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Schur Orthogonality Relations for Non Square Integrable 
Representations of Real Semisimple Linear Group 

and Its Application 

Hisaichi Midorikawa 

Introduction 

In the previous paper [20], we discuss the Schur orthogonality relations 
for certain non square integrable representations of a given connected real 
semisimple linear group G. Those representations are the subrepresenta­
tions of unitary principal series of G induced from a maximal cuspidal 
parabolic subgroup, although I did not state explicitly this fact in [20]. 
We formulate our results as follows. 

Let C00 (G) be the set of all complex valued C00 -functions on G and 
g0 the complexification of the Lie algebra g of G. The universal envelop­
ing algebra u(g) of g0 acts on C00 (G). The left (resp. right) action of bin 
u(g) will be denoted by bf (resp. fb) for fin C00

( G). Let O be the center of 
u(g) and d(p, q) the Riemannian distance on the symmetric space G/K 
where K is a maximal compact subgroup of G. Define a function d on G 
and a seminorm II IIP on C 00 (G) by 

d(x)=d(xo, o), o is the origin in G/K 

and 

llfll;=lim sPf \f(x)\ 2e-ed(x)dx for Jin C00 (G) 
e-+o G 

where pis a nonnegative real number and dx is the Haar measure on G. 

Definition I. Let X be a character of 0. The space HP (G, X) is de­
fined as the set of all C00 -functionsfsatisfying llbJb 2 IIP<oo and (z-X(z))f 
=0 for all bi in u(g) and z in 0. Hp(G, X) is a topological G-module with 
the canonical actions. Furthermore IIRJIIP=IIL.,,/IIP=II/IIP for x in G 
and/ in Hp(G, X) where Rand Lare respectively the right and left actions 
of G on HP(G, X). Let fj be a Cartan subalgebra of g. We denote the 
root space decomposition of gc by gc=fjcE8I:aE(I) g. where <I) is the root 
system of (gc, fjc)- Select, for each a in <I), X. in g. satisfying B(X., X_.)= 1 
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(Bis the Killing form on 9c), Each element Ha=ad(Xa)X_a belongs to 
9c· Using the canonical isomorphism of O into the ring of polynomial 
functions on the dual space of 9c, we can parametrize all characters X of 
0 by the linear forms on 9c· We shall denote this parametrization by 
X=X,, J. is a linear form on 9c· 

Definition II. The number i(X) is defined by i(X)=#{a E 1J!'; J.(H.) E 

R-{O}} where 1J!' is a fundamental root system of l[J, #Sis the cardinality 
of a given set S. The number i(X) is called the index of X. 

Theorem I. Let X be a character of 0. Assume that Hi(X)(G, X) is 
nontrivial. Then Hi(Xi(G, X) is a pre-Hilbert space with the norm II lli(X)· 

The theorem will be proved by using Harish-Charandra's classification 
theorem for discrete series representations and the asymptotic expansion 
theorems (for the K-finite eigenfunctions on G) obtained by Harish-Chandra 
[8], W. Casselman and Milicic [4], [5], [21] (see also M. Kashiwara et al. 
[17], N.R. Wallach [25]). 

We shall denote the completion of Hi<Xi(G, X) and its norm by H(G, X) 
and II II respectively. The regular representations Rand Lon H(G, X) are 
unitary, and all K-finite functions in H(G, X) are real analytic. 

Definition III. An irreducible unitary representation (rr, H) of G is 
realized on H(G, X) if there exists an isometric linear operator r; of H into 
H(G, X) such that Rx o r;=r; o n-(x) for all x in G. 

Theorem II. An irreducible unitary representation (n-, H) of G is 
realized on H(G, X) if and only if there exists a K-finite vector cp in H such 
that (n-(x)cp, cp) belongs to H(G, X). 

We remark that if i(X)=O, then H(G, X)cL2(G) where L2(G) is the 
space consisting of all square integrable functions on G. Therefore H(G, X) 
is a closed invariant subspace of L2(G), and the representation rr realized 
on H(G, X) belongs to the discrete series in this case. 

By using Theorem I and Theorem II, the standard arguments for the 
proof of Schur orthogonality relations of square integrable representations 
of G imply the following theorem. 

Theorem III. Let (n-, H) and (n-', H') be two irreducible unitary re­
presentations of G realized on H(G, X). Then there exists a positive constant 
d, such that 

lim ei<x)f (n-(x)cp, ,Jr)(n-'(x)cp', ,Jr')e-•a<xldx={d,- 1(cfi, cfi')(,Jr, ,Jr') 
e-+o G 0 

if n-~ n-' 
otherwise 
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for all K-finite vectors <p, + e Hand <p', +' e H'. 

The constant dx is called the formal degree of rr. In case of i(X)=O, 
the relations in the above theorem are well known as a result of R. 
Godement [6] (see Theorem 4.5.9.3, [261). For the case i(X)= 1, we proved 
the similar theorem in [20]. 

In the following we shall assume that i(X)>O. Let P=MAN be a 
proper cuspidal parabolic subgroup of G. Consider a discrete series re­
presentation a of Mand a unitary character a-.e" (log a> of A where ll is a 
purely imaginary valued linear form on the Lie algebra a of A. The re­
presentation a@e" of MA is extended to P by (a@e"@l)(man)=e·<1ogaJa(m) 
for a e A, me Mand n e N. Let rr(a, ll)=indlf, (a0e"01) be the induced 
representation of G from P constructed by canonical procedure. rr(a, ll) 
is called a principal series unitary representation of G induced from P. 
The following theorem is proved by Schur orthogonality relations in 
Theorem III. 

Theorem IV. Assume that i(X) >O. Then each irreducible unitary re­
presentation of G realized on H(G, X) is equivalent to a subrepresentation of 
a principal series of G induced from a certain cuspidal parabolic subgroup 
P=MANwith i(X)=dimA. 

Definition IV. Let notations be as above. A principal series repre­
sentation rr(a, ll) of G induced from P=MAN is regular if the linear form 
ll on a is regular. 

Theorem V. Each regular principal series unitary representation rr(a, Ii) 
of G with infinitesimal character X is realized on H(G, X). 

As an application of Schur orthogonality relations for non square 
integrable representation of G, we give a proof of irreducibility of the 
regular principal series in the following. 

Theorem VI (Bruhat and Harish-Chandra). All regular principal series 
unitary representations of G are irreducible. 

Our proof of this theorem is based on the character theory due to T. 
Hirai [13], the lowest (minimal) K-type theorem for principal series repre­
sentation of G obtained by D. Vogan [24] (see also A.W. Knapp [15], J. 
Carmona [31) and Schur orthogonality relations. By [13], we see that all 
tempered invariant eigendistributions on G with the same regular infinite­
simal character are uniquely determined up to constant. To apply Hirai's 
theorem we use the following theorem. 
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Theorem VII (Knapp and Zuckerman). Let 1r(a, v) be a principal 
series representation of G. Then the character of each subrepresentation 
of 1r(a, J.1) is tempered. 

In [14], there is a character table of all irreducible components of 
principal series representations of G. Since their characters are determined 
explicitly, we can observe that the character of each irreducible component 
of 1r(a, v) is tempered. However, in this paper, we shall prove directly the 
temperedness as in the above theorem by using uniform estimation, which 
is a result of P.C. Trombi and V.S. Varadarajan [22], for the matrix coef­
ficients of discrete series representation q of M. 

The author would like to thank Professors W. Schmid, T. Oshima, 
M. Duflo, D. Vogan and J. Sekiguchi for helpful advices to his conference 
talk, especially on a proof of irreducibility of regular principal series which 
are restricted to special case in his first manuscript, held at Kyoto Univ. 
and Hiroshima Univ., '86. 
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Preliminaries and notational definitions 

We first state, in this section, two lemmas for elementary spherical 
function B on a connected real semisimple linear group G. Let K be a 
fixed maximal compact subgroup of G and P0 = M 0A0N0 a minimal para­
bolic subgroup of G with 0-stable split component A 0 where 0 is the Cartan 
involution of (G, K). Therefore G=KA 0N0 is the Iwasawa decomposition. 
Each element x in G is uniquely written by x= k(x) exp H(x)n(x), k(x) E 

K, H(x) e a0 and n(x) e N0 where a0 is the Lie algebra of A 0• Let g and 
n0 be the Lie algebras of G and N0 respectively. The action Ad (p) 
(p e P0) on n0 will be denoted by Ad (p) lno· Then there exists a linear 
form p on a0 such that epOogaJ=-vldetAd(a)\ •• I for all a in A 0• We de-
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fine a function on G by B(x)= f xe-p<H<:c-•k>dk, x e G where dk is the Haar 

measure on Knormalized as J x dk= 1. Let d(p, q) (p, q e G/K) be the 

Riemannian distance on the symmetric space G/K and o the origin in the 
space. Then we have the following (see, for the proofs, Lemma 8.5.2.6 
and Lemma in p. 239 [26]). 

Lemma 1. The Junction satisfies the properties below; 
(1) B(kxk')=B(x)for all x e G, k, k' e K, 
(2) B(x- 1)=B(x), 
(3) there exists a nonnegative integer p such that 

e-P (loga) <B(a)<a const. e-P (loga)(l +d(xo, o))P 

for all a in the positive Wey! chamber At of A0 and 
( 4) choosing a positive number p' suitably 

B(an) (1 +d(ano, o))-P' <a const. e-<P<1og a> +p<H<O<n-'ll» 

for all a in A0 and n in N0• 

Remark 1. The function p(H((}(n- 1))) on N 6 is nonnegative. 

Secondly we define the Schwarz space on G following Harish-Chandra. 
Let u(g) be the universal enveloping algebra of Be· The actions on the 
ring of all C00 -functions C 00 (G) on Gare defined by 

d d 
(Xf)(x)=--di-f(exp- tXx) li=o and (JX)(x) =--dt-f(x exp tX) li=o 

for x in G,f in C00 (G) and X in g. We shall denote the actions to the 
left and right by bf andfb respectively for all b in u(g) and fin C00 {G). 
Let b1, b2 be two elements in u(g) and r a real number. We put a seminorm 
J.lbi,b,,r on C00 (G) by 

where d(x)=d(xo, o). 

Definition 1. The Schwarz space <t(G) on G is consists of all C 00
-

functions f on G with the following properties; J.1b,, b,,r(f) < oo for all bu b2 

in u(g) and positive real numbers r. 

Definition 2. A distribution Ton G is called tempered if Tis extended 
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to a continuous linear form on <rff(G). To study the tempered distributions 
on G the following integral formula on G is crucial. Let lj be a 8-stable 
Cartan subalgebra of g containing a0 and {[) the root system of (gc, 9c). 
For the root system {[)(A0) of (P0, A 0), we induce a linear order of{[) as the 
following; if a is positive on a0, then a is also positive on lj. Let {[) + be 
the set of all positive roots in {[) which does not vanish on a0• We define 
a function Don A 0 by 

D(a)= n lexpa(loga)-exp(- a(loga))I, 
aEai+ 

Lemma 2. There exists a positive constant C= C0 such that 

J f(x)dx= cf daff f(kak')D(a)dkdk' 
G At KXK 

for all fin C;;'(G) where At is the positive Wey! chamber of A 0 and C;;'(G) 
is the set of all c=-functions on G with compact support. 

(See Proposition 10.17, [11]). 

Let 0 be the center of u(g). A function fin c=(G) is 0- (resp. K-) 
finite if dim of (resp. the dimension of linear span {LkoRk,f; k, k' e K}) is 
finite, where Land Rare respectively the canonical actions on c=(G) to 
the left and right respectively. 

Finally, we shall state for the character of a given admissible unitary 
representation of G after the following preparations. Let C(K) be the 
set of all equivalence classes of irreducible unitary representations of K. 
We put, for each [r] in C(K), X,(k)=d, Tracer(k), k e K, d,=the dimension 
(degree) of r. Let (rr, H) be a unitary representation of G. We define a 

projection operator E(r) on Has follows; E(r)v= t X,(k)rr(k)dk, v e H. 

Definition 3. A unitary representation (rr, H) of G is admissible if 
there exist two positive numbers N and m such that dim E(r)H~N(d,r 
for all [r] in C(K). 

For an admissible unitary representation rr of G the operator rr(f)= 

Lf(x)rr(x)dx is of trace class, 8n(f)=Trace rr(f) is a distribution on G 

wherefis a function in C;;o(G). Furthermore if rr is irreducible, then there 
exists a character X of Osuch that (z-X(z))8r=0 for all z in 0. er (resp. 
X) is the character (resp. the infinitesimal character) of rr. 
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§ 2. Principal P-series representation 

In this section, we shall define a principal series representation of G 
induced from a given cuspidal parabolic subgroup, and state for the ad­
missibility of the representation. 

Let P =MAN be the Langlands decomposition of a cuspidal parabolic 
subgroup P of G. Throughout of this paper, we always assume that the 
split component A of P is 8-stable. The Lie algebras of M, A and N re­
spectively are denoted by m, a and n. We define a function dp on P and 
linear form pp ona as follows; dp(p)=.J\detAd(p)\nl andexppp(loga) 
= dp(a) for p in P and a in A. 

Let (O', H.) be a square integrable (discrete series) representation of 
M and a>-+e" <1og ai a unitary character of A where v is a purely imaginary 
valued linear form on a. We extend the representation q@e" of MA to P 
by (q@e·@l)(man)=(O'@e•) (ma), me M, a e A, n e N. A H,-valued c=­
functionf on G belongs to c=(G, H.) if f satisfies that 

(2.1) f(xp)=dp(p)- 1(q@e·®l)(p)- 1f(x) for all x in G and pin P. The 
space c=(G, H,) is a pre-Hilbert space with the following positive definite 
Hermitian structure ( , ) ; 

(2.2) (<fa, t)= f /<fa(k), t(k))dk for, <fa, t in c=(G, H.). 

The completion of c=(G, H.) will be denoted by H(O', v). We see that the 
left regular representation 11:(0', v)=indt;, (q@e"@l) of G on the space 
H(O', v) is unitary. 11:(0', v) is called a principal series representation of G 
induced from the cuspidal parabolic subgroup P ( or simply principal P­
series representation of G). Let H(O') be the set of all restriction of func­
tions in H(O', v) to K. H(O') can be identified to the subspace (L2(K)®H.). 
of L 2(K)®H., L2(K) is the space of all square integrable functions on K 
and 

(2.3) (L2(K)®H.).=the set of all I:..J;,®vi in L 2(K)®H. satisfying 
I:..,J;,®vi,(km)=I:..J;(k)@q(m)- 1vt for all kin Kand min KM-=KnM 
where the summation runs over a finite members of i. 

Let us give an another realization of 11:(0', v) as following. 
Define a representation 11:'(0', v) of G on H(O') by 

(2.4) (11:'(0', v )(x)cp)(k) = e-<•+ P pHH<r-'kllq(m(x-1k))- 1cp(k(x-1k)) 

where k(x- 1k) e K, m(x- 1k) e M, Hp(x- 1k) e a 

determined by x- 1k e k(x- 1k)m(x- 1k) exp HP(x- 1k)N fork in K, x in G. 



264 H. Midorikawa 

Let '1J be a linear mapping of H(a, v) onto H(a) defined by 'l}(t/>)(k)= 
tf>(k), if> e H(a, v). Then 1e'(a, v) (x)o1J='1)01e(a, v) (x) for all x in G. We 
shall denote 1e'(a, v)=1e(a, v) under this identification. Let us state the 
admissibility for 1e(a, v). Let rff{K) be the set of all equivalence classes of 
irreducible unitary representations of Kand 1e(a, v)IK the restriction of 
1e(a, v) to K. For each class [i-] in rff(K), we denote the multiplicity of i­
appearing in 1e(a, v)IK by [1e(a, v)JK: i-]. Similarly we also denote by 
[alKM: ,;] for[,;] in rff(KM) the same as K. Since 1e(a, v)IK is the left regular 
representation of compact group K, the Frobenius reciprocity theorem 
implies that 

(2.5) [1e(a, v)JK: i-]= I: [alKM: c;][i-JKM: ,;] 
[<)El(KM) 

for all [i-] in rff(K). 

By our assumption for a, a is realized on a closed invariant subspace of 
L2(M). Consequently, by using Peter-Wey! theorem, we have 

(2.6) 

Combining (2.5) with (2.6), we have the following. 

Lemma 1. Let notations and assumptions being as above. Then 
[1e(a, 11) IK: i-] ~(d,) 4 for all [i-] in tff(K). 

Thus by the above lemma, each subrepresentation 1e of 1e(a, v) is 
admissible. · 

Lemma 2. There exists a character X of O such that (z-X(z))8.=0 
for all subrepresentations 1e of 1e(a, v) and z in 0. 

Proof In view of the explicit formura of the character 8.ca,•) (see 
[12]), there exists a character X of Osuch that (z-X(z))e.c,,•) =0 for all z in 
0. We define for [i-] in cC(K) andfin C 00 (G), X,*f andf*X, by 

(2.7) (X, * f) (x) = f K X.(k)f(k- 1x)dk, 

(f * X,) (x)= f K X,(k)f(xk)dk, x e G. 

Let E(i-) be the projection operator as in Section 1. By the definition 

8.c •.• i(f)= I:c,Je1cKcLf(x)tf>,(x)dx for all f in C;;'(G) where tf>,(x)= 

Trace(E(i-)1e(a, v)(x)E(i-)). Therefore e.ca,,i(X, *f *X,) = L f(x)tf>,(x)dx. 

Since 8.c,,•) is contained the kernel of z-X(z) we have 
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(2.8) (z-X(z))\6,=0 for all z in 0. 

We choose [r] in rff(K) satisfying [rrlK: r] >O for a given irreducible sub­
representation rr of rr(a, ].I). Then there exist a finite number of irreducible 
subrepresentations rr= rr1, rr2, • • ·, rrn of rr(a, ].I) such that 

n 

(2.9) \6,= I; [rr(a, ].l)IK: rrJ\6J, s5i(x)=Trace (E(r)rri{x)E(r)). 
i=l 

Let X; be the infinitesimal character of rri. Then by (2.8) and (2.9), we 
have I:~-i [rr(a, ].l)IK: rri](X(z)-Xi{z))sbt=O. Since all rr/s are inequivalent 
to each other, {\6;} is linearly independent. Thus (z-X(z))8,=0 for all z 
in O and subrepresentations rr of rr(a, ].I) as claimed. 

§ 3. Temperedness for the character of subrepresentation of principal 
P-series 

We keep the same notations as in previous section. Choose an ortho­
normal basis \61, \62, • • • of H(a)~(L2(K)®H.). satisfying E(ri)\Di=\Di for 
some [Ti] in rff(K) and v 1, v2, • • • of H, with properties E(~;)vi = vi for [~i] 
in rff(K,lf)- We now fix sS=sSP and r=rP. Then sS is of the form 

(3.1) sS(k)= I; cj,l,m(r(k)tz,tm)®vj 
j,l,m 

where the summation runs over the set 

N=the set of all natural numbers and ti, tz, · · ·, ta, is an orthonormal 
basis of the space on which r acts. 

Lemma 1. Let cj,L,m be the constant as in (3.1). Then we have 
\cj,z,m\2 ::;;:d, for (j, l, m) in W,,,. 

Proof Since 1\6\=1, we have 

1 = ~ f K (j,l,~W,,, I (r(k)tz, tm)c i,l,m l2dk 

=(J,)-1 I; lcj,!,mlz. 
(j,l,m)EW-r,u 

Hence the lemma follows. 
We putf(x)=(rr(a, ].l)(x)s5, \6) for x in G. In view of the formula in 

(2.4), we have 
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lf(x)j <f K e-Pp<H<x-tkJJ l(a(m(x- 1k))- 1p(k(x- 1k)), p(k))jdk 

~ I: I: f e-Pp(ll(x-•klj(a(m(x-1k)vt, v1)jdkd,Jc1,1,mC;,,,tl, 
J,l,mi,s,t K · 

hence by the above lemma we get the following. 

where (j, I, m) and (i, s, t) run over the set W,;r 

Let m be an element in M. We put gijm)=(a(m)- 1vt, v1) for all 
i, j= 1, 2, · · ·, (v/s are the orthonormal basis of Ha). For a fixed (i, j) 
we put V;,J=the linear span of the set {LkoRk,g;,1; k, k' e KM}. Since V; 

and v1 are KM-finite Vt,i is finite dimensional. Let QKM be the Casimir 
operator on KM. Then there exists a constant x • .(Q K,,) such that Q KM~t 
= x • .(Q KM)~t· Therefore Q K,, acts on V;,J to the left (resp. right) as a 
scalar operator ~;(Q K,,) (resp. ~ /Q KM)). Consequently by the uniform 
estimation, which is due to P.C. Trombi and V.S. Varadrarajan (see for 
instance, Theorem 16.1.9, II, [22]), 

(3.3) there exist two positive constants C, IC and a positive number q 
such that 

for all m and i, j= 1, 2, ... , where C, IC, q are independent on i,j and min 
M, llgt,111 is the L2-norm on M, l~;(Q)xM)I is the operator norm of ei(QKM). 
Using the Schur orthogonality relations for square integrable representa­
tion a, there exists a positive constant da (which is called the formal degree 
ofa)suchthat llg;,11!2=d;1Jv;llv11 for all i,j=l,2, ···· Therefore (3.3) 
is rewritten as follows; 

(3.4) lgtjm)l~C(l+d,IX,(QK)l) 2qBM(m)1 +< for all (i,j) satisfying [i-: ~1] 

>O and [i-: ~tl>O where i-=i-v is the fixed representation of K as in (3.2), 
X.(Q K)l = i-(Q K) and C, IC, q are constant (positive) independent on m in M 
and (i,j). 

Combining (3.4) with (3.2) we have 

(3.5) lf(x)l<C'(I +d,IX.(QK)l) 2q(#W,,a)2 f Ke-Pp<H<x-'kJJB x(m(x- 1k))1+Fdk 

where C' does not depend on min M, i-=i-p, p=pp, andf is the function 
defined by f(x)=(rr:(a, 11)(x)p, p). 
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By the definition of W,,, as in (3.1), #W,,, is estimated by 

(3.6) 

Let us estimate EM(m(x- 1k))1+•. Let P;=M;A;N; be a minimal para­
bolic subgroup of M. Choosing P; suitably, we can assume A 0 =AA;. 
Define p*, k*(m), H*(m) and n*(m) for M by the same as in Section 1. 
Then we have (see Lemma 1.1) EM(m)=EM(expH*(m)n*(m)), me M. 
Furthermore by (4) in Lemma 1.1, we have EM(m(x- 1k))1+' ~ 
a const. e-P*<H*<m<x-•kl)l for all x e G and k e K. Hence by (3.6) and (3.5), 
we have the following lemma. 

Lemma 2. There exist two positive numbers p, q and a positive con­
stant C such that l(tr(a, v)(x)<fti, ¢J ::;:C(I+d,JPIX-rlQx)\qEM(x)for all i= 
1, 2, · · ·, and x in G where Q x is the Casimir operator on K, X,,(Q x) is the 
constant determined by "t (Qx)=X,,(Qx)I, ¢1, ¢2, • • • is an orthonormal 
basis of H(a, v) satisfying E(-rJ¢i=¢Jor some -rt in <ff(K). 

Theorem 1. Let (tr, H) be an irreducible component of principal P­
series representation tr(a, v) of G where P=MAN is a parabolic subgroup 
which is cuspidal, a is a discrete series representation of Mand e• is a unitary 
character of A. Then the character e. of tr is tempered. 

Remark. There is a table of characters of all irreducible components 
of principal P-series representations of G which is obtained by A.W. Knapp 
and G. Zuckerman ([14]). In view of the table, we see that all character 
of subrepresentations are tempered. In this paper we give a proof which 
is different from [14]. 

Proof of Theorem l. Let ¢1, ¢2, • • • be an orthonormal basis of H. 
We choose¢, which has the same property as in Lemma 2. Let p and q 
be the same as in Lemma 2. Then there exists a positive number m such 
that the series cm= I:c,JEs<K> (1 + d,)Pd-r'(X,(Q x))2<q-m) is convergent. We 
fix such a number m. By definition 

18.(f) I~~ I Lf(x)(tr(x)<ftt, <ftt)dx I 

::;:~ (X • .(Qx))-zm L (/Q;_m)(x)\l(tr(x)<fti, <ftJldx 

= I; I; (X,(Q x))_zmf I (f Q;_m)(x)I I (tr(X)'Pt, 'Pi)I dx. 
[r]E&(K) E(,)¢,-¢; G 

Hence by Lemma 2.1 and Lemma 3, we have 
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Let r be a positive number satisfying c= L B(x)2(1+d(x))-'dx<oo. Then 

we have l8if)I-S:.ccmv1,o·Jr,,(j) for all/in C;;'(G). Thus the character 8~ 
is tempered. This completes our proof. 

§ 4. Pre-Hilbert structure on HiC1i(G, X) 

First of all, in this section, we define a topological G-module H;cxiCG, X) 
for an infinitesimal character X of 0. Let P0=M 0A0N0 be the minimal 
parabolic subgroup of G and fj a 0-stable Cartan subalgebra of g contain­
ing a0• The root system and Weyl group of (g0 , fj0 ) will be denoted by 
iP and W respectively. Canonically W acts on the universal enveloping 
algebra u(fj) of fj0 • We regard u(fj) as an algebra of polynomial functions 
on the dual space of fj0 , and denote I(fj) the stabilizer of W in u(fj). Let 
iJ>+ be a positive root system of@. Therefore gc=fjcEBI:aeai+9a, 9a= 
{XE g0 ; ad(H)X=a(H)Xfor all Hin fj}. We put n+= I:ae«i+9a· Then 
there exists a unique isomorphism r of O into u(fj) such that z - r(z) e 
u(g)n+ for z in 0. Let p be one half the sum of all positive roots in iP, 
and defineµ of O into u(fj) by µ(z)(A)=r(z)(A-p) for z in O and linear 
form A on fj0 • µ is an isomorphism of O onto /(fj). Therefore each 
character X of O is parametrized by X=X1 where X(z)= µ(z)(A) for some linear 
form A on fj0 • By the definition, X,1=X 1 for alls in W. Let Xa and X_a 
be the basis of 9a and g_a respectively satisfying B(Xa, X_a)= 1, and put 
Ha=[Xa, X_a] where Bis the Killing form on 9c·A character X1 of O is 
regular if A(Ha)=!=O for all a in iP and real if A(Ha) e R for all a in iP. 

Definition 1. Let 7JT be a fundamental root system of iP. We put 
7JT(X)={a E 7JT; A(Ha) E R-{o}}. The number i(X)=#7JT-#7JT(X) is called 
the index of X=X1• 

Definition 2. Let X be a character of 0. A function fin C 00 (G) be­
longs to H;cxJ(G, X) if f satisfies (z-X(z))f=O and llbifb2ll<oo for all z in 
0 and bi in u(g), where II II is the seminorm on C 00 (G) defined by 

(4.1) 11/112= lim ei<xlf lf(x)j 2e-•d(xldx, 
•-+o G 

d(x)=d(xo, o). 

We restate the properties for H;cxJ(G, X) in the following two lemmas 
(see Lemma 2.1 and Lemma 2.2 in [20]). 

Lemma 1. H;(X)(G, X) is a topological G-module with seminorm II II 



Schur Orthogonality Relations 269 

under the canonical left (resp. right) action L and R. Furthermore for each 
fin Hicx>(G, X) and x in G, IIL.,fll=IIR.,fll=llfll-

Let 1: be an irreducible unitary representation of K. We define two 
actions X,* and *X, on C00 (G) as in (2.7). Then by Peter-Wey! theorem 
on the compact group K, we have 

(4.2) 

Lemma 2. Let f be an element in Hi<Xi(G, X). Then we have 
(I) IIX,*f *X,,ll:s:;:(d,d,,)11211fllfor all 1: and 1:' in iff(K), 
(2) the expansion off in ( 4.2) converges to fin the topology HicxiC G, X). 

Remark 1. Let H;cx>, K be the set of all K-finite (left and right) 
functions in H;cxiCG, X). H;cx>,K is an algebraic u(g)-module (see for a 
proof, Lemma 3.5 in [19]). 

The purpose of this section is to prove Hi<l> (G, X) is a pre-Hilbert 
space with norm II II- This will be proved by using two asymptotic ex­
pansion theorems for 1:-spherical eigenfunctions on G. 

Definition. A unitary representation (1:, U) of KX K is a double 
representation of Kif there exist two unitary representations -r:1 and 1:2 of 
K such that 1:(k1, k 2)¢,=1:i(k1)¢,1:z(k2) for all ki in Kand¢, in U. 

For the double unitary representation of K, we shall denote 1:=(1:i, 1:2). 

Letfbe a C00 -function on G. We define for each x in G, 

(4.3) 

We see that F(x) belongs to L2(KXK) for a fixed x in G. 

Lemma 3. Letf be a K-finite C00 -function on G and F=F 1 the same 
as in ( 4.3). Then there exists a finite dimensional double unitary represen­
tation (1:, U) of K such that F(x) e U and F(kxk')=1:i(k)F(x)1: 2(k') for all 
x in G, k, k' in K. 

Proof We define two unitary representations of Kon L 2 (KXK) by 
(r_i(k)¢,)(k1, k 2)=¢,(k 1k, k2), (r_z(k)¢,)(ki, k2)=¢,(k 1, kk 2) for kin Kand¢, in 
L2(KX K). Then r. = (r.1, r.2) is a double unitary representation of K. 
Furthermore we have F(kxk')=r.i(k)F(x)r_z(k') for all x in G and k, k' in K. 
Let Ube the subspace of L2(KX K) generated by the set {r.1 (k)F(x)r.z(k'); 
k, k' e Kand x e G}. Since f is K-finite, the dimension of U is finite, Let 
1:=(1:1, -r:2) be the restriction of r. to U. Then F and 1: have the property 
as claimed. 
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Remark 2. By definition of F=F 1 , we see that there exists </> in U 
such thatf(x)=(F(x), ¢>)for all x in G where/ is a K-finite C 00 -function on 
G. 

Definition 4. Let -r=(r- 1, -r2) be a finite dimensional double unitary 
representation of K realized on U. A U-valued C 00

- (resp. L2-) function 
Fon G is -r-spherical if F satisfies F(kxk')=-ri(k)F(x)-rz(k') for all k, k' 
in Kand x in G. 

Let f be a K-finite function in Ht(Z)(G, X). We define F=F 1 as in 
(4.3). By Lemma 3, Fis (-r, U)-spherical on G. Furthermore by using 
the integral formula of Lemma 1.2, we have 

(4.4) llfll2=C 0 lim et<xlf \F(a)\ 2D(a)e-e<1<alda. 
e:--++O At 

Since (z-X(z))f =0, we have also 

(4.5) (z-X(z))F=O for all z in 5. 

Thus the function F=F 1 is a -r-spherical eigenfunction of 0. Concerning 
with the integral of ( 4.4), we give the following estimations for d; 

(4.6) there exist two positive constants c1 and c2 such that c1eP<IogaJ 
<d(a)<c 2ePOogaJ for all a in At (we remark that d(a)2=B(log a, log a) 
for all a in A 0). 

Let lJT(A0) be the simple root system of (P0, A 0). We choose the dual 
basis w1, w2, • • ·, w1 of a0 with respect to lJT(A0) = {a1, a 2, • • ·, a 1} satisfying 
ai(wJ)=ot,J· We put At(R)= {a e At; a (log a)> R for a e lJT(A0)} for a 
given positive real number R. z+ =the set of all nonnegative integers. 
We state the first expansion theorem for a i--spherical eigenfunction on G. 

Lemma 4. Let F be a i--spherical 0-finite function on G where i- is 
realized on a finite dimensional vector space U. Then F has the following 
expansion on At(R); there exist a finite number of linear forms vi, v2, · · ·, vP 
and polynomials Pi,P 2, • • ·, pq on a0 and Ft,; (I ~i<q, 1 <j~p) such that 

where ct,J,m e U, 
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Furthermore the series Fi , is uniform and absolute convergence on 
Ait(R). 

(For the proof of this lemma, see Theorem 8.32, [16]). 

We now parametrize A 0 by A 0 ={ai; t=(t 1, t2, • • ·, t1) e R1} where 
ai=exp (I;i= 1 tiwi). Therefore Ait(R) eat if and only if ti> R for all i= 1, 
2, .. ·, [. 

Lemma 5. Each K-finitefunction in Hi(Xi(G, X) is tempered. 

Proof Let f be a K-finite function in Hi<xi(G, X). We define the 
-r-spherical eigenfunction F=F 1 of O as in Lemma 3. In view of (4.4) 
and (4.6), we have 

lim ei<x>J \(dp0F)(a)j 2e-•p(loga>da 
s-+O AiJ(R) 

<aconst. lim ei<x>f JF(a)j2D(a)e-• 4 <a>da<oo. 
s-+o At 

Using the expansion for F as in Lemma 4, an elementary calculation 
verifies that (Re J.11)(wk)<O for all (j, k) where J.1/s are the same as in the 
expansion of F. 

Consequently, it follows from a result of Casselman and Milicic (see 
Theorem 8.47, [16]) that l(dp0F)(a)j <a const. (1 +d(a)r for all a in A0 for 
a suitable nonnegative number n. Therefore Fis tempered, and hence f 
is also tempered (see Remark 2). 

We shall state the second theorem for the asymptotic expansion 
(which is due to Harish-Chandra) for a -r-spherical eigenfunction of O o:rt 
G. Let P=MAN be a fixed parabolic subgroup of G. We denote the 
Lie algebras of A and M respectively by a and m. m1 =mEBa is the Lie 
algebra of reductive group M 1 = MA. 

Notations: u(m1)=the universal enveloping algebra of (m1)c, 
OMi =the center of u(m1), 

W1 =the Weyl group of ((m1)c, Qc), 
li(fj)=the ring of all W1-invariants of u(fj), 
µ1=the canonical isomorphism of OMi to Ii(fj) and 
µ=the canonical isomorphism of Oto l(fj). 

We see that there exists a unique isomorphism µp of O into OMi such that 
µ=µ1oµp. 

Let A+ and 'IF(A) be the positive Weyl chamber and the simple root 
system of (P, A) respectively. We define a function fi on cl (A+) by 
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f,(a)=minaH<A> a(Ioga), a e cl(A+) where cl(A+) is the closure of A+. 
We denote (1:'x,c, U)=the restriction of 1:' to KM. 

Lemma 6. Let F be a tempered a-finite (1:', U)-spherical function on 
G. Then there exists a 0M1-finite tempered 1:'x,c-sphericalfunction Fp on M1 

and a nonnegative real number r such that 
(1) l(dpF)(am)-Fp(am)l~aconst. BM(m)e-fiCa>(I+d(ma))' for all a 

in cl (A+) and m in Q where Q is a compact subset in Mi, 
(2) µp(z)Fp=(ZF)pfor all z in 0. 

(For a proof this lemma, see Chapter 14, II, [23)). 

The function Fp is called the constant term of F along P. By (1) in 
the above lemma, we see that FP is uniquely determined by F. Further­
more since OMi is a free µp(a)-module with finite rank (see Corollary 4.2.10, 
I, [23)), it follows from (2) in the lemma that FP is of the form 

(4.7) Fp(am)=I:f= 1p,(Ioga)e 1•<1oga>pi(m) where p, is a polynomial and 
l, is a purely imaginary valued linear form on a, F, is a tempered 1:'x,c­
spherical eigenfunction of OM on M for some character Xf of OM· 

Let e be a fixed subset of 1Jl"(A0). We put 

(4.8) Ae={a e A 0 ; f,(loga)=O} for all [3 in 1Jl"(A0)-{a}}. 

Then there exists a parabolic subgroup Pe of G such that Pe=MeAeNe 
(see for precise descriptions [1] or [26)). Let a be an element in e, and 
put 0a=0-{a}. Then the parabolic subgroup Pe«=MeaAeaNea satisfies 
MeaCMe, Aea::)Ae and Nea-:::JNe. We put Pe,«=MenPea· Let (P:) 0 

= (Mt)o(A't)o(Nt) 0 be the minimal parabolic subgroup of Me. Then we 
have A 0 =Ae(A;f) 0• 

Let r be a positive real number and cl (At) the closure of At in A 0• 

We put for each a in 1Jl"(A0). 

(4.9) A(a, r)={a e cl(At); a(Ioga)>rp (log a)}. 

Lemma 7. For a sufficiently small real positive number r, we have that 
cl (At)c u aH(Ao) A(a, r). 

Proof We put S+={a e cl (At); d(a)= l}, and define two functions 
f,gbyf(a)=maxfiHCAo>fi(loga),g(a)=p(loga). s+ is compact and f 
(resp. g) is continuous on cl (At). Therefore g (resp. f) has the maximal 
(resp. minimal) value r2 (resp. r1) on s+. Since f and g are positive on 
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S+, r1 and r2 are positive. Let r be a real number satisfying O<r<(rifr 2). 

We claim that cl (A:)C U aH<Ao> A(a, r). Let a be an element in At. We 
put H'=d(a)- 1 log a. Then a'=exp H' belongs to s+. Consequently 
r1-::;.J(a') and g(a')<r 2• Choose an element a in ?F(A0) satisfying a(log a') 
=f(a'). Then we have a(loga')>rp(log a'). Hence the lemma follows. 

Lemma 8. Let F be a tempered 0-.finite (r, U)-spherical function on 
G. Assume that Fp=O for all maximal proper parabolic subgroup P of G. 
Then Fis square integrable on G. 

Proof Let A(a, r) be the same as in Lemma 7. Then we have 

(4.10) 

We now fix an element a in ?F(A0), and consider the maximal parabolic 
subgroup P=MAN corresponding to the set 6l={a}. For the minimal 
parabolic subgroup P't=M't A;N; of M, we define p* by the same as in 
Section 1. By (1) in Lemma 6 and our assumption Fp=O, the function 
dpF is estimated by 

(4.11) \(dpF)(a)\ <a const. BM(a)(l+d(a))Pe-•P<1oga) 

for all a in A(a, r) where p is a nonnegative integer. Hence by Lemma 
1.1, we get \dpF(a)\ <c 1e-cp(loga>e-p*Cioga> for all a in A(a, r) where c and c' 
are positive constants. Combining (4.10) with this inequality, we have 
our conclusion. 

Remark 3. Let F be a square integrable i--spherical function on G 
and X a character of 0. If F satisfies the differential equation (z-X(z))F = 
0 and Fis nontrivial. Then Xis real regular. For this proof, see Harish­
Chandra's classification for discrete series representations of G ([8] or 
Theorem 14.4.9 and Theorem 16.3.19, II, [23]). 

We now prove our main purpose of this section. 

Theorem 1. Let HicxiCG, X) be the topological vector space as in 
Definition 2. Assume that HmiCG, X)=;i::{O}. Then the space has a pre­
Hilbert structure with norm II \\. 

Proof Letfbe a nontrivial element in HtcxiCG, X). It is enough to 
show that if llfl\=0, then there is a contradiction. By Lemma 2, the series 
L.i•,•'El<Ki(X,*f *X,) converges to fin the topology of HtcziCG, X). Con­
sequently we have llfl\2 = L.i•,•'e.r<Ki\\X,*f *X,,\12. Therefore we can assume 
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that/is K-finite and nontrivial. Define a i--spherical eigenfunction F=F 1 

as in (4.3). Let Pt, 1,1J and Ft,J be the same appearing in the expansion of 
Fon A +(R) as in Lemma 4. By our assumption F=!=O, we can assume 
that PtF;,J=!=O for all (i,j). Furthermore since 

we get for each 1,1=1,1t, (1) (Re1,1)(mk)~O for all k=l, 2, · · ·, /, (2) #(9,< 
i(X) for all i where 8;={a1c e '/Jl'(A0); Re1,1;(m1c)=0}. We choose et. satisfy­
ing #8t<#8 .. for all i= I, 2, · · ·, p. Put 8=8to· Then we have 

(4.12) i(X) >#<9. 

Let P6 =M 8 A6Ne be the parabolic subgroup of G corresponding to e. 
and FPe the constant term of F along Pe, Combining (I) in Lemma 6 
with the expansion of F in Lemma 4, the choice of e implies that 
Fp8 =/=0. Let Fp8 = L,1cP1ce1kF1c and Xf be the same as in (4.7). 

We put for each a in e, <9a=8-{a}, and consider the parabolic 
subgroup P-f,a = Me n P Ba= M't,aA't,aN't,a· Then we have Aea = At,«Ae, 
Define a function FPe,a on M 9 for a fixed a in A0 by (Fp9 ,a)(m)=FP/am). 
Then we have (FPa,ah"a,a(a*m*)=FPea(aa*m*) for all a in Ae, a* in A't,a 
and m* in M"t,a· Therefore 

(4.13) 

where lk and lJ,k are purely imaginaly valued linear forms on ae and at.a 
respectively. In the expression of dp0 F= Li.i=i Li.1J=1p,e"iF;,J on At(R) as 
in Lemma 4, we have #<9 1 < #<9 = dim A0• However by the estimation for 
(dp0 F-FPe) as in Lemma 6 and the fact dim A0 «=dim A0 + I, it follows 
from the uniqueness for expansion of Fon At(R) that FPea=O for all a 
in e. Hence by Lemma 8 and Remark 3, xt is real regular. Consequently 
we have a contradiction; 

i(X)=#'IJl' -#'/Jl'(X)<#'/Jl' -rank (M9)=dim Ae<i(X). 

This completes our proof. 

Lemma 9. Let notations and assumptions being as in above theorem. 
In the term of expansion of F=F,= L,; Li.JP;e"1F;,J on At(R), we have 
i(X)=#<91 andp,:=a constant where f is a nontrivial function (K-finite) in 
H;cxiCG, X) and<9J={a1c E '/Jl'(A0); Re1,1/m1c)=0}. 

Proof In view of the proof for Theorem I, we see that i(X) < #<9 J· 
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On the other hand since 

(4.14) llfll2za positive const. lim,-+oetCx>J J(dpF)(a)J 2 e-•p(Ioga>da, 
Ai/ 
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we have i(X)>#r:9r Consequently i(X)=#r:91 for allj= 1, 2, .. ·, p. Again 
by (4.14), we have also Pi=a canst. for all i= 1, 2, ... , q. 

Lemma 10. Let f be a nontrivial K-finite function in Htcz/ G, X). Then 
there exists a cuspidal parabolic subgroup P of G such that Fp=f=.O where 
F=F 1 and FP is the constant term of F along P. 

Proof Let <91 be the same as in the above lemma, and put <9=<9r 
We denote Pe=MeAeNe, FPe=L,kPke'•Fk. By the choice of e, we have 
FPe=f=.O and (Fk)P;,a =0 for all a in e, where <9a=<9-{a}, Pt,a=Me n 
Pea· Hence Fk is square integrable on M. Since Fk is nontrivial, it follows 
from a result of Harish-Chadra that rank M = rank Mn K. Thus P 6 is a 
parabolic cuspidal subgroup of G. 

Lemma 11. Letf be a nontrivial K-finite function in HHx)(G, X) and 
Fp 9 = L,kPke'•Fk the constant term of F=F 1 along Pe where e is a given 
subset of 'l[f'(A0) and Fk is a tempered 1: KM-spherical function on Me satisfying 
(z-Xiz))Fk=O (z e OMe) for some character Xk of OM, A is a polynomial 
function on a8 and Ak is a purely imaginary valued linear form on ae. As­
sume that FPe=/=O. Then we have i(X)=dim A 8 +i(Xk)for all k. 

Proof Let P;=M;A;N; be the minimal parabolic subgroup of 
M 8 and dp~Fk= Li.f=1 Li.J=iPk,te••·1Ft be the expansion of Fk on (At)+(R) 

as in Lemma 4. We put <9k,1={au e <9=W((A;)+); ReJJk,ia>u)=O}. Let 
Pt,., be the parabolic subgroup of Me corresponding to the set ek,J· Then 
we have (Fk)P* =f=.O. We now fix a number k and denote (F;)p• = e,., e,,, 
L,tPu,J,te•u,J,tF;, 1,t where F;, 1,t is a solution of the differential equations 
zF;, 1,t=X;, 1,tCz)F;,1,t (z e oM;,) for some character X;,1,t of OMh.· By 
the choice of ek,J• XL,t is real regular. Therefore i(Xk)= #<9k,J" 

Since (Fp 0 )p• (a*m)=Fp (aa*m) for all a in A 8 , a* in At;., and 
Q,a e•.J Bk.J ' 

min Mt •. ,, 

(4.15) F (aa*m)= L,P e''(L,P e•u,1.,F*. ) 
P8k,J i t u,t u,j,t u,J,t 

where Ak and Au,J,t are purely imaginary valued linear forms. Since Xt,J,t 
is real, it follows from the expressions for FP and the expansion of Fin e,., 
Lemma 4, that i(X)=#W-rank Me,.,=dim A9,.,=dim A 8 +dimAt •. J= 
dim Ae+i(Xk) and PkPu,J,t=a canst. (see Lemma 9). Thus the lemma 
follows. 
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§ 5. Schur orthogonality relations 

Let X be a character of O and HicxiCG, X) the same as in (4.1). We 
define a Hermitian form ( , ) on HwiCG, X) by 

(5.1) 

where d(x)=d(xo, o), d( , ) is the Riemannian distance on the symmetric 
space G/K and o is the origin. 

By Theorem 4.1, the form ( , ) is a positive definite Hermitian form 
on HicxJ(G, X). 

Definition 1. H(G, X): the completion of Hwi(G, X), 
Hx(G, X): the set of all K-finite elements in H(G, X), 
0v: the set of all characters of O satisfying H(G, X)::;i= 
{O}. 

Remark 1. Let Hi(X),x be the set of all K-finite functions in 
HicxiCG, X). Since Hi(X),x is dense in HwiCG, X), we have Hx(G, X)=HwJ,x· 
Therefore all functions in Hx(G, X) are real analytic and tempered (see 
Lemma 4.5). 

Let R be the right regular representation of G on H(G, X). We see 
that the representation (R, H(G, X)) is unitary. 

Definition 2. An irreducible unitary representation (rr, H) of G is 
realized on H(G, X) if (rr, H) is unitary equivalent to a subrepresentation 
of (R, H(G, X)). 

Let (rr, H) be an irreducible unitary representation of G and C;(G) 
the set of all c=-functions on G with compact support. For a fixed K­
finite vector </> in H, we put 

(5.2) H(ef>)={rr(f);f e C;(G)} where rr(f)= Lf(x)rr(x)dx. 

Then all vectors in H(ef>) are differentiable. Furthermore since rr is irre­
ducible the space H(ef>) is a G-invariant dense subspace of H. Let ef>o, 'Yo 
be two fixed K-finite vectors in H. We define a linear operator S,,0 of 
H(</>0) to c=(G) by 

(5.3) S,,h(f)ef> 0)(y) = (;r:(y);r:(f)<p0, -to) for y in G. 

Immediately we have 

(5.4) S,,. is injective, RxoS,,.=S,,.orr(x) for all x in G. 



Schur Orthogonality Relations 277 

Lemma 1, Let (n-, H) be an irreducible unitary representation of G. 
Suppose that there exist two K-finite vectors to and </>o such that S.i,. (</>0) e 
H(G, X)for some X in 0"'. Then we have Sto(;r(/)</>0) e H(G, X) for allf in 
C;'(G). 

Proof. Let X~ be the infinitesimal character of ;r. Then we have 
X=X~ and zS+hr(f)<j>0)=X(z)Sto(n-(f)<j>0) for all fin C;;'(G). It remains to 
prove IIS+0Cn-(f)<j>0)Jl<oo. Let Wbe the support off. We put 

cf= f )f(x)l 2dx= f )f(x)J 2dx. 

By using Schwarz inequality, we have 

~cl Iim si<z>f wL l(;r(yx)<J>o, ,Jro)l2e-•a<x>dx 

<c1 vol(W)IIS+.C</>0)112 

where vol(W) is the volume of W. Hence the lemma follows. 

Lemma 2. Let notations and assumptions being as above lemma. 
Then the representation (n-, H) is realized on H(G, X). 

Proof. Let H' be the minimal closed invariant subspace of (R, H(G,X)) 
containing S+o (</>0). We put n-'=the restriction of R to H'. By Lemma 
1, we have S+0CH(<j>0))cH'. We shall prove that (n-', H') is irreducible. 
Choosing </>c suitably we can assume that E(1:)<j>0 =<j>0 for an element [7:] in 
S(K). We put H(1:)=E(1:)H and 

R(1:)= {! e C;'(G); X.*f=f, f xf(kxk- 1)dx=f(x) for all x in a}. 
R(1:) is an algebra with convolution product. Furthermore the represen­
tation of algebra R(1:) on H(1:) is irreducible (see [7], Theorem 6). Con­
sequently since dim H(1:)=dimS+.(H(1:)) is finite, the algebra representation 
of R(1:) on S+0(H(1:)) is irreducible. Let Wbe a nontrivial closed invariant 
subspace of H' and W .L the orthogonal complement of W. Then we have 
S+0(H(1:))CE(1:)W+E(1:)W.L. Consequently the irreducibility of the re­
presentation of R(1:) on S+0(H(1:)) implies S+0(H(1:))cE(1:)W or S+0CH(1:)) 
cE(1:) W. Since S+0(H(1:)) contains S+.C</>o), it follows from this fact that 
S+.C</>o) belongs to W or W .L. However H' is the minimal invariant sub­
space of H(G, X). Hence W=H' and W.L={O}. Thus n-' is irreducible 
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as claimed. Therefore 1e and n' are irreducible and infinitesimal equivalent 
to each other. We now apply Corollary 4.5.5.3 in [26] to those of repre­
sentations. Then n and n' are unitary equivalent. 

The following theorem will be proved in Section 6. 

Theorem 1. An irreducible unitary representation (n, H) of G is realized 
on H(G, X) if and only if there exists a K-finite vector <fa in H such that S¢(<j>) 
E H(G, X). 

We now establish the Schur orthogonality relations of a representa­
tion of G realized on H(G, X). 

Theorem 2. Let X be an element in av. Then for each two irredu­
cible unitary representations (n, H) and (n', H') of G realized on H(G, X), 
we have the following. 

There exists a positive constant d, such that 

lim ei<xlf (n(x)<j>, t)(n'(x)<fa', t')e-•a<x) dx= {d;;1(<fa, <fa')(,fF, t') if 1C~1e' 
•-+o a O otherwise. 

Proof Let <fa and t be K-finite vectors in H. By Lemma 1 and 
Lemma 2, we have S;,(<j>) e H(G, X). Let H* be the closure of S;,(H(<fa)) 
in H(G, X) and n* the restriction of R to H*. Then by the proof of 
Lemma 2, (tr, H) and (n*, H*) are unitary equivalent. Applying the same 
arguments as in the proof of Theorem 4.5.9.l and Theorem 4.5.9.3, [26] 
to those representations, the conclusion in this theorem follows. 

Remark 2. When the case i(X)=0, n and n' are square integrable. 
Therefore the relations in Theorem 1 is well known as a result of R. 
Godement [6]. In [20], we treat the same theorem as above for the case 
i(X)= 1. 

Theorem 3. Let X be an element in av satisfying i(X) :2:: 1. Then each 
irreducible unitary representation (tr, H) of G realized on H(G, X) is equiva­
lent to a subrepresentation of principal series of G induced from a cuspidal 
parabolic subgroup P=MAN with i(X)=dim A. 

Proof Let <fa be a fixed K-finite vector in H. We put f (x) = (n(x)</>, <fa). 
Then we have f :;t= 0. Define F = F1 as in ( 4.3). By using Lemma 4.10, 
we have there exists a cuspidal parabolic subgroup P =MAN such that 
Fp=/=-0. FP is (rxM, U)-spherical function on MA. Bearing in mind 
Lemma 4.11, Fp is of the form Fp(am)= :z=i:=1 e"<1oga)Fim) for a in A and 
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m in M where Ak is purely imaginary valued linear form on a and Fk a 
square integrable function on M satisfying (z-Xiz))Fk=O, z e OM for a 
character Xk of OM· We fix a number k. Let V be a closed invariant sub­
space generated by {RmFk; me M} in U®L2(M). Then the right regular 
representation a of M on V is equivalent to a sum of finite number of 
discrete series. We denote V=H,. Define a L2(K)®U®L2(M)-valued 
C 00 -function g on G by g(kman)=e-<•+Pp)(loga)ri(k)Fk(m), 1:=(1:1, 1:z), Since 
Fk is rx,,,-spherical the function g is well defined. Let (L2(K)®H.), be the 
same as in (2.3). Then g belongs to (L2(K)®H,),. We define a unitary 
representation rr(a, }./) as in Section 2. We shall prove rr is unitary equi­
valent to a subrepresentation of rr(a, }./). Let c be the positive constant 

determined by ll/112=cf J )ri(k)g(m)l2dmdk. Using the Schur orthogo­

nality relations of rr in Theorem 2, we have ll/ll2=(drr)-1[s5\2• Let H 0 be the 
abstract subspace of H generated by {rr(x)s5; x e G}. H 0 is a G-invariant 
dense subspace of H. Moreover since rr is unitary, we have [rr(x)tl=ltl 
for all x in G and t in H 0• Let us now define a linear operator YJ of H0 

to (L2(K)®H.), by YJ(rr(x)s5)(y)=(cdn)112g(x- 1y), x, ye G. By definition, 
YJ is unitary and YJorr(x)=rr(a, l,l)(x)oYJ on H 0 for all x in G. Consequently 
YJ is extended to a equivalent mapping of H to (L2(K)®H.),. This com­
pletes our proof. 

Remark 3. Combining Theorem 3 with Theorem 3.1, we see that all 
irreducible unitary representations realized on H(G, X) have the tempered 
characters. We now correct the error in the proof of Theorem 6.4, [20]. 

§ 6. Realization of a regular principal series representation 

In this section, we shall prove that all regular principal series unitary 
representation, induced from cuspidal parabolic subgroup, of G is realized 
on H(G, X). Let P0 =M 0A 0N 0 be a minimal parabolic subgroup of G with 
0-stable split component A 0 and 7Jr(A0) the simple root system of (P0, A0). 

Let/ be a K-finite C 00 -function on G. We define a (r, U)-spherical func­
tion F=F 1 as in (4.3). Assume that Fis tempered. Then F has the 
constant term FP of F along a given parabolic subgroup P of G. The 
function F P is of the form 

(6.1) Fp(am)= :Z::1-iA (log a)e••<1ogaJFim), a e A, me M where A is a 
polynomial function and Ak a purely imaginary valued linear form on a, 
and Fk is a tempered (rxM, U)-spherical function on M satisfying 
(z-Xiz))Fk=O (z e oM) for some character Xk of OM· 
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Definition 1. A function Fon G belongs to do{G, X) (X is a given 
character of 0) if F has the following properties: 

(1) there exists a finite dimensional double unitary representation 
(r, U) of K such that Fis ?"-spherical, 

(2) Fis tempered, and satisfies (z-X(z))F=O for all z in 0, 
(3) for each parabolic subgroup P=MAN, if Fp=/=-0 then i(X)= 

dim A+ i(Xk) and p. is constant for all k = 1, 2, · · ·, s where p., Xk are the 
same as in (6.1). 
A parabolic subgroup P is standard if P=Pe for a suitable subset {F) in 
'IJl"(A0). All parabolic subgroup P of G is conjugate to a standard parabolic 
subgroup under an inner automorphism of K. Let F be a ?"-spherical 0-
finite tempered function on G and P=MAN a parabolic subgroup of G. 
In view of Lemma 4.6, we have Fp,(mk)=T 1(k)Fp(m)Tlk)· 1 for all m in 
MA where Pk=kPk·1, mk=kmk·1, k is a fixed element in K. Therefore 
the above assumption (3) can be restricted to all standard parabolic sub­
group of G. 

Lemma 1. Let P=MAN be a standard parabolic subgroup of G and 
Fa function in d 0(G, X) with constant term FP= I;k e••Fk. Then the TKx· 
spherical function Fk belongs to d 0 (M, Xk) where X,. is the same as in (6.1 ). 

Proof. Let Pe=MeAeNe be a parabolic subgroup corresponding to 
a subset {F) in 'IJl"(A0) and (Pt) 0=(Ml)o(Al)o(Nl) 0 the minimal parabolic 
subgroup of Me, Then we have (FJ = 'IJl"((At)0). Therefore all standard 
parabolic subgroup of Me are given by Pt,=MenPe, for the sets {F)' in e. 
We shall denote the Langlands decomposition of Pt, by Pt,=Mt,At,Nt,. 
We see that Ae,=AeAt,. Define for each fixed element a in Ae, a TKx· 
spherical function FPe,a on Me by (FPe,a) (m)=FP/am). Then we have 
(FPe,a)p9,(a*m)=FPe'(aa*m) for a e At,, a e Ae and me Mt,. Consequently 

Fpe•(aa*m)= I;k I; 1p., 1eh+••.JFk,J• where (Fk)P9,= I:; 1 e••,1Fk,J and Fk,J 

satisfies (z-Xkjz))F,, 1=0 for all z in oM;,. 
By the assumptions in (3) for F, we have P., 1=aconst. and i(X)= 

dimAe,+i(X,, 1)=dim Ae+i(Xk). Hence i(Xk)=(dim Ae,-dim Ae)+i(X,, 1) 

= dim At,+ i(Xk, 1). Thus the lemma follows. 

Let a be a fixed element in 'IJl"(A0). For the simplicity of our nota­
tions, we denote the parabolic subgroup of G corresponding to 0={a} by 
Pa=MaAaNa. Since dim Aa= 1, Aa is parametrized by Aa={exp tH 1 ; 

t e R} where H 1 is the element satisfying a(H 1)=1. Let P;=M;A;N; 
be the minimal parabolic subgroup of Ma satisfying A 0 =AaA;. We define 
D=Da as in Section 1, and extend it by Da(aa*)=Da(a*) for a e A, a* e 
A*. Let r be a positive real number as in Lemma 4.7. We define a subset 
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B,(t) of cl((A*)+) by B,(t)= {a* e cl((At)+); (I-rp(H 1))t>(rp-a)(Ioga*)} 
where t>O and cl((At)+) is the closure of positive Weyl chamber (At)+ 
of At. Then we have the following; for the set A(a, r) as in Lemma 4.7, 

(6.2) A(a, r)= U i~o aiB,(t), ae=exp tH, (see, for a proof of this fact 
Lemma 6.4 [20]). 

Lemma 2. Let F be a function in do(G, X). Then we have 

( *) lim si<zlJ jF(a)j 2D(a)e-•P<JogaJda<oo. 
s-+o At 

(Proof by an induction on i{X)). If i(X)=O, our assertion is obvious. Let 
us assume i(X)=p>O, and for all linear semisimple linear group G' and 
the characters X' of a' with property i(X')<p-1, all functions F' in 
do(G', X') satisfy(*) (where a' is the center of universal enveloping algebra 
of g~). Let F be a function in do(G, X). In view of Lemma 4.7, it is 

sufficient to prove that I(F)=Iim sPJ JF(a)j2D(a)e-•P Clog aJ da <oo for 
•-+o A(a,r) 

all a in 'IF(A0). By using Lemma 4.6, we have 

l(F)<a const. lim sPj IFPa(a)j2Da(a)e-•P<loga>da 
s-+o A(a,r) 

and hence by (6.2) 

In the expression of FP= Z:,k ei•Fk, F. e do(M, Xk) and i(X.)=p-1 (see 
Lemma 1). Hence our inductive hypothesis implies that 

l(F.)=Iim sP-1f jF.(a*)j 2Da(a*)e-•POogalda* is finite. 
s-+o (A*)(i 

Consequently we have J(F)<aconst. (lim sJ e-• tdt)(Z:,l(F.)). This 
•-+o o k 

completes our proof. 

Combining Lemma 4.11 with Lemma 2, we have the following. 

Theorem 1. Let X be a character of O and d 0 (G, X) the same as in 
Definition 1. Then a K-finite function f belongs to H x ( G, X) if and only if 
F=F 1 e d 0 (G, X). 

Definition 2. A principal series representation ir (a, J.1) of G induced 



282 H. Midorikawa 

from a cuspidal parabolic subgroup P=MAN is regular if li is regular 
on a. 

Theorem 2. Let 11:(a, Ii) be a regular principal P-series representation 
of G. Then each K-finite matrix coefficient belongs to H x(G, X) where X is 
the infinitesimal character of 11:(a, Ii). 

Proof Let f be a K-finite matrix element of 11:(a, li). By using 
Theorem I it is enough to show that F=F 1 belongs to do(G, X). Let fJ 
be a subset of lJT(A0) and P8 =M 8 A8 N0 be the parabolic subgroup of G. 
Since Ji is regular on a and a has the real regular infinitesimal character, 
we see that X=X,<•,•) is regular. Therefore the constant term of F along 
Pe is of the form Fp8 = I:k e•Fk, lik is regular on a0 , and Fk satisfies 
(z-X,.(z))Fk=O for a regular character x,. of OMe· Let X,<•) be the 
infinitesimal character of a. Then there exists w in W such that w(lik + lk) 
=l(a)+li. Hence we have dim A0 +i(a,.)=dimA=i(X). Therefore F 
belongs to do(G, X) as claimed. 

Theorem 5 in the previous section will be proved by using the fol­
lowing lemma. 

Lemma 3. Let <fa be a K-finite function in H(G, X) satisfying X,, *<p= 
<fa* X,= <fa for two suitable elements -r, -r' in <ff(K). We put 

h(x, y)= f x X,(k)<fa(xky)dk, x, ye G. 

Then there are <p1, <fa2, ···,<pp and ,f,1, ,f,2, ···,,ftp in Hx(G, X) such that 
h(x, y)= I:k <faix),ttiy). 

Proof We define two functions fx and gx on G by fx(Y)=h(y, x) 
and gx(y)=h(x, y). Since fx, gx e Hx(G, X) (see Lemma 4.1), there exist 
<fa1, <p2, • • ·, <pp (ti, '1/tz, • • ·, ,ftq) in H x(G, X) and J;_,fz, • · · Jv (resp. g1, g2, 
· · ·, gq) in c~(G) such thatfy(x)= I:diY)<faix) andg,:(y)= I:; g;(x),tt;(y). 
Therefore, sincefy(x)=gx(y), we have 

(6.3) I:fiY)<faix)= I: g/x),tt/y). 
k j 

We claim all /2 belong to Hx(G, X). By (6.3) we have immediately 
I:k (zfk) (y)<faix) = l::1 g /x) (z,tt 1) (y) = I:k X(z)fiY)<faix) for each z in 0, x 
and yin G. Since {<fa1 <fa2, • • ·, <fav} is linearly independent over C, we get 
zfk = X(z)fk for all z in 0. Similarly we can prove all f/s are K-finite. 
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Define F+; and Ffk as in (4.3). Then we have 

(6.4) 

Let dP.Ffk= L,L,i,sPk,i,sek,i,sFk,i,S be the expansion of Ffk on At(R) as 
in Lemma 4.4. Bearing in mind <fa1, <p2, • • ·, <pp is linearly independent, the 
temperedness of F+; implies that Re vk,;,s(w,) :SO for all k, i, s, t where we 
use the same notations as in Section 4. Consequently by a result of 
Casselman and Milici<': (Theorem 8.4.7, [16)), all F1;s are tempered. Let 
P be a standard parabolic subgroup of G and (F-i,;)P, (Ffk)p the constant 
term of F-i,1, Ffk along P. By (6.4), we have 

(6.5) for all x in G. 

Since F-i,1 e do(G, X) (see Theorem 1) and <fa1, <fa2, ···,<pp is linearly inde­
pendent, we conclude that all Ffk belong to do(G, X). Hence again by 
Theorem 1, we haveh e HK(G, X). Thus we can prove the lemma. 

Proof of Theorem 5.1. Bearing in mind Lemma 5.2, it is sufficient 
to show that if (tr, H) is realized on H(G, X) then (tr(x)v, v) belongs to 
H(G, X) for a suitable K-finite vector in H. We put Ez(,r:)f =X,*f and 
Eh:)f =X,*ffor each fixed [din <ff(K). Let YJ be the equivalent mapping 
of Hinto H(G, X), and denote H'=YJ(H), tr'=the restriction of R to H'. 
Then we have tr'(x)oYJ=Y)otr(x) for x in G. Let [r] be an element in <ff(K). 
Since tr'(x) and Eh) are commutative, tr'(x)o(Ez(i·)oYJ)=(Eh)oYJ)otr(x). 
Consequently, it follows from the irreducibilities of tr and tr' that Ei(,r)oYJ 
=0 or Ei(r:)oYJ is bijective. On the other hand since H'=ffi,Ec(K>Eh)H', 
there exists a unique [r'] in <ff(K) such that Eh')H' = H'. Let us now 
choose [r] in <ff(K) satisfying [tr\K: r]>O. Then there exists u in H such 
that E(r)v=v. We put <fa(x)=((Eh')oYJ)(v))(x). Then <fa is K-finite and 
(-rr'(x)<fa, <fa)=(tr(x)v, v). We shall prove that f(x)=(tr(x)v, v) e H(G, X). 
Since Eh)<fa=<p, 

f(x)=lim ,/<xif (J Xlk)<fa(ykx)dk)<fa(y)e-•d<Yldy. 
,-+O G K 

We now apply Lemma 3. Then we have J K Xlk)<fa(ykx)dk= t <fa/Y)t/x) 

for a finite number of elements <p1, <fa2, • • ·, <pp and f 1, ,Jr2, • • ·, 'VP in 
HK(G, X). This implies thatf(x)= L,i t/x)(<fai, <fa) e HK(G, X). Hence we 
can prove Theorem 5.1 completely. 
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§ 7. Irreducibilities for regular principal series representations 

First of all in this section, we shall state a minimal K-type theorem 
of principal P-series representation of G. Let f be the Lie algebra of K 
and o a Cartan subalgebra of f. (]) K is the root system of (fc, be) and p x 
one half the sum of all positive roots in (]) K· All irreducible unitary re­
presentations of Kare parametrized by the dominant integral forms on be 
which is the highest weight. We shall denote by 1:=1:µ the irreducible 
unitary representation with highest weight µ. Let ir(a, l.i) be a fixed 
principal series representation of G induced from a cuspidal parabolic 
subgroup P=MAN. Then we have ir(a, l.i)\K = EBµEB*[ir(a, l.i)\K: 1:µ]1:µ 
where o* is the set of all dominant integral forms on be, ir(a, l.i)\K is the 
restriction of ir(a, l.i) to Kand [ir(a, l.i)\K: 1:µ] the multiplicity of 1:µ appear­
ing in ir(a, l.i)\K· 

Definition 1. An irreducible unitary representation 1: of K is a 
minimal (lowest) K-type of ir(a, l.i) if [ir(a, l.i)\K: 1:µ] >O and \µ+pK\~ 
\µ'+px\ for all rµ, in <ff(K) satisfying [ir(a, l.i)\K: 1:µ,]>0. 

The follownig theorem is due to D. Vogan [24]. 

Lemma 1. Each principal P-series representation n-(<1, l.i) has a minimal 
K-type with multiplicity one. 

For a proof of the lemma, see Theorem 15.1, [16] ([24] and [3]). 

Remark 1. The proof of Theorem 15.1 in [16] is given by using the 
minimal K-type theorem of the discrete series representation a. For the 
minimal K-type theorem of discrete series, see [10]. 

Let ir(a, l.i) be a regular principal P-series unitary representation of G 
with infinitesimal character X=X,<•,•J· Consider an irreducible component 
ir of ir(a, l.i). Then the characters 8, and 8,cu •l satisfy the following 
properties (see Lemma 2.2 and Theorem 3.1); 

(1) e. and en(u,v) are the solutions of differential equation 
(z-X(z))8=0, z ea where Xis the same as above, 

(2) e. and e,(u,v) are tempered. 
Therefore by using the uniqueness theorem for tempered invariant eigen­
distributions on G (see Theorem 13, [13]), there exists a constant c, such 
that 

(7.1) 

We now give a proof of the irreducibility of regular principal P-series 
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unitary representation rr(a, v) of G. 

Theorem 1. All regular principal P-series unitary representation 
rr(a, v) are irreducible. 

Proof Let P 0 = M 0A 0N 0 be a minimal parabolic subgroup of G with 
0-stable split component A0• We put G1 = KA;;-K, A;;-= the positive Weyl 
chamber of (P0, A0). Then G1 is K-invariant open dense subset of G. Let 
ef> be a K-finite element in H(a, v). We define a function f.(x)= 
(rr(a, v)(x)ef>, ef>)e-•a<x) for a fixed positive real number e. We see thatf. is 
a tempered C 00 -function on G1 (see Lemma 5.4, [20]). Let (rr, H) be an 
irreducible component of (rr(a, v), H(a, v)) and ef>1, </>z, · · · be orthonormal 
basis of Hsatisfying E('ri)</>i=</>i for some [1:'i] in iff(K). We denote </>=</>1 

and !'=!' 1, and definef,=(f,)¢ as above. Bearing in mind f. is K-finite, 
we have immediately 

for a suitable number n. 
On the other hand since rr(a, v) is a regular principal series, it follows 

from Theorem 5.2 that lim,-+oei<x18(f.)=d,- 1 where d, is the formal 
degree of IT, Similarly we have im,-+o ei(xl8,c,,,)=[rr(a, v): rr](d,)-1. Hence 
by (7.1), we have 

(7.2) [rr(a, v): rr]=c,. 

Let us now consider a following special subrepresentation tr of tr(a, v). 
By using Lemma 1, we can choose a minimal K-type !' of rr(a, v) with 
multiplicity one. Let (rr, H) be an irreducible component of tr(a, v) 
satisfying [trlx= !']:;i=O. Then [tr(a, v): tr]=l, and therefore by (7.2) c,=1. 
This implies that 8=8,<, ,)· Thus tr(a, v) is irreducible. 

Remark 1. The irreducibility of regular principal series tr(a, v) in­
duced from minimal parabolic subgroup of G is proved by F. Bruhat [2]. 
In general Harish-Chandra proves the irreducibilities of all regular princi­
pal P-series representations ([9]). 

Remark 2. B. Kostant [18] gives an criterion for the irreducibility 
of spherical principal series (not necessary unitary) of G in an algebraic 
situation. 
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