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Theory of Automorphic Forms of Weight 1

Toyokazu Hiramatsu

Dedicated to Professor Setsuya Seki on his 60th birthday

In this paper a brief exposition is given of some recent developments
in the theory of automorphic forms of weight 1 of a complex variable and
their applications to number theory. The main contents of this paper are
based on my lectures given at Kobe University in 1982-86, at Nagoya
University in 1983, and at Tokyo Metropolitan University in 1984.
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Chapter 1. Higher Reciprocity Laws

Let f(x) be a monic irreducible polynomial with integer coefficients
and let p be a prime number. Reducing the coefficients of f(x) modulo
P, we obtain a polynomial f,(x) with coefficients in the p-element field F,.
We define Spl {f(x)} to be the set of all primes such that the polynomial
J+(x) factors into a product of distinct linear polynomials over the field F,.
What is a rule to determine the primes belonging to Spl {f(x)}? We may
call its answer a higher reciprocity law for the polymomial f(x). For
example, the usual law of quadratic reciprocity in the elementary number
theory gives a ‘reciprocity law’ in the above sense: Let ¢ be an odd prime.
Then the set Spl{x*—gq} can be described by congruence conditions
modulo ¢ if g=1 (mod 4) and modulo 4¢ if 4=3 (mod 4). The poly-
nomial f(x) is called an abelian polynomial if its Galois group is abelian.
Then, the next theorem, a natural consequence from class field theory over
the rational number field Q, is known:

Theorem. The set Spl{f(x)} can be described by congruence relations
Jfor a modulus depending only on f(x) if and only if f(x) is abelian.

If f(x) is a polynomial with non-abelian Galois group, then very little
can be said about the set Spl{f(x)}]. We may call any rule to determine
the set Spl{f(x)} a higher reciprocity law for non-abelian polynomial f(x).
The main purpose of this chapter is to give some examples of higher
reciprocity law for non-abelian polynomials arising from the dihedral cusp
forms of weight 1.

§1.1. Some examples of non-abelian case
Example 1. f(x)=x'—d

ELl Spl{x'—2}
Let w=(—1-++/—3)/2 and cosider the ring Z[w]={a-+bw|a, b € Z}.
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Let 7 be a prime in Z[w]. If N(z)+3, the cubic residue of @ modulo z is
given by

(i) (a/n);=0if na,

(ii) aW®-YB=(a/r), (mod x), with (a/r), equal to 1, v or v’
A prime r is called primary if z==2 (mod 3). Then we can state

Theorem (Cubic Reciprocity Law). Let z, and =, be primary, N(x,),
N(rmy)#3, and N(n)#~=N(xy). Then

(2)-(2),
/3 7/ 3
Now we have the following by the above cubic reciprocity law:
Theorem 1.1. Spl {x*—2}
={p|p=1(mod 3), p=x*+27)* x,y e Z}
={pIp=1(mod3). (2) =1 for p=se}
={p|p=1(mod 3), a(p)=2},

where a(p) denotes the pth coefficient of the expansion
60)(180)= 2, alm)q™, ¢ =

with the Dedekind eta function y(r).

Proof. The first half. Let p be a rational prime such that p=1
(mod 3). Then p=rz in Z[w]. Suppose that r is primary. Then, by
the law of cubic reciprocity, we have the following two facts:

(1) x*=2 (mod 7) is solvable if and only if r=1 (mod 2);

(2) If p=1 (mod 3), then x*=2 (mod p) is solvable if and only if
there are integers x and y such that p=x*--27)"%

By (1) and (2), we have the first half of Theorem 1.1.

The latter half. By the Euler pentagonal number theorem, we have

7](62‘)77(18‘:): Z (_ l)'m+nq{(6m+1)2+3(6n+1)2}/4'
my,neZ
Let denote by A(p) the number of solutions (m, n) of
(6m+1)*4-3(6n4-1)>=4p.

Then we have easily the following assertions:
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(i) A(p)=2 and m+nis even if p=x*427)%;
(ii) A(p)=1 and m-+nis odd if p£x* 427y~
Therefore we have the latter half of Theorem 1.1.

E1.2. Cubic residuacity

Let d be a non-cubic integer and put K=k(¥ d) for k=Q(/ —3).
Then K is a splitting field of f(x)=x*—d over Q with the Galois group
Gal (K/Q)=S,, the symmetric group of order 3, and K/k is a cyclic exten-
sion of degree 3. Hence K is the class field over k£ with conductor {=(3d).
We denote by T; the ideal group corresponding to K.

For any odd prime p except the divisors of {, we know that f mod p
can factor over the p-element field F, in one of three ways:

(i) (Linear) (Quadratic) if p=2 (mod 3),

(ii) Three linear factors if p=1 (mod 3) and (i> =1,
p 3
(iii) Irreducible otherwise.
If p=1 (mod 3), then p splits in k as p=p,p,, and we obtain
p, € Tr<—>p, splits completely in K
<> f (x) has exactly 3 linear factors mod p
<> f(x)=0 (mod p) has an integral solution
<—><—C—I—> =1.
p 3
Now put

Li={)|(a, D=1}
Ji={(«) e I;|a=a (mod ) for some a e Z},
P.={(a) e I;|a=1 (mod f)}.

Then we have the following table:

field corresponding ideal group index
maximal ray class field P, d+ ( 4 )
3
ring class field J; l(d_<_ai>)
K T, 3 3
k I 3
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Hence we observe the group 7} as the union of %—(d —(%)) cosets of J..

And if d is prime then it follows that I/P, is the direct pfoduct of two
cyclic groups or a cyclic group according as d==1 (mod 3) or not.
Let X be an ideal character of I,/T;, and put

L(s, )= 5 1(@)Niola)™* = i an",

where a runs all integral ideals in I;. Since L(s, X) has an Euler product
expansion

Lis, )= [ A—p=*) (I—p=)~* D3)(1~i-10‘s-l-10“2“)‘1 (2 41),

P==2(8) P=1(3) D=1
G G
we have
a,=0 if p=2 (mod 3),
4,=2  ifp=1(mod3) and (_d_) =1,
p 3
a,=—1 ifp=1(mod3) and (_d_) =1
p 3
Therefore,

Ha e F,| fla)=0}=a,+1.

Put g=¢** for Im (z)>>0. Then the corresponding form

0()= 3 ta)g" = 3 a,q”

of L(s, X) is a cusp form of weight 1 and character( )for the congru-

*

ence subgroup I'((3°4%). Hence we can obtain that the cubic residuacity
of d is determined by the reduction modulo 2 of the Fourier coefficients
of the above §. Then we set

Problem. Express 0(z) explicitly by using the known functions and
consider the cubic residuacity more concretely.

Example 1,. d=2.
In this case it follows that T;=J;=P;, and we have

If/Pf:<p7Pf>9
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where p,=(2++/—3). By a simple calculation, we see that
a+bwe Pe—>a=0 and b=1 (mod 6)
and
a+bo e p,P<—>a=3 and b=1 (mod 6),

where o =(1+4+/—3)/2. Thus we can exchange a and b for 3a and 6b+1
respectively. And since

NQBa+(6b+Dw)={(6(a+b)+1)*+3(6b+1)’}/4,

we obtain that
6= 5"~ T ¢"®
nePf

a€pr Py
— Z (_l)an(8a+(ﬁb+l)zu)
a,beZ
— Z (__1)a,+bq((6a+1)2+3(6b+1)2)/4
a,beZ
=y(67)(187).

Example 1;,. d=3.
In this case T;=/J;, and we have

I/ Ji= i)
For an integral ideal a belonging to I, we set
a=(a) and a=(x+3yvy—=3).

where x=2 (mod 3) and x=y (mod 2).
Then, by the easy calculation we see that

(@) e J; <——>y=0 (mod 3),
(@) € pJi«—y=1 (mod 3),
(@) e p3Ji<—>y=2 (mod 3).
Hence we obtain
Aw)=L"

for {=¢/, and hence

0(1'): Z qu(x2+27y2)/4

__1_{ Z qu(z2+27y2)/4+ Z (_1)x+ycyq(zﬂ+z7y2)/4}
2 xzym) .7051/2(3)
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I

ok [\)\H

{ N q“”- Z Cz/q27z/2/4+ x;g (_ l)qum, Z (_ l)ycyqﬂy?ﬂ}

x=2(3)

{6(z/2)— 6,97/ 2))(36:(243/2) —6:(277/2))

o]

+(0(/2) —6,(97/2))(30,(2437/2) — 6,(277/2))}
_ 7‘1:{(03(27) — 6,(180))(36,(4867) — f,(542))
+ (02(27) —02(1 87))(302(4867) - 02(547))},

where

0u(r)= 2, (—1D)"q™", O)= 3 q™" and
mezZ mezZ

02(T)= Z q(m+1/2)2/2'
meZ

Moreover we can obtain other expression as below:

() = (62 7(92)(360)p(277)(1087)7(1627)
7(32)n(122)n(182)p(542)n(817)n(3247)
_ (120)n(182)’n(547)n(3247)
(67)7(367)n(1082)n(1627)

5)

1 1
()= 0“)[ ](61\0) a<1> (547 ;)+e@[g}(mm-0@[—2“](2%
0 0
1
2

= [§]<~ﬂo> aHEEE
s HBEEBEEE

a
0(7&) —,_{ (‘L'IZ)= Z enin((m+a/n)2r+2(m+a/n)ﬂz}_
0 meZ

where

Example 2. f(x)=4x*—4x* 1.
E2.1. We put
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7](7)27](1 IT)Z = Z=:1 b("l)qn, q:eZKir.

By the Euler pentagonal number theorem, we have

STb(nygr= Y qlentore e (mod 2),
n=1 u,VEZ

Let B(n) be the number of solutions (u, v) of
(6u+4124+11(6v+1)*=12n.

when n is a prime p=2, 6, 7, 8, 10 (mod 11), we see that B(p)=0. For
the remaining cases, we have the following

Lemma. Let p be a prime such that p=1, 3, 5,9 (mod 11). Then
either p=x4+113? or p=3u’+2uv-4v*, and two cases are mutually ex-
clusive, namely, either p or 3p is of the form x*4-11y* for some integers x
and y. Moreover, the following assertions hold:

(i) B(p)=2 and u+v is even if p=x*+11)*;
(ii) B(p)=1and u+v is odd if 3p=X*+11Y~

Proof. The first half. Since (—11/p)=1, we have
p=d*+ab-4-3b*
for some integers a and b. If b is even, then
refer ()
=x*4+11)" (x,ye Z).
For b odd,

p= <3b -1—%—)2—}— 1 1<—§—>2 "~ (a:even)

or

3p=<3b—— “72”’ )2+11<‘“2rb )2 (a: odd),

and hence 3p=X*+11Y? for some integers X and Y. Since matrices

<(1) 1?) and (? }1) are not equivalent, the two cases are mutually exclusive.

The latter half. Put
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D(p)={(s, ) |s*+11*=4p, s+1=2 (mod 12)}.

Then we see at once that B(p)=#D(p). If p=x*411)% then there are
four solutions of the equation s+ 11/2=4p. Moreover, s+¢=2 (mod 4)
and s+4¢==0 (mod 3). Therefore $D(p)=2. If 3p=X*>+4+11Y?% then
X=7Y (mod 3), XY (mod 2) and

11y\? x—7\?
4 =<x+ y) 11( y).
P 3 )T

Hence there is the only solution of s*+11¢*=4p such that s+¢=2 (mod 4)
and s4+¢=2 (mod 3). Therefore #D(p)=1. Hence we have

2, if p=x24+11)7%

B =
2 {1, if 3p= X2 1172

Next it is obvious that
p=0CBu*4+u)+113v*+v)+1
u+11v )2 ( v—u )2
= 1 11 .
( 2 T+ 2

Therefore, if u4v is even then

p=x"+11y"  (x,ye Z).
On the other hand,

3p=30Gu+1)+333v* +v)+3

=( -—5u+;1v+11 )2+11( u+520+1 )2'

Therefore, if u-4v is odd then 3p=X°+11Y* (X, Ye Z).
Let E be the elliptic curve over Q defined by

V=), [fR)=4x"—-x)+1,

which is derived from Tate’s form )*4-y=x*—x% Let p be a good prime
for E and E, denote the reduction modulo p of E which is an elliptic curve
over F,. It is a special (proved) case of the Taniyama-Weil conjecture
that the number N, of F -rational points of E~p is given by

N,=p—b(p).

Then it is clear that (1) N, is even if f(x) is irreducible (mod p), (2) N, is
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odd if f(x) has exactly one or three linear factors (mod p). Therefore we
have the following ([7])

Theorem 1.2. Let p be any odd prime, except 11 and put f,(x)= f(x)
mod p. Then f,(x) can factor over F, in one of three ways:

(i) exactly one linear factor if (.——11)_—_ —1;
p

(ii) exactly 3 linear factors if (——l) =landp=x"+11)x,y e Z);
p

(i) no linear factor if <;11_) —1 and 3p=X*+117* (X, Ye Z).
)

Corollary. Spl {4x*—4x*+1}

={p!(“T“)=1,p=x2+11y2}

_ {pI (_Tll> —1, B(p)=0 (mod 2)}.

E.2.2. We start with

72220 =¢ [T (1—4")(1 —q*")

=q Z (_ 1)u+vq(3u2+u)+11(3v2+u)

uvEZ

— U+v,{(6u+1)2+11(6v+1)2}/12
= 25 (=D***q :
U, vEZ

=3 el

where g=¢"***, Then, by Lemma, it is immediate that

0, if(;“>=_1,

?
c(p=1 2, if(—_“>=1andp:x2+11y2(x,ye2),
P
_1, if(i)zland Pp=X'+117* (X,Y ¢ Z).
P

We can now state

Theorem 1.3 ([21]). Let p be any odd prime, except 11. Then we
have the following arithmetic congruence relation
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Hx e Fp;4x3_4x2+1=0}=c(p)_<—T“)=c(p)2+1.

Proof. 1In place of f(x)=4x*—4x* 41, we shall consider

h(x)—:—2f< lgx)z)ﬁ—xz—x—l.
The polynomial A(x) has discriminant —44. Let /,(x) be a reduction
modulo p of A(x) and let K, be a splitting field of /,(x) over the field F,.
Then it can easily be seen that

(;li)Z —1e—s[K,: F,]=2
p
<—>h,(x) has exactly one linear factor over F,.

Next we consider the case of (_—:E>: 1. Let L, be a splitting field of
p

h(x) over Q. Put k=Q(+ —11), and observe that L, is an abelian exten-
sion over k of degree 3. Considering L, as a class field of k, we denote
by H its corresponding class group and by f a conductor of H. Since 2
is only ramified in L,, we thus obtain f=(2). Hence

H={(a): ideals in k|a=1 (mod 2)}.

By the assumption ( 1 ): 1, we also have

p=pp ink,
where p denotes a prime ideal in k£ and P a conjugate of p; and moreover
p € H<—>p splits completely in L,.

Now we put p=(r) with r=a-bw, where o=(—1++/—11)/2, a and b
are rational integers. Then we see from the above result that
pe H——>r=1 (mod 2)
<«—>b=0 (mod 2)
«—>p=N@)=x"4+11* (x,ye Z)
<> splits completely in L,
<—> h(x) has exactly 3 linear factors (mod p)

<> h(x) has exactly 3 linear factors over F,.
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Finally, we suppose & is an odd integer in the expression p=N(z)=a"+
ab-+3b. Then, 3p=X*+411Y* for some integers X and Y, and hence

3p=X*+11Y?<«—>h,(x) has no linear factor over F,.
Corollary. Spl {4x° —4x*+1}={p|c(p)=2, p#2, 11}.
Remark 1. Let

fx)=x"4ax*+bx+c (a,b,ce Z)

be an irreducible polynomial whose splitting field K, is a Galois extension
over Q with Gal (K,;/Q)=S; and contains an imaginary quadratic field &.
Let L(s, p) be the Artin L-function associated with the representation

o: Gal(K,/Q)—>GL,(C)

with conductor N. Then there exists normalized new form F(z) on [",(N)
of weight 1 and character det p. Now, bringing two objects E2.1 and
E.2.2 into unity, Koike obtained the following arithmetic congruence
relation for f(x) ([38]):

Theorem. Let M be the product of all primes which appear in a, b and
¢ and let p be any prime such that pfy MN. Then we have

HacF, lf(a)=0}=a(p)2—< “pD),

where — D denotes the discriminant of k and a(p) denotes the pth Fourier
coefficient of F(z):

F(z)= il a(n)erine,
Corollary. Let p be any prime such that p f |[MN. then
Spl { f(x)}={p: prime|a(p)=2}
up to finite set of primes.
Example 3. f(x)=x'"—2x*42

First let us recall some known results which appeared in Smith’s
Number Theory Report.”

P H.J.S.Smith: Report on the theory of numbers VI, Reports of the British
Association for 1865, pp. 322-375, §128: Theorems of Jacobi on Simultaneous
Quadratic Forms.
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(1) 7](82')7?(16‘[):: Z (_l)bq(4a+1)2+sba
a,0€Z

= Z (— D)t g arniog
a,feZ

where g=¢e*"";
\ (ii) Let d(n) be the nth Fourier coefficient of 7(8)y(167) at co. Then
d(n) is multiplicative and has the following properties:
(1) d(p)=2e(—1)* D2 if p=1 (mod 8), here e=2%""/* (mod p);
(@ d(p)=(—1"if p=3 (mod 8);
(3) d(p™=1if p=5, 7 (mod 8).
The result (ii) is the first instance of an explicit computation of the Fourier
coefficients of a cusp form of weight 1 which is of interest from the point
of view of history. Let k be an imaginary quadratic field, say k=Q(v —p)
with a prime number p=1 (mod 8), and let 2 be the class number of k.
We put

p=(4a+ 10+ 80*= (4o + 1)+ 165
Then it is easy to see that

b=0 (mod 2)«——>a+ =0 (mod 2)
(5
p 8
<«~—>h=0(mod 8),

where (——) denotes the octic residue symbol modulo p. The identity (i)
p 8

gives a generalization of the above equivalence.
We can now state

Theorem 1.4 ([41]). Let p be any odd prime. Then we have the fol-
lowing arithmetic congruence relation

Bxe Fp}x4——2xz+2=0}=1+(~:pl>+d(p).

Corollary. Spl {x*—2x*+4+2}={p|p=1 (mod 8), d(p)=2}.

Remark 2. The function 7(67)y(187), 7(27)(227) and 7(8r)n(167) are
cusp forms of weight 1 on I"(108), I"((44) and ",(128) respectively. Also
Tunell ([55]) proved that 7(8c)y(167) is the unique normalized newform of
weight 1, level 128 and character X_, corresponding to 0w —=2). A. Weil
characterized the Dirichlet series corresponding to modular forms for
I'(N) by functional equations for many associated Dirichlet series ([57]).
Its Fourier coefficients are effective to describe the set Spl {f7}.
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Remark 3. Let [] be the set of all prime numbers and TC [] be
any subset. For any real x>1, we put
Card{pe T |p<x}
Card{pe [[|p<x}

If Tis a set of primes such that lim,_. 6(x, T)=6(7T)<oo, then T has
density (7). We have now the following theorem.

o(x, T)=

Tchebotarev Density Theorem. Let f(x) be an irreducible polynomial
in Z[x] with Galois group G, and let C be a fixed conjugacy class of elements
inG. Let S be the set of primes p whose Artin symbol C, equals to C.
Then S has a density, and

Card (C)

)= Card Gy

In particular, if C={1}, then S=Spl{f} and §(S)=1/Card (G). If
J(x)=x°—x—1, then the Galois group of f(x) is the symmetric group S..
Therefore f(x) is one of non-solvable polynomials. What is a rule to
determine the set Spl {x*—x—1}? Wyman ([58]) discussed the relative size

cof Spl {x*—x—1}.

§1.2. The Langlands conjecture and Spl { f'}

Suppose F is a number field and K is a finite Galois extension of F
with Galois group G=Gal (K/F). Let

g: G—>GL(n, C)

be an n-dimensional representation of G. For each place v of F let o,
denote the restriction of ¢ to the decomposition group of G at v. The
Artin L-function attached to ¢ is given by the following

L(s, o)=T[ L(s, 0,,)

extending over all the places of F. If v is unramified in K, and C, denotes
a Frobenius element over v, then

L(s, 0,)=[det I—a(CHIN ;9]

For each place v of F let F, denote the completion of F at v. Let
Ay denote the adele ring of F and G, the adele ring

GL(n, A=1]] GL(n, F,) (a restricted direct product).
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Let z be any irreducible unitary representation of G,. If z can be realized
by right translation operators in the space of automorphic (resp. cuspidal
automorphic) forms on GL(n), we call r an automorphic (resp. cuspidal)
representation of GL(n). Then, there is associated to z a family of local
representations x, which is uniquely determined by 7z and has the follow-
ing properties:

(1) =, is irreducible for every v;

(2) =, is unramified for almost every v;

3 =Q,=,

Langlands’ Reciprocity Conjecture. For each Galois represzntation g,
there exists an automorphic representation (o) of GL(n, Ay) such that
L(s, 6)=L(s, n(0)). Moreover, if ¢ is irreducible and non-trivial, then n(s)
is cuspidal.

Example 1. n=2 and F=Q. Suppose that z,=@Q r, is generated
by the classical modular form

f(Z)__: ; a(n)ez:zinz

of weight k. The decomposition =, =@ =, corresponds to the fact that f
is an eigenfunction for all Hecke operators 7),. The unramified represen-
tation x, then corresponds to the conjugacy class

a, 0
A =
5 5)

such that det(4,)=1 and tr(4,)=p-*"Y7g,. In this case, Langlands’
reciprocity conjecture can be shown to be equivalent to Artin’s conjecture
for L(s,0). Let Q denote an algebraic closure of Q and let ¢ be an
irreducible 2-dimensional representation of Gal(Q/Q) taking complex

conjugation to ((1) _(1)) Then the hypothetical representation z(¢) corre-

sponds to a cusp form of weight 1. Deligne and Serre ([8]) proved that
all forms of weight 1 are so obtained (cf. § 4.1).

Suppose that F=Q and we think of K as the splitting field of some
monic polynomial f(x) with integer coefficients. For almost all primes p,
we let C, denote the Frobenius automorphism in G=Gal (K/Q). Recall
that the prime p splits completely in K if and only if C,=Id., namely, f,(x)
splits into linear factors. Let Spl(K) denote the set of primes p which
split completely in K. Given a Galois extension K of Q as above, there
exists a Galois representation

g: Gal(Q/Q)—>GL(n, C)
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with the property that Gal(Q/K) is the kernel of ¢. Thus we obtain a
faithful representation, still denoted

¢: Gal (K/Q)——>GL(n, C),

to which we can associate the Artin L-function L(s,¢). Then it is clear
that

Spl (K)={p|o(C))=1}.

Therefore, under the Langlands reciprocity conjecture, there exists an
automorphic representation z=@Q x, of GL(xn) such that 4, —a(C) for
almost all p. In particular,

Spl (K)={p| 4,(x(0))=T}.

Consequently, Langlands’ program reduces the problem of Spl (K) to the
study of automorphic representations of G .

Example 2. n=2. Langlands’ program brings the following:

Spl{f}={p|p¥D;, a(p)=2},

where D, denotes the discriminant of f, n(¢)==f, and a(p) the pth Fourier
coefficient of a cusp form f, of weight 1:

f;(z)z ; a(n)eZninz'

Chapter 2. Hilbert Class Fields over Imaginary Quadratic Fields

Let K be an imaginary quadratic field, say K= Q(+/ —¢) with a prime
number g= — 1 mod 8, and let / be the class number of K. By a classical
theory of complex multiplication, the Hilbert class field of L of K can be
generated by any one of the class invariants over K, which is necessarily
an algebraic integer, and a defining equation of which is denoted by
@(x)=0. The main purpose of this chapter is to establish the following
theorem concerning the arithmetic congruence relation for @(x) ([24]):

Theorem 2.1. Let p be any prime not dividing the discriminant D, of
@(x), and F, the p-element field. Suppose that the ideal class group of K is
cyclic. Then we have

B Fy: 0 =0}= 2 a(p) + -a(p) — %(;%1)%,



Automorphic Forms of Weight 1 519

where( ) denotes the Legendre symbol and a(p) denotes the pth Fourier

p
coefficient of a cusp form which will be dzfined by (1) in Section 2.2 below.

One notes that in case p=2, we have (——2—q—>= 1.

§2.1. The classical theory of complex multiplication ([10], [13], [61])
Let A be a lattice in the complex plane C, and define

Gk(/l)=Z o™,

w0

&(A)=60G,(4),  g(A)=140G(1),

where [ denotes a positive integer and the sum is taken over all non-zero
o in 4. The torus C/4 is analytically isomorphic to the elliptic curve E
defined by

Ve=4x"—g,(M)x —g(4)
via the Weierstrass parametrization
C/4 3 z——(p(2), p'(2)) € E,

where

O Y@=

1 } -2

(z— o) wt )’ v (Z—o)

Let A and M be two lattices in C. Then the two tori C/4 and C/M are
isomorphic if and only if there exists a complex number « such that
A=aM. If this condition is satisfied, then two lattices 4 and M are said
to be linearly equivalent, and we write 4 ~M. If so, we have a bijection
between the set of lattices in C modulo~ and the set of isomorphism
classes of elliptic curves. Let us define an invariant j depending only on
the isomorphism classes of elliptic curves:

1728g3(A)
g —27gx(4)

In fact, j(ad)=j(A) for all « e C. Take a basis {w,, w,} of 4 over the
ring of rational integers Z such that Im (w,/w,)>0 and write 4=[w,, ,].
Since [w,, 0,] ~[w,/ w,, 1], the invariant j(4) is determined by r=w,/w,
which is called the moduli of E. Therefore we can write the following:

jA)=
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j(MD)=j(r). The lattice 4 has many different pairs of generators, the most
general pair {of, 05} with ¢/ in the upper half-plane having the form

wh=cw,+dw,

{a){ =dw,; 4 bw,

. fab
with <c d
in Z. Thus the function j(zr) is a modular function with respect to
SL(2, Z). 1Itis well known that

) e SL(2, Z), the special linear group of degree 2 with coefficients

JW=D)=1728, j(&='")=0, j(c0)=0o.

The modular function j(z) can be characterized by the above properties.
Let there be given a lattice 4 and the elliptic curve E as described in
the above. If for some « € C—Z, p(ez) is a function on C//, then we
say that E admits multiplication by «; and then o and o,/w, are in the
same quadratic field. If E admits multiplication by «, and «,, then E
admits multiplication by &, +«, and a,x,. Thus the set of all such « is an
order in an imaginary quadratic field K. Consider the case when E admits
multiplication by the maximal order 0, in K. Then the invariant j defines
a function on the ideal classes k, k, - - -, k,_, of K (h being the class
number of K) and the numbers j(k,) are called ‘singular values’ of j. Put

Az{(g 3>: ad=n>0,0=<b<d, (a,b,d)=1, a,b,de Z},

and consider the polynomial
F.()=T] (t—j(az)).
a4l

We may view F, () as a polynomial in two independent variables ¢ and j
over Z, and write it as

F (t)=F,(t,]) € Z[t, ]].

Let us put H,(j)=F,(j,j). Then H,(j) is a polynomial in j with coef-
ficients in Z, and if » is not a square, then the leading coefficient of H, ()
is 1. This equation

H,(j)=0

is called the modular equation of order n. Now we can find an element
w in 0, such that the norm of w is square-free:
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{1-1-«/—1, if K=QH —1),
W= - -
v=m, if K=Q(v — m) with m>1 and square-free.

Let, {o,, ®,} be a basis of an ideal in an ideal class k; such that Im (,/w,)
>0. Then

ww,=aw, +bw,
Ww,=cw,+dw,

with integers a, b, ¢, d and the norm of w is equal to ad—bc. Thus a=

(g Z) is primitive and ar=7. Hence j(r)=j(k,) is a root of the modular

equation H,(j)=0. Therefore we have the following

(i) j(k,) is an algebraic integer.
Furthermore we know

(ii) K(j(k)) is the Hilbert class field of K.
By the class field theory, there exists a canonical isomorphism between the
ideal class group Cx of K and the Galois group G of K(j(k,))/K, and we
have the following formulas which describe how it operates on the
generator j (k,):

(iii) Let o, be the element of G corresponding to an ideal class k by
the canonical isomorphism. Then

o (J (k) =j(k™'K)

for any k&’ e Cy.
(iv) For each prime ideal p of K of degree 1, we have

JR)=j(k)" mod p, ke Cy,
where N (p) denotes the norm of p.

(v) The invariants j(k,;), i=0,1, ---, h—1, of K form a complete
set of conjugates over the field of rational numbers Q.

§2.2. Proof of Theorem 2.1

Let ¢ be a prime number such that g= —1 mod 8, K=Q(v' —¢q) and
let # be the class number of K, which is necessarily odd. For 0<i<h—1,
we denote by Q,,(x, ) the binary quadratic form corresponding to the
ideal class k, (k,: principal class) in K and put

> A e T (Im (2)>0),

1
01(1') = —2— o
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where A, ,(n) is the number of integral representations of n by the form
Q... Then the following lemma is classical:

Lemma 1. 1) If p is any odd prime, except q, then we have
1 n—1 —q
T AP+ Ap)=1+(Z1).
2, i=1 p

2) If we identify opposite ideal classes by each other, there remain
only A, (p), A (D), - - -, Ay,,_.,,(P), among which there is at most one non-
zero element.

Moreover, for each ideal class k in K, we have

Lemma 2. 1) A,(m=2%{aCoz:aeck™, N(®)=n},
2) 24,mm)= 3 A (m)A(n)  if (m,m)=1.

kika=
k1,k2eCx

Let % be any character (1) on the group C, of ideal classes and put
1
A== > Uk)A, ().
2 wieclx

Then we have the following multiplicative formulas.
Lemma 3. 1) A(mn)=A(m)An) if (m, n)=1,
D ADAG)= A+ (L) Ar for prime p(0) and rz 1,
3) Algn)=A(q)A@®).

We define here two functions f and F as follows:

(1) f(@©)=06,)—6.(7),
and
(2) F@)= 3 106)0,(2) = 3} e,

where §,(z) is the theta-function corresponding to the principal class k.
Then f(z) is a normalized cusp form on the congruence subgroup I"(q) of

~ weight 1 and character (__q>’ and moreover, by Lemma 3, F(¢) is a
P

normalized new form on I"(g) of weight 1 and character ( —P ) (cf. [17]).
q

From now on, we assume that the ideal class group Cy of K is cyclic. By
Lemma 1, we shall calculate the Fourier coefficients of f(z) and F(z). Let
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Cy=<(k;> and X(k)=e=""1
Then we can write the function F(z) as

2ri

h 0@‘(7)’

(k=172
F(o)=0,(7)+2 Z{ cos

where k,=k! (1§ i§%—(h— 1)). It (“7‘1)= 1, then Ay(p)=0 for all
keCg If (—_q) =1, then (p)=9b (p=#D) in K, where p denotes a prime
ideal in K and g a conjugate of p. We denote by k, the ideal class such
that p e k,. 1If k, is ambigous, then
A(p)= {4, if k=k‘;1,
0, otherwise.
If k is not ambigous, then
A(p)= {2, if k=k‘,, or k=k;?,
0, otherwise.
In the case p=gq, put (p)=p* (p=p) with p e k,. Then we have
Adp)= {2’ i k=i,
0, otherwise.

Let a(n) be the nth coefficient of the Fourier expansion for f(z):

@)= 3, alme
n=1
By the above results, we have the following formulas for a(p) and A(p).

Lemma 4. Suppose that the ideal class group Cy of K is cyclic. Then,
for each prime p, the Fourier coefficients a(p) and A(p) are given as follows:

0, if(:_‘i)z_.L
p
2, ,f(;‘l_>=1 and p=x2+xy+£5q—y2 (x,ye Z),
ap)= p 4

0orl, if(—_—q>=1 and k, =k, with (p)=95, p e k,,
p

19 ifl’=q,
and
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o r(5)
s (5

if —q>—1 and p=x*4xy+ 1+q) (x,ye Z),
A(p)= p
2 cos 2;”, if(;q—>—~—1 and ke, =k {(s£ky) with (p)=1p,
p
pek, (1<n<(h—1)2).
Let

D(x)=0

be the defining equation of a generating element of the Hilbert class field

L over the imaginary quadratic field K= Q(+/ —¢). Then the polynomial
@(x) is one of the irreducible factors of the modular polynomial H (x).
We say simply @(x) is a modular polynomial. Now, in order to prove
Theorem 2.1, it is enough to show that if the ideal class group Cy is a
cyclic group of order /, then

#{x e F,|9(x)=0}
1 (3)

_Jlh, if<_q) 1 and p= x+xy1+q (x,ye2),
p

I

—1,

0, ,-f(—_CI)=1 and k, =k, with (p)=pb, p € k,.
p

We denote by H the ideal group corresponding to the Hilbert class field
L of K:

H={(a): principal ideals in K}.
Case 1. (—_q>= 1. Let(p)=ppin K. Then we have the follow-
p
ing relation:
pe He—>p=(x), n=a+bo (o=(1+v—9)2,a,b>Z)

<——+p=N(p)=a’+ab+l4ﬂb2 @beZ),

and
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p splits completely in L«—>®(x) mod p has exactly 4 factors.
Therefore

p=d+ab+ i}%bz (a, b e Z)«——>®(x) mod p has exactly 4 factors.

On the other hand, it is obvious that

p ¢ H<«—>p is a product of prime ideals of degree>1 in L
<—> @(x) mod p has no linear factors in F,[x].

Case 2. (;q_)= — 1. The polynomial @(x) splits completely
p
modulo p in 0./(p) and the field o./(p) is a quadratic extension of F,.
Therefore
O(x) mod p=hy(x)- - - h(x)

and deg 7,<2 (i=1,2, - - -, t), where each &,(x) is irreducible in F,|x].
Since the class number 4 of K is odd, there exist odd numbers of i such
that deg h,=1. In the following, we shall show that there exists one and

only one of each i. The dihedral group D, has 2/ elements and is gener-
ated by r, s with the defining relations

rt=s=1, srs=r~"

Let K, be the maximal real subfield of L. We have the following diagram:

L=K(j(k)

Gal (L/K) = Cr={r)

K=0(/—q)

Gal (L/K)={s)

Q

Let 0., be the ring of algebraic integers in K;,. Then the ideal po,
decomposes into a product of distinct prime ideals in Kj:

pOK():pl' * 'pmgl' ¢ P
where

Newop)=p 1=I=m) and Ni,o(g)=p" (1<I<n).
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Moreover, if 0, is the ring of algebraic integers in L, then
po,=%, a<i<m,

where each ¥, is a prime ideal in 0,. On the other hand, the ideal po,
has the following decomposition via the field X:

po,=P.P7- - P

Since pi=yp,, we have also Pi=T,. Similarly, Bi=$, 2</<m). How-
ever, since A is odd and srs=r""', we deduce

=B, (AZigh-D.

Since B, =P7° for some i, we have m=1. This completes the proof of
Theorem 2.1.

Corollary (Higher Reciprocity Law).

P10} ={p| A Do ( = )=1 and a(p)=2}.

§2.3. Schlifli’s modular equation

The problem of determining the modular polynomial F,(z, j) ex-
plicitly for an arbitrary order n was treated by N. Yui ([59]). But, even
for n=2, F,(t,j) has an astronomically long form. We shall use here the
Schlafli modular function 4,(z) in place of j(z):

O(T)__e—w =7 77((‘5';(‘:))/2) — 7V Te/2 H (1+e(2n Y= 17.-)

where 7 is the Dedekind eta function. This function #&y(z) is the modular
function for the principal congruence subgroup of level 48 and has the
following properties:

() o(2)*—16}
Jj(@)= W and £ ( z_) hy(z).

Lemma 5 ([56]). Let g be any prime number such that g= —1 (mod 8).
Then

D vV 2h(V—=9) e QU =),

2) V1/2h(v —q) is a unit of an algebraic number field.
Put
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— 1 yv=a
x_ﬁh(,(«/ q).

Then, by Lemma 5,1), we have
0®)=0(j(W —9q)).

The defining equation of x is called the Schlifli modular equation of order
q ([56], §§ 73-75 and § 131).

Example ([56]). n=47. Schlafli’s modular equation of order 47 is
given by

X' —x3—2x?—2x—1=0.

§2.4. The case of g=47
Let 0, be the principal order of the imaginary quadratic field K=
Qv —47) and put 0,=[l, o] with w=(144+/—47)/2. The field K has
class number 5. Let
O(x, y)=x"+xy+12)",
0i(x, Y)=T7x"+3xy+ 2",
Ou(x, y)=3x"—xy+4)",

be the binary quadratic forms corresponding to the ideals og, [7, 1+ o],
[3, w], respectively, and let

0,(c)= .;_ ST Ag e (i=0,1,2)
n=0
be the theta-functions belonging to the above binary quadratic forms,

respectively, where A4,,(n) denotes the number of integral representations
of n by the form Q,. By Lemma 1, we have easily the following table:

Ag(p) | Ag(P) | Ag(p)
(:.4_7_) =1 0 0 0
P
p=x*4+47)y* 4 0 0
(:4_7)=1 Tp=xt+46p | 0 2 0
P p=xiHdTE |0 0 2
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For p=2, 47, we have
A (2)=A4,,(2)=0, A4,(2)=2;
A4 =2, A, (47)=4,,(47)=0.

Now we define two functions as follows:

Fi(2)=0,(t)—0{c)= i a(n)er* V=lne
n=1
Fy(r)=0,(t) —0(2).
Then Fi(z) and Fy(r) are normalized cusp forms on the group I",(47) of

—47 ) Put ¢,= —;—(1 +4+/5) and define
p

Fy(r)=¢&,F\(7) +&,Fy(t) = Fi(t) +e(t)n(477)
— Z’i] A(n)e= /7n,

weight 1 and character (

Then the function F,(z) is also a normalized cusp form of weight 1 and

character < 7> on the group [',(47), and the Fourier coefficient A(n)

p
is multiplicative. The Fourier coefficients of Fy(z) and F,(r) are obtained
by the above table as follow, respectively. For each prime p(+£2, 47), we

have
0 if (ﬂ): 1,
V4
2 if (;47)=1 and p=x'4T) (x,y € Z),
(3) ap= ’
0 if <;‘)=1 and  3p=xt4+473 (x, y € Z),
D
—1 if <——p47->=1 and Tp=x"+47y"(x,ye Z),
and
0 if( —47>=_1,
p
2 if (—_—f]'l>:1 and p=x*4+47" (x,ye Z),
(4)  Alp)= "
—e, if (—‘T)zl and 3p=x’+447)* (x,y e Z),
—g, if <——];4—7‘>—_—1 and Tp=x*4+47)* (x,ye Z).
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Furthermore we have a(2)= —1, a(47)= A(47)=1 and A(2)= —¢,.
Put h(—47)=4+/2 x. Then the class invariant x satisfies the follow-
ing Schlifli’s modular equation of order 47 (cf. § 2.3):

(5) () =x"—x*—2x'—2x—1=0 (D, =47).

Let L be the Hilbert class field over K. Then the field L is a splitting field
for the polynomial

(6) Sa(x)=x"—2x*4+2x*—3x*—3x+6x—5 (D,,=11%-47%,

and the Galois group G(L/Q) is equal to the dihedral group D; ([14]), [15]).
Put

= (A5 23D )

and

35344224/ 5 71543254/ 5 e
0= SIS _TSEIS g

then from Hasse’s result ([14]) we deduce that

—— 5_
611:';‘('{,/ w, — 5.1__-—'\/(00 + " -|—2)

@y Mo Vo,

generates L/K. Consider the following equation ([11], p. 492):
(7) fe(X)=x*—x*4+ x4+ x*—2x+1=0.
It is known that there are two relations
{ a="50%—50,—2,

Ow=—0%—20,+1
for the real roots 6y, 8, and 6, of (5), (6) and (7), respectively ([60]). Put

Su(X)=x"—2x*4-3x> 4 x*—x —1.

(8)

The discriminant of our polynomial f,(x) is 5*.47%. By a simple calcu-
lation, we can verify the following remarkable relation:
(9) x*—ax+b| fo(x)<—>fu(@)f1(a)=0,

where @ and b denote any constants. If 4 is the real root of the equation
fu(x)=0, then we obtain the following relations by making use of
Newton’s method:
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(6 5="20%+6%+6%+20,—2, (by (8))
0 =-—20t+60%—0%—3605+3,

0, =;—11(ez+o§,+sez+oﬁ—2>,
(10) 0 =1_11(0;,+a§,+5e§,,—0H+9),

0F:_;_(e4—503+802—80—2),

L0H=%—(—04+503—802+30+7).

Now we consider f,(x) mod p for any odd prime number p(=£47).
Because of (9) and (10), the reduced polynomial f, mod p (p=£5, 11) can
factor over the p-element field F, in one of three ways:

1) Five linear factors,

2) (linear) (Quadratic) (Quadratic).

3) Quintic.

The reduced polynomials f mod 5 and f mod 11 have the above type 2).
When we combine these with (3), we are led to the another proof of the
arithmetic congruence relation in the case of g=47.

Theorem 2.2. Let p be any prime, except 47, and F, the field of p ele-
ments. Let a(n) be the nth coefficient of the expansion

Fo)= 3 eV,
n=1
Then the following congruence relation for f(x) holds:

—47

Hx € F, | o) =0} = —g—a(P)g—l-%a(p)———;—(—p_)—{— !

2

>

where for p=2, we understand (—747): 1.

Proof. In order to prove this, it is enough to show the following
fact. Let L, be a splitting field of f7(x) mod p over the field F,. Then it
can easily be seen that

Mo 1 (L, F=2
(57) F,

<«—>f mod p has exactly one linear factor over F,
<>z mod p can factor in type 2).
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Remark 1. Let p be a prime, except 5, 11, 47. Then, by the relation
(10), fr mod p, f; mod p, f mod p and f,, mod p can factor over F, in
the same way. Using Fourier coefficients of F,(r), we have also the same
arithmetic congruence relation for fz(x). On the other hand, using Fourier
coefficients A(p) of Fy(z) (cf. (4)), we have the following relation:

$x € By £ =01= () +A(p — (7).

Finally the following higher reciprocity law for the Fricke polynomial
f#(x) holds:

Corollary. Spl {fx(x)}={p|(—47/p)=1 and a(p)=2}.
Remark 2. The dihedral group D, has (24 3)/2 conjugate classes:
{1, {srt|1Zigh), {r,r %, j=12,--., (h—D)2.

Thus we have (21— 1)/2 irreducible representations of degree 2. Among
them, here we consider the representation p given by the following

0= =01

where e=¢**¥=7/2,  The corresponding character is given by the following

(1} | ¢y | brisizh |
. h—1
- _]:],2,"',"———-
o 2 ZCOSEZ—‘]— 0 ’ 2

Let ¢(s) be the Dirichlet series associated to the new form F(z) (cf.
(2) in § 2.1) via the Mellin transform. Since the function F(z) is an eigen-
function of all the Hecke operators T, U, the Dirichlet series ¢(s) has the
following Euler product:

6)= 53 Ayt = =A@~ [] (1=4@p~+(=L)pv)

D#

=(—=g7 T A=p™)7 [ A=2p7"4p7)"

“2Y=-1
P

-1
x 11 (1+2cos 2Z"p‘s+p““) ,

PEP2

where
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P1={p]<—:pi>=1, p=x+xy+ #yz},
and
P2={p1<—7q>= 1, p=pb, p=~principal, p e kn} U{2}

Let L be the Hilbert class field of the imaginary quadratic field K,
and assume that the Galois group G(L/K) is a cyclic group of order .
Then L/Q is a non-abelian Galois extension with D, as Galois group. Let
p be any prime number and ¢, a Frobenius map of p in L, and put

1
Ap="‘ Z P(O'p“)a
€ acT

where T is the inertia group of p and #7=e. Then, for the Galois exten-
sion L/Q, the Artin L-function is defined by

-1
L(s, p, L/Q)= [] det (((1) ?)——APN(p)‘S) , Re(s)>1.
p
A prime p factorizes in L in one of the following ways:
Case 1. (—_q) = —1. Decomposition field=K,, ¢,=s, A4,=
p
01
10)
Case 2. pe P,. Decomposition field=L, ¢,=1, Ap=<(1) ?)
Case 3. p e P,. Decomposition field=K. If (p)=pp with p e k7,
" e" 0
then ¢,=r" and Ap:(O érz)-
Case 4. p=gq. Ramification exponent=2.

_ 1 1/11
oo=1, Aq——i(p(l)-i-p(s))———z—(l 1).

In order to have the explicit form of L (s, p, L/Q), we use the above
results and obtain

L(s, p, L/Q)
1] def (( ) APN(p)"’)_l

s (35O (3 ) 0 )

¥4
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<0 (o )= ) e (o )= )

It is clear that above Euler product, compared with the Euler product of
&{s), proves the following:

Lis, p. L/@)= ().

This is a constructive version for the dihedral case of the Deligne-Serre
theorem ([8]).

Chapter 3. Indefinite modular forms

As show in Chapters 1 and 2, there are deep relations between the
class fields over imaginary quadratic fields and cusp forms of weight 1.
In the first half of this chapter, we study a similar problem for class fields
over real quadratic field which satisfies a condition due to Shintani ([50]).
In Section 3.1 we recall the definition of Hecke’s indefinite modular forms
of weight 1 which are associated to real quadratic fields ([16], [17], [40]).
In Section 3.2 we summarize certain results of Shintani for the real quad-
ratic problem which is transferable to the imaginary quadratic situation
([50]). In Section 3.3 we apply the result of Shintani to our problem and
obtain the three representations for some dihedral cusp forms of weight 1
by positive definite theta series and indefinite theta series. Kac and
Peterson in [35] gave many examples of new identities for cusp forms of
weight 1 which arise from the Dedekind eta function. In Section 3.4 we
shall reconstruct these examples from our point of view, by using the
results of Section 3.3. In Section 3.5 we establish the higher reciprocity
law for a defining equation of ray class fields over some real quadratic
fields.

The second half of this chapter will be devoted to study a relation
between quartic residuacity and Fourier coefficients of cusp forms of
weight 1 (f23]). Let m be a positive square free integer and e,, denote the
fundamental unit of Q(+ m). We consider only those m for which ¢,, has

norm +1. If/isan odd prime such that (%):(%"): 1, we can ask

for the value of the quartic residue symbol (ilm) . Let K be the Galois

4

extension of degree 16 over Q generated by +/—1 and ¥/ ¢,,. Then its
Galois group G(K/Q) has just two irreducible representations of degree 2.
We can define a cusp form of weight 1 by these representations, which
will be denoted by &(z; K) and we shall show that &(r; K) has three ex-
pressions by definite and indefinite theta series and that the value of the
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symbol (fl’—") is expressed by the /th Fourier coefficient of @(z; K). These
4

results offer us new criterions for ¢, to be a quartic residue modulo /.

§ 3.1. Hecke’s indefinite modular forms of weight 1

Let F be a real quadratic field with discriminant D, and o, the ring
of all integers in F. Let Q be a natural number and denote by 1, the
group of totally positive unit e of 0, such that e=1 mod Qv D. Let a be
an integral ideal of o, and put |[N(a)|=A4. Then the Hecke modular
form for the ideal q is defined by

9(r; 0,0, 0V D)= 31 (sgn pg¥w/4er,

rEOR
p=p mod aQ VD
u€op/ug, N(p)e>0

where k=+1, p € a, Im(z)>0 and g=e€***. This is a holomorphic func-
tion of = and satisfies

b SR
«91<‘”+ ; 0, a, D)
ct+d o> @ OV

= (%)e:‘:?ﬂabﬁp’/AQD(cf —l— d)@i(‘c; aP, a, QN/_E)

for all (z Z) e I'(QD) ([16], [17]).> Therefore 9, is the cusp form of

weight 1 for a certain congruence subgroup of level QD under the condi-
tion 9,z0. If in particular a=05, we put

gi(r; p’ Q'\/f)_;’gi(f; (0’ Op, Q'\/j)-

§3.2. Ray class fields over real quadratic fields

Let there be given a real quadratic field F as described in Section 3.1.
Let | be a self conjugate integral ideal of 0, which satisfies the condition:
(D) For any totally positive unit ¢ of 0z, e+1 ¢ f.
We denote by H(f) the narrow ray class group modulo { of F. Then,
under the condition (1), the group H(f) has a character % of the following
type:

X(x)=sgnx or X((x))=sgn x’

for x—1 e |, where x’ denotes the conjugate of x. We denote the Hecke
L-function of F attached to X by

» For a general treatment of this function via Weil representation, see [35] and
[40].
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L(s, D)= ceg(f)X(C) 2.N@™ (Re(s)>1).

ace
aCop

Then the [-factor in the functional equation of L,(s, X) is of the form
r(3)r(5)
2 2

Hy(P)y={c e He([)|c'=c},

We put

and assume that

( 2 ) [HF(T) HF(T)O] =2.

Let K,(}) denote the maximal narrow ray class field over F corre-
sponding to Hy(}) and ¢ denote the Artin canonical isomorphism given
by class field theory. Let L be the subfield of ¢(H(]),)-fixed elements of
K (f). Then, under the assumption (2), L is a composition of F with a
suitable imaginary quadratic field k, and K,({) is an abelian extension of k
({50D).

Kx(f)
l

2L2

/\
v

Therefore there exists an integral ideal ¢ of k such that K(f) is a class field
over k with conductor ¢. Let f, be the conductor of X and ¥ the primitive
character of H.(f,) corresponding to X. We denote by &, one of the
characters of the group H,(c) determined by X in a natural manner. Let
¢, be the conductor of &, and &, the primitive character of H,(c,) corre-
spondig to &,. Then we have the following coincidence of two L-functions
associated with the real quadratic field F and the imaginary quadratic field
k ([50]):

( 3 ) LF(S’ Z):Lk(sa éx)-z)

F K

§3.3. Positive definite and indefinite modular forms of weight 1

In this section we use the same symbols as in Section 3.2. We put

® H. Ishii proved that the coincidence (3) is equivalent to the condition (2)
(1291
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K=K(});

and assume that K/k is a cyclic extension. We denote by 9(F/Q) and
9(k/Q) the different of F over Q and that of k over Q, respectively. Then
we have the following relation between the conductor ¢ of the cyclic ex-
tension K/k and the finite part { for the conductor of the abelian extension
K/F by Hasse’s theorem:

Lemma 1. §-9(F/Q)=c-9(k/Q) as ideals in L.

Let us, temporarily, assume that K/Q is a dihedral extension. Then
the Galois group G(K/Q) is the dihedral group D, of order 8 and we have
the following diagram of fields:

K

:
<

{rt,s) F <’;> E (% sr)

Q
G=G(K/Q)=(r, s

Here E denotes the imaginary quadratic field determined by F and k. The
conductor ¢ of K/k is an ideal of Z by Satz 7 of Halter-Koch ([36]).. Now
vre put

c=(c), ceZ.
Since, /=1, (f- 9(F/Q))* is an ideal of Z, i.e.,
(- HF/Q))=(q*-d),

where ¢ is a positive integer and d is a positive square-free integer. K/k
being a cyclic extension by assumption, we have the following by Lemma
1.

Lemma 2. c=q-e;' and k=Q(H —d),

where

o — 1 ifd=3 (mod4),
=
2 otherwise.
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We are going to discuss how to obtain an identity between cusp forms
of weight 1. Take an integer » of F such that 4 <0, 4’>0 and p=1mod {,
and denote by the same letter p the ray class modulo { represented by the
principal ideal (). Then, by the condition (1),  is an element of order
2 of H,(f), and by the condition (2), we have

H(f)=Hy(),+H. F(T)O/’t'

Let {py'> be the subgroup of H,(f), generated by pp/ and let R be a
complete set of representatives of Hy(f), mod {up’>. Since {pp’> is the
subgroup of order 2 of H(}),, we have

H.(f)=RURyURy'URyy (disjoint).
For ¢ e H(f), we put
CF(Ss C): Z N(a)—s.

ace
aCop

Then it is easily checked that
Cx(s, U,U)ZCF(S, 0'/-/)

for ¢ e R. Let X be a character of H,(}) with. conductor {(o0,) satisfying
the condition (1). Then the Hecke L-function of F attached to X has the

following expression
LF(S’ X) = ”%X(O‘){CF(‘S’ U) _‘CF(S’ 0'/1) + CF(S, O'y’) —-—CF(S, Gﬂﬂ’)}
= 3 Ha)Lr(s: ) —Cels, ops)}

Let ¢ be an element of R and let a, be an integral ideal of ¢='. We put

Ai={aea,la=1mod{, a>0, a’>0},
A;={aea,|ea=1mod |, <0, &’ <O}

and
A,=A7 UA;.

Then it is easy to verify that
A,={a € 05|a=p, mod a,f, N(x) >0},

where p, denotes an element of a, such that p,=1 mod {. Moreover, we
have the following two bijections:
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A7 mod Ef s e mod E} «—aa;" eoNop
and

A; mod Ef 3« mod E} «——>aa;" € opp/ N 0p,

where

E}={e: unit of o |]e=1mod {, £2>0, &>0}
From these correspondences, it is easy to see that

Geo= Y (N@/N@)™
a€A,;+m0dEf

and
Selsopp)= 25 (N(@)/N(a) ™"

a€ 4, mod B
Hence we obtain an explicit form of Lz(s, X):

Le(s, )= 2,X0o) 2. (sgn a)(N(@)/N(=,)~*

aéA‘,modE;-

= 3 1(0) 3 (sgn /(N @/N @),

where « in the summation runs over all integers of F such that a=p,
mod ¢,f, « mod E7 and N(«)>0. We apply the inverse Mellin transfor-
mation on the above L-function and obtain the following indefinite cusp
form of weight 1:

0r(t)= aze:‘}z X(o) Za; (sgn a)g ¥ @/¥ @ (g=e*v)
= ﬂ;Rx(o')e(Qle; Pw Qgs T);

where {=0f,, f,|v D, D;=N(},) and
0(‘[; pd’ aa” T):Z (Sgn a)qN(”‘)/N(a”)QDI_

In particular, if we put f,=+/ D, then the above function ¢ is just the
Hecke indefinite modular form defined in Section 3.1.
On the other hand, since K/k is a cyclic extension, we can put

H (9] C=<4),

where C denotes the subgroup of H,(c) corresponding to K. The generator
A is an element of order 4m. The restriction of the representation of
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Gal (K/Q) induced from X to Gal (K/k) is a direct sum of two distinct
primitive characters & and & of H,(c)/C via the Artin map. Then we
consider the Hecke L-function of k attached to &:

Ly(s, ©)= 2. &@N(a)~*

aCog

4m-—1
=2, &1 2, N
me

For every odd j, the correspondence
ael, aCo,<«—>a’el®mVi q'Co,

is bijective and &(2)7 =(—1)7&(2)*™*"J, Hence

Lis.9)= 5 60 3] N@"

aCog

=’fz (G N@D = T N@)

aCog aCog

Applying the inverse Mellin transformation on the above L-function
L(s, &), we have the following positive definite modular form of weight 1:

6,(c)= “z (1) {03,(2) —Osp 2O},
where

00= 307 (g=e™).

a2’
aCog

It is now clear that the above results, combined with the coincidence (3)
in Section 3.2, prove the following identity:

ﬁF(T) =0 k(T)

From now on, we assume again that K/Q is a dihedral extension.
Then m=1 and

0x(x)=0(QDsz; 1, 0y, )
=1"'9(QDz; p, Qv D),

where k=1, N(p)c>0, fo=(Q+ D) and t=[E; : 1I}]. Consequently we
have

Theorem 3.1 ([25]). The notation and assumptions being as above, we
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have the following identity between positive definite and indefinite cusp forms
of weight 1:

(4) 17'9(0Dyz;5 p, Qv D )=0,(c) —0,(2).

Theorem 3.1 gives a number theoretic explanation of the identities
discovered by Kac-Peterson ([35]).

§3.4. Numerical examples

In this section we shall give some numerical examples based on
Lemma 2 and Theorem 3.1 in Section 3.3. As the method for making of
the examples is the same for each, we shall give the details only for the

first example.

1. For the first example we set F=Q(+/ 3) and {=(2+43). The
fundamental unit of Fis totally positive and is given by e=24-4/3. Itis
easy to see that e?=1mod f. Put p=(7—64/3). Then the group H(f)
is an abelian group of type (2, 2):

HyD={1, g, o', mt'};
and
HF(DOZ {1’ /l/l,}-

Hence the field F and the conductor { satisfy the conditions (1) and (2) in
Section 3.2. By Lemma 2 we know that k= Q(v/ — 1) and ¢=(6). Further-
more, since H,(c) is a group of order 4, we have C={1}, and so

H()=<2), 2=Q++-=1.
> K—I—: Q(x/———T, W)
2

cyclic L= Q(m: 1/_—'-3)

T T |
F=QW3)'"——k=0W/=T)  E=Q(=3)
f=(2v3) ¢=(6) g=(4v=3)

\l////

l
bicyclic

Q
In the following we shall look for the explicit forms of 4, and 4,.
First we treat the function 6,(z). It is easy to see that
ge(D)<—ra=(w), a=1(modH),
ael «—a=(a), a=2+3+/—1 (mod 6).
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Hence, if @ =x+43+/— 1y ((x, 3)=1), then we have
(@) e (1)«—>x=1 (mod 2) and y=0 (mod 2),
(@) e &* «<—>x=0(mod 2) and y=1 (mod 2).

Therefore

D=2 5 (=g

2, 9EZ
(%,3)=1,x%Fy(mod 2)

=7"(127) (g=é**).
Next, for the function 6,(z),
{a e () «—a=(a), «>0,a’>0 and «a=1(mod 24 3),
ae py<«—>a=(a), «a>0, «’>0 and a=—1(mod24 3).
Therefore, if e=x+24/ 3 y (x= +1 (mod 6)), we have
(@) e (1) «—>x=1 (mod 3),
(@) e y/<—>x= —1 (mod 6).

Since ae*?=(7x+24y)+(14y+4x)4/ 3, we have the following as a funda-
mental domain:

x=4y|,
so that
0(0)=29, (12¢; 1, ¥ 12)

— Z (_{)qx?—liy?'?y)
3

z,yeZ
rz4yl,(2,8)=1

Another form of ,(z) is obtained as follows. Let p be any positive
integer in F. Then it is easy to see that

Ox(t)=> (sgn Pg~H/¥e),
7

where 8 in the sum runs over all integers of F such thet f=p mod fp,
gmod E; and N(B)N(p)>0. Now we set p=1+4/3. Put

{x-{—yﬁ, if >0,
P= x—yy 3, if p<0

® Hecke also found this expression ([16], pp. 425-426).
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for rational integers x and y. Then, for the case §>0,
>0, x=1(mod6) and x=y (mod 4).
Therefore we can put
x=6/4+1, y=2k+1 with k=I[(mod?2)

for rational integers k and /. Since fe*?=(7Tx+12y)+(Ty+4x)v/ 3, we
have 7Ty+4x>y, i.e., 3y=2|x|; and hence k=2|/|. For the case 3<0,
we have y>0, x=1 (mod 6) and x=y-+2 (mod 4). Hence we put

x=6l4+1, y=2k+1 with k=I(mod 2)

for rational integers k& and /. Since Be**=(TxF12))+(—Ty+4x)v 3,
we also have the following as a fundamental domain: k>21/|. Therefore
we obtain the following expression of 0,(z):
g — )k BREED2- (8L +1)2)/2 4)
(0= 3 (=1
kz211|

For comparison, we write down the expression of the above right-hand
side by Hecke’s modular form:
9_(127; 1+ﬁ’ (1+ﬁ)’ \/ﬁ)I Z (_1)k+lq(3(2k+1)2_(6L+1)2)/Z.
k

JLEZ
kz2{t]

By combining the above results and the identity (4), we have the following
remarkable identities:

0:(c)=9.(12c; 1, V12)= 3] (%>qm_w

z,9y€Z
rz4lyl,(x,8) =1

Z (__ l)k-(-lq(S(ZIc +1)2— (6Z+1)2)/2‘

I

klEZ
k22|l
:915(7):—;— Z (—1)?’61’”2*9“:7;2(121-),

Y €
(x,3)=1,x=y(mod 2)

where 5(r) is Dedekind’s eta function. In exactly the same way as for
0,(z), we obtain

— )k +ig G112
65(7) k’g.z (—D*"q
=7(242)0,(247) (=1"(120)),

where

 Cf. Rogers ([45], p.323).
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0()= 3 (— e,

2. We set F=Q(v/2) and {=(4). The fundamental unit of F is
given by e=1+4+/2 and satisfies N(e)=—1 and e*=1mod §. Thus, in
the same way as for the first example, we have

k=0Q(W=2), =,
E=0(W—-1), g=0@(1+v-1)),
K=k(v¢);

and obtain the following identities:

0,(0)=39,(8c; 24+4+ 2,2/ 8)

= Z (i)qﬂ—%?ﬂ — (—1)rgen+vr-sn:
szoigl a1~ % e
=0,(0)= 3 (—1rg=+
ZWEZ
2=1{mod 4)
= Z‘E‘Z(—l)nq(4m+1)2+8n2zﬂ(8f)77(167)
:015(1'): Z (__1)m+nq(4m+1)2+wn‘l.
m,nezZ

F=0(5), f=@); 5:_1_112@, N()=—1,&=1mod f,

3. k=0(/=3), =),
E=Q(/=T), g=(10),
K=k(v/¢).

0:(2) =—;—«9+<4f; (54+4/35)/2, 4/ 3)

—_ Z (_1)y+(x—1)/2qx2—20y2

z,YyeZ
225yl (=,2)=1

— Z (___ 1)kq(5(2k+1)2—(21+1)2)/4

=0()=— 2, (=Drg="
zYEZ
xEy(mod 2)
The second expression of #,(z) is obtained as follows: It is clear
that H,(c) is a cyclic group of order 4 and

H()=4>  2=[3,14+4/=5].
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By the result in Section 3.3., we have also

(5) Li(s, )= 33 N@™'— 5 N@)™.

In the following we shall calculate the right-hand side of this equality. We
can put

a=(n), p=a+by—5 (a,beZ).
Thus
ae()«—p=1(mod?2) «~—>a=1 and b=0(mod 2),
ael «—>pu=2—+5 (mod2)<—>a=0 and b=1 (mod 2).

The contribution of ideals a divided by 1 to the first sum in (5) cancels
that to the second sum in (5). Therefore we may consider the ideals a
with (a, 2)=1 in the above sum (5). Hence, if we put p=Q2a+1)+
264/ =5 (a, b € Z), we have 2(a—b)-+1=0 (mod 3). On the other hand,

(1—v =5)pu=Q2a+10b+ D)+ 2(b—a)—1)v/ —=35.

Put s=b—a and t=a+5b, then t=>5s (mod 6). Therefore we put s=
u-+8m and t=v+6n. Then v=>5u(mod 6) (0<u, v<5). Hence

2b—a)=1(mod 3) 2u—1=0(mod3) wu=2,5.
Therefore
(u, v)=(0,0), (1,5), (3,3) and (4,2);
and
N(p)={(12n42v41)* 4 5(12m+2u—1)*}/6.

Now we obtain

2 N(a)*s:%{mmzez2((12n+7)2+65(12m+7)z>_s

+ % 2<(12"+1)2+5(12m+1)2>_8}

m,neEZ 6

= 2 (—1)"‘*”((6”+1)2+65(6m+1)2)-s

m,neZ
m=n (mod 2)

In the same way as above , we obtain
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N 6n+ 1)t + 5(6m--1)* \~°
N(a)-* = ( _
a;;; (a) m,;él 6 )
(§§§I‘=1 m+n=1(mod 2)

Therefore we have

L(s, &)= 2, (—1)m+n( (6n4-1y +65(6m+1)2 )-s

MEZ

Hence

0k(T)= Z (__1)m+nq((6n+1)2+5(6m+1)2)/6
m,neZ

=1(47)(207).
. = . = > ; e= 5 = ,

k= Q(\/:ﬁ), (= (3),
K=k(Va), a= ﬁ_;/_zl
() = b %)wm,mzm:%&@ﬁ (T+4/21)/2, V21)

z,YEZ
227y, 2=y (mod 2)

=0, (t) = —1— Z a(x, y)g =V
2 zyez

z,Y
x=y(mod 2)

where
1, if3|y and 3/tx
o(x, )={—1, if3}x and‘ 3y,
0, otherwise.

On the other hand, after a computation similar to that in Example 3, we
find

Hk(l')z Z (__ 1)m+nq((6m+1)2+7(6n—1)2)/8

mneZ

=9(37)p(217).

Remark 2. The indefiinite representations in Example 1-3 were dis-
covered by Kac-Peterson ([35]) by using the general theory of string func-
tions for infinite-dimensional affine Lie algebras. A similar result was
obtained for some other cases ([33]).
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Remark 3. 5(2)7(237), 7(27)9(22¢) and 7(67)7(187) are of D,-type and
hence can not be expressed by indefinite theta series.

Remark 4. Biquadratic residue mod p and cusp forms of weight 1.
In example 2, we have obtained the following identity
( 6 ) Z (__ l)nq(4m+l)2+8n2: Z (_ 1)m+nq(4’m+l)2+16n2’
mneEZ

m,neZ

by intermediating the function 6,(z). This identity appeared for the first
time in Jacobi’s memoir and gives a generalization of the equivalence of
Gauss’ two criteria for the biquadratic residuacity of 2. In the following,
we shall discuss more precisely this fact from our point of view. Consider
the following diagram:

e

L

T o
F=Q(2) E=Q() k=Qw—3) K=QUG+e) e=1+y2
\IQ/ K'=03G¥2),i=v=1

Then, at the same time, £ is the maximal ray class field over F

mod 44/ 2 (o0,)(c0,), over k mod 44/ —2 and ‘over Emod 8. Let p and r

be distinct primes suct that p=r=1 (mod 4). We write (L> =1or —1,
p 4

according as r is or is not a fourth-power residue mod p. Then it is easily
checked that

p splits completely in L ( —1 >=< -2 ): i
p p

<«—>p=1(mod 8)«—p=(4a+ 1)+ 8 «—>p=(4a+1)*+165;

and moreover

(i) = l<—>p splits completely in K

(7) p
<«—>b=0 (mod 2)«—>a+ =0 (mod 2),
and
<_2_) = 1<—> p splits completely in K’
(8) p/

<«—>a=0 (mod 2)«—>$=0 (mod 2).
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The above dentity (6) gives a generalization of the equivalence (7); and
the following identity gives a generalization of (8):

Z (_1)ﬂq(4a+1)2+16ﬁ2= Z (_1)aq(4a+])2+3b2
a,fEZ ' a,bEZ

=%oz<81)eo(3zz),

where

02(1.)___ Z enim2r/4’
m=1(mod 2)

We shall discuss a more general case in the second half of this chapter.

§3.5. Higher reciprocity laws for some real quadratic fields

Let F be a real quadratic field satisfying the conditions (1) and (2).
Then there exists an imaginary quadratic field &, and two L-functions
associated with F and k are coincident. Suppose that K/k is a cyclic
extension and K/Q a dihedral extension. Let f(x) be a defining polynomial
with integer coefficients of K/Q through the real quadratic field F. Then
we have the following higher reciprocity law for f(x):

Theorem 3.2. Spl { f(x)}={p: prime| pyD;, a(p)=2}, where D, de-
notes the discriminant of f, and a(p) denotes pth Fourier coefficient of
Hecke’s indefinite modular form 0,(t) associated with F.

Proof. We put
6,(0)= 3 &(@q "= bln)g".

Let p be any prime ideal of k unramified for K/k. Then we know that
(i) &(p)=1<«—>p e (1)<—>p splits completely in K;
(il) &(p)= —1<«—>p € 2>«—>p splits completely in L/k and remains
‘ prime in K/L;
(iil) &(p)=1i or —i<—>p € 2* or p € A*«—>p remains prime in K.
Let p be a prime number and p=ypy’ in k, where p’ denotes the conjugate
of p. Then

pe (D)—>b(p)=2;

and vice versa. Let F(x) be a defining polynomial with integer coefficients
of K/k. Then it is easy to see that

where D, denotes the discriminant of F. On the other hand,
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Spl { f(x)} U{p|p unramified, p yD,}
=Spl {F(x)} U{p|p unramified, p yDy};

and by Theorem 3.1, b(p)=a(p) for all p. Hence we obtain
Spl {/)}={p| p¥D;, a(p)=2}.

Example 5. We shall use the same symbols as in Example 1. Then
we have the following defining equation of K/k:

F(x)=x"—6x*—3.
On the other hand a defining equation of K/F is given by
[ =x"—4(1++ 3)x"+42++ 3 ).
Therefore the following is a defining equation on K/Q through the field F:

S =A(x)- A%y
= x°—8x" 4 24x* 4 160x* + 16.

Hence

Spl{F(x)}=Spl {/(x)}={p|a(p)=2}
={p|lp=1v*+1*, u=0(mod 6), u,ve Z},

where

0:2)= 9,(12¢5 1, ¥ 12)= 3 alin)g™.

Remark 5. For the defining polynomial f(x) in Theorem 3.2, the

following assertions hold:
1) f(x) mod p has exactly 2 distinct quartic factors over F,
<a(p)=0 and a(p*)= —1;
2) f(x) mod p has exactly 4 distinct quadratic factors over F,
<‘a(p)=—2" or ‘a(p)=0 and a(p?)=1".

§3.6. Cusp forms of weight 1 related to quartic reisduacity

Let m be a positive square-free integer and ¢,, be the fundamental
unit of the real quadratic field Q(v/m). We consider only those m for
which ¢, has norm 41. Let K be the Galois extension of degree 16 over

Q generated by v/ —1 and ¥¢,, and we put G=Gal (K/Q). Then the
group G is generated by three elements ¢, ¢ and p in such way that
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o(V en)=v/—1¥ ¢, ,
¢(4~ Em )='%/Z_1,
P(’V» —_ 1): —a — 1’
and has defining relations:
o4=¢2=p2= 1, do=pp, pop=gog=ad".

The group G has three abelian subgroups of index 2 in G, which are the
following:

H,={o, o)  <«—>k=0(—m),
HF=<GZ’ ¢’ P> <—_)F=Q(Q/IT2_)7
Hy=(a", a4, 0py «—> E= QW — (D),

where t=tr (¢,,). Let fand e be the square-free part of #+2 and m(¢4-2),
respectively, and put

K’=Q(\/:T, ’\/—5;11,_)’ L=Q(m, '\/ﬂ)a
L'=0W—=m,VTF), L'=0W—=m,vV=F).

Then we have the following diagram:

K
l
K/
— I T
r L

L
T

F=Q( f) E=Q( —e) Q(x/:T)llc QWm) QWe) QW=7

Q

By this diagram, we have the following equivalence for any odd prime /:

(9)  Isplits completely in K ‘“’(;1) = (L) B (%) v

I /
where (.’}i) denotes the Legendre symbol. The group G has the following
eight representations 7, of degree 1, where j=1, - - -, 8.
r] 7’2 T;; 74 Ts rG 7’7 7’B
o 1 1 1 1 -1 -1 -1 -1
] 1 1 -1 -1 1 1 -1 -1
0 1 -1 1 -1 1 -1 1 -1
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The group G has just two irreducible representations of degree 2, which
have determinant 7,. If we denote by +r, the one of these, then the other
is J,®7;. Let g, denote the Frobenius substitution associated with / in
K. Then we have the following table which gives the correspondence
between quadratic subfields of K and 7,(2<7<8).

T Ty .o Ts T T
QW=1) QWm) k F QW—f) QWe) E

Wl (53 6 @) 6 6 E)

Put =, &7, and let L(s, 1., K/Q) (resp. L(s, v, K/Q)) denote the Artin
L-function associated with +, (resp. ), and let O(z; ) (resp. O(z; Yn))
denote the Mellin transformation of L(s, ¥, K/Q) (resp. L(s, ¥, K/Q)).
Then we can define the following function:

6(c; K)= —;—{@(T; ¥ +6(c; 1))

Let N denote the L.C.M. of the conductor of 4, and that of . Then
the function B(z; K) is a cusp form of weight 1 on the congruence sub-

group I",(N) with the character (;lnl)

Let M be one of the three quadratic fields k£, E and F. Then K is
abelian over M. Let 0, be the ring of integers of M and a an ideal of g,,.
If M is imaginary (resp. real), then H,(a) denotes the group of ray classes
(resp. narrow ray classes) modulo a of M. Let b be an ideal of M prime
to a and [b] the class in H,(a) represented by . If in particular b is an
element of M, then the ideal class [(b)] represented by the principal ideal
(b) is abbreviated as [b]. Let f(K/M) (resp. {(K/M)) be the conductor
(resp. the finite part of conductor) of K over M. Furthermore we denote
by Cy(K) (resp. Cy(K")) the subgroup of H,({(K/M)) corresponding to K
(resp. K’). The restriction +, (resp. ) to the abelian Galois group
G(K/M) decomposes into distinct linear representations &, and &}, (resp.
§4®7, and &,Q7,) of G(K/M):

¥ | GKI M) =&, QT+ &, QT, (i=0, 1).

By Artin reciprocity law, we can identify &, and &), with characters of
H,(f{(K/M)) trivial on C(K) and so we denote these characters by the
same notation. Let ¢, be the finite part of conductor of £,,, We assume

. I~
that the finite part of conductor of &,&7, is equal to ¢,,. Let C,(K) (resp.
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(/77 K")) be the image of C,(K) (resp. C,(K’)) by the canonical homomor-
phism of H,(f(K/M)) to H,/(c,). Since K is the class field over M with
conductor f(K/M), the Artin L-function L(s, r, K/Q) (resp. L(s, vr, K/Q))

is coincident with the L-function L,(s, £,) (resp. Ly(s, 5;1@/73)) of M

associated with the character &, (resp. E;?S)/Tg), where &, (resp. 5;,@/2’3)
denotes the primitive character corresponding to &, (resp. £,®7,). There-
fore we have three expressions of O(z; K).

Proposition 3.1. The notation and the assumption being as above, we
have

(10) O; K)= >, YAy(a)g¥ure® (g= "),
[a]eclgxl)
where
1, if[a] e CK),
—_— f ld) e ET)
—1, otherwise;

and N y,0(a) denotes the norm of a with respect to M|Q.

The proof of Proposition 3.1 is quite similar to that appeared in
Section 3.3.

Let f(x) be a defining polynomial of ¥ ¢, over Q. Then it is easy
to see that :

JE)=(x—e ) x! —e;) =x"—tx*+ L.

Let a(n) be the nth Fourier coefficient of the expression
O(c; K)= 3 (g™
Then we have the following relation:

Proposition 3.2. Let p be any prime not dividing the discriminant D,
of f(x) and F, the p-element field. Then we have

Ay reFIF@=0t=1+(2)+(L)+(L)+ 2.
p p p
Proof. Let H be the group generated by p, say H={p). Then H
isjthe subgroup of G corresponding to Q¥ ¢, ). We denote by 14 the
character of G induced by the identity character of H. Then we have the
following scalar product formulas:
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1217, = 1, ifi=13,5,7,
i 0, otherwise;
(1%)x)=1 (@=0,1),

where X, (resp. X,) denotes the character of +, (resp. 4»;). Therefore, we
have

1?1(0'1;) = 152'527 ri(ap) + Xo(o'p) + X1(0'p)

it odd

=1+ (’—"—) +(i) + (—e—) +2a(p).
p p p
On the other hand, it is easy to see that the left hand side of (11) is equal
to 14(s,). This proves our proposition.

By Propositions 3.1 and 3.2 we have the following

Corollary. Spl {f(x)}={p|p/D,, a(p)=2}.

§ 3.7. Fundamental Lemmas

In this section, we shall determine the conductors {(K/M), {(K’'/M),
(/M) and f(L/M). Let & & and § be fields such that RDLDOF and
[Q:F]=2. Assume that & is abelian over §. We denote by d(L/F) the
different of & over §. For a prime ideal g of &, let f(g) (resp. g(g)) denote
the g-exponent of {(&/%) (resp. 2(/F)) and put

e(g)=max {0, g(g) — f(9)}-

Then we have the following
Lemma 1. f(R/F) = HR/D/F) 11 e

We assume that & is a Galois extension over Q. Let o, be the ring
of integers fo & and let p be a prime ideal of o, dividing 2. We denote
by e, the ramification exponent of p. Let o, denote the completion of o,
with respect to p and /7, a prime element of o,. Furthermore, for & e o,
we put

S,(§)=max {t ¢ Z*|&=square mod II:}.
Then we have

Lemma 2. If S(§)<2e, then there exists uniquely the odd integer
t(<2ey) such that
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E=9" 40l (n, 6 €0));
and this uniquely determined t is equal to S,(&).
Lemma 3. Put
t(8)=min {n ¢ Z|&II}"=square mod IT}*2, 0<n<eg}.
If 5,(&) <2eq, then we have
S,(&) =24+ 1—-24,&).

Let o be an element of o, such that («) is a square-free ideal with
((@), 2)=1 and put 8=2(v ). We assume that  is a Galois extension
over Q. Then S(«) is independent of p chosen. Since & and & are the
Galois extension over @, the p-exponent f(p) of {(R/LQ) does not depend
on p chosen. Thus we can put Sg(a)===S,(x) and f(2)=f(p).

Lemma 4. (i)  The prime ideal p is ramified for RIL if and only if
Sela) <2eq.
(i) If Sy(a)<2eq, then Sya) is equal to the odd number t(<2e,)
determined by
a=n"+3I  (p,de0));
and moreover

fQ)=2e;+1—Sya).

Proof. By the assumption on a,we have
0g= {%—(cH— b/ @) |, b e 0y, @ —ab?=0 (mod 4)}.

Denote by P a prime ideal of & dividing p. Let a be an ideal of & and
denote by L8y(a) the PB-exponent of a, and let ¢ be a generator of G(R/R).
Then, by the definition of f(p),

(12) f(@)=min (6 —£").

Denote by X (resp. X,) the group of all elements b of o, satisfying the con-
dition

ab*=square mod 4 (resp. mod p*2).



554 T. Hiramatsu

Let 28,(b) denote the p-exponeht of (b). Then, by (12), we have
J(2)=2 min L,(6) =2 min W,(b).
bEX bEXy

Therefore,

p is unramified for /L8 «— f(2)=0

<>« 1s square mod p** <> Sq(e) = 2e,.
If p is ramified for &/&, then
min W (b)=1,(«).
bEXy
By Lemma 3, Sy()=2e,-+1—f(2). Hence by Lemma 2 the assertion (ii)
is proved.

Now we assume that (¥« ) is a Galois extension over Q. It is easy
to see that there exists a subgroup R of o) with order #(os/p)—1 such that
R*¥*=RU{0} is a complete system of coset representatives of o, mod p.
Put

t=min {2eq, Se(a)} and w=[(t+1)/2].
Then there exists elements a,, @, - - -, @, _; of R* such that
a=(a+all,+ - - +a,_JI¢"Y mod II},

Lemma 5. (i) If p is unramified for K] and there exists a nonzero
element in {a,|i: odd}, then

Se(v @ )=min {i: odd | a,+0}.

(i)). If'p is ramified for R/ and there exists a prime element 11, of o,
such that II,= II mod I15™, then

S‘w(\/&_):Ss(“)-
Now we put
L=Lor K/, and a=¢,.

From now on we assume that m is prime number p with p=3 (mod 4).
We put sl,——;e=A+B«/ p. Then it is easy to verify that 4 is an even
number. Since A*—pB?=1, we have (44 1)(4—1)=pB%. Therefore we
can put
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A—1=ru,
A+1=s%,

with (ru, sv)=1, rs=B and uv=p (r,s,u,ve Z*). Hence, 2=sv—ru.
By considering this relation mod 8, we have

(1, p), if p=3(mod?3),

(M, U):{ .
(p, 1), if p=7(mod 8).

Since t=tr(e)=2A4, we have t+2=2s%v. Hence

(2p. 2), if p=3(mod ),

(/- 9= {(2, %), if p=7 (mod 3).

Therefore we have the following lemma.
Lemma 6. With F and E as in Section 3.6, we have

QW 2p), QW =2)), if p=3(mod 8)

F, E)= =
5 {(Q(«/7 ), QW =2p)), if p=7(mod ).

Now we shall calculate the conductors {(K/M), {(K’/M), {(L/M) and
f(L’/M). Because the method of calculation is very similar for each of
three cases, we shall give the details only for the case of M=k. If we put
Q=L, then K’=L(v ¢). We can take e,=2 and II,=1—+/p. There-
fore, e=1—1I,(mod 2). By Lemma 4, S,(¢)=1 and hence Se(We)=1
by (ii) of Lemma 5. Therefore, again by Lemma 4, we have f.(2)=
5—1=4. Since prime factors of 2 are only ramified for K’/L, we have
f(K’/|L)=(4), and hence d(K’/L)=(3). By ex.=4, fx(2)=9—1=8. There-
fore (K/K")=(4). Consequently, by Lemma 1, we have

f(K/L)={(K/K")b(K/L)
=@2)=(®).
Thus we obtain the following:
(K/k)=T(K/L)d(L/k)=(16),

(K'[l)=T(K'|L)d(Lk)=(8),
T(L/k)="D(L/k)*=(4).

Therefore our required conductors are as follows.
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M f(K/M) f(K//M)  f(L/M) F(ELIM) o
k 16 8 8 4 16
p=3 (mod 8) 4p,00,00, (2)oo,00, 00,00, 4p,
p=T(mod 8) (4v'2 p)oo,00, (2p)oos00, (P)oo,00, 4p
p=3(mod8)  4v/—2p 2p p 4p
p=T7 (mod 8) 4p, 2 1 4p,

In the above table, p denotes a prime ideal of M dividing p, and p,
denotes a prime ideal of M dividing 2. Further oo, (i=1, 2) denote
two infinite places of F.

§3.8. Three expressions of @(z; K)

For an integral ideal a of M, if M is imaginary (resp. real), then
P,(a) denotes the subgroup of H,(a) generated by principal classes (resp.
principal classes represented by totally positive elements). We write
simply H,, and P, in place of H,((K/M)) and P,(f(K/M)) respectively.
Suppose that a divides {(K/M). Then we denote by K(a) the kernel of
the canonical homomorphism: P,—P,(a). Moreover we put Cp( )¥=
P,NCy(). In the following, we shall obtain C,(K) and C,(K’) under
the assumption p=7 (mod 8).

Case 1. M=k (=Q( =p)).

By the assumption, we have 2=1§,p,, where p, denotes the conjugate
of p,. Take the two elements y and v of o, such that

©=5mod pj, y= —1 mod pj,
#=1mod pj, y=1mod pi.
Then we have
Cu(Ky*=([pF, [aF, [pllal),
Cu(K)* 3 [l [F.
" Since G(K/Q) is non-abelian and G(K/k)=P,/C,(K)*, we see [p] [a] ¢
Cu(K)*. Therefore, [p][g] € C,(K)*. Hence we have
CuK)Y* ={[pllal>=<[51>-

We put
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H.= Z [61ps
bES
where S denotes the index set of integral ideals b. Then

CuK)= C(K)+ Cu KT,
Cu(K)= 2, [0]*Cul(K)*.

Put o =(14++/=p)/2 and let a be an ideal of o, with (a, (2))=1. Then,
by the above relations, we have [a] € C,(K’) if and only if there exists b ¢ S
and y=x+yw € b* such that x=1 (mod 2), y=0 (mod 8) and a=b"%(y).
Moreover

[a] € C(K)<—>y=0 (mod 16).
Therefore, if M=k, then the right hand side of (10) is as follows:

(13) 0(c; K)=73] h (—1)vglva+D2+16py2/Ner Qs

bES 4x+1+4y y—p €6t

Case 2. M=F (=Q(/ 2)).
Let « be an element of 0,. Then there exists an element a* of 0,
such that
a* is totally positive,
a*=a mod 44/ 2,
a*=1mod p.

Let p=pp in F, and r(p) denotes a generator of the multiplicative group
(0p/9)*. Take a totally positive element A of 0, such that

2=1mod 4y 2,
A=r(p) mod p,
A=1mod .

Then we obtain
Co(L)=[ef], 3%, [5*1, [2. [A], [AF*).
Since the Galois group G(K’/Q) is isomorphic to P,/Cz(K"), we have
C(K) 2 [2F, [AF, [7'[Al
Hence

CKN)={[efT, [3%], [5*], [AT, [AT, [A][41)-
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Also we have
Co(K)={[e¥T, [A1%, [T [3*][A1[A], [S*11A1A1),
Cr(K")= Co(K)+ Cx(K)[5*].

Let r be a rational integer with r’=2 (mod p) and y=x-+y+/ 2 be a totally
positive element of o, such that (2p, p)=1. Then we have

2 2
[1] € Cx(K)<—>x: 0dd, y: even and (i';zy—):l.
p
Further
(1] € Co(K)<—>(— 1)wz(_’y_t3)(_2_) =1.
P x
We put

E*={e e 0} |e: totally positive},
E'={ce E*|e—1 e {(K/F)},

and e=[E*: E°]. Then, the right hand side of (10) has the following ex-
pression for M=F:

(14 0 K)=e' X 7(sgnx)(—l)”(ﬂ%ﬁ)(_%ﬁﬂ—%{

p=x+2y /2 X
x=1(mod 4)

NF/Q()>0

2 mod E0

Case 3. M=E (=QK —2p)).
By a calculation similar to that of Case 2, we have the following

(15) O(c; K)=5] 3T (— )7+ vg(Gae28u2) /N e/ Q)
o 4r+1+2y 4/ —2pca
where {a} denotes the set of integral ideals of E which are representatives
of all square classes in Hz/P,.
Summing up (13), (14) and (15), we obtain the following theorem
which is our main purpose.

Theorem 3.3. Let p be any prime with p=17(mod 8). Then, the
notation and the assumption being kept as above, we have the three expres-
sions of @(z; K):

O(c; K)=> ST (— 1)+ vgltéasnreopyl/NE/om (via E)

@ 4x+1+2yJ/—2p€a

= >, (—1)vgterhe=16pu2/Ny QB (via k)
b dzil+dyy/—pens



Automorphic Forms of Weight 1 559

=t 3 o 2EE)(ZYger ia ),

X

NprQ(r)>0
¢ mod EO

Let / be an odd prime number satisfying the conditions (!;—>=1 and

=1(mod 8). Then we have (flz)=1 by (9), and we have also the fol-
lowing from the theorem above:

I={(da+ 1)+ 8pb%)/ N 1,4(c),
I={(4a+ 1+ 16p81}/N, o0,

[=x*—8)*, x=1(mod 4), (ﬂ> =1;
p
al)=+2.

Moreover, we have the following criterions for ¢, to be a quartic residue
modulo / which are our conclusion.

(%2)4:1(——>a+b: even
<—>f: even
< >(sgn %)(— 1)@(2’y_p+’€) (%) —1 and x=1 (mod 4)
<«—>a(l)=2.

For prime p with p=3 (mod 8), we shall only state the result as a
remark.

Remark 6. Let p=3 (mod 8) and p+#3. Then, the following may be
obtained in a way similar to the proof of the above theorem.

0 K)= Y (- 1)<x—1>/4+y( x—2ry )qmm
.::’Eyle(mod 4) p
=24 2 (— 1)@= D74+ Wiy@w) =178 a2+ pp) /4Ny Q)4
b y=(a+pV/=p)/2€b4
Np/Q(v)=1(mod 8)
a=1(mod 4)
+ Z (__ l)yq((41‘+1)2+16py2}/Nk,Q(5)4}
4r+1+4y /—-pEDL
=e' 3] 2. (sgn x)(— 1)+ vgitte+D2=8pv2l/Nr/Q@
@ p=4x+1+2y ¥2p€a

NFp/Q(#)>0
¢ mod EO
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Chapter 4. 2-dimensional Galois Respresentations and
the Stark Conjecture

§4.1. Results of Deligne-Serre

Let Q denote an algebraic closure of Q and put G=Gal (Q/Q). Then
we have the following two theorems:

Theorem (Weil-Langlands). Let ¢ be an irreducible 2-dimensional
Galois representation of G with conductor N and e=det (¢) odd. Assume
that ¢ satisfies the condition

(4): The Artin-L-function L(s, 0®2) is an entire function for all twists
6®2 of ¢ by one dimensional representation 2 of G. Suppose L(s, c)=
D amn=e, and let f(z)=> 2., am)e*™*. Then f(z) is a normalized
newform on I'(N) of weight 1 and character .

Theorem (Deligne-Serre, [8]). Let f be a normalized newform on
T(N) of weight 1 and character e. Then there exists an irreducible odd
2-dimensional Galois representation ¢ of G with the conductor N and det (g)
=¢, such that L (s)=L(s, o).

In other words, there is a 1-to-1 correspondence between the set of
normalized newforms on ["(N) of weight 1 and character ¢, and the set
of isomorphism classes of irreducible 2-dimensional representations of G
with conductor N, determinant odd character e, satisfying the condition
(4). The finite subgroups of GL(2, C) were classified by Kelin; the image
of

§: G—>PGL(2,C)
must be

D,, dihedral group,

A,, tetrahedral group,
§(G) =

S, octahedral group,

A

5 icosahedral group.

Remark 1. Langlands and Tunnel ([54]) proved the Artin conjecture
for all tetrahedral and octahedral ¢ by combining the above result of
Deligne and Serre with a generalization of the theory of lifting automorhpic
forms due to Saito and Shintani.

Remark 2 (Buhler [5]). There is an icosahedral form of level 800.
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Let ¢ be an irreducible 2-dimensional Galois representation of G
with prime conductor p such that e=det (¢) is odd and assume ¢ is non-
dihedral. Then, if p=3 (mod 4), ¢ is of type S, or A,, and ¢ is the

Legendre symbol (%) Now we put
d,=dim S\(I"y(p), ¢)-

Then, Serre ([48]) obtained the following dimension formula:
(*) d]=_;_(h—1)+2(s+2a),

where 2 denotes the class number of the imaginary quadratic field
OV =p), s (resp. a) is the number of the normal closure of a quartic (resp.
non-real quintic) fields with discriminant —p (resp. p*) whose associated
representations satisfy the condition (A).

§ 4.2. The Stark conjecture in the case of weight 1

Let a=~(1) be an integral ideal in k= Q(v d) where d(<0) is the dis-
criminant of k. If X is a ray class character of k¥ mod a, then we may

write

L(S, X): Z X(C)Z(S, C)a
c
where C runs through the ray classes mod a and
Z(s, C)=>, N()*.
beC
Define g,(z) by the Mellin transform,
Q) TOLe D=y ey, z=x+ir.

Then, g,(2) is a modular form of weight 1 on I",(%¥) with N=|d|N(a) and
we have

L, x>=j: () fil

Now we are led to the following Stark conjecture ([51]).

Conjecture. Let f(z) be a cusp form of weight 1 on I'\(N). Then



562 T. Hiramatsu

[[ran @52, 108,
0 y i=1

where the ¢; are algebraic integers and the p; lie in the field generated over
Q by adjoining the Fourier coefficients of f(z) at oo.

As an example, let X be either one of the two cubic ideal class char-
acters of Q(v/ —23) so that

8:(2) =1(2)7(232),

where 7(z) denotes the Dedekind eta function. Then we have

L0, = j 0 gx<iy)i;¥—=log e

where ¢, is the real root of x* —x—1=0.

According to the Deligne-Serre theorem, there is a normal extension
K of Q and an irreducible two-dimensional Galois representation ¢ of
Gal (K/Q) such that the Dirichlet series corresponding to f(z) gives the
Artin L-function L(s, ¢, K/Q). However from the Deligne-Serre theorem,
we can expect nothing to solve the problem explicitly determining the field
K by f(z). The conjecture was proved by Stark when K is an abelian
extension of k and it aids materially in explicitly determining K from f{(z).

In [6], Chinburg formulated Stark conjecture “over Z” as follows.
Let d=3,d, o be a finite linear combination of p of dimension 7 and we
assume >, d,-0=>,,d:-g* for any p e Aut(C/Q). We define L'(s, d)
=2,4d,-L'(s, 0) and Li(s)=3_, d,-L'(s, o)pr, where pr,= 3 ccux/e
X,(g)g. Then for n=1 or 2, exp (L'(0, d))=e(d) is a real unit in K and
LiOu,=> yes.. log]le(@)], v, where S,, is the set of infinite place of K,
Il l is the normalized absolute value for v e S., and v, is a fixed embedding
of K into C.

Moreover, Tanigawa gave an example for two dimensional represen-
tation of S,-type ([52]). He considered the space of cusp forms of weight

1 on I",(283) with the character (-283

). This space has one primitive

form A of S;-type and two primitive forms f and f* of S,-type, where 7 is
a complex conjugate. And let ¥ and W be Galois representations attached
to fand A respectively. Then L}(0) is generated by a linear combination
of L}(0) for the following d:

(i) d=oV+&V*forde Dyl =,

(ii) d=Ww,
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1 1
d=—V+V)+—-W,
(iii) 7 ¢ )+

here D, is the different of the field k. Furthermore, he gave the minimal
polynomial of e(d) for the above d and checked that e(d) is indeed a real
unit in K.

Remark 3. The value of L<%, e)

Let ¢ be an abelian character of a class group of a complex quadratic
extension of a totally real field and L(s, ¢) the Artin L-function associated

with e. Then Moreno asked the values of L(%, 5) and obtained the fol-

lowing result ([42)).
Let ¢ be an irreducible two-dimensional linear representation of G=
Gal (Q/Q) and L(s, ¢) be the Artin L-function associated with . We put

L(s, 6)=Qx)"'T'(s) Zil a(mn.

If ¢ is a lifting of the projective representation ¢ of G and Im (¢)=S,,
then by the theorem of Hecke, the function

f(Z) =7§ a(n)e‘Zn:i nz

is a normalized newform on I"\(N) of weight 1 and character e(=det (¢)),
where N denotes the conductor of ¢.

On the other hand, let E(s, z, I'(N)) be the non-holomorphic
Eisenstein series for I"y(N) corresponding to the cusp at co. The Maclaurin
expansion of E(s, z, I"'(N)) about s=0 is

E(s, z, I'(N)=/*(2)s+ O(s),

where f*(z) is a real analytic automorphic form for I"(N) with the eigen-

2 2
value —1/4 for the Laplacian y2<a—+ i-) Then he obtained
oxt 9y’
1 1 1
() 3e)e(3)-
(5)E(F70)e(5)= 10

where, { , ) denotes the Petersson inner product, k the complex quadratic
field corresponding to e, 4,(s) the Dedekind zeta function of k and
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c( 1 >= (L—<(p)p~) (1 —a(p)p™")
2 oy (L+p~ ) (1 —a(p)’p~'")

Now we ask the following non-abelian problem. We suppose that Im (¢)
=S,. Then, by the theorem of Weil-Langlands-Tunnel, the function f(z)
correponding to L(s, o) by the Mellin transformation is a normalized
newform on ['(N) of weight 1 and character . We may naturally ask the
following question:

Can one express the value of L(%—, a) as a sum of values of a non-

holomorphic modular form at special points?

Chapter 5. Dimension Formulas and tr (7(I"a1"))
in the Case of Weight 1

Let I" be a fuchsian group of the first kind. We shall denote by d,
the dimension of the linear space of cusp forms of weight 1 on the group
. Tt is not effective to compute the number ¢, by means of the Riemann-
Roch theorem. Hejhal said in his book ([18]), it is impossible to calculate
d, using only the basic algebraic properties of I". Because of this reason,
it is an interesting problem in its own right to determine the number 4, by

some other method.
On the other hand, the trace of the Hecke operator acting on the

space of cusp forms on the group " has been calculated in most of the
cases, but not yet for the case of weight 1. In this chapter we give some
formula of d, and an explicit formula of the trace for the above remaining
case, by using the Selberg trace formula ([1], [20], [22], [26], [27], [28], [53]).

§5.1. The Selberg eigenspace Pi(k, 1)
Let S denote the complex upper half-plane and we put G=SL(2, R).
Consider direct products
S=SxT, G=GXT,
where T denotes the real torus. The operation of (g, a) € G on S is re-
presented as follows:

az+b
cz4-d

Se(z, §)—>(g, &)z §) =< , ptarg (cz—l—d)—a) eS,

cd

where g=(a b) e G. The space S is a wealky symmetric Riemannian
space with the G-invariant metric
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dst= 0+ | (dg__ dx )2,
» 2y

and with the isometry y defined by u(z, §)=(—2, —¢). The G-invariant
measure d(z, ¢) associated to the G-invariant metric is given by

d(z, §)=d(x, y, ¢)=M,

The ring of G-invariant differential operators on S is generated by ai and

o  FN. S5, 9 9
NI
Now T ) T 535 7755 ox

Let I" be a fuchsian group of the first kind not containing the element

(_(1) _?) By the correspondence
G2g<—>(g,0)eq,

we identify the group G with a subgroup G X {0} of G, and so the subgroup
I' identify with a subgroup I"X {0} of G. For an element (g, a) € G, we
define a mapping T, ,, of L¥(S) into itself by (T4, )z §)=1((g, 2)(z, $)).
For an element g € G, we put T\, ,,=7,. Then we have

(T )z, ¢)=f( Zifl , ¢p4arg (cz+d)>,
where g:(‘cZ 3) We denote by I (k, )= (k, 2) the set of all func-
tions f(z, ¢) satisfying the following conditions:
(D) [z ¢) e IXT\S),

We call I(k, 2) the Selberg eigenspace of ['. We denote by S,(I") the
space of cusp forms of weight 1 for I and put

d,=dim S,(I").
Then the following equality holds ({19], [26]):

Theorem 5.1. The notation and the assumption being as above, we
have
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we(l, -%)={e-‘i¢ymF(z)tF(z) e S,

and hence

(1) d,=dim me(1, _%>

Proof. For each F(z) e S,(I") we denote f(z, ¢) on S by
(2) [z, §)=e""*y'""F(2).

Then the function f(z, ¢) satisfies the conditions:
1) flgz, #)=f(z,¢) forallge I';
3) A4f(z, = —(3/2)f(z, ¢) by regularity of F(z) on S;
4) Since y'/*|F(z)| is bounded on S,

. 1 i dxd
1/l= 5 [, e rerer S48
=[ 1ot <o
y

Therefore, by 1)-4), the function f(z, ¢) belongs to IN(1, —(3/2)).
We now prove conversely that any function in (1, —(3/2)) must be of
the form (2) with F(z) e S,(I"). Let f(z, ¢) be a function in I(1, —(3/2)).
Put

F(z)=€"y""f(z, ¢).

Then the I-invariance of f(z, ¢) is equivalent to a transformation fow for
F(2):

F(g(2))=(cz+d)F(2)

for all g= <? 2) e I'. Therefore, it is sufficient for the proof of the latter

half of our theorem, to show that F(z) is holomorphic with respect to the
complex variable z on S, and F(z) is holomorphic and vanishes at every
cusp of I.

Let g be the Lie algebra of SL,(R) (=G). Then we can take the
basis a of g such that the Lie derivatives associated with the elements of
a are given by the following invariant differential operators:
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0 . 0 1 0
X=ycos2p ——ysin2¢— -+ — (cos 2¢—1 ,
Y ¢ax ¥ ¢ay+2( ¢ )a¢
. 0 0 1 . ad
Y=y sin 2¢ — 4 ycos2¢— -+ —sin 2 ,
e T TR R ¥
o=2
o

It is easily to see that
- 1 .\2
A:(X+?(D) + Y24 ¢
Now we put
A‘=2(X+-%—d))+2iY.
Then, the function F(z) is holomorphic on S if and only if

(3) A f(z, $)=0.

To prove (3), first note that the operation of 4~ depends only on the re-
presentations of the Lie algebra g. Let LY(I"\G) be the discrete part of
the space L¥(I"\G). Then f e LYI"'\G). Let

LAI'\G)=21V,
be the irreducible splitting of the space L(I"\G) and put
=25 (fieV).

Then, if f;,+0, we have

~ 3. 0
A 1= ——Ji —Ji= =N — 1£.
. 5 1 o5 Jfi=—v—1f;
Therefore, each subspace V, such that f;-~0 is isomorphic to the space H,
of the irreducible representation of the limit of discrete series. Hence it
is sufficient for the proof of (3), to show that for any highest weight vector
¢ in H,,

(4) A0,

For example, by Lemma 5.6 in [32], the relation (4) is well known.
Next we shall see the condition for F(z) at every cusp of I'. Let s be
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a cusp of I'. We may assume that s= oo and the intersection of a funda-
mental domain for I” and a neighborhood of co is the following type

{z=x+iy|0<x<1, y= M,

where M denotes a positive constant. Then, by the condition f(z, @) €

L(I"\S), we have

(o <o

Let
F(Z)——_'— Zm: ane2ninz

= —o00

be the Fourier expansion of F at co. Then, we have

1 1
J‘otF(Z) lﬂdx:fo (Z ane%:inz) (; L—Zme—hzimi)dx
1
— = 2xi (n—m)x-2a(n +m)ydx
n,Zm a,a, L e

—la,fete.
n

Therefore

= —4 dy J‘w -1 ,-4x
2 Ty — 2 V.
[r@iate =ity

If n<0, then
Jw yle " Vdy=co.
M
So that a, =0 for all n<0.

§ 5.2. The compact case

Q.E.D.

In this section we suppose that the group I' has a compact funda-
mental domain in the upper half-plane S. It is well known that every
eigenspace TM(k, 1) defined in Section 5.1 is finite dimensional and ortho-
gonal to each other, and also the eigenspaces span together the space
L¥I'\S). We put 2=(k, 2). For every invariant integral operator with a

kernel function k(z, ¢; z/, ¢’) on IMM(k, 1), we have
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[ K 8:2. 901 9, $)=HR 1. )

for fe M(k, 2). Note that () does not depend on f so long as fis in
Mk, 7). We also know that there is a basis {f™}=_, of the space LXI"\S)
such that each f™ satisfies the condition (ii) in Section 5.1. Then we put
A™ =(k, 2) for such a spectra. We now obtain the following Selberg trace
formula for L¥(I"\S):

(5) il h(z<n>)=M§;Jﬁk(z, 8; M(z, $)d(z, §),

where D denotes a compact fundamental domain of " in § and
k(z, ¢; z',¢’) is a point-pair invariant kernel of (a)-(b) type in the sense of
Selberg such that the series on the left-hand side of (5) is absolutely con-
vergent ([46]). Denote by I'(M) the centralizer of M in I" and put D, =
(M)\S. Then

(6) 3| ke M@ oG o=3 | ke i Mz 9)dG. 9.

where the sum over {M,} is taken over the distinct conjugacy classes of I
We consider an invariant integral operator on the Selberg eigenspace
Mk, 2) defined by

Oy

POV i o>1
-2 e

oz, §; 2, §)= (z—2)2i

It is easy to see that our kernel w; is a point-pair invariant kernel of (a)—
(b) type under the condition §>>1 and vanishes on IMM(k, 2) for all k=~1.
Since I"\ G is compact, the distribution of spectra (k, 2) is discrete and so

we put

-3 .
th 5 ’ Uas U3 »
dﬁ:dlm m(l, #5)9 (ﬁ—-‘—la 29 b ')'

Then the left-hand side of the trace formula (5) equals to >35_; d;4,,where
A, denotes the eigenvalue of w; in M(1, p,). For the eigenvalue A, using
the special eigenfunction

o 5
f(Z, ¢):e-7]¢y 5, #ﬁzvﬂ(vﬁ'—l)——‘l_’

for a spectrum (1, g,) in L*(S), we obtain
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e LT ([(14+0)/2) o—1 d+1
A= S Fa T o1 F( +vﬂ>r( 2 )

If we put v,=1/2+1ir,, then

s TARDLA+02 (8 -\ (3
M =2 raren) | <2+“ﬂ>[ (z "ﬁ)'

In general, it is known that the series > 5_; dy4, is absolutely convergent
for 6>1. By the Stirling formula, we see that the above series is also ab-
solutely and uniformly convergent for all bounded § except §= +(2v,—1).

The components of trace appearing in the right-hand side of (6) are
obtained already in [27] and we shall only state the results in the following.

1) Unit class: M:I:(l 0).

01
J(I)=J_ d(z, §)= J d(z, §)<eo.
Dy
2) The hyperbolic contribution J(P) is expressed by the following

IPY=3 5I(PY

_ 2" N((041)/2) & < (sgn A,0)" IOngo digp g
I'((5+2)/2) PIDM 2, |25, +25%

5

where {P,} denotes a complete system of representatives of the primitive
hyperbolic conjugacy classes in " and 2, , the eigenvalue (|1,,,|>1) of P,.
3) There is no contribution from elliptic classes to d,.
Now we put

(8) *(3) =i;i;:l Sgnljw) IOngOa“Zk + A5k

Then, by the trace formula (5), the Dirichlet series {(s) extends to a mero-
morphic function on the whole §-plane and has a simple pole at §=0
whose residue will appear in (9) below. Finally, multiply the both sides of
(5) by 0 and tend § to zero, then the limit is expressed, by the above 1),2)
and 3), as follows:
dim 21)2(1 - 3) — L Res ¢(5).
2 2 =0
Theorem 5.2, Let I' be a fuchsian group of the first kind not contain-

ing the element <— (1) _?) and suppose that I" has a compact fundamental



Automorphic Forms of Weight 1 571

domain in the upper half-plane. Let d, be the dimension for the linear space
consisting of all holomorphic automorphic forms of weight 1 with respect to
the group I.  Then the number d, is given by the formula:

(9) = Res CF(),

where {¥(s) denotes the Selberg type zeta-function defined by (8).

Remark 1. Let [ be a fuchsian group of the first kind and assume
-1 0

0 —1
of I' of degree 1 such that X(( —(1) _?)): —1. Let Si(T", X) be the linear
space of cusp forms of weight 1 on the group I" with character X, and de-
note by d, the dimension of the linear space S,(I", ). When the group I"
has a compact fundamenal domain in the upper half plane S, we have the

that I contains the e]ement( ), and X be a unitary representation

following dimension formula in the same way as in the case I <—01 __(1)):

_1 A(M) Z
o0  d=2> <00 1#C2+ G Gs),

where the sum over {M} is taken over the distinct elliptic conjugacy

classes of F/{j—_((l) (1))}, I'(M) denotes the centralizer of M in ', £ is one

of the eigenvalues of M, and £§(s) denotes the Selberg type zeta-function
defined by

o oo

(11) G0 =3, 33 K108 hoe 13y 5

a=1k=1 Z,(‘;a 20{:

Here 2, denotes the eigenvalue (4,,,>> 1) of representative P, of the primi-
tive hyperbolic conjugacy classes {P,} in I" / { (1 0)}

§5.3. The Arf invariant and 4, mod 2

The purpose of this section is to prove that d; mod 2 is just the Arf
invariant of some quadratic form over a field of characteristic 2.

1. The Arf invariant of quadratic forms mod 2
Let V be a vector space of dimension m over a field F of characteristic
2, QO a quadratic form on V. Then the associated polar form
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B(x, »)=0(x+y)+ Q)+ 0Q(»)

is an alternating bilinear form. Let x,, - - -, x,, be a symplectic basis of V'
with respect to B. It is known that the quadratic form Q(x) is equivalent

to
SHOG I+ a.a, A0 )i+ 5 O(xat
for x=3",a,x, e V. By the radical of V" we mean the subspace
rad V={x e V|B(x, V)=0}

We shall say that ¥ is a completely regular space if rad ¥'={0}. We now
define the Arf invariant of Q(x) ([2]). Take a 2-dimensional completely
regular space U over F and a basis x,, x, for U. Thus

U=Fx,+ Fx,.

Define a multiplication on these basis elements by the following relations:
x1=x,Qx,= Q(xy),
X3=X,Qx,=0(xy),

XX+ XX, = B(X,, Xy) (=D.
Here we put
=X Xy, f=x,.
Then we obtain the quaternion algebra C(U) with respect to U:
CU)=F-14+-F-+F -0+F-fo.
It is clear that
F=a, o*=ow+tac, Oo+ol=0, O '=o0-+1,

where a= Q(x,) (£0) and ¢=Q(x,). Therefore, in the separable quadratic
field F(w) over F, we have the norm

N(a+pw)y=a*+af+acf

for every «, fin F. Let F* be the additive group of F, and ¢ a homo-
morphism

¢: F*ae—>ef+tee F*,

and put
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AU)=0(x)Q(x;)  (=ac=N()).

Then we call the class 4(U) mod ¢(F*) the Arf invariant of U. In general,
let

n

V=1 U, | radV

i=1

be the orghogonal splitting of the space V into 2-dimensional completely
regular subspaces U,, ---, U,. Put

mm=§mm>

Then it is obvious that for a symplectic basis {x,, - - -, x,,} of V,
AN)=3; 0() 0, ).

Now the class 4(¥) mod ¢(F*) does not depend on the symplectic basis
chosen and is called the Arf invariant of Q or the pseudo-discriminant of
0, and is denoted by 4(Q). In this situation, we have

Theorem 5.3.0 Let F be a perfect field, and let V be a completely
regular space, so that m=2n. Then the following assertions hold:

(1) Two nondegenerate quadratic forms Q,(x), Q,(x) on V are equiva-
lent if and only if 4(Q))=4(Q,).

(2 OX)=2 11 XXy, V(X0 +X3,);
and therefore, 4(Q)=1"

2. The Atiyah invariant on spin structures

Let M be a smooth closed oriented surface of genus g and F, the 2-
element field. We write H, and H' for H,(M, F,) and H'(M, F,) respec-
tively. Let UM be the principal tangential S*-bundle of M. H, and A"
mean H(UM, F,) and H' (UM, F,), respectively. Then the sequences

0—>F,—>H,—>H,—>0,

~ 0
0 H'—> H'——>F,—>0

are exact. A spin structure of M is a cohomology class & e A' whose
restriction to each fiber is the generator of F,: 6(§)=1. We denote by @
the set of spin structures of M. Let a be any homology class in H, and

» For the proof, sce Dye ([9]).
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let @ be the canonical lifting of a to H, (see [34, p. 368]). If a, b are in
H,, then we have

(@tb)=a+b+(a by,

where z denotes the generator of F, as the fiber class and a-b denotes the
intersection number of a, b. We define a quadratic form on the symplectic
space H, over F, as a function w: H,—F, such that

o(@a+b)=w(a)+w®)+a-b.
Now for & e @, we put
w(a)={(§&, a@), ae H,

where ¢ , ) denotes the dual pairing of A' and H,. Then the function w,
is a quadratic form on H, in the above sense. Indeed, since (&, z)=1,
we have

oa+b)=(&, a+b)
=(&, d+b+(a-b)2))
=(& ay+(& by+(a-b)s, z)
=w @)+ o b)+a-b.

Let 2 be the set of quadratic forms on H;,. Then, D. Johnson proved in
[34]:

Lemma. The mapping §—w, gives a bijection from @ to Q.

Next we give the Arf invariant of w,. For the canonical lifting @ of
a in H,, the mapping on H'

a: x—>{x, @)

is linear and we denote by a the restriction of @ to @. Let a,, b, (i=1,
-+ -, g) be a symplectic basis of H,, i.e.,

a;-a;=b,-b;=0, a,-b;=3é,,

where §,; denotes the Kronecker symbol. We put

ab,.

M

o=

K2

]
=

Then
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2(®)= 21856 =3 <& a8 By
= 0da)ob).

Therefore, a(£) mod 2 is the Arf invariant of w,.

From now on we consider the surface M as a closed Riemann surface
of genus g and introduce the Atiyah invariant on M ([4], [43]). Let K be
a canonical line bundle on M, and denote by S(M) the set of holomorphic
line bundles L on M such that LQL=K. The elements of S(M) are
called theta-characteristic of M. Let D be a divisor on M and let #(D)
denote the space of meromorphic functions f on M such that D+ (f)=0.
We define the complete linear system of D by

|D|={D+(/)f e £(D)}.
Then, we have
dim | D|=dim #(D)—1.

Let L be the associated line bundle to an effective divisor D and let I'(L)
denote the space of holomorphic section of L. Then, since |D| is the
projective space associated to I'(L), we have

dim | D|=dim I'(L)—1.

Theorem 5.4. The notation being as above, we have the following
assertions.

(1) For each theta-characteristic L of M, dim I'(L) mod 2 is stable
under deformations of M and L.

(2) The set @ for M corresponds bijectively to the set of isomorphism
classes in S(M).

3 #{LeS(M)dim'(L)=0 mod 2}=2¢"'(2841).

The first assertion (1) in Theorem 5.4 is due to Riemann. For the
proofs of Theorem 5.4, refer to Atiyah ([4]) and Mumford ([43]). By (1)
in Theorem 5.4, dim I'(L) mod 2 is independent of the choice of the
complex structure on M. Now, by combining Lemma and (2) in Theorem
5.4, we have the following diagram:

(¥)) . ~
§e——— f  dim '(£)mod 2

o] 2

o1 a(§)
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Therefore, intermediating the spin structures {¢} of M, there is a bijection
between the isomorphic classes {£} of theta-characteristic and the quadratic
forms {w,} on H,. It is obvious that the Arf invariant «(£) mod 2 has
2&-(28 L 1) zeros. Therefore the Arf invariant a(€) mod 2 is equal to the
Atiyah invariant dim I"(L) mod 2.

3. The Arf invariant and 4, med 2

Let M be a closed Riemann surface of genus g and K a canonical
divisor on M. Then, an effective divisor D on M such that dim
P(K—D)=0 is called special. For every special divisor D, we have 0<
deg D <2g—2. Therefore, the Rimenn-Roch theorem says little for
special divisors.

Now, let I" be a fuchsian group of the first kind not containing the
element <— (1) __(1)), and suppose that the fundamental domain "\ S of I
is a closed Riemann surface of genus g, where .S denotes the upper half-
plane. We denote by P,, - - -, P, the point of I"\S corresponding to all
the elliptic points of I, of order e,, - - -, e, respectively. Let A4,(I") denote
the space of meromorphic automorphic forms of weight 1 with respect to
I" and S,(I") the space of holomorphic automorphic forms of weight 1 for
I'. We put

d,=dim S,(I").

For a non-zero element £, of 4,(I"), we have

. 1 .. 1 1 .
aiv ()= dv @+ (1=L)P, (=il

i

and
S =2(div (/,)D,
where [D]=>", [m,]P, for D=>3,n,P,. Put Dy==[div(f,)]. Then
I LT1 1
D= div(o9)+] [3<1 —e—i)]Pi.

Therefore we have deg D,=g—1. Hence, under d,+0, the divisor D, is
special and

dim #(Dy)=dim £(K—D,)

by the Riemann-Roch theorem. Let L, be the associated line bundle of
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Then it is obviosu that the line bundle L, is a theta-characteristic on
Therefore, we have

SR

d, mod 2=dim #(D,) mod 2
=dim ['(L,) mod 2
=a(g,) mod 2

for the spin structure &, corresponding to L,. We have thus the following

Theorem 5.5. The notation and the assumption being as above, we
have the relation

d, mod 2=w(&;) mod 2.

Remark 2. We know from Theorem 5.5 that d, mod 2 is the number
expressed the topological side of d,.

Remark 3. By Clifford’s theorem for special divisors, we have
0<dim g(po)g%i.

But it is impossible to determine dim #(D,) using only the genus g of
I'\S. For g=1, using the above result and Theorem 5.4 we have d,=0.
Now, we may naturally ask the following question:
Can one determine the Arf invariant «(g,) by the basic topological

properties of ['?

§ 5.4. The finite case

Let [ be a fuchsian group of the first kind and assume that I" con-

tains the element —7 (I =((1) ?)) and has a non-compact fundamental

domain D in the space S. Let X be a unitary representation of I" of degree
1 such that 2(—I)=—1. We denote by S,(I", X) the linear space of cusp
forms of weight 1 on the group I" with the character X and 4, the dimen-
sion of the space S)(I", X). In this section we shall give a similar formula
of the number d;, when the group I" is of finite type reduced at infinity and
Y1,

Since I is of finite type reduced at oo, oo is a cusp of I' and the

stabilizer [",, of oo in [ is equal to 4], with Foz{((l) T) lm € Z}. The
Eisenstein series E,(z, ¢; 5) attached to oo and X is then defined by
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M)y -
E Z,Q,8)= ikl S A’} Z(¢+arg(cz+d))’
Z( ¢ ) MGIEoo\P lCZ+dlzs
M= cd

where s=g+ir with ¢ >1. The constant term in the Fourier expansion
of E,(z, ¢; s) at oo is given by
ay(y, ¢; 8)=e" V(Y (9 '),

. e, d
V)= —v—Tyz L6 > _XQ
F(s-}—_l_) Pl |ef
27 G Yer
In the following we only consider the case X((é %)) =1. As shown
n [26], the parabolic component J(oo) in the trace formula is given by

ﬂmﬁmmUjj}gfwﬁmmwmwwrjmm@¢awm¢ﬁ

Yoo

_ vy (2+lr)
- fh@WQ+)” h@m(}ma

as lim,_, 6e(8)=0. When we combine this with the formula (10), we are
led to the following theorem which is our main purpose in this section.

Theorem 5.6. Let I' be a fuchsian group of the first kind containing
the element — I and suppose that I is reduced at infinity. Let X be a one-
dimensional unitary representation of I" such that Y(—I)=—1, X*==1 and

X(((l) i)): 1. We denote by d, the dimension for the linear space consisting

of cusp forms of weight 1 with respect to " with X. Then the dimension d,
is given by

M) ¢ + Res C;"(s)—-—«!fx

1
(12) dl*?{w [['(M): +1] 1= ( )

where the sum over {M} is taken over the distinct elliptic conjugacy classes
of I'/{ 21}, I'(M) denotes the centralizer of M in I', € is one of the eigen-
values of M, and L§(s) denotes the Selberg type zeta-function defined by (11)
in Section 5.2.

Remark 4. For a general discontinuous group I" of finite type con-
taining the element — I, we obtain the contribution from parabolic classes
to d, in the same way as in the case of reduced at co.
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Remark 5. Let I be a general discontinuous group of finite type
not containing the element —JI. Let 4, be the dimension for the space
consisting of all cusp forms of weight 1 with respect to I°. Then we have
the following dimension formula in a similar way as in the above case:

(13) di=L Res ¢ (s),
2 s=0

where {¥(s) denotes the Selberg type zeta-function appeared in (8) of
Section 5.2.

We may call the formulas (12) and (13) a kind of Riemann-Roch
type theorem for automorphic forms of weight 1 respectively.

Remark 6. Let p be a prime number such that p=3 mod 4, p#3
and let @,(p) be the group generated by the group I"y(p) and the element
—-1
K=( 0_ —P ) Let ¢ be the Legendre symbol on I'y(p): e(L)= (i)
vp p
for Lz(z 3) e I'(p). Since e(K*)=¢e(—1)= —1, we can define the odd

character ¢* on the Fricke group @,(p) such that e*(K)=4i. Then we
have

STy(p); ©=S5,(9(p), e )DS(D(p), &)
We put
i =dim S,(0,(p), ).
Then
d,=dim S\(I"y(p), &)= pi" + 15 -

If ¢*(p) is the parabolic class number of O (p)/{+-1}, then ¢*(p)=1. As
shown in [27], the contribution from elliptic classes to pf is given by

1 1 Z —1

- = i(Al = + '—"ha

s e ran: =0 iz M=F7
where /4 denotes the class number of Q(4/p). We also have ¢.=(1/2)=
F1. Let {P,} be a complete system of representatives of the primitive
hyperbolic conjugacy classes in I'y(p)/{==1I} and let 1, , be the eigenvalue
(Z,.>> 1) of representative P,. We put

Z*E)=> 3] e(P,)" log 4, |2 4 25|,

a=1 k=1 2’3,0‘-—20',{:

Then we have the following formula for d;, by Theorem 5.6:
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(14) d1=ﬂ;+ﬂ;=—;—Res %(5)
=0

Combining the above (14) with Serre’s result (: (*) in Section 4.1), we have
the following remarkable equality

Res 2*(3)=(h—1)+4(s+24).

§ 5.5. The trace of Hecke operators on the space of cusp forms of weight 1
Let I" be a fuchsian group of the first kind and assume that I" does

not contain the element <—(1) _(1)) (=—1I). Let o be an element in

SL(2, R) (=G) such that a'a~! is commensurable with I and denote by
I the subgroup of G generated by I" and «. Let X be a unitary repre-
sentation of I of degree v such that the kernel [7, of X in " is of finite
index in I". We denote by I*(I"\S, ) the following set of functions f
taking values in the representation space of X:

{fe LT\ f((z, $)=1N1(z, §) forall T e I'},

and by IR,(k, 2) the set of functions f satisfying the following conditions:
(i) f(z ¢) e L(I'\S, ),
@) A1 =1/ ¢). (/g)f (2. = —V—Tkf, 9).
Let Sy(I', X) be the linear space of cusp forms of odd weight £ on the
group [ with X taking values in the representation space of X and put

d,=dim ST, 1).

Then

15  m (k, — k(k+ %)) — (e~ T RE(Z)| F(2) € SuT0),

and in particular
. 3
d,=dim amx<1, —g).
2

Now we define the Hecke operator T(I'al") in S, (I, X). Let I'al’
= U, M,I" be a disjoint sum. For f(z, ¢) € M (k, —k(k+(1/2))), we set

TWal) f =T (22500 gt ar et d)),

i“1 i
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where M ;1= (gi Z’) Then by the relation (15), it equals to
i

1

e vy SAMOF(SET0) e dyn
T c,z+d,

T

Therefore it induces the Hecke operator T(I"aI”) acting on S(I', X):

T(Tal)-F@)= S UMIF( 2200 (czd)
7 c,z+d,
In the following we shall only state the result for its trace on S,(I", X) (c.f.
[1D. Let k, (1<i<h) be a complete system of J'-inequivalent cusps of I”
and let I"; be the stabilizer in [" of £,, We put ', ,=I",NI", and denote
by I'{,, a subgroup of index 2 in [";,. We take an element ¢, € G such

that ¢,00 =k, and such that ¢;']",0, is generated by ((1) %) or (—(1) ___i)

over Z according to k, regular or irregular. Let E,(z, ¢; s) be the Eisenstein
series attached to the cusp «; and %, and denote by ¢%(s) the constant term
of the Fourier expansion at x, of >, X(M,)E;(M;%(z, ¢); s). Then we
have the following

Theorem 5.7. Suppose that I" does not contain the element —I.9
Then the following trace formula holds:
tr (M) 1

2 nfestupsie [[(M): 1] L —C + — Res o*(s)

V-1 > s(M)tr X(M)cot (”‘”(M) )}

:i:regular{ 4r, vneBir I

V=T 5 s(M)trX(M)COt(WfM)»

xi:irregular{ 8",1: {M)eBi/I‘Q,o

Fnre(3)
— = S"tro¥f —).
7 3o 5

tr (T(l'al))=

RN

The notation used here is defined as follows:

[M]: the elliptic conjugacy class in "al’,
I'(M): the centralizer of M in [,

¢, C: the eigenvalues of M,

ri=[I: Il

» For the case I's —I, refer to [1].
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e {ri, if r;: even,
* 2, ifr,:odd,

B,={M e I'al’\Mx,=«,, parabolic or I},

s(M) and p(M) are defined by a;lMai—-:s(M)((l) M )>, S(M)=+1;

*(s) = > sgn A-tr X(M) log|2,]
C S)—' {M} p:hyperbolic IZ—Z-IHR—I—A-IF

2

where the sum over {M}, is taken over the distinct hyperbolic conjugacy
classes of I'al’, 4 is one of the eigenvalues of M and 2, is the eigenvalue

(> 1) of generator of I'(M).
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