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Schur Orthogonality Relations for Non Square Integrable
Representations of Real Semisimple Linear Group
and Its Application

Hisaichi Midorikawa

Introduction

In the previous paper [20], we discuss the Schur orthogonality relations
for certain non square integrable representations of a given connected real
semisimple linear group G. Those representations are the subrepresenta-
tions of unitary principal series of G induced from a maximal cuspidal
parabolic subgroup, although I did not state explicitly this fact in [20].
We formulate our results as follows.

Let C=(G) be the set of all complex valued C~-functions on G and
g the complexification of the Lie algebra g of G. The universal envelop-
ing algebra u(g) of g acts on C*(G). The left (resp. right) action of & in
u(g) will be denoted by bf (resp. fb) for fin C>(G). Let 3 be the center of
u(g) and d(p, ¢) the Riemannian distance on the symmetric space G/K
where K is a maximal compact subgroup of G. Define a function d on G
and a seminorm || |, on C=(G) by

d(x)=d(xo, 0), o is the origin in G/K
and

|fl=lim ePL /()% *¢@dx for fin C=(G)

where p is a nonnegative real number and dx is the Haar measure on G.

Definition I. Let X be a character of 3. The space H,(G,Z) is de-
fined as the set of all C=-functions f satisfying ||5,fb,|,<<co and (z—X(2))f
=0 for all 5, in u(g) and zin 3. H,(G, X) is a topological G-module with
the canonical actions. Furthermore || R.f|l,=||L,fl,=|fll, for x in G
and f'in H,(G, X) where R and L are respectively the right and left actions
of G on H,(G,X). Let § be a Cartan subalgebra of g. We denote the
root space decomposition of g¢ by ge=9¢®> 1c0 §. Where @ is the root
system of (g¢, ). Select, for each & in @, X, in g, satisfying B(X,, X _,)=1
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(B is the Killing form on ¢.). Each element H,=ad(X,)X_, belongs to
He. Using the canonical isomorphism of 3 into the ring of polynomial
functions on the dual space of §, we can parametrize all characters X of
3 by the linear forms on §,. We shall denote this parametrization by
X=X, 2 is a linear form on §.

Definition II. The number i(X) is defined by i()=#{« e ¥; 2(H,)
R—{0}} where ¥ is a fundamental root system of @, #S is the cardinality
of a given set S. The number i(¥) is called the index of X.

Theorem I. Let X be a character of 3. Assume that H,, (G, X) is
nontrivial. Then H, (G, X) is a pre-Hilbert space with the norm || ||, .

The theorem will be proved by using Harish-Charandra’s classification
theorem for discrete series representations and the asymptotic expansion
theorems (for the K-finite eigenfunctions on G) obtained by Harish-Chandra
[8], W. Casselman and Mili¢i¢ [4], [5], [21] (see also M. Kashiwara et al.
[17], N.R. Wallach [25)).

We shall denote the completion of H, ,,(G, X) and its norm by H(G, ¥)
and || || respectively. The regular representations R and L on H(G, X) are
unitary, and all K-finite functions in H(G, ) are real analytic.

Definition III. An irreducible unitary representation (z, H) of G is
realized on H(G, X) if there exists an isometric linear operator 5 of H into
H(G, %) such that R, op=7oz(x) for all xin G.

Theorem II. An irreducible unitary representation (z, H) of G is
realized on H(G, ) if and only if there exists a K-finite vector ¢ in H such
that (z(x)¢, ) belongs to H(G, X).

We remark that if i(X)=0, then H(G, X)C L} G) where L*G) is the
space consisting of all square integrable functions on G. Therefore H(G, X)
is a closed invariant subspace of L*(G), and the representation z realized
on H(G, %) belongs to the discrete series in this case.

By using Theorem I and Theorem II, the standard arguments for the
proof of Schur orthogonality relations of square integrable representations
of G imply the following theorem.

Theorem III. Let (x, H) and (7', H') be two irreducible unitary re-
presentations of G realized on H(G, X). Then there exists a positive constant
d. such that

lim @ [ (w00g, ) E s W)ete0 dx= {g; @000 ) fr=n

otherwise
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Sor all K-finite vectors ¢, y € H and ¢', ' € H'.

The constant d, is called the formal degree of z. In case of i(X)=0,
the relations in the above theorem are well known as a result of R.
Godement [6] (see Theorem 4.5.9.3, [26]). For the case i(X)=1, we proved
the similar theorem in [20].

In the following we shall assume that i(X)>0. Let P=MAN be a
proper cuspidal parabolic subgroup of G. Consider a discrete series re-
presentation ¢ of M and a unitary character a—e* % of 4 where v is a
purely imaginary valued linear form on the Lie algebra a of 4. The re-
presentation e®e” of M4 is extended to P by (¢®e*®1) (man) =e* & g(m)
foraeAd,me Mand ne N. Let n(o, v)=ind% (¢®e'®1) be the induced
representation of G from P constructed by canonical procedure. z(s, v)
is called a principal series unitary representation of G induced from P.
The following theorem is proved by Schur orthogonality relations in
Theorem III.

Theorem IV. Assume that i(X)>0. Then each irreducible unitary re-
presentation of G realized on H(G, X) is equivalent to a subrepresentation of
a principal series of G induced from a certain cuspidal parabolic subgroup
P=MAN with i(X)=dim A.

Definition IV. Let notations be as above. A principal series repre-
sentation n(g, v) of G induced from P=MAN is regular if the linear form
y on q is regular.

Theorem V. Each regular principal series unitary representation n(a, v)
of G with infinitesimal character X is realized on H(G, ).

As an application of Schur orthogonality relations for non square
integrable representation of G, we give a proof of irreducibility of the
regular principal series in the following.

Theorem VI (Bruhat and Harish-Chandra). A/l regular principal series
unitary representations of G are irreducible.

Our proof of this theorem is based on the character theory due to T.
Hirai [13], the lowest (minimal) K-type theorem for principal series repre-
sentation of G obtained by D. Vogan [24] (see also A.W. Knapp [15], J.
Carmona [3]) and Schur orthogonality relations. By [13], we see that all
tempered invariant eigendistributions on G with the same regular infinite-
simal character are uniquely determined up to constant. To apply Hirai’s
theorem we use the following theorem.
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Theorem VII (Knapp and Zuckerman). Let n(e,v) be a principal
series representation of G. Then the character of each subrepresentation
of n(a, v) is tempered.

‘In [14], there is a character table of all irreducible components of
principal series representations of G. Since their characters are determined
explicitly, we can observe that the character of each irreducible component
of z(g, v) is tempered. However, in this paper, we shall prove directly the
temperedness as in the above theorem by using uniform estimation, which
is a result of P.C. Trombi and V.S. Varadarajan [22], for the matrix coef-
ficients of discrete series representation ¢ of M.

The author would like to thank Professors W. Schmid, T. Oshima,
M. Duflo, D. Vogan and J. Sekiguchi for helpful advices to his conference
talk, especially on a proof of irreducibility of regular principal series which
are restricted to special case in his first manuscript, held at Kyoto Univ.
and Hiroshima Univ., *86.
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§ 1. Preliminaries and notational definitions

We first state, in this section, two lemmas for elementary spherical
function & on a connected real semisimple linear group G. Let K be a
fixed maximal compact subgroup of G and Py=M,A,N, a minimal para-
bolic subgroup of G with g-stable split component 4, where @ is the Cartan
involution of (G, K). Therefore G=KA,N, is the Iwasawa decomposition.
Each element x in G is uniquely written by x=k(x) exp H(x)n(x), k(x) e
K, H(x) € a, and n(x) € N, where q, is the Lie algebra of A,. Let g and
1, be the Lie algebras of G and N, respectively. The action Ad(p)
(p e P) on n, will be denoted by Ad(p)|,. Then there exists a linear
form p on a, such that e* ©¢® =4/|det Ad (@), for all @ in 4,. We de-
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fine a function on G by E(x):J. e rHEM L x ¢ G where dk is the Haar
K

measure on K normalized as I dk=1. Let d(p,q) (p, q € G/IK) be the
K

Riemannian distance on the symmetric space G/K and o the origin in the
space. Then we have the following (see, for the proofs, Lemma 8.5.2.6
and Lemma in p. 239 [26)).

Lemma 1. The function satisfies the properties below;
(1) E(kxk)=H(x) for all x e G, k, k' ¢ K,

@ EGxN=E(),

(3) there exists a nonnegative integer p such that

e~¢ s << Hig)<a const. e~* (1 4+ d(x0, 0))*

Jfor all a in the positive Weyl chamber Af of A, and
(4) choosing a positive number p’ suitably

H(an) (14-d(ano, 0))~? <a const. e~ ¢z a) +p(HER=H))
Jorallain Ayand n in N,
Remark 1. The function p(H(6(n~"))) on N; is nonnegative.

Secondly we define the Schwarz space on G following Harish-Chandra.
Let u(g) be the universal enveloping algebra of g.. The actions on the
ring of all C~-functions C=(G) on G are defined by

ANE@=2 flexp—1X0)|.., and (FN))=-4fGxexp ).

for xin G, fin C*(G) and X in g. We shall denote the actions to the
left and right by bf and fb respectively for all 5 in u(g) and f in C=(G).
Let b, b, be two clements in u(g) and r a real number. We put a seminorm
V3,.5,» 00 C=(G) by

Varam ()= SUP | BB E G (1 +-d ()~

where d(x)=d(xo, 0).

Definition 1. The Schwarz space €(G) on G is consists of all C*-
functions f on G with the following properties; v,, ,, ,(f) oo for all b,, b,
in u(g) and positive real numbers r.

Definition 2. A distribution T on G is called tempered if T is extended
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to a continuous linear form on #(G). To study the tempered distributions
on G the following integral formula on G is crucial. Let §) be a §-stable
Cartan subalgebra of g containing g, and @ the root system of (g¢, b¢).
For the root system @(4,) of (P,, 4;), we induce a linear order of @ as the
following; if « is positive on q,, then « is also positive on f). Let @, be
the set of all positive roots in @ which does not vanish on a,, We define
a function D on A, by

D(a@)= [] |exp a (loga)—exp(— « (loga))|, ae A,

Lemma 2. There exists a positive constant C= C, such that

Lf(x)dx — CLﬁ"”m fkak)D(@)dkdk’

for all fin C(G) where Ay is the positive Weyl chamber of A, and C7(G)
is the set of all C=-functions on G with compact support.

(See Proposition 10.17, [11]).

Let 3 be the center of u(g). A function f in C=(G) is - (resp. K-)
finite if dim 3/ (resp. the dimension of linear span {L,oR;.f; k, k' € K}) is
finite, where L and R are respectively the canonical actions on C=(G) to
the left and right respectively.

Finally, we shall state for the character of a given admissible unitary
representation of G after the following preparations. Let &(K) be the
set of all equivalence classes of irreducible unitary representations of K.
We put, for each [z] in £(K), X.(k)=d, Trace z(k), k € K, d.=the dimension
(degree) of z. Let (x, H) be a unitary representation of G. We define a

projection operator E(z) on H as follows; E (r)v=J X.(o)r(k)dk, v e H.
K

Definition 3. A unitary representation (z, H) of G is admissible if
there exist two positive numbers N and m such that dim E(z)H<N(d)™
for all [z] in &(K).

For an admissible unitary representation = of G the operator z(f)=

J‘ J(X)r(x)dx is of trace class, O.(f)=Trace =(f) is a distribution on G
(]

where fis a function in C2(G). Furthermore if # is irreducible, then there
exists a character X of 3 such that (z—X(2))@,=0 for all zin 3. O, (resp.
X) is the character (resp. the infinitesimal character) of z.
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§ 2. Principal P-series representation

In this section, we shall define a principal series representation of G
induced from a given cuspidal parabolic subgroup, and state for the ad-
missibility of the representation.

Let P==M AN be the Langlands decomposition of a cuspidal parabolic
subgroup P of G. Throughout of this paper, we always assume that the
split component 4 of P is §-stable. The Lie algebras of M, 4 and N re-
spectively are denoted by m, a and n. We define a function d, on P and
linear form p, on a as follows; d.(p)=+/|det Ad(p)],] and exp or (log a)
=dp(a) for p in P and a in A.

Let (¢, H,) be a square integrable (discrete series) representation of
M and a—>e* ™5 a unitary character of 4 where v is a purely imaginary
valued linear form on a. We extend the representation ¢®e* of MA to P
by (e®e'®@1) (man)=(cQe*) (ma), me M,ae A,ne N. A H_, -valued C>-
function f on G belongs to C>(G, H,) if f satisfies that

Q2.1) fGp)=d(p) (e®eR®D(p)'f(x) for all x in Gand pin P. The
space C*(G, H,) is a pre-Hilbert space with the following positive definite
Hermitian structure ( , );

@D @ »=] @GR, vk for. g, in C*(G, H).

The completion of C*(G, H,) will be denoted by H(s, v). We see that the
left regular representation z(s, v)=ind} (c®Qe'®1) of G on the space
H(o, v) is unitary. (e, v) is called a principal series representation of G
induced from the cuspidal parabolic subgroup P (or simply principal P-
series representation of G). Let H(o) be the set of all restriction of func-
tions in H(s, v) to K. H(c) can be identified to the subspace (LY(K)®H,),
of L(K)YQH,, L*(K) is the space of all square integrable functions on K
and

2.3) (LY{K)RH,),=the set of all > ,f,®v, in L(K)QH, satisfying
S fi®ukmy=73, f(k)®a(m)~'v, tor all k in K and m in Ky=KNM
where the summation runs over a finite members of i.

Let us give an another realization of =(s, v) as following.
Define a representation 7'(s, v) of G on H(g) by

@A) (o, HPR=e e m(x k) plk(xh)
where k(x"'k) e K, m(x"'k)e M, Hy(x'k)ea

determined by x 'k € k(x~*k)m(x~'k) exp Ho(x"'k)N for k in K, x in G.
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Let 5 be a linear mapping of H(g, v) onto H(g) defined by »(g)(k)=
é¢(k), ¢ € H(g, v). Then n'(c, v) (x)op=non(s, v) (x) for all x in G. We
shall denote 7'(s, v)=r(o, v) under this identification. Let us state the
admissibility for z(o, v). Let &(K) be the set of all equivalence classes of
irreducible unitary representations of K and =(g, v)|; the restriction of
n(o,v) to K. For each class [z] in £(K), we denote the multiplicity of =
appearing in z(g, v)|x by [=(s, v)|x: z]. Similarly we also denote by
[0lx,: &] for [£] in £(K,,) the same as K. Since z(s, v)|x is the left regular
representation of compact group K, the Frobenius reciprocity theorem
implies that
(2.5 [7(o, )|k zl=_ 2 lolgy: Ellrlxy: €]

[elee(Bm)

for all [z] in £(K).

By our assumption for g, ¢ is realized on a closed invariant subspace of
L*(M). Consequently, by using Peter-Weyl theorem, we have

(2.6) [e]x,: E1<(d) for all [£] in &(K,,).
Combining (2.5) with (2.6), we have the following.

Lemma 1. Let notations and assumptions being as above. Then
[2(o, V)| T]1Z(d,)* for all [z] in £(K).

Thus by the above lemma, each subrepresentation n of z(s,v) is
admissible.

Lemma 2. There exists a character X of 3 such that (z—(z))0,.=0
for all subrepresentations n of n(a, v) and z in 3.

Proof. In view of the explicit formura of the character @, ,, (see
[12]), there exists a character X of 3 such that (z—X(2))@,,,,=0 for all zin
3. We define for [z] in £(K) and fin C>(G), X, +f and fxX, by

@7 (s ) = L) fk 0k,
(1) = L@S ok, x G,

Let E(r) be the projection operator as in Section 1. By the definition
O e )=Z[fjeg<x<fo(X)¢r(X)dx for all f in CZ(G) where ¢.(x)=

Trace (E(t)x(o, v) (X)E(z)). Therefore 6., ,,(X.*f*1,) = L J(x)é (x)dx.

Since 6,,,,,, is contained the kernel of z—(z) we have
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(2.8) (z—X(2))¢.=0 for all z in 3.

We choose [7] in &(K) satisfying [z|r: z] >0 for a given irreducible sub-
representation = of n(g, v). Then there exist a finite number of irreducible
subrepresentations r=mn,, 1, - - -, 7, of x(g,v) such that

@9)  p=3lr(0 ))lx: 71 $0)="Trace (EC)mDER).

Let X, be the infinitesimal character of z,. Then by (2.8) and (2.9), we
have > 7, [n(o, v)|x: 7, J(X(2)—X,(2))¢,=0. Since all z,’s are inequivalent
to each other, {¢,} is linearly independent. Thus (z—X(2))®,.=0 for all z
in 3 and subrepresentations « of #(s, v) as claimed.

§ 3. Temperedness for the character of subrepresentation of principal
P-series

‘We keep the same notations as in previous section. Choose an ortho-
normal basis ¢,, ¢, - - - of H(o)=(L(K)RH,), satisfying E(z,)¢,=¢, for
some [z,] in &(K) and v,, v,, - - - of H, with properties E(&,)v,=v, for [,]
in £(Ky). We now fix §=¢, and z=r,. Then ¢ is of the form

3.1 ¢(k)=“chj,z,m(f(k)~,lrz,«lfm)®vj

where the summation runs over the set
W.,={(,], m); [t|x,: §1>0, je Nand 1<i, m<d.},

N=the set of all natural numbers and +r,, yry, - - -, Vg, is an orthonormal
basis of the space on which 7 acts.

Lemma 1. Let c,,, be the constant as in (3.1). Then we have
lejimPSd. for (j, 1, m)in W, ,.

Proof. Since |¢|=1, we have

1=Z Z l(T(k)‘l’l’ \pm)cj,l,mlzdk

J JK (§,l,m)EWesa

=(d)! ) > el
(Fsl,m)EWrsa
Hence the lemma follows.
We put f(x)=(a(s, v)(x)p, §) for x in G. In view of the formula in
(2.4), we have
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@I emertse=t00l(amx=t0)glk(x ), 30 dk

=2, 20| et el a(m(x Ry, v dkd | C),1,mCe, s

Filymi,8,t

hence by the above lemma we get the following.

G2 f@i= Z 2. (d)) etr @ (a(m(x"k)) v, v,)]dk

L,m i,s,t

where (j, [, m) and (i, s, ¢) run over the set W, ..

Let m be an element in M. We put g, ,(m)=(c(m) 'v,, v,) for all
i, j=1,2, -+, (v,’s are the orthonormal basis of H,). For a fixed (i, j)
we put V, ;=the linear span of the set {L,oR;.g, ,; k, k' ¢ K}. Since v,
and v, are K,-finite ¥, , is finite dimensional. Let Q, be the Casimir
operator on K. Then there exists a constant X, ({¢,) such that 2, &,
=X (24,)5,. Therefore 2, acts on V, ; to the left (resp. right) as a
scalar operator £,(Qg,) (tesp. &,(2%,). Consequently by the uniform
estimation, which is due to P.C. Trombi and V.S. Varadrarajan (see for
instance, Theorem 16.1.9, II, [22]),

(3.3) there exist two positive constants C, ¥ and a positive number ¢
such that

18, /M= CUA+|EQ2x,) DA +6 (L, ) D) 1180, 5 | 5 aelim)'**

for all m and 7, j=1, 2, - - -, where C, &, q are independent on , j and m in
M, ||g, ;|| is the L*norm on M, [£,(2)¢,)]| is the operator norm of &,(2,,).
Using the Schur orthogonality relations for square integrable representa-
tion ¢, there exists a positive constant d, (which is called the formal degree
of ¢) such that ||g, ;[F=d; v, Hv][ for all 7,j=1,2, ---. Therefore (3.3)
is rewritten as follows;

(3.4) g, (M| CA+dJ2(2)|)E y(m)'*= for all (i, j) satisfying [¢: &)]
>0 and [r: £,]>0 where =1, is the fixed representation of K as in (3.2),
X(2:)1=1(2%) and C, &, g are constant (positive) independent on m in M
and (7, /).

Combining (3.4) with (3.2) we have
(3.5 [/WISCU+d( L)) EW.,.) JKE”’P(H‘”""”E u(m(x="k))"**dk

where C” does not depend on m in M, t=z,, $=¢,, and f is the function
defined by f(x)=(a(o, v)(x)$, $).
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By the definition of W, , as in (3.1), #W, , is estimated by
(3.6 BW. . <(d) 2 [elkyt Eillolkyt E1S(A)
J

Let us estimate 5,(m(x~'k))'**. Let PFf=MFAFfN;} be a minimal para-
bolic subgroup of M. Choosing Py suitably, we can assume A4,= AA¥.
Define p*, k*(m), H*(m) and n*(m) for M by the same as in Section 1.
Then we have (see Lemma 1.1) 5, (m)=5, (exp H*(m)n*(m)), m ¢ M.
Furthermore by (4) in Lemma 1.1, we have &,(m(x k)<
aconst. e-?*H* ™= for all x € G and k € K. Hence by (3.6) and (3.5),
we have the following lemma.

Lemma 2. There exist two positive numbers p, q and a positive con-
stant C such that |(zn(o, v) (X)¢;, ¢)| S C(1+d. )| Xt (2 ) |%E 1(x) for all i=
1,2, .-, and x in G where Q is the Casimir operator on K, X (2y) is the
constant determined by t, (2x)=X., (21, ¢, @2, - - - is an orthonormal
basis of H(a, v) satisfying E(z,)¢,=¢, for some z, in £(K).

Theorem 1. Let (x, H) be an irreducible component of principal P-
series representation n(c, v) of G where P=MAN is a parabolic subgroup
which is cuspidal, ¢ is a discrete series representation of M and e’ is a unitary
character of A. Then the character O, of © is tempered.

Remark. There is a table of characters of all irreducible components
of principal P-series representations of G which is obtained by A.W. Knapp
and G. Zuckerman ([14]). In view of the table, we see that all character
of subrepresentations are tempered. In this paper we give a proof which
is different from [14].

Proof of Theorem 1. Let ¢,, ¢,, - - - be an orthonormal basis of H.
We choose ¢, which has the same property as in Lemma 2. Let p and ¢
be the same as in Lemma 2. Then there exists a positive number m such
that the series ¢, = \rjcsm) (1 +d.)7de* (L (2))* @™ is convergent. We
fix such a number m. By definition

0N | ECop gods|
=3 @) [ FEIRN D, pldx
= 33 @@ |0 ol
[rle¢(K) E(r)¢i=6¢5 G

Hence by Lemma 2.1 and Lemma 3, we have
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0.()|<en f @I @,

Let r be a positive number satisfying c=‘[ (1 -+d(x)) "dx<oo. Then
[e]

we have |8.(f)| Zcc,v,, azm, (f) for all fin C;"(G). Thus the character @,
is tempered. This completes our proof.

§4. Pre-Hilbert structure on H, (G, X)

First of all, in this section, we define a topological G-module H, (G, X)
for an infinitesimal character X of 3. - Let P;=M, 4N, be the minimal
parabolic subgroup of G and §j a §-stable Cartan subalgebra of g contain-
ing a,. The root system and Weyl group of (g¢, j¢) will be denoted by
@ and W respectively. Canonically W acts on the universal enveloping
algebra u(h) of ho. We regard u(h) as an algebra of polynomial functions
on the dual space of §, and denote I(h) the stabilizer of W in u(f). Let
@* be a positive root system of @. Therefore ge=0cD> 1co+Gu> Gu=
{Xege; ad H)YX=a(H)X for all H in h}. Weput n*=>,.,+8,. Then
there exists a unique isomorphism 7 of 3 into u(§) such that z—7(2) €
u(@)n* for zin 3. Let p be one half the sum of all positive roots in @,
and define p of 3 into w(®H) by u(2)(D)=7(z)(A—p) for z in 3 and linear
form A on B p is an isomorphism of 3 onto I(Y). Therefore each
character X of 3 is parametrized by X =X, where X(z) = p(z)(2) for some linear
form 2 on §,. By the definition, X,;=¥, for all sin W. Let X, and X_,
be the basis of g, and g_, respectively satisfying B(X,, X_,)=1, and put
H,=[X,, X_,] where B is the Killing form on g,-A character X, of 3 is
regular if 2(H,)=#0 for all @ in @ and real if 2(H,) € R for all ¢ in Q.

Definition 1. Let ¥ be a fundamental root system of @. We put
V)={ac¥; 2H,) e R—{o}}. The number i()=4#¥ —4¥ (%) is called
the index of X=X,.

Definition 2. Let % be a character of 3. A function f in C~(G) be-
longs to H, (G, %) if f satisfies (z—(z)) f=0 and ||b,/Bb,|| <o for all z in
3 and b, in u(g), where || || is the seminorm on C*(G) defined by

@D = lim e @[ (oot dy,  d@)=d(xo, o)

We restate the properties for H, (G, X) in the following two lemmas
(see Lemma 2.1 and Lemma 2.2 in [20]).

Lemma 1. H, (G, X) is a topological G-module with seminorm | ||
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under the canonical left (resp. right) action L and R. Furthermore for each
fin Hy»(G, X) and x in G, || L.f||=||R.fl=|/1.

Let = be an irreducible unitary representation of K. We define two
actions X, *and xX, on C=(G) as in (2.7). Then by Peter-Weyl theorem
on the compact group K, we have

4.2) f@=_ ¥ dd(xfx)x)  forfin C(G).

Lemma 2. Lef f be an element in H,,(G,X). Then we have
D X xfsX A S(dd) P f1l for all © and " in E(K),
(2) the expansion of f in (4.2) converges to f in the topology H, (G, %).

Remark 1. Let H,,, . be the set of all K-finite (left and right)
functions in H,;(G,X). H,u, x i3 an algebraic u(g)-module (see for a
proof, Lemma 3.5 in [19]).

The purpose of this section is to prove H, ., (G, X) is a pre-Hilbert
space with norm || |. This will be proved by using two asymptotic ex-
pansion theorems for z-spherical eigenfunctions on G.

Definition. A unitary representation (z, U) of KX K is a double
representation of K if there exist two unitary representations z, and z, of
K such that «(k,, k;)p=r1,(k)pr(ky) for all k; in K and ¢ in U.

For the double unitary representation of K, we shall denote r=(r,, 7,).
Let fbe a C~-function on G. We define for each x in G,

(4.3) F(x)(ky, ko) = f(kyxks).
We see that F(x) belongs to L* (KX K) for a fixed x in G.

Lemma 3. Let f be a K-finite C™-function on G and F=F, the same
as in (4.3). Then there exists a finite dimensional double unitary represen-
tation (z, U) of K such that F(x) e U and F(kxk"y=r,(k)F(x)r, (k") for all
xinG, k, k' in K.

Proof. We define two unitary representations of K on L*(KX K) by
COR s, k)= (kik, k), (GR)g) (ks k)= (s, k) for k in K and ¢ in
LI}(KxK). Then {=({;, &) is a double unitary representation of K.
Furthermore we have F(kxk')={,(k)F(x)¢,(k’) for all x in Gand k, kK’ in K.
Let U be the subspace of L*(KX K) generated by the set {&; (K)F(x).(k');
k, k' e Kand x e G}. Since fis K-finite, the dimension of U is finite, Let
z=(ty, 7,) be the restriction of £ to U. Then F and ¢ have the property
as claimed.
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Remark 2. By definition of F=F,, we see that there exists ¢ in U
such that f(x)=(F(x), ¢) for all x in G where f is a K-finite C”-function on
G.

Definition 4. Let r=(z,, 7,) be a finite dimensional double unitary
representation of K realized on U. A U-valued C~- (resp. L*-) function
F on G is r-spherical if F satisfies F(kxk’)=rz,(k)F(x)z,(k’) for all k, k’
in K and x in G.

Let f be a K-finite function in H,,(G,X). We define F=F, as in
(4.3). By Lemma 3, F is (z, U)-spherical on G. Furthermore by using
the integral formula of Lemma 1.2, we have

(4.4 | f)f=Cg lim ei<x>L+ | F(a)PD(a)e™**“da.

Since (z—X(z)) f =0, we have also
4.5) (z—X(2))F=0 for all z in 3.

Thus the function F=F, is a r-spherical eigenfunction of 3. Concerning
with the integral of (4.4), we give the following estimations for d;

(4.6) there exist two positive constants ¢, and ¢, such that c,e?®
Zd(@Zcer™® for all a in A7 (we remark that d(a)*=B(log a, log d)
for all a in A,).

Let ¥'(A,) be the simple root system of (P, 4,). We choose the dual
basis @y, w,, - - -, w; of a, with respect to ¥'(4,)={a;, a,, - - -, @} satisfying
afw;)=0,,; We put A7(R)y={ae A}; a(loga)>R for « € T'(A4,)} for a
given positive real number R. Z*=the set of all nonnegative integers.
We state the first expansion theorem for a z-spherical eigenfunction on G.

Lemma 4. Let F be a c-spherical 3-finite function on G where ¢ is
realized on a finite dimensional vector space U. Then F has the following
expansion on A3 (R); there exist a finite number of linear forms v, v,, - - -, v,
and polynomials p,, p,, - - -, p,on o, and F,; , (1 <i<q, 1<j < p) such that

q p
(dp F)(@)= 21 Zl p, (log@)e’’ = 9F, (a),
i=1j=

— ~ (Mmyay+meag++++ +myay) (log a)
o \d)= C,4,m€
me=(my,ma,eee,mi) € (Z+)E

where ¢, ; .. € U,
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Furthermore the series F, , is uniform and absolute convergence on
+
7 (R).

(For the proof of this lemma, see Theorem 8.32, [16]).

We now parametrize 4, by 4,={a,; t=(t, t,, -- -, t,) € R'} where
a,=exp (3}, t,0;). Therefore A7(R) e g, if and only if #,>R for all i=1,
2, -, 1

Lemma 5. Each K-finite function in H,,,(G, X) is tempered.

Proof. Let f be a K-finite function in H,;,(G,%). We define the
r-spherical eigenfunction F=F; of 3 as in Lemma 3. In view of (4.4)
and (4.6), we have

lim siwf (dp,F)(@) Pe~* 0% ) da
Ad ()

g—+0

< aconst. lim s”“j |F(@)ED(@)e-**@da< co.
£—+0 a5

Using the expansion for F as in Lemma 4, an elementary calculation
verifies that (Re v,) (0,) <0 for all (j, k) where v,’s are the same as in the
expansion of F.

Consequently, it follows from a result of Casselman and Mili¢i¢ (see
Theorem 8.47, [16]) that |(d,,F)(a)| <a const. (1+d(a))" for all a in A, for
a suitable nonnegative number #n. Therefore Fis tempered, and hence f
is also tempered (see Remark 2).

We shall state the second theorem for the asymptotic expansion
(which is due to Harish-Chandra) for a z-spherical eigenfunction of 3 on
G. Let P=MAN be a fixed parabolic subgroup of G. We denote the
Lie algebras of 4 and M respectively by a and m. nt,=m&®a is the Lie
algebra of reductive group M,= MA.

Notations: 1(n1,)=the universal enveloping algebra of (1m1,)¢,
3, =the center of u(m,),
W,=the Weyl group of ((n,)¢, Hc)s
I(§)=the ring of all W -invariants of u(}),
1,=the canonical isomorphism of 3,, to I,() and
p=the canonical isomorphism of 3 to I(}).

We see that there exists a unique isomorphism g, of 3 into 3,, such that

H=Holp:
Let A* and ¥'(4) be the positive Weyl chamber and the simple root

system of (P, A) respectively. We define a function 8 on cl(4*) by
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Bl@)=min,cy, a (loga), a e cl(4*) where cl(4*) is the closure of A*.
We denote (rg,,, U)=the restriction of r to K.

Lemma 6. Let F be a tempered g-finite (z, U)-spherical function on
G. Then there exists a 3,,-finite tempered t . ,~spherical function Fp on M,
and a nonnegative real number r such that

(1) (d-F)am)— Fp(am)|<aconst. 5 y(m)e# (1 +d(ma))” for all a
incl(A*) and m in Q where 2 is a compact subset in M,

@  pr@Fp=(2F)s for all z in 3.

(For a proof this lemma, see Chapter 14, II, {23]).

The function F; is called the constant term of F along P. By (1) in
the above lemma, we see that F is uniquely determined by F. Further-
more since 3, is a free pu-(3)-module with finite rank (see Corollary 4.2.10,
I, [23]), it follows from (2) in the lemma that F is of the form

4.7y Fplam)=>_ %, p,(loga)e’:"s“ F,(m) where p, is a polynomial and
1; is a purely imaginary valued linear form on q, F, is a tempered z,,-
spherical eigenfunction of 3,, on M for some character 1} of 3.

Let © be a fixed subset of ¥(4,). We put
4.8) Ag={a e Ay; loga)=0} forall fin ¥(4)—{a}}.

Then there exists a parabolic subgroup P, of G such that Py=MsAsN,
(see for precise descriptions [1] or [26]). Let « be an element in @, and
put ©,=0 —{a}. Then the parabolic subgroup P, =M, A N,, satisfies
M, CMy, A, DAy and Ny, DN, We put Py ,=M,NP,s,. Let (PF),
=(MF)(AZE)(N§), be the minimal parabolic subgroup of M, Then we
have A= A,(A%),.

Let r be a positive real number and cl (4;) the closure of A4; in A4,.
We put for each « in T'(4,).

4.9) Ala, r)={a e cl(4}); a(log a)=rp (log a)}.

Lemma 7. For a sufficiently small real positive number r, we have that
el (A7) C Usewuy A, 7).

Proof. We put S*={a e cl(47); d(a)=1}, and define two functions
/, g by fl@)=maX;cy 4, f(log a), g(@)=p(loga). S* is compact and f
(resp. g) is continuous on cl (4f). Therefore g (resp. f) has the maximal
(resp. minimal) value r, (resp. r)) on S*. Since f and g are positive on
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S*, r, and r, are positive. Let r be a real number satisfying 0 <r <(r,/r,).
We claim that cl (45)E U ,ev iy A(a, 7). Let a be an element in 47. We
put H'=d(a)"*loga. Then o’=exp H’ belongs to S*. Consequently
r<f(@) and g(a’)<r,. Choose an element « in ¥'(4,) satisfying « (log a’)
=f(a’). Then we have a (loga’)>rp(log @’). Hence the lemma follows.

Lemma 8. Let F be a tempered 3-finite (z, U)-spherical function on
G. Assume that Fp=0 for all maximal proper parabolic subgroup P of G.
Then F is square integrable on G.

Proof. Let A(x, r) be the same as in Lemma 7. Then we have

(4.10) j |FG)Pdx<C, 3 j (dp,F)(a) da.

G a€ ¥ (do) J A(a,7)
We now fix an element « in ¥'(4,), and consider the maximal parabolic
subgroup P=MAN corresponding to the set ®={a}. For the minimal
parabolic subgroup P§¥=MFAFNF of M, we define p* by the same as in
Section 1. By (1) in Lemma 6 and our assumption F,=0, the function
dpF is estimated by

4.11) |(dpF)(a)| £a const. &y (a)(1+d(a))Pe="r0%®®

for all @ in A(e, r) where p is a nonnegative integer. Hence by Lemma
1.1, we get |dpF(a)| <c/ecrteae-e*tea) for all g in A(x, r) where ¢ and ¢’
are positive constants. Combining (4.10) with this inequality, we have
our conclusion.

Remark 3. Let F be a square integrable z-spherical function on G
and X a character of 3. If F satisfies the differential equation (z—X(z))F =
0 and F'is nontrivial. Then X is real regular. For this proof, see Harish-
Chandra’s classification for discrete series representations of G ([8] or
Theorem 14.4.9 and Theorem 16.3.19, II, [23]).

We now prove our main purpose of this section.

Theorem 1. Let H,,,(G,X) be the topological vector space as in
Definition 2. Assume that H,,,(G, X)=+{0}. Then the space has a pre-
Hilbert structure with norm || |.

Proof. Let fbe a nontrivial element in H, (G, X). Itis enough to
show that if || f||=0, then there is a contradiction. By Lemma 2, the series
> e veeryXxf*X,) converges to f in the topology of H,,(G,X). Con-
sequently we have ||f|*=> . vcecm X4 X |?. Therefore we can assume
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that f'is K-finite and nontrivial. Define a z-spherical eigenfunction F=F,
as in (4.3). Let p,, v, and F, , be the same appearing in the expansion of
Fon A*(R) as in Lemma 4. By our assumption F70, we can assume
that p,F, ,#0 for all (, /). Furthermore since

Hf||2 = 1ims-»+0 CGsi (l)j l F(CZ) FD(CZ)e_ ca@)dn — 0,
4

we get for each v=y,, (1) Rev) (w,)<O0for all k=1,2, ..., I, (2) 46, <
i(%) for all i where ©,={«, € ¥'(4,); Rey,(w,)=0}. We choose 8,, satisfy-
ing #0,<40, foralli=1,2, ---,p. Put ®=0,. Then we have

4.12) i(1)>#0.

Let Py=M,4,N, be the parabolic subgroup of G corresponding to 6.
and F,, the constant term of F along Ps. Combining (1) in Lemma 6
with the expansion of F in Lemma 4, the choice of @ implies that
Fpy#0. Let Fp =73, p,e™*F, and X} be the same as in (4.7).

We put for each « in 0, ©,=0-~{«}, and consider the parabolic
subgroup P§,=MgN Py, =M¢ A5 NE .. Then we have 4y =AF A4,
Define a function Fp, , on M, for a fixed a in A by (F», . )(m)=Fp (am).
Then we have (Fp,,0)ps (a*m*)=Fre (aa*m*) for all a in A,, a* in A5,
and m* in M¥,. Therefore

(4.13) Frg (aa*m*)= Z;T“ e"ﬂ(; P F, L)

where 2, and 2, , are purely imaginaly valued linear forms on a4 and af,
respectively. In the expression of d,, F=) 7., > %, p,e”F, ; on Af(R) as
in Lemma 4, we have $0,<#0=dim 4,. However by the estimation for
(dpoF—Fp,) as in Lemma 6 and the fact dim A4y, =dim 4441, it follows
from the uniqueness for expansion of F on A (R) that Fpe,=0 for all «
in @. Hence by Lemma 8 and Remark 3, X¥ is real regular. Consequently
we have a contradiction;

I()=4¥ — 4T () ZHY —rank (Mg)=dim 44 <i(X).
This completes our proof.

Lemma 9. Let notations and assumptions being as in above theorem.
In the term of expansion of F=F,=3 > ,p,eF, ; on A;(R), we have
i(N)=40, and p,=a constant where f is a nontrivial function (K-finite) in
H,; (G, %) and O ;={a;, € T(4,); Rev,(0;)=0}

Proof. In view of the proof for Theorem 1, we see that i(X) <0,
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On the other hand since
(4.14) ||f|F=a positive const. lim,_,,, e“”j |(dpF) (@) e~ ¢ 9 da,
af

we have i(X)=40;. Consequently i(X)=46), for all j=1, 2, - - -, p. Again
by (4.14), we have also p,=a const. for all i=1,2, ---, q.

Lemma 10. Let f be a nontrivial K-finite function in H, (G, X). Then
there exists a cuspidal parabolic subgroup P of G such that Fp,=+0 where
F=F; and F, is the constant term of F along P.

Proof. Let O, be the same as in the above lemma, and put 6=0,.
We denote Po=MgAgNg, Fpo,=>,, pre™F;. By the choice of O, we have
Fpy#0and (Fk)Pg,a"—“O for all « in O, where 0,=0 —{a}, P§ ,=MsN
P,,. Hence F, is square integrable on M. Since F, is nontrivial, it follows
from a result of Harish-Chadra that rank M =rank MN K. Thus Pyisa
parabolic cuspidal subgroup of G.

Lemma 11. Let f be a nontrivial K-finite function in H,,,(G,X) and
Fpo=72 4 Pu"F), the constant term of F=F, along P, where O is a given
subset of ¥'(A,) and F,, is a tempered t y ,~spherical function on My satisfying
(z—Xx(2))F,=0 (z € 3u,) for some character X, of 3y, p. is a polynomial
Junction on ag and 2, is a purely imaginary valued linear form on a,. As-
sume that Fp, 0. Then we have i(X)=dim Ay+i(X;) for all k.

Proof. Let P¥=MFAF N be the minimal parabolic subgroup of

Mg and dppF =37, > 91 pi ;e Ff; be the expansion of F, on (4F)*(R)

as in Lemma 4. We put 0, ,={a, e @=T((45)"); Re v, (0,)=0}. Let

P  be the parabolic subgroup of M, corresponding to the set &, ;. Then
we have (Fk)P* #0 We now fix a number k and denote (F} )p

>t Pu, g€ tF* % ;.. wWhere Fif . is a solution of the differential equatlons
zF¥ ;o =X¥, (FE,;, (zegm ) for some character X} ;, of Buy, - By
the ch01ce of O, Xi; ; 1s real regular. Therefore z(X,,) #0y, ;-

Since (FPQ»G)PBk,,(a *m)= Fpek'j(aa*m) for all @ in Ag, a* in A3, , and
min M¥
4.15) F Pek'j(aa*m) = Zz: pieu(uzz" Du, g€ k)

where 2, and 1, ;,, are purely imaginary valued linear forms. Since X,
is real, it follows from the expressions for Fp and the expansion of F in

Lemma 4, that i(X)=%#¥ —rank M,, j_dlm Aakj__dlm Ag+dim Af =
dim 4g+i(X;) and p.p,,;,=a const. (see Lemma 9). Thus the lemma

follows.
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§ 5. Schur orthogonality relations

Let X be a character of 3 and H, (G, X) the same as in (4.1). We
define a Hermitian form ( , ) on H, (G, X) by

CRY (f, &)=I1im si(x)y f()g(x)e= @ dx

where d(x)=d(xo, 0), d( ,) is the Riemannian distance on the symmetric
space G/K and o is the origin.

By Theorem 4.1, the form ( , ) is a positive definite Hermitian form
on H, (G, 7).

Definition 1. H(G, X): the completion of H, (G, X),
H, (G, Y): the set of all K-finite elements in H(G, %),
3" : the set of all characters of 3 satisfying H(G, X)+

{0}

Remark 1. Let H,, , be the set of all K-finite functions in
H,,(G,%). Since H,, xis dense in H,,,(G, X), we have H (G, \)=H,, x-
Therefore all functions in H,(G, X) are real analytic and tempered (see
Lemma 4.5).

Let R be the right regular representation of G on H(G, X). We see
that the representation (R, H(G, X)) is unitary.

Definition 2. An irreducible unitary representation (zx, H) of G is
realized on H(G, X) if (z, H) is unitary equivalent to a subrepresentation
of (R, H(G, X)).

Let (=, H) be an irreducible unitary representation of G and C2(G)
the set of all C=-functions on G with compact support. For a fixed K-
finite vector ¢ in H, we put

(2 H@={(/):/c C2@)}  where ()= fn(x)dy.

Then all vectors in H(¢) are differentiable. Furthermore since z is irre-
ducible the space H(¢) is a G-invariant dense subspace of H. Let ¢, ¢
be two fixed K-finite vectors in H. We define a linear operator S,, of
H(g,) to C=(G) by

(5:3)  Syo(@(Ng)(¥)= (=N, o) for y in G.
Immediately we have

(54 S, is injective, R,0S, =S, on(x) for all x in G.
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Lemma 1, Let (n, H) be an irreducible unitary representation of G.
Suppose that there exist two K-finite vectors , and ¢, such that S, (¢,) €
H(G, X) for some X in 3. Then we have S, (x(f)¢,) € H(G, X) for all f in
Cz(G).

Proof. Let X, be the infinitesimal character of z. Then we have
X=1, and zS, (z(f)p,) =%(2)Sy,(z(f)¢,) for all fin CZ(G). It remains to
prove ||.S, (z(gy)|| <oo. Let W be the support of f. We put

e,=| 1fpax= [ |0opax

By using Schwarz inequality, we have
i@ NgIESe, lim 0 [ (@) e

écf lim ei(x)f ‘[ I(ﬂ(yx)sﬁo, 1h) lze_mu)dx
wJ G
¢, VOl(W)|[Syo($o)lF
where vol(W) is the volume of W. Hence the lemma follows.

Lemma 2. Let notations and assumptions being as above lemma.
Then the representation (r, H) is realized on H(G, X).

Proof. Let H’ be the minimal closed invariant subspace of (R, H(G,X))
containing S,, (¢,). We put n’=the restriction of R to H’. By Lemma
1, we have S, (H(¢,)) CH’. We shall prove that (z/, H’) is irreducible.
Choosing ¢, suitably we can assume that E(z)¢,=¢, for an element [¢] in
6(K). We put H(z)=E(z)H and

R(z)= { fe CHG); Laf=f, JK f(kxk="dx=f(x) for all x in G}.

R(z) is an algebra with convolution product. Furthermore the represen-
tation of algebra R(z) on H(z) is irreducible (see [7], Theorem 6). Con-
sequently since dim H(z)=dim S, (H(z)) is finite, the algebra representation
of R(z) on S,,(H(z)) is irreducible. Let W be a nontrivial closed invariant
subspace of H’ and W+ the orthogonal complement of . Then we have
Sy (H(@)TE()W+E(r)W+. Consequently the irreducibility of the re-
presentation of R(z) on S, (H(z)) implies S, (H(z)) CE(z)W or S, (H(z))
CE(-)W. Since S,,(H(z)) contains S, (¢4,), it follows from this fact that
Sy.(¢,) belongs to Wor W+. However H’ is the minimal invariant sub-
space of H(G,X). Hence W=H’ and W+={0}. Thus ' is irreducible
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as claimed. Therefore = and z’ are irreducible and infinitesimal equivalent
to each other. We now apply Corollary 4.5.5.3 in [26] to those of repre-
sentations. Then r and #” are unitary equivalent.

The following theorem will be proved in Section 6.

Theorem 1. An irreducible unitary representation (z, H) of G is realized
on H(G,X) if and only if there exists a K-finite vector ¢ in H such that Sy($)
e H(G, X).

We now establish the Schur orthogonality relations of a representa-
tion of G realized on H(G, X).

Theorem 2. Let X be an element in 37. Then for each two irredu-
cible unitary representations (zx, H) and (z’, H') of G realized on H(G, %),
we have the following.

There exists a positive constant d, such that

li_.n}oei(z)‘[va (71:(x)¢, \k)(ﬂ/(x)gﬁ', w/)e—ed(ap) dx— {g;l((ﬁ, ¢/) (\};’ \r,,/) lf r=n

otherwise.

Proof. Let ¢ and + be K-finite vectors in H. By Lemma 1 and
Lemma 2, we have S,(¢) € H(G,X). Let H* be the closure of S,(H(g))
in H(G, %) and z* the restriction of R to H*. Then by the proof of
Lemma 2, (z, H) and (z*, H*) are unitary equivalent. Applying the same
arguments as in the proof of Theorem 4.5.9.1 and Theorem 4.5.9.3, [26]
to those representations, the conclusion in this theorem follows.

Remark 2. When the case /(X)=0, = and n’ are square integrable.
Therefore the relations in Theorem 1 is well known as a result of R.
Godement [6]. In [20], we treat the same theorem as above for the case
iN)=1.

Theorem 3. Let X be an element in 3~ satisfying i(X)=1. Then each
irreducible unitary representation (z, H) of G realized on H(G, X) is equiva-
lent to a subrepresentation of principal series of G induced from a cuspidal
parabolic subgroup P=MAN with i(X)=dim A.

Proof. Let ¢ bea fixed K-finite vector in H. We put f(x)==(z(x)9, ¢).
Then we have f+0. Define F=F, as in (4.3). By using Lemma 4.10,
we have there exists a cuspidal parabolic subgroup P=MAN such that
Fp#£0. Fp is (rg,, U)-spherical function on MA. Bearing in mind
Lemma 4.11, F; is of the form Fp(am)=>%_, e 8 F,(m) for a in 4 and
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m in M where 1, is purely imaginary valued linear form on g and F, a
square integrable function on M satisfying (z—X.(2))F,=0, z € 3, for a
character X, of 3,,, We fix a number k. Let ¥ be a closed invariant sub-
space generated by {R, F;; me M} in UQL*M). Then the right regular
representation ¢ of M on V is equivalent to a sum of finite number of
discrete series. We denote V=H,. Define a LA K)QURQL M )-valued
C=-function g on G by g(kman)=e-¢*e2) Ve (FVF, (m), c=(t,, 7,). Since
F, is 7 ~spherical the function g is well defined. Let (L*(K)®H,), be the
same as in (2.3). Then g belongs to (LH(K)®H,),. We define a unitary
representation rn(o, v) as in Section 2. We shall prove r is unitary equi-
valent to a subrepresentation of z(c, v). Let ¢ be the positive constant

determined by || f] ]12=cf f |z(k)g(m) {dmdk. Using the Schur orthogo-
KJ

nality relations of x in Theorem 2, we have || f|=(dz) "¢ . Let H, be the
abstract subspace of H generated by {z(x)¢; x € G}. H, is a G-invariant
dense subspace of H. Moreover since = is unitary, we have |z(x)yr|=||
for all x in G and + in H,. Let us now define a linear operator 3 of H,
to (L(K)QH,), by n(z(x)¢)}(»)=/(cd.)"’g(x"'y), x,y € G. By definition,
7 is unitary and yoz(x)=r(c, v)(x)on on H, for all x in G. Consequently
7 is extended to a equivalent mapping of H to (LY(K)®H,),. This com-
pletes our proof.

Remark 3. Combining Theorem 3 with Theorem 3.1, we see that all
irreducible unitary representations realized on H(G, X) have the tempered
characters. We now correct the error in the proof of Theorem 6.4, [20].

§ 6. Realization of a regular principal series representation

In this section, we shall prove that all regular principal series unitary
representation, induced from cuspidal parabolic subgroup, of G is realized
on H(G,X). Let P,=M AN, be a minimal parabolic subgroup of G with
g-stable split component 4, and ¥(4,) the simple root system of (P,, 4,).
Let /' be a K-finite C=-function on G. We define a (z, U)-spherical func-
tion F=F, as in (4.3). Assume that F is tempered. Then F has the
constant term F, of F along a given parabolic subgroup P of G. The
function F, is of the form

(6.1) Fplam)=33i_,p, (loga)e* SV F.(m), ae A, me M where p, is a
polynomial function and 2, a purely imaginary valued linear form on a,
and F, is a tempered (zg,, U)-spherical function on M satisfying
(z—X,(2))F,=0 (z e 3,) for some character X, of 3.
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Definition 1. A function F on G belongs to &/(G, X) (X is a given
character of 3) if F has the following properties:

(1) there exists a finite dimensional double unitary representation
(z, U) of K such that F is r-spherical,

(2) Fis tempered, and satisfies (z—%(z))F=0 for all z in 3,

(3) for each parabolic subgroup P=MAN, if F,+0 then i(X)=
dim A4i(%,) and p, is constant for all k=1, 2, - - -, s where p,, X, are the
same as in (6.1).

A parabolic subgroup P is standard if P=P, for a suitable subset @ in
¥(A4,). All parabolic subgroup P of G is conjugate to a standard parabolic
subgroup under an inner automorphism of K. Let F be a c-spherical 3-
finite tempered function on G and P=MAN a parabolic subgroup of G.
In view of Lemma 4.6, we have Fpim*)=r1,(k)Fp(m)ry(k)~" for all m in
MA where P*=kPk-', m*=kmk™*, k is a fixed element in K. Therefore
the above assumption (3) can be restricted to all standard parabolic sub-

group of G.

Lemma 1. Let P=MAN be a standard parabolic subgroup of G and
F a function in £ (G, X) with constant term Fp=73, e*F,. Then the ty -
spherical function F, belongs to o/ (M, X,) where %, is the same as in (6.1).

Proof. Let Pg=MyA,N, be a parabolic subgroup corresponding to
a subset @ in ¥'(4,) and (P¥),=(M%),(4%),(N¥), the minimal parabolic
subgroup of M, Then we have @=¥((4%),). Therefore all standard
parabolic subgroup of M, are given by P%= M, P, for the sets &’ in 6.
We shall denote the Langlands decomposition of P% by Pi=MIA(NE.
We see that Ag=Az4%. Define for each fixed element a in 4,, a 74~
spherical function Fp, , on Mg by (Fp,,,) (m)=Fp (am). Then we have
(Frg,0)pyla*m)=Fp glaa*m)forae Af, a e A;and m e M¥. Consequently
Frelaa*m)=3y 33 Pr, € *7F, 5, Where (F)py,=323;€"/F, , and F,
satisfies (z—YX, (2))F,,=0 for all z in Bl

By the assumptions in (3) for F, we have p, ,=aconst. and i(X)=
dimdg +i(X,, )=dim Ag+i(X,). Hence i(X,)={(dim 4y —dim Ag)+i(%, ;)
=dim 4%+ i(X,,;,). Thus the lemma follows.

Let o be a fixed element in ¥'(4,). For the simplicity of our nota-
tions, we denote the parabolic subgroup of G corresponding to 6 = {«} by
P,=M,AN, Since dim A4,=1, A, is parametrized by A,={exptH,;
t € R} where H, is the element satisfying w(H,)=1. Let Pf=M*A*N¥
be the minimal parabolic subgroup of M, satisfying 4,— 4,4*. We define
D=D, as in Section 1, and extend it by D, (aa*)=D(a¥) for a e 4, a* ¢
A*. Let r be a positive real number as in Lemma 4.7. We define a subset
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B,(2) of cl((4%)*) by B,(t)={a* e cl((4¥)*); (1 —rp(H,)t = (rp—a) (loga*)}
where >0 and cl((4¥)*) is the closure of positive Weyl chamber (4*)*
of A¥. Then we have the following; for the set A(w, r) as in Lemma 4.7,

(6.2) A(a,r)=U ,x,a,B.(t), a,=exptH, (see, for a proof of this fact
Lemma 6.4 [20]).

Lemma 2. Let F be a function in £ (G, X). Then we have
(%) lim si(l)j |F(@)D(@)e- "% Dda < oo.
e—+0 a5

(Proof by an induction on i(X)). If i(X)=0, our assertion is obvious. Let
us assume {(X)=p >0, and for all linear semisimple linear group G’ and
the characters X’ of 3 with property i(X)<p—1, all functions F’ in
(G, X') satisfy (*¥) (where 3/ is the center of universal enveloping algebra
of gz). Let F be a function in 2/,(G, X). In view of Lemma 4.7, it is

sufficient to prove that I(F)=Ilim ePJ |F(@)fD (a) e %2 dg < oo for
&—+0 A(a,r)
all @ in ¥'(4,). By using Lemma 4.6, we have

I(F)<a const. lim SPI | Fp (@)D (a)e %8 2 g
e=+0 Ala,r)
and hence by (6.2)

<a const. lim e"j f | Fp (a,a*)[D (a*)e™ ¢ = Me-tda*dt.
0J B )

e—~+0

In the expression of Fp=73, e*F,, F, € o/(M, X;) and i(X,)=p—1 (see
Lemma 1). Hence our inductive hypothesis implies that

I(F,)=lim ep-lf |Fu(@) D (a*)e- 0% Oda* s finite.
e +0 (4% "

Consequently we have I(F)<a const. <lim sj e"”dt) GoI(F)).  This
e—+0 0 k

completes our proof.
Combining Lemma 4.11 with Lemma 2, we have the following.

Theorem 1. Let X be a character of § and £,(G,X) the same as in
Definition 1. Then a K-finite function f belongs to Hy (G, X) if and only if
F=F; e o,(G,1).

Definition 2. A principal series representation z (g, v) of G induced
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from a cuspidal parabolic subgroup P=MAN is regular if v is regular
on q.

Theorem 2. Let n(o, v) be a regular principal P-series representation
of G. Then each K-finite matrix coefficient belongs to H (G, X) where ¥ is
the infinitesimal character of (o, v).

Proof. Let f be a K-finite matrix element of n(s,v). By using
Theorem 1 it is enough to show that F=F, belongs to &/ (G, X). Let®
be a subset of ¥(4,) and Py=MyA4,Ng be the parabolic subgroup of G.
Since p is regular on a and ¢ has the real regular infinitesimal character,
we see that X=X, ,, is regular. Therefore the constant term of F along
P, is of the form Fp =3, e"F,, v, is regular on a,, and F, satisfies
(z—%,(2)F,=0 for a regular character ¥, of 3,,. Let X, be the
infinitesimal character of ¢. Then there exists w in W such that w(yv, -+ 2,)
=1(e)+v. Hence we have dim Ag+i(a,)=dim A=7i(X). Therefore F
belongs to «7,(G, X) as claimed.

Theorem 5 in the previous section will be proved by using the fol-
lowing lemma.

Lemma 3. Let ¢ be a K-finite function in H(G, X) satisfying X, x¢=
¢ xX.=¢ for two suitable elements z, </ in £(K). We put

h(x, y)=IK7,(7)¢(xky)dk, x,yeG.

Then there are ¢y, g, « -+ ¢, AN Apyy Yoy - -+, Ay, 0 H (G, X) such that
h(x, y)= Zk ¢k(x)1lfk(J’)

Proof. We define two functions f, and g, on G by f,(3)=h(y, x)
and g,(»)="(x, y). Since f,, g, € Hx(G, X) (see Lemma 4.1), there exist
¢1’ ¢2’ D) ¢p (‘!fv Wz: Tt 1[fq) in HK(G! x) and f;’fé’ ot '5fp (resp. 81> 825
-, £ in C=(G) such that £,(x) = S, fu(3)g(x) and .(3) = 22: £..()-
Therefore, since f,(x)=g,(»), we have

(6.3) 2./:(g(x)= ,Z g0 ).

We claim all f, belong to H,(G,X). By (6.3) we have immediately
5 (@) (D60 =52, 2,60 (29) ()= S U2 /(D)) for each zin 3, x
and yin G. Since {¢, ¢y, - - -, ¢,} is linearly independent over C, we get
zf,=X(2)f, for all z in 3. Similarly we can prove all f,’s are K-finite.
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Define F,, and F,, as in (4.3). Then we have
(6.4) ; Fr(0$(x)=22 Fy (»)g ).
J

Let dp,Fr,=2.211s Pu,i,s€*°Fy ; , be the expansion of F, on 4;(R) as
in Lemma 4.4. Bearing in mind @,, é,, - - -, ¢, is linearly independent, the
temperedness of F,, implies that Rey, ; ,(w,)<O0 for all k, i, s, t where we
use the same notations as in Section 4. Consequently by a result of
Casselman and Mili¢i¢ (Theorem 8.4.7, [16]), all F,’s are tempered. Let
P be a standard parabolic subgroup of G and (F, )p, (F;,)» the constant
term of F, , F, along P. By (6.4), we have

6.5) 2. (Fr)ppe(X) =2 (Fy ) pg (%) for all x in G.

Since F, e (G, X) (see Theorem 1) and ¢, ¢y, - - -, ¢, is linearly inde-
pendent, we conclude that all F,, belong to «7(G, ). Hence again by
Theorem 1, we have f;, € Hg(G, X). Thus we can prove the lemma.

Proof of Theorem 5.1. Bearing in mind Lemma 5.2, it is sufficient
to show that if (z, H) is realized on H(G, X) then (z(x)v, v) belongs to
H(G, %) for a suitable K-finite vector in H. We put E(z)f=2¥xf and
E.(7)f =X.xf for each fixed [¢] in £(K). Let 5 be the equivalent mapping
of H into H(G, X), and denote H'=x(H), =’ =the restriction of R to H’.
Then we have n/(x)ep=ynon(x) for x in G. Let [z] be an element in &(K).
Since #/(x) and E;(r) are commutative, z'(x)o(E(c)on)=(E(z)on)on(x).
Consequently, it follows from the irreducibilities of = and =z’ that Ey(z)oy
=0 or E(r)oy is bijective. On the other hand since H' =@, ¢k, Ei(z)H’,
there exists a unique [z/] in £(K) such that E,(¢/)H’=H’. Let us now
choose [7] in §(K) satisfying [x|: ]>0. Then there exists v in H such
that E(r)u=v. We put ¢(x)=((E(z")on)(v))(x). Then ¢ is K-finite and
(@'(x)$, §)=(x(x)v, v). We shall prove that f(x)=(x(x)v, v) € H(G, ).
Since E,(z)¢=4,

fy=tim &0 (IKW;“ Vkx) dk>¢( ey,
We now apply Lemma 3. Then we have J X(K)g( ykx)dk:f: S
K i=1

for a finite number of elements ¢, go, -+ -, ¢, and Ay, Yy, - -+, 4, In
H(G,%). This implies that f(x)=3; y(x) $;, §) € Hx(G, %). Hence we
can prove Theorem 5.1 completely.
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§ 7. Irreducibilities for regular principal series representations

First of all in this section, we shall state a minimal K-type theorem
of principal P-series representation of G. Let f be the Lie algebra of K
and b a Cartan subalgebra of £. @ is the root system of (¥, be) and pyx
one half the sum of all positive roots in @,. All irreducible unitary re-
presentations of K are parametrized by the dominant integral forms on b,
which is the highest weight. We shall denote by r=<¢, the irreducible
unitary representation with highest weight px. Let n(o,v) be a fixed
principal series representation of G induced from a cuspidal parabolic
subgroup P=MAN. Then we have z(o, v)|x = D, ewlrn(o, V)|x: 7.lc,
where b* is the set of all dominant integral forms on bg, n(a, v)|¢ is the
restriction of z(g, v) to K and [z(s, v)|«: z,] the multiplicity of z, appear-
ing in (o, v) |- :

Definition 1. An irreducible unitary representation z of K is a
minimal (lowest) K-type of z(o,v) if [n(o,v)|x: 7,1 >0 and |p+px|<
|+ px| for all 7, in &(K) satisfying [z(s, v)|¢: 7, ]1>0.

The follownig theorem is due to D. Vogan [24].

Lemma 1. Each principal P-series representation rn(o, v) has a minimal
K-type with multiplicity one.

For a proof of the lemma, see Theorem 15.1, [16] ([24] and [3]).

Remark 1. The proof of Theorem 15.1 in [16] is given by using the
minimal K-type theorem of the discrete series representation ¢. For the
minimal K-type theorem of discrete series, see [10].

Let #(s, v) be a regular principal P-series unitary representation of G
with infinitesimal character X=1X,,,,. Consider an irreducible component
n of n(s,v). Then the characters @, and 0O, ,, satisfy the following
properties (see Lemma 2.2 and Theorem 3.1);

(1) 6, and ©,,, are the solutions of differential equation
(z—%(z))®=0, z e 3 where X is the same as above,

2 ©6.and0o,,,, are tempered.

Therefore by using the uniqueness theorem for tempered invariant eigen-
distributions on G (see Theorem 13, [13]), there exists a constant c, such

that
(7.1) @n=cn@z(a)'

We now give a proof of the irreducibility of regular principal P-series
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unitary representation (s, v) of G.

Theorem 1. All regular principal P-series unitary representation
n(o, v) are irreducible.

Proof. Let Py=M,A,N, be a minimal parabolic subgroup of G with
f-stable split component 4,. We put G,=KA; K, Af =the positive Weyl
chamber of (P,, 4,). Then G, is K-invariant open dense subset of G. Let
¢ be a K-finite element in H(s, v). We define a function f,(x)=
(z(a, v)(x)¢, p)e 4™ for a fixed positive real number e. We see that f, is
a tempered C=-function on G, (see Lemma 5.4, [20]). Let (z, H) be an
irreducible component of (z(s, v), H(o, v)) and ¢,, ¢, - - - be orthonormal
basis of H satisfying E(r,)¢,=¢, for some [r,] in £(K). We denote ¢=¢,
and t=r,, and define f,=(f,); as above. Bearing in mind f, is K-finite,
we have immediately

6.00=3, | 7.9, p)dx=33 [ TN )

for a suitable number #.

On the other hand since z(g, v) is a regular principal series, it follows
from Theorem 5.2 that lim,_,,e!®@O(f,)=d;* where d, is the formal
degree of x. Similarly we have im,_.,,¢*®80,,, ,,=[r(s, v): 7l(d,)~'. Hence
by (7.1), we have

(7.2) [z(e, v): nl=c,.

Let us now consider a following special subrepresentation = of n(g, v).
By using Lemma 1, we can choose a minimal K-type z of z(e,v) with
multiplicity one. Let (x, H) be an irreducible component of z(s, v)
satisfying [z|;: z]%0. Then [x(s, v): z]=1, and therefore by (7.2) ¢,=1.
This implies that =6, ,,. Thus =(s, v) is irreducible.

Remark 1. The irreducibility of regular principal series n(g, v) in-
duced from minimal parabolic subgroup of G is proved by F. Bruhat [2].
In general Harish-Chandra proves the irreducibilities of all regular princi-
pal P-series representations ([9]).

Remark 2. B. Kostant [18] gives an criterion for the irreducibility
of spherical principal series (not necessary unitary) of G in an algebraic
situation.
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