2i4+1 , T(1)= 2]2+1 and T(oo)z 2j1+1 (K=Z+2).
K K K
The transformation matrices S%® between the bases {U$®} and
{U®} are given as
(UP, UD)=(UP, UO)S,

where

174 7
swomsto(d _B) sunseo—(~ B) <o 500,

’ 4
PG Y e ) :(é, —ﬁ,) € SO(2),

and the constants A ~ B’/ are given as

1/2 1/2 172
. &9€, &€ €€
A= 2C4 . , A’ = 162 s A" — 154 s
7(1)7(0) T(w)r(l) T(w)r(o)
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and

12 12 172
B=— €0y / , B'= Eo€y / , B'= Eo€g / ,
T(I)T(O) T(w)r(l) T(M)T(O)
where

e=¢(J) and ei=~i—{jl+jz+j4+—;—-2ji} (i=1,2, 4.

Now we get the fundamental solutions of the linear differential equa-
tion RE (J) with regular singular points at {=0, 1 and oo by means of the
"~ Gauss’ hypergeometric function F(a, 8, 7; {) (see Appendix II for the
proof):

Proposition 4.4. Introduce the constants a=z¢,, f=¢;, B =¢, and let
TP be the fundamental solutions of the equation RE (J) normalized at

£=i(i=0,1, o0):

@TO@), TOQ)=(U?, U(z))(§0++(C) @, (§)>

©O 00
Then
(i) @@= T¥A=¥F(a, b, 7;0);
e Q=P V(AP Fla+1, f+1, 24795 0);
P Q) =00 A =YV F(—a+1, —p+1,2—79; 0);
e Q)= Q=% F(—a, -8, —79;0).
(i) P @)= C¥U—0%F(a, §,7"; 1-0);
oL Q) =cPrP( -0 P F(a+1, B-+1, 24795 1-0);
e Q=P (1= " F(—a+1, —f+1,2—7M; 1-0);
pR (@)= A —VF(—a, —p, —7"; 1-0).
(i) L= c"fﬁw’(l—%)’g’F@, B, 7; —}:—)

“(1-¢
2= (1 )“’
xr(-

a+1, —B 41, 2-7¢; —2-)

o)) = cv‘-"“’(l—%yg)F(—-a, — N, =7 —2—)
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where

o _ Veews
V= O 17 (i=0,1, o0).

Note. The reduced 4-point function ¥, i(c») is the solution of RE(J)
with exponent 7 at {=0, so by the normalization of UQ, ¥, ()=
V2j+1T9(©).

Case (D1). Since dim V;(J)=1, the choice of basis vectors of | 24Q))]
is not of importance. But from the compatibility with the case (D2), we
choose basis vectors {U®; i=0, 1, oo} of V;(J) such that

UO=UD=U" for (Dl),;; UP=UD=—-U for (DIl),

The exponents 7@, ¥ and 7 of the éduation RE(J) at £=0,1, oo aré
given as

(D1), ro= 342 po_t peor— _htl
216 K ) K
(D1), 7O = M, TO=— ﬂ, 7= = Ji v
2/6 K K
(D1), o= 1=2 ok N
2.‘5 K K
Then we get

Proposition 4.4'.  The fundamental solution T4 ()= UDp“({) of the
equation RE(J) normalized at {=i (i=0, 1, o0) is given as
Ds 2O =0"Q)= 0=y, ¢=(Q=g"""p (),
and

(D1) PO =pPQ)=0"UA=0, e=A)=q"*Y"p (),

where the exponents T® are corresponding ones and q=exp 2y —1/k).

4.3) Connection matrices for J=(j,, %, j,, /)

The path b(¢) from a point (w, z) € I, to (z, w) € I, on M, introduced
in Section 4.1 corresponds a path from the point {=z/w in the set J;=
{€eR; 1>¢>0} to the point 1/¢ in the set J,={¢ e R; {>1} on the
manifold C*. If z tends to zero, then the corresponding path tends to the
path b(¢) from 0 to the infinity figured below:
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0 1
T i - e

-

Now take an intermediate edge k for a quadruple J =(j,, 3, j., j,) with
I(=+=@. We want to know the analytic continuation of the reduced
4-point function ¥ () along the path b(¢).

For the case (D1), we get easily the connection matrix (scalar) K(J)
of the fundamental solution ¥®(f) at =0 to ¥*)({) at {=o0 of the
equation RE (J): S®=pO()=¢Y()K(J) as follows:

=1))

O,, KJ)=g"*; (DI), KJ)=—q-0+mn (q=exp(
K

Now we deal with the case (D2). By the formulae for connection
matrices of the hypergeometric functions, we get the connection matrix
K(J)=(§§ g;) of the fundamental solutions (FYP, F'®) at £=0 to

T K:C

(T, T'e) at {=o0 of the equation RE (J):

Kt K*
re, v0)= e, vo)(KE K7),
( )=( )K; X-

that is,

=P80 oL @) L (¢£2(0 ofUQ\ (KT K
g )(SDS")_(C) 909”-(6)> (so‘f_’(C) SDS“J(C))(K: K:)'

(see Appendix II for more details):

Proposition 4.5.

k =_ — q"(h"’.h“ 3/2)/2(1 )7 ) ) /2 Z (?’(0)) Z ( T(OO))

b

&8, I'(e)I'(—e)

+ (Ja-J1-1/2)/2
Ki= ¢

2

( O (=) )1/2 (=71 (—7¢)
82 F(—Eo)r("‘ez)
K7= q(jl".ﬂ‘l/z)/z( rore )1/2 L@
* &€ I'(e)I'(e)
T(O)T(“’) )1/2 I’(_T(O))[’(r(w))

I'(—e)I'(s)

b

2

K- = q(i1+14+1/2)/2<

€184

where we denote g=exp 2z — 1/k).

The conditions (D2); (i=2, 1,0) and (D1) for J are equivalént to
(D2), and (D1) for J respectively. Intermediate edges for J must be k=
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Ji3% under the condition (D2),, and the intermediate edge for J must be

(D2),, (D), /z-_-,-,__;.; ©1),, F=j+ %

From the three bases {UY =U?(J); i=0, 1, oo} of V3 (J), put
UP=UPJ)=TUY» (i=0,00) and UP=+TUYP,
t_hen they are three bases of V;(J) such that
2,TP=kTQUQ, 2,U0=kTPTP, 0,0 =pT—4,INTL,
rO=1%, rP=12, Fo =19,
and

U(,?)(%, Uy, U, Uy) = <y(u4)lSDVQ(Ei)(u‘Z)SDW,(Ei)(u.?)I u)

1
V2j+1
for u,®@u,Qu,Qu, ¢ V(J).

By Proposition 4.1, the composition @,(w, z) of vertex operators is
determined by the Vy(J)-valued function ¥(w, z) which is written as
T (w, z)=z"4OT (z/w) by the reduced 4-point function ¥ (). And the
composed operator @z, w) is also determined by the V' (J)-valued func-
tion T gz, w)=w- 40T (w/z).

The functions ¥,(£) and ¥';(y) satisfy the differential equations RE (J)
and RE (J) with the initial conditions:

QAT (), thy, U, 1) oo = (0(U1) | 90t pr (1) | 11D

and

i OT )ty v, 1y 1) g0 = 0| 90, U)o, (1) | 1)

By the relations among the exponents {7} and {7’} of the equations
RE (J) and RE (J), we get

T80Q)=¢+oT (L) and TFOQO=T(),
4 €
where 7 ¥(y) denotes the fundamental solutions of the equation RE (J)
similarly obtained as in Proposition 4.4.

By the note after Proposition 4.4, we get

T, Q=V2+1T0C) and T ()=v2+17 ().
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Hence by Propositions 4.1, 5, we get
Proposition 4.6. Let J=(j,, %, j,,j) with I(J)~=@. Then
DD  Cc=CiT)=K(J), wherek e I(J) and k ¢ I(J).
D2), C(I)=Ci-(N=K=(J), where k_=j,— _;. and k_=j,— %

(D2), CA)=(CHMrerw)ieray=K(J) as 2 X 2-matrices.
Remark. In the case (D2),, all entries of the matrix C(J)=K(J) do
not vanish. In the case (D2),, e,=1 implies K*(J)=0, hence the matrix

K(J) is of the form (* 0).

* 3k

4.4. Case Jr':(j.v %9 %9].1)

As a special case, we take j,=j,=1%, then the conditions (D2) and (D1)
read as

(D2), —§i>j,=j4>o; (D2), —§=jl=j4;

and
DY), j=j+1; D), ji=j=0; DY), ji=j+1

Under the assumption (D2), the constants 7{, ¢, and the matrix K(J)
turns to be the following (here j=j,=j,):

2j+3 2j— 1 3
(A Y et S € TR S € N S
2k —2k 2k 7 — 2k
o =d e Jtl. e _pe_ 2Hl 02,
K — K K K
2j42 1 j
& = ]+ s g == —, Sz—ﬂ,
K K K
r 2]+1)F<2]+1)
Ki=— @+ 00— 71\
r(3)r(5h)
K K
2]’-]—1)2
| P2t
K= 2]+1 q"”‘ N —F N
T 24 j(j+1) F(z-’+2)1‘( 2j )
—K —K
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2j41Y
- f()
Kimgri g
T2V 4D F<2]+2)F(2_J)’
K K
and
F(2j+1>F(2j+1)
Kz=Qj+ 1" "7y 71\
r)rEH)
. K K

Now recall the notion of g-integers for g e C*: for each integer v € Z,
introduce the g-integer [v]=[y], defined by

-1 1
[v]q-——{ . (g=#1D)
y (g=1).
Then

Lemma 4.7.
i [0],=0, [l],=1 and [2),=1+q.
i) [—v]l,=—q7D], and D)y,,=q""D], v e Z).

iii) [v],=0, if and only if g*=1. <tx]q=0 ifq:exp(

2m4/ —1
"))
iv) lim,_,[]l,=v foranyveZ.

Then in the case (D2),, the matrix K(J) can be symmetrized by means
of g-integers:

Proposition 4.8.  For j e 17 with 0<2j </,

.1 1
K( s TATY A0 )
J 2’7 J

~1 V2712 +2]
_-onfT3 (27 +1] [2j+1] T,
1 ( r:‘) V427 12j+2] g4 ( T-)
[2/+1] 2/+1]

where

r(*5)

ey

+r +x

2 ‘1> and 1=,
K
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We can get the connection matrix (=scalar) K(J) in the cases (D2),
and (D1):

Proposition 4.8'. . Let g=exp 2zv/ — 1/).
1) K(_g_, _1_’ l., _4_) =gt 1], =—q "

2’2’22
1 1
ii K(O,-,--,O):— A
) ) q
. 11 ) ( 11 ) »
K L=, = j)=K(j—1,=, =, j)=q"
1ii) <J+ 75 J 55 I )=

Remark. These values are also obtained from the calculations in the
case (D2),, K3(0,%,%4,00=0 and K*(0,%,%,0)=—q ¥. For J.=
(x1, 4 3,7), Ki(J)=Kz(J.)=0and Kx(J,)=K:(J)=g""

§5. Monodromy Representations of Braid Groups

In this section, we construct representations of braid groups on the
spaces of multi-correlation functions, and show that they give the same
representations of Hecke algebras constructred by H. Wenzl.

5.1) Braid groups and Hecke algebras

Recall our X is a complex manifold defined by
XN={(ZN’ Zy_ g v+ 2y) € CF; z2,%z; (l:/:])}

The N-th symmetric group ©, acts on the manifold Xy as (zy, - - -, z)o=
(Zanyes ** *» Zays) (0 € ©y), then we get a covering space my: Xy—Xy=
X,/©. Let #y: Xy—X, be a universal covering manifold of Xy, then
zy=fyomy: Xy—Xy is also a universal covering of Xy.

Now recall the braid groups according to J. S. Birman [Bi]. The
fundamental group r,(Xy, 7y) of the manifold X, is called the braid group
with N strings of the manifold C, that is, the classical braid group of Artin,
and is denoted by By, where we take the base point as py=ny(py). The
composition of 7, and r, in the group By is figured as

1 2 3 .-+« N—-2 N—1 N

7 F‘-% Lr:;J

Ty fb—"::—'n—" ’PT_\J
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1 2 3 +«+++ N—-2 N—-1 N
rJLﬁ LI Y %;
Tt %Hl L—]%
. r—t—l—————J P r_t.'

The fundamental group z,(Xy, py) of the manifold X, is called the
pure braid group with N strings of the manifold C, and is denoted by Py,
where py is a base point of Xy, e. g py=(N, N—1, - .-, 1). Then the
group Py is the kernel of the natural homomorphism p of B, onto &,.

It is well-known that the group By, has a system {b,; | <i<N—1} of
generators with the fundamental relations ‘

(BR) " bb;=bb, (i—j|>2) and bb,,.b,=b,bb,. 1<i<N-2).

where b, is figured as a geometric braid by

i+l - No1 N

1 2 zl—
=

The subgroup P, has a system {a”, 1<i<j< N} of generators, defined
by

dyy=b,_b, 4+ b, bk - b7,
Introduce a subset I, of the manifold X, defined by
Iy={(zy, -+, 2) € RY; zy>zy >0 - >2,2>0}.

Specify a base pomt pN of the manifold X, such that #,(5,)=py, then
there is a subset [, of X such that §, e I,and I, is homeomorphlc to Iy.

For a finite dimensional &,-module W, denote by 0(X,; W) the
space of all W-valued holomorphic functions on X,. The values of ¢ &
O(Xy; W) on the whole X, are determined by the values of ¢ in I, which
we call the principal branch of the multi-valued function ¢ on X. Fora
point (zy, - - -, z,) € Iy, sometimes we write ¢(zy, - - -, z,)=p(P), where
p e I, such that #,(p)=(zy, - - -, 2).

The action of the braid group B, on the space O(Xy; W) is defined
as follows: Let ¢ e By=n,(X,). For each ¢ of O(Xy; W) and je X,,
put
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(co)(P)=p(x)-p(F-v)  (FeXy),
where the group By acts on each fiber z5'(z,(5)) as the covering transfor-
mation of Xy,—Xy.
We will give more explicitly the principal branch of z¢ for a generator
r=b, 1<i<N—1). Foreach jel,,let p=ry(p)eIyand (zy, - -, z)
=ﬁN(ﬁ ) € IN 5

GipXP) =G, i+1)-9(5-b)

where (i, i+1) denotes the transposition, and ¢(7-b,) is nothing but the
analytic continuation of the principal branch ¢(zy, - - -, z;) along the path
Cu(@), - -+, Ci(1)) in Xy (2 € [0, 1]): Cu(t) =2, (K1, i+ 1),

Cz(t)= fi_-%z_’“‘_l —et Jﬁﬁ%—ﬁ ; Cin(t)-': zi+22i+1 +et /o1 Zi“z—zi

Ci—bl(t)

| } 1 /‘\ ] |
T 1 1 )
& % U wz“.l z“.z o 2y

41())

Related to braid groups, the notion of Hecke algebras is important
(see e.g. D. Kazhdan-G. Lusztig [KL] and V. H. R. Jones [Jo]).

Let N2 and g e C*. Then the Hecke algebra Hy(q) of type Ay _,
is defined as the associative complex algebra with generators 1, T, - - -,
Ty _, with the defining relations:

HY) T.T,.T,=T,, TT,., fori=1,2, ..., N=2.
(H2) T,T,=T,T, forl|i—j|>2.
H3) (T,—q)T;+1)=0, that is, T?=(q—1)T;+4.

Note that (H1) and (H2) are nothing but the braid relations (BR),
hence there is a natural epimorphism of the group algebra C[B,] onto
H,(q). For g=1, the Hecke algebra H,(1) is isomorphic to the group
algebra CS, of the N-th symmetric group &,, by sending T} to the trans-
position (7, i+1). If g is not a root of unity, it is known by H. Wenzl [W]
that there exists an isomorphisms of H (N) with the group ring C[&,] as
algebras.

Assume that [2],#0, that is, g —1. Then we can give another
system {1, e, - - -, ey_,} of generators of H,(gq) consisting of idempotents:
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q—T,
21,
Then the defining relations (H1) ~(H3) translate to

e, =

, le. T,=q—[2l,e, (i=1,---,N—1).

H1)Y ee; e, — fori=1,2, ..., N—2.

[Zq]g e’l=ei+leiei+l—éei+l
H2Y ee;=ese, forl|i—j|=>2.
(H3) eéi=e, fori=1,2,..., N—1.

5.2) Monodromy representations

Let N >2, k=£+2, g=exp (2ry/— 1/£) and fix a half integer ¢ with
0«2t < ¢ which we call a target edge. Introduce an (N+1)-ple J,=
(t, %, -+, %), and consider the systems E(N;t) and B(N; t) of equations
for ¥y (J,)-valued functions on the manifold X7, :

E(N;1): (Ica

)W(zm o z)=0 (1<i<N)

k=1 oz, ——z,c
and for any u, € V;, (jy.1=1j;=3% (1<Ki<N)),
L\Z% )
B(N;1): 3T ( : ) 0 (ze—z)™
= \m /gy
XU @)ty sy E™uy, « - -, uji(ji): ceey E™Mu)=0

for 1<i<N, and

Z (LN+1)W(Z)(ujN+1(jN+1)’ EMNuN3 Tty E""lul)—_—-o

my+1 \MMy

where m,=(my, - - -, #y, -+ -, M) € (L)™' (1_<_i£N)vand My, = (My,
-, my) € (Zsy)” with |m,|=L,=¢—2j,+1 (1<i<N+1).

Let W(NV; t) be the solution space of the joint system E(N; ¢) and

B(N; t). Then by Theorem 3.3, the space W(N; ¢) has a basis {¥ (z, - - -,
z,); D € #,(N; t)} defined as follows: Let

1
PAN; 1) ={1D=(pN, <o, DD Py=tp,=0,p, € ?Z’ 0<2p, <4,
1 ,
lpi_pi—ll—: ? (1 £1_<_N)}

For each p € Z/(IV; t), define the V;(J,)-valued, multi-valued holomorphic
function ¥ (zy, - - -, z,) on X, by
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Uzws » -5 20, ty, - 5 1) = (V) IQ)VN(MN; zy) 0, (uy; z)) | vac)
forve V,and u, e V,, (1<i<N), where the vertex v,=v,(p) is defined
1
o 2 7
as M"(p » ) (1<i<N).

irt-1
The braid group B, acts on this space W(N;t) as monodromies.
The commutation relations of vertex operators give a factorization of this
monodromy representation (zy,,, W(N; ¢)). The &,-module structure of

the space V' (J) is defined by

(USD)(uNr Tt u1)=§0(u<N)us Sty u(l)v) (SD € V(\),(J]-)’ g€ ,@N)a

and the B,~-module structure on the space of V' (J)-valued functions on
X, is defined in Section 5.1. -By Propositions 4.8, 4.8’ and 5.1, we will
give this representation x==r, , explicitly.

For each i (1<i <N—1), the action z(b,) of the generator b, of the
group B, on the space W(N; t) is given as follows.

At first, divide the set #(N;t) into the four parts: Let p=(py,

Py-1s " s Py * " ':Pupo) € QZ(N; t)aplv=t9p0=0'

D e PUN; t)«—>p,,1=p;.,=0.
p e ZUN; t)<~—>lpz+1 —Pial=1

D € Z{(N; t)“_> >Pis1=Pi1> 0.

be .@?(N; Z)é_—)pi+1=pi_1= —g.

Then the operation z(b,) is given on the basis vectors {¥; p € #«(N; t)} as:
a,d) IfpeZYN;t)orpePYN;t), (b )¥ = —q T,

b) If pe #UN; 1), )V, = q"7,.

c) If p e PUN; 1), there is only one p’ € #4N; ¢) such that p, =p;, for
any k==i and |p,—p;|=1. We define the action =(b,) for which C¥ -+
C¥,, is invariant. We modify the notations as p.=(%, py_1, - * > Dis1
Py Piops *+ +5 Py), Where pf =max (p,, p;) and p; =min(p,, p;). Then the
action z(b,) on C¥,, +C¥,_ is given as (b)) = K(p, %, %, p), where
0<p=pis1=p, 1 <L[2:

n(b,) ’cwn +C¥,_

( —1 v p2pl2p+2]
g (Tf ) | p] 2p+1] (n )
vt J T

[2p][2p +2] gt
L R2p+1] [2p+1]
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where
(%)
T S
+ = 1/2
(r(EEHr ()
+k +k
In each case, {g, —1} are only possible eigenvalues bf the operators

q*/*z(b;). Thus the actions ¢**z(b,) on the space W(N; t) satisfy the rela-
tion (H3) of the Hecke algebra H,(q). ,

Theorem 5.2. The monodromy representation q*’*ry, of the braid
group By, on the space W(N'; t) gives a representation of the Hecke algebra
H,(q), where g=exp 2ny/ — 1/k).

Remark. It is remarkable that our representations are obtained for
the Hecke algebra Hy(q) with a root ¢ of unity, since the algebra H,(q) is
not semi-simple for a root g of unity (cf. V. F. R. Jones [Jo]).” ¢

5.3) Wenzl’s representations of Hecke algebra ,

H. Wenzl [W] constructed irreducible representatlons (m, Vz) of Hecke
algebras Hy(q) for any g not being roots of unity, parametrized by the
set Ay of all Young diagrams on N nodes. If g=exp 2zv/— 1/k) with
k(=£+2)>4 (i.e. £>2), he also constructed irreducible representations
(z®, V&) of Hy(q) parametrized by the set A®*® of all (k, x)-diagrams
on N nodes. Note that the representations z{** are unitarizable as repre-
sentations of the group By.

In this paragraph, we show that our representation (xy,,, W(N; t)) of
the Hecke algebra Hy(q) (g=exp Q2ny/ —1 //c)) is equivalent to the repre-
sentation (z{*®, V&),

Let A% be the set of all Young diagrams 2 on N nodes with depth (1)
<2. For each 2 e A%, d(2) denotes the difference of the number of the
first row of 4 and the one of the second. Introduce the set A" of all
(2, k)-diagrams on N nodes, defined by A$?={2¢e 4}; dD)<e—2(=0)}.
Any 2 e A% is written as [N/2+¢, N/2—t] for some half-integer ¢ >0.

We shall write <2, if the Young diagram x can be obtained by
taking away appropriate nodes of 2. For each 2 e 4%, let

P AD={p=QAw) ‘> Aw); Au € AER, Ay <Agans Z(N)=2}-

H. Wenzl defines an irreducible representation (z(*?, V') of the
algebra Hy(q) for each 1 e A$”, where V' has the form @, ¢ g,,CUp-
This gives a unitary representation of the group B,.

Note that for each N, the number d(2) determines the Young diagram
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2 e A% uniquely. For each p=(A¢y,, -+ -, Aq) € PAA) with 2 e A$", let
K@p)=(t, 3d(A 1)), - - -- $dQy), 0) € #, (N; t) with ¢=3%d(2). Then the
mapping K gives a bijection of £,(2) with Z(N; 1d(2)).

For each p={(4(yy, * - +, Awy) € P(2), introduce the numbers 7,(p) (1<
i<<N—1) defined by

r)=1, ifdQy,y))=d@;_y)=0 or ld(z(i+1))—d(z(i—l))l=29

F( d+1 )
T7.(p)= d+2 - PRV if d=d(l(i—1))=d(1(¢+1>)=d(2m)—1,
r r'{—
K K
and
F( d+1 )
T.(p)= —F if d=dRy 1) =dQAq,p)=d@A)+1.

(r(=2)r(-0)"
bl 4 K
Define the mapping K: V> —W(N; 1d()) by
N-1
K(ﬁp)z 1131 Tz‘(P)w-K(P) for p e Z,2).
(note 7,(p)=1 for any p € Z,(2).)

Then the mapping K intertwines Wenzl’s representations (z»°, V')
and our (zy,,, W(;1)):

Proposition 5.3. For each A € A", set t=21d(A). Then
Kri=q""ny K.

Note 1. If we construct the theory for £ ¢ Q as in Remark 3.5, we
get the monodromy representations of the Hecke algebra Hy(g), g=
exp (2z4/ — 1/(£42)), which are isomorphic to the representations (z;, V)
parametrized by 1 e 4.

Note 2. By means of A®-modules, we obtained here the repre-
sentations (z{»?, V®*) of the algebra Hy(g) parametrized by the (2, )-
diagrams. For general k>>2, Wenzl’s representations (z{*®, V{*9) are
obtained by means of integrable highest weight modules of affine Lie
algebras of type AL (n>1). We will discuss them in our succeeding paper.

5.4) Fusion rule
For a quadruple J =(., J;, /i, /1), introduce the set J,(J) defined by
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J,(]):{re—;—Z; 0<2r< 2, W(r)z(_r.)e(CG),,

JuJ1

w) =( rf]) ¢ (CO)}.

and consider the fusion of vertex operators @,,,,(w) and @, ,,(z) for
keI(J) to @,,,(2) (the first term of the short range expansion of the

product @, ,,(W)D,,,(2)):

*J
j:! jz Y
j3 r
e —
Js w k z J1 Ji z Ji
vy(k) v, (k) w(r)

Now we restrict ourselves to the case j,=4. Assume that V' (J)+# @,
then in cases listed in Section 4.2. we get

©  IO={e=itr}  I@O={r.=ixl].
®  I®={i—5} 1@ ={==}.
®©n, LD={it+5} 1D =it}
oy, 1®={i+}, 1@ ={i=5}
oy 1O={i-7}, 1 ={i+1}.

Here we discuss the case (D2), since other cases are much simpler.
In this case, fix notations

VZ(kt)=(i), vl(ki)=(k’: ]) W(’r)=(,-:d}l)’ W('*)z(;i)

and note the relations:

10 =A(vyk.)=4D)—d(vy(k.) and 7P =4,T)— A(w(r.)).
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Then

Proposition 5.4. For a Quadruple J=(j,, %, js, j)) in the case (D2), and
for each k e I(J),

1 (1)
D e o PG A RO (LT
=F1§(J)¢w(ri)(¢w(ri)(uas Uy); 2) (us e‘VI/ZS:uZ eV,),

where C, is a contour around z such that 0 is outside C,, and the coefficients
Fx=F}, are given in Proposition A. 2. .

A

C,aw

Proof. The composition @,(w, z) of vertex operators @,,.,(w) and
@, (2) is determined by the Vy'(J)-valued function ¥(w, z) on M, defined
in Section 4.1 for each k e I,(J). By Propositions 4.3 and 4.4, we get
the expansion of ¥,(w, z) near w=z as

T(w, 2)=(w—2yP{V2+1F; UL+ O0(w—2)}
+W—2y {2+ 1F UL+ O0(w—2)}

where O(w—z) is holomorphic near w=2z and vanishes on {w=z}.
Now introduce the operator 57 (us, u,; z) of #,, to 9?1‘ defined by
the integral

+ 1 — (1)
Hi(uy, uy; 2)= m Ic (Ww—2)77=""1D 1y (453 W)@mk)(uz; z)dw.

And define an operator 5;(z) (v)=E3 (v; 2): o#,,—#,, parametrized by
V., as follows: For any vector v e V,, is written as a linear combination
V=1, 0w (U, u) for some ui@uie V;, ®V,. Then put Zi(v;z)
=, ¢, G5 (U, ul; z), then 57(z) is independent of the expression of v, and
is a vertex operator of type w(r,), that is, of spin r, (note —4, =rP—
4,,—4,). Infact, for Xegand me Z,

[X(m), B (s, uy; 2] =2"[ 5 (Xuy, 1y 2)+ 5y, X, 2)]
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and
[L(m)’ k (u39 U, Z)]

— ) rP-1)ymert a "“‘li
_ZﬂV—l.[c,(w 2 { +z

0z

+(m+1)(4 PRULE S 4 jgzm)}évs(k)(us 5 W)@v,(k)(uz ; 2)dw

- zm{z— +nH Dy 4,0 b Ei 1 105.2)

2m/_- I c: Ow ——{w—2)" Ty WDy (s WD)ty s Z)AW

zm+l 7’<1) .
{( —2)7= }st(k)(usa W)@v,(k)(uz, z)dw

271"\/ C; 6Z
- zm{z32—+(m+ 1)(d,,+ 4, — 1)}5:(%, g5 )

W
S v I Ut (O B SRNCREDT W CRE Y

= Z’"{zi-]—(m—i— l)ATi}Elf(us, Uy} Z).
0z

Thus 57(z) is a vertex operator of type w(r,), so it is a constant

multiple of @, .,(2).
Hence we get the proposition, by computing the initial term of

Dovir o) Puir o) (Uss ) 2):
AU\ Prtr oGt 03 1), )Y =V ZJeH T ULty 1y 1, 0. qedl.

Let N>2. Fix an N-ple J=(}, -, %) and half integers ¢ (target
edge) and s (source edge) with 0<2¢, 2s< 4, and put J, ,=(2, %, - - -, %, 5).
Consider the systems E, (J) and B, (J) of equations for V' (J,,,)-
valued functions ?'(z) on the manifold M, :
N
( 0 _s% D ___%2>W'(z)=0 (1<i<N)

E e
z, k=1z,—z z
0z, b 5y i

E,,.(J):
and for any u, e V,, (jy=t j;=% (1<i<N-1), j,=5s),

N
B,.(J): 2] (é‘;) n ;™Y (Z)E™ Uy, yy E™Uy, - - -, E™uy, u(5))=0,

Z(m ) Hl(zk‘zt)_Mkw(Z)(uN+la E™ My, + <y uj,(jt)’ ] Em°u0)=0

mg
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for 1<<i< N (z,=0), and

St (KI]IJHNH

my+1

)w.(z)(ujN+1(jN+l)’ EMNuN’ tt Emouo)ZO,

N+1

where m,=(my, - -, My -+, M) € (L))" (0<i<N) and my,,=(my,
v, my) € (Zog)VH with |m,|=L;=£—2j,+1 (0<i<N4-1).

Let W(N; ¢, s) be the solution space of the joint system E, ,(J) and
B, (J). Then Theorem 3.3 implies that the space W(N; 1, s) has a basis
Tz, -+, 2); D€ PYN; t,5)} defined as follows: Let

1
PN t, s)={p=(pN, ce Py DY) Py=t,Dy=S5, D; € '2—Zzo, 2p, <Y,
1 ,
|pi_pi—ll=5 (ISISN)}

For each p € #(N; t,s), define the Vy (J,,,)-valued, multi-valued holo-
morphic function ¥ (zy, - - -, z,) on My by

GONT 2y, -+ 2wy - - -5 w)| W)= Q)| Dy, (s Zw) - - - Doty 2| W)

1
for ve V, u, e V,,(1<i<N) and we V,, where Vi(]p)=< 2 )(1_<_i

PiPia
<N).
sl
)
19
% : G2
:The diagram of crossing symmetry: R :
—1_ .}. 1 1 : dn-1
2 |2 7 |z 1.
&= 2 qn
t Py Pz;—z : P.z 1;1 5 t P
'VN VN—I ...... Vs v, W(]D, ql)

Now introduce the set 2,(N) defined by

1
’QJ(N)—'_—{q:(qN, cee, ) g, € —2‘Zzoa qlz‘;'a 2q,< 4,
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1 .
Iqi'—qi-l‘:—z" (2_<_1SN)}

Foreachpe #,(N;t,5),qe 2(N)and i 2Q<i<N), define the quadruples

Q.(p, )=(p;ss %, 9,_1> 5), these quadruples Q,(p, q) satisfy one of the con-
ditions (D2),,, (D1),,; and (D0). Moreover, define numbers 7,(p, Q)

and F, (p, q) as follows: if Q, (p, q) satisfies the condition (D1), let

7(p, @=7"Q:(p, @) and F(p, 9=1.
If Q,(p, @) satisfies the condition (D2),, let

7.0, D=7Q,p, ©)) and F,(p, )=Fz(Q,(p, Q).

Assume that Q,(p, q) satisfies the condition (D2),. If p,_,—p,=+%,
then put k= +, and if ¢, —¢,_,= +3, then put k=+. Let

7.0, D=7P(Q,(», @) and F,(p, Q)=FEQ.(p, Q).

If Q,(p, q) satisfies the condition (DO0), let F,(p, @)=0.
Then we get

Proposition 5.5. For each p e P(N; t,s) and q e 2,N;f) such that
V(Qu, @) #0, i.e. Q;(p, @) € (D2),:U(D1)y,0,3

N

Qryv — 1)1-NJ. ce >i(z,—z) @i -1
Cy 4

21=2

Dy ioy(tns Zy) -+ Doy iy (U 2)dzy - - - dzy
N
= [T FAQuD, DPolpa(tt, - - -5 s tr); 2)
for each u, € V,,, where C,’s are contours around C,_, (3<i<N) such that

0 is outside C,, and C, is around z. The vertices w and w, 2<i<N) are
defined as

1
w=w, qo:(tfs)’ S=ax Wi:Wi(Q)=( 2 ),
q; 91
and ¢ (Uy, « + -, Uy, u)) € V; is defined by

qu(ul\/" s, Uy, ul)=§0wN(uN’ 9DWN_1(UN—15 Tty Sowz(uz, ul)' ¢ '))‘

Appendix I. Bases of Tensor Products of 3/-modules

Here we use notation on the Lie algebra g=3[(2, C) and its modules
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given in Section 1.

Since the vacuum expectation value on V}X ¥, is nondegenerate, we
can identify the dual right g-module V" of ¥, with V}. The basis {¢,(m);
m=j,j—1, ..., —j} of V! dual to the basis {u,(m)} is identified with
{u(m)} by @ (m) o, () = Y)Y > =

The isomorphism v: V,—V] is defined by u(u,(j)=ul(—j) and
v(X|v))=—v(vD)X (v) eV, Xeg). Then

v () =(— 1) ~"ul(—m)=(—1)!""p,(—m).

Introduce the C-bilinear forms (, ) on V,, ¥} and ¥V for which the
bases {u,(m)}, {ul(m)} and {p,(m)} are orthonormal, then E and F are
mutually adjoint with each other and H is self-adjoint in all cases.

Here we refer to the famous textbook [LL] of L.D. Landau and E.M.
Lifshitz.

Now for each vertex v= (j]j ) ¢ (CG), we choose and fix the element

2J1
Pv of Homg (VJ® VJ'I’ an)z(VJ'z@ V;/® Vlvl)g as

=2, CRu,(m)®p,(m&gp,(m),

mi+m=msg
where the Clebsch-Gordan coefficients C3¥™s are real numbers and expressed
by the well-known Wigner’s 3j-symbols (i; r{: J 8)as
1

2 My

jsms __(__ 1\J1=Jatms, /D7 | 1 jl jZ j3
Clm=(=vm (B ),

Wigner’s 3j-symbols are defined for half integers j, >0 with j,+j,1+j, ¢ Z,
=A< h<h+ Jis J;—m, € Z, and satisfy the following:
i) If|j,|<m, for some 7, or my+m,+m,+0, then <J‘ J2 J”):O.

my, m, my,
ii) Jo i Js - S Jo g - J1 Je Js
m, m, my, m, my m, —my, —m, —my

=(_1)!1+Jz+13(j1 j2 ]s)
m, m, m,)’

iii) (’Jn _J"n 8):(— 1) -™2j+ 1),
In particular, if j, =0, then j,=j and
j ; .
Sa(jjo) =mZ C{ wt (M Qo (m; Ry (0) = Zjuj(m)®¢j(m)=ldvj-

=7 m=—

If j,=0, then j,=j and
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03y =35, Co- SOy (—m)®p,(m)= 3 (—1¥~"p,(~m)g ()

is identified with the isomorphism v: ¥;— ¥ which is given by v(u,(m))=
(=)o (—m).

For a quadruple J=(j,, js fo j)) of half integers j, >0, there are
three orthonomal bases {Uf); ji, € I}, {USD; jos € I(jis Ji Jun )} and
(U5 J1s € I(ss Jos J» 1)} Of V5(J) defined by

U©® — 1 Z (___ 1)14~m4 Cisme (CJi1amz

Jm_"\/ﬁ migmg  mimg
m1+mg=m:
St pe s

9014( —m,) ®50js(m3) Qqp jg(mz) Rp;,(m,),

1
1) __ -
= s 2, (=D ™M Cun Chme
\/2]4'*‘1 Mo+ Mg =M2g

m3z+meg=mq

gph( —m,) ®op js(ms) ®p h(mz) ®p jl(ml)’

and

1
() =~
s '\/2_]4+ 1 ’m1+§=mls

mg+mig=my

¢J4( —m,) ®p js(ms) ®50 jz(mZ) ®§0 5(my),

then the operator Q,=3[4,,(2)— Q,,—0,,] is diagonalized by this basis
{UD; iy € I(T)} as

122

(__ 1)!4-ma Cfuru C#ls:nn;s

migma

‘QIZ U.;?; = ’C(Aha - Ah - A.h) U;g;

The operators 2, and £,; are also diagonalized by these bases {U})} and
{U$2} respectively as

Jis
QU =4y, —4;,— 4, U and QU =x(d,,—4,,—4,)US).

Moreover the basis vectors U®

Ji2

are expressed by the fixed ¢,’s as

U i (udas s, ty, 1)) = AU P 120U Py (1200 (U 11D

1
V2j,+1

for any u, e V..
The transformation matrices S®?=(S73), S=2=(§73), SV=
(Sir) between three bases of V;(J) defined by

Jes.

0 __ @ Q7 0 (=) QF 1) () C'J
Uj ""JZ: szss 1 Ujm'_z ija SJ‘::’ Uh&_; Uha Sj;:
23 13

Jiz J12? 4
Jis
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are real orthogonal matrices and are given as

S (= D i QR DT D {721,
JsJsJos

Sfz=(— e ssssss i QR F @ D {22781,
JsJsls

and

S (— s e QLA DA D {Fe),
JiJaJss

where {Jl]z}s} is the 6j-symbol or Racah coefficient which is defined by 3/-

4J5J6
symbols as

{J:1]:2]:3}:__ Z(__l)f}“j,;—mﬂ( j1 jz Ja )(]1 js Js )
JiJsJs m —my —my, —m, J\Dy, —m; M,
x(f b BN h 3
m, m, —mg)\—m, m; —m,)’
In the case (D2) for a quadruple J=(j, %, j, j,), then I(D)={j, 41},
I(jvjl,jza %)={]2i%} and I(jujb %’]l)z{.}li%} Denote

0 77 1y __Jra ‘ w) __
UP= Uj4):1/29 U9 = U_;z):’:l/z and' U= U;:Oi)l/m

then we get easily the formulae in Section 4.2, by using some values of
6j-symbols (see [LL] Section 108):

{2 IZ [Z}:{g f Z}: «/((2;3:);;; )

Let s=a-++b+c+1, then

{c % c+%}={% 4 c+%}=(_1)s( (s—2b)(s—2c) )"2,
bab+i) abbt+i Qb+ 1)(2b+2)(2c+1)(2c+2)
cd e+ R\ _ D3 b= _, 1|y (s+1)(s—2a) 12
{b a b——;}—{c Z c+-21-}”( D <2b(2b+1)(2c+1)(2c+2)) ’

and

e (=2b)(s—2¢) \
}_ ( )<2b(2b+1)2c(2c+1))'
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Appendix II. Connection Matrices of Reduced Equation

A.IL1) Solutions of reduced equation

For a quadruple J=(ji, %, ji, j,) of half integers, we will give funda-
mental solution of the reduced equation

. d _ ‘le“l'lfd.x(:[[) _ 24 —
RE(J): (/75 : C_l)ilf(C) 0

for V(J)-valued functions #'({) on { e C*. The coordinate change {7y
=1/¢ makes the equation RE(J) into

RE(T)..: (m%—%—%)?ﬁ(—i—):&

In this section we deal only with the case (D2) and prove Proposition
4.4, since the case (D1) is much simpler.
Write a solution ¥'({) as

vQ=Ue, vTQ=we, ), &) (=01

=, U=, ve) (47, €))
o3

where {U®; i=0, 1, co} are three bases {U¥; i=0, 1, oo} of V3 (J) such
that

QuUP=x(P—4QNUL, QUL =srQUP, QU =0V,

and the exponents 7§’ are given in Section 4.2. The differences 7 =7¢
—7% of exponents are given as

ro_ it pw_Zhtl gy e 2htl oy,
K K K

Since the transformation matrices S“* between the bases {U{’} and
{U®Y are given in Section 4.2, we get the matrix forms of the equations
RE(J) and RE(J)..:

REQ): 2 ro@=a@uro@=(200 0o =0

and
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REQ).: - 00)=a6r=©=((50 S50,

where the coefficient matrices A* are given as

7'(0) 7/3_1) —a°

0 0
&)= =i & (O=al . )= 1
T“” 7Y +a 1 —a T‘l’
ao__(c > a++(C)= + = s
C ¢—1 ¢ -1
b T94at 7o
a_Q=d . (O=—, a-_(Q)= +—
v 3 Z g—1
(20) O __ g b>
@ =" T e y=am )=,
p—1 p—1
- e 184a”
a>_(n= = ,
() —3
and
=50 at= S @ = 5
T(O) T(l) 7’(°°)
b= T(—oe)’ b'= %, b~ =;/T:;~ (e=¢me18:6,).

Now look at the function ¢{(¢). The equation RE(J), turns into
the equation for pP(¢):

TO4TO | P41 -1\ d
o@=(THT 4 T )-Le0©
v 3 -1 Jac®
{20 1O+ =D IO =) 17O
. @D SN2l
which is a second-order equation of Fuchsian type.

Now recall that a second-order equation of Fuchsian type is of the
form

aVC2

d’p . A+2—1 | p4p/—1\dp
o= ( e ) ©

M = =y
{c2 oy Tl }9”@’

where 2, 25 y, ¢/; v, v/ are exponents at {=0; 1; co respectively. The
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solution space of this equation is denoted by the Riemann P-function

0 1 o
P2 p v zp
A [,t/ o

The equations RE(J), for other functions are also reduced to
Fuchsian equations of similar forms. Then we get

Proposition A.1.
0 1 1) 0 1 o
PPQEP] TO TP T L gO@e Pl 1O 10 7o gf,
1479 7® 7 1+79 79 T
0 1 co . 0 1 1)
PPQEPITD TP 1O gL PO PO 1O 1) g
O 147® 7 7O O147® e
and
0 1 co 0 1 )
e e PTP TP T g, o) e PYO 7© (S5}
9T 147 e TP 147

Before we give the proof of Proposition 4.4 we recall the facts on the
hypergeometric function F(a, 8, 7; £) (see e.g. [E]):

ey Cwbup_ gy T § Tatnl@n ¢
e b0 o T T Ter@ = Tt

where

am=c(a+1)-- ~(a+n—1)=—]%_'a(—1'{l)—.

iy If7¢Z, F(a, B, 7; £) is a solution of the Gaussian equation:
LA =0 "(Q) {1 —(a+ B+ D' () — afp(D) =0,
that is,

0 1 o
F(a,B,7;8) e Py O 0 a .
1—7 7—a—pB B
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i) Fla, B,7;0) and " "Fla—7+1, f—7+1,2—7; ) give a basis of
0 1
the solution space P{ 0 0 (:ro C} of the Gaussian equation.
1-7 7—a—8 B
i) Fle, 3,7 0=~ *FI—a,7—8,7;0).
iv) (ddO)F(a, B, 7; O)=(afNF(a+1, B+1,7+1; ).
V) Flo, 8, 7;0=(1-0F(@+1, g+1,7+1;0)
(0(-—?’)(,3“7’) F 1 1 2: 7).
+_T(T+1) CFa+1, 8+1,74+2;0)
vi) (F+DF(a, 8,7;0)
={(+D—(a+p+1—(f/MF(a+1, B+1,7+2;0)

@+DE+ED ¢ ;
+ s (A—OF(a+2, 8+2,7+3; Q).

vii) (1—0)F(e, B,7:0)
=Fla—1, 8—1,7; c>+£‘%cm, B, 7+1;0).

Vi) Fla, B, 7+1; c>=(7_—ri"f§:ﬁ(1~cma+1, BH1,7+150)

T(T—-Ot—ﬁ)F - ).
Fla—ne—n @PTY

) =P .
IX) ﬁ(r_a) F(a'l_la ﬂy r41; C)

_ s Ta—p) .
F(e, rB+1» T+1;0+ ‘B(T~oz) F(aa 19, 7; ©).

x) F(a, p+1,7+1;0
=Fla+1,87+10+
xi) Fle, 8,7;0)

— [’(T)F(“'I‘,B"T)(l__‘
r@re -

Irinra—a—p) B o
+ F(T'—O()I'(T_‘B) F(o(, ‘3, 0(+ﬂ 7-4+1;1 0).

xii) F(a, §,7;0)

_TOIB=0) (o) -epa a—7t1. e
O (0™ a=T 41, a=p+1, 1)

+%));%‘3@)2(—C)"5(1 —(1/E)) =5
XF(1—a,T—a, f—a+1;1/0).

o

_..‘B .
7 CF(14e, 148,2+7; 0).

C)T—a‘ﬂF(T__(x, T—-‘B, T——d—“B'I"l; I—C)
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Proof of Proposition 4.4. Similarly as Theorem 3.3, we get the func-
tions ¢, () in a neighbourhood of {=0 such that

roo-we, v Q) reo—ws, o[ ©)

such that ¢{?({) have the expansion with respect to { as

P2 O=0"A+--2),  eRO=TV(C+ ),

and
eLO=0CC+ ) e2QO=C"(+- ),

where ¢ and d are some constants.
Then by Proposition A.1,

0 1 o
o, 9@ e Py TV T TE L,
1479 70 7

and
0 1 o
PP, o e Py TO TP T L.
1479 1® =
Hence
0 1 o)
Q) e T¥A-¥PL 0 0 a &
=7 7T—a—8 B
0 1 o)
pP(0) e CPA—-LYVPL 0 0 a+l C}
—1—77—a—p p+1
0 1 o)
%) e R —PS 0 0 1—a &
T—1 a+pf—71—8
and
0 1 oo
e2(Q) e YA’ Py 0 0 —a &

1+7 a+p—7 —8
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where «, § and =7 are given in the proposition. Then by the formulae
iv) ~vi) above, we get the statement (i) of Proposition 4.4. Other state-
ments of Proposition 4.4 are similarly obtained.

A.IL2) Connection matrices of reduced equation

We must prove Proposition 4.5 on the connection matrix of the
fundamental solutions of the reduced equation RE(J) along the path from
0 to oo figured in Section 4.3. Fortunately the formula xii) of the hyper-
geometric function gives its connection matrix along the same path. And
we may take (—{)*=exp (— Ary/ — 1){* by the choice of the path. Then
it is sufficient for the proof of Proposition 4.5 to note the following rela-
tions among constants in Section 4.2:

(i . S B A"
—CS)T(”(I iT(I))—_:x/ : =‘8‘B(°°) za(r(w)__‘g(w)) .
A B
A B
apZ=0—pla—1)~

for i=0, 1, oo.

Similarly we get the connection matrix of the fundamental solutions
of the reduced equation RE(J) along the path from 0 to 1 figured below.
The formula xi) of the hypergeometric function also gives its connection
matrix along the same path.

!
1 4 [}

0 1

Then by relations above, we get in the case (D2):

+

Proposition A.2. Denote by F(J)= (g% f«":) the connection matrix of
+

the fundamental solutions (TP, T'®) at =0 to ZWS}), TDY at {=1 of the
equation RE(J):

Ft F
T, TO) =T, w( : )
( )=( )F; -

that is,

S(O,n(soifl(é) 9091,(5)):(9091(@ 909L(C))(FI Fi)
(D) oL@ \oPQ) o2 (O/\FT FI/-

Then
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Fte ()’(0) T(1)>1/2 F(r(o))['(_‘r(l))
" r (32)F ("‘54) ’

F+e (T(O) ‘)’(1)>1/2 ['(__ 7’(0))[’(_ T(l))
i I'(—e)l(—e)

F-— (7’(0) 7’(1))1/2 ["(7’(0))17(7’(1))
" I'(e)I(e)

F-— (7’(0) T(l))ll?- I"(_T(O))F(T(l))
) I'(—=e)I(e))

YA

&8y

b
&€

b
&84

Remark. Since ¢,=1 in the case (D2),, F*(J)=0 and F(J)=F=(J)
=[2/+D—1—-2/)/(2j,+D(E—1—2j)]"%. By Proposition 4.4, it is
obvious that F(J)=1 in the case (D1). In the case (D1), the matrix F(J)

10

in the proposition A.2 is written as F(J)= (0 1) in the case (D1), and F(J)

=((1) (1)) in the case (D1),,.

[A1]
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