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On Diophantine Inequalities of Real Indefinite
Quadratic Forms of Additive Type
in Four Variables

Yoshinobu Nakai

Chapter 0. Introduction and Statements of the Result

0.1. We have a famous result of H. D. Kloosterman [17] on the
solubility of the Diophatine equation

axi+bxi+cxi4-dxi=n.

There, the so-called “Kloosterman sum”, with e(§)=exp 2nv/ —1) for
real &,

> e(i(ax-[—b)“c)) (xx=1mod gq)
q .
x;lsx=q, (x,9)=1

was estimated non-trivially. The error term in his asymptotic expansion
of the number of Diophantine solutions would have been of the same
order as the expected main term, thereby giving no positive result, if the
Kloosterman sums had been estimated trivially. On the other hand, we
have a result of H. Davenport and H. Heilbronn [5], acertaining the non-
trivial solubility of the Diophantine inequality

‘zlxi + 2oX5+ AgX3 + A X5 4 253 1<e

of a real indefinite quadratic form, for an arbitrarily given positive small e.
The proof in [5] was based on an extention of the so-called “circle method”
of G. H. Hardy and J. E. Littlewood and on a lemma (Cf. 4.3.9) on simul-
taneous Diophantine approximations with small denominators. Then, is
it possible to treat the Diophantine inequality

(=) 121x¥+22x§+23x§+24x31<5
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of a real indefinite quadratic form, for an arbitrarily given small positive ¢?
G. L. Watson treated certain special cases in three or four variables, using
Pell’s equations [27]). H. Iwaniec showed that the Diophantine inequality

{14 x9) — 003+ xD | <e

is soluble non-trivially for a non-zero irrational real positive §, using his
half-dimensional sieve [15]. We show here, in Corollary 0.2.1 with 0.2.1.2,
that we can combine the methods in [17] and [5], if 4,, - - -, 4, satisfy
certain complicated conditions. Our method seems, however, to be
applicable to more general situations. So we have treated here the proof
of Theorem 0.2 rather luxiously up to the end of 4.4.

We have another probable approach to our problem. First we ap-
proximate each 1, by suitable irreducible rational fractions V,/U,, and
then, we transform the problem to a Diophantine equation in (x,, - - -,
x, y) of the shape

NGUUYX Y - - - +(UGU Y )xi=y

with y&e(U,---U). If V)/U,, --., V,/JU, and y are regarded to be fixed,
the problem was treated by T. Estermann in [34], Theorem 1. The funda-
mental lemma 1, which uses A. Weil’s result, in [34] plays a similar role
as our Propositions 2.3.9 and 3.1.4 combined. (Estermann’s proof of
Theorem 1 gives the right-hand side in (4) in [34] the estimate, with the
notations in [34], O.(a,- - -a,|- (k|4 Dn***2¢ t\a, . . .q,***n***¢) for n»
(max,, |a,)¥¢).) The author was pointed out this paper of Estermann’s
by Professor T. Tatuzawa, after completing his work. When he had begun
his calculations on our problem, it had seemed, and still seems, difficult to
him how to obtain directly corresponding local solutions in our case (Cf.
Theorem 2 in [34]), so he had not taken up this approach.

The fundamental step of our proof in Chapter 4 is Lemma 4.4.14 (or
its fore-runner 4.4.12). Lemma 4.4.14 tells us that we can obtain some
informations on the convergents of Ax if we know convergents of both of
real numbers 1 and « satisfying certain conditions. This step was very
easy in [17] as a, b, ¢ and d were constant integers. Then, applications of
our Propositions 3.2.4 and 2.3.9 settle down our proof of Theorem 0.2 in
4.5. Until we apply 3.2.4 and 2.3.9, we can proceed, in Chapter 4, under
fairly general conditions ((i), (ii) and (iii) of Theorem 0.2). It is only in
the final steps, in the applications of the above-stated two propositions,
where we need to restrict ourselves so badly under (iv) and (v) of Theorem
0.2. So it can be hoped that these last two conditions of the Theorem
may be considerably relaxed.

Returning to general 2,, - - -, 4, in (%), the author expects that a sum,
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which corresponds to the so-called “‘singular series” in case of Diophantine
equations, must be figured out, when the products of Jacobi’s symbols in
the left hand-side sum in Proposition 2.3.9 are trivial with respect to 4.
Then what will be the “local nature” of our problem? Also what will be
a criterion on (4;, - - -, 4,) for the solubility of (x)? The author wishes
someone will find them. Our theorem will be improved correspondingly
as estimates on sums of Kloosterman sums are improved. (The main
body of the present work was completed in the spring of 1982. Cf. The
Linnik’s conjecture. Kuznecov’s work [29] may be suggestive. Also [30]
and [31].) Our method of proof will be adaptable essentially unchanged
when the partial fractions (or g, in 1.2.3.1 (i) for {2,4;"|) are unbounded,
but a new idea will be needed if they are bounded. The author does not
know how to treat the problem in three variables, except [27]. Nor he
knows how to treat general real indefinite quadratic forms which are not of
additive type, whose number of variables are smaller than 21. (Oppenheim
conjecture [28]. That 21 is sufficient is the result of [2/], [7] and [32] com-
bined.)

Our method of proof of Theorem 0.2 goes as follows. In Chapter 1,
we will see, in three propositions, that the measure of such «, that 1,« and
.o have rational approximations whose irreducible denominators are of
the same order and whose approximations are also of the same order, is
small, if 2,47 is irrational (with some conditions). We need Selberg’s
sieve at Lemma 1.4.3.3. In Chapter 2, we estimate our theta-Weyl sums
(=finite theta series), Proposition 2.2.14. Using these estimates and circle
method of Davenport and Heilbronn, we see, in the first three sections in
Chapter 4, that we can cut off such «, the variable of integration, that |«|
is not’» <1 or that the denominators near P of convergents of || and of
|A4a) (=1, - - -, 4) are not all’» € P. For the « left, we will find relations
between convergents of |«| and |1,«|, Lemmas 4.4.12 and 4.4.14 and Pro-
position 4.4.19. (Strictly speaking, we must deprive the convergents of
some small prime divisors.) We use, then, Propositions 2.3.11.5 and 3.2.4
concerning sums containing Kloosterman sums, and, then, estimates on
sums of products of Jacobi’s symbols (Propositions 2.3.11.5 and 2.3.9).
All of a’s which are |@|> P ~* will give minor contnbutlons to the number
of integer solutions of our problem.

0.1.1. Let 4, ---, 4, be non-zero real numbers, which are not in the
same signature, and ¢ be an arbitrarily given positive small number. If
we want to solve the inequality

‘le%'+ Lo +24x3\<5
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with arbitrarily large positive integers x,, - - -, x,, it is sufficient to find
arbitrarily large positive integer solutions y,, - - -, y, of

[y - 203 <2
with 2]=2¢7'2,4%, where 1, (e NU{0}*) are so chosen that we have

Halslb=2lal (=234,

It is sufficient, therefore, to consider the Diophantine inequality

Axi+ - 2 <2,
under additional restrictions that

$E 5 <|4,|<2E,

with an arbitrarily given large constant E,,, which is not considered as
absolute. Also we may regard as A, is an integer if it is rational. Now
we can state our Theorem in 0.2.

0.2. Theorem. Let 3, ---, 7, be 31, which are not in the same
signature. There exist, then, positive numerical constants ¢}, ¢/ (i=1, 2, 3,
4) (small, c!>c;>0), h, (large), cyyy (small) and c (large), for which the
Jfollowing statements hold: Let E., (=100) be an arbitrarily given large
positive integer. There exist, then, positive constants G,, Gj, L, and P,,
depending on E,,, (and constants given at first), with the following properties:
Let 2,, -+ -, 4, be non-zero real number and P be > P,, which satisfy the
Sfive assumptions (1) ~(v) stated below. We have, then, the number of such
solutions (x,, « - -, x,), that

Xy, -y X, € N,
AP x, e |2 (=1, -, 4)
and

|2xi+ - - -+ 23] <2,

Zclfold,- - AP

The five assumptions are;
(1) %E100<Mi‘<2Eloo: $gN A, =1;, (=1, - ) 4),
A, is irrational, A,= +E,,,

*) N is the set of all natural numbers, Z, that of all rational integers, Q, that
of all rational numbers, R, that of all real numbers, and C that of all complex
numbers.
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and, if A, is rational, then 2, is an integer.

(ii) Let us suppose that |2,25*| has two consecutive convergents R'Q/~*
and RO of 125, (R, @, R, Qe N, (R, Q) =1, (R, Q")=1), obtained by
the regular continued fraction expansion of |2,25"|, satisfying

Li(log 0)*" < Q' < EQ.
(They are supposed to satisfy (iv) and (v) below.) We choose a real P satis-
fying
(L7*QQ) "= P = Q'(log Q).
We put the reduced fraction of E,R'Q'"" as V.U, V, being the numerator
and U, the denoninator. We also put V,=E,, and U,=1.
(il We suppose that \1,| (i=3, 4), if it is irrational, has such a con-
vergent V, U7, that
U,V,eN, (U,, V)=1,
2] — V.U <(LPH™?
and
G <U, (LP™).

If 2, is rational, therefore an integer, we put as
‘21 \= Vi’ U,=1, (%Elooé V¢§2E1oo)-
(They are supposed to satisfy (iv) and (v) below.)
(iv) Lef us put, for a positive integer X, as
4X;Z)=1lp  p;prime p<Z, p| X
and™®’
(X)) =4(X; Gy-u(X)).
We suppose, then, U, and V, (i=1, - - -, 4) in (ii) and (iii) satisfy that
[U1Vu Tty U4V4]XA};0(U1V1‘ . U4V4)XT(A%;0(U1V1' o U4V4))
XLCM. of {(U,, Upy); 1y, y=1, - - -, 4 and i1y}
<p*log P)~*
#  y(X) is the number of different prime divisors of X. Let us put the greatest
common divisor and the least common multiple (L.C.M.) of X, .--X; as
(X, +++, Xz) and [X;, -+, Xi] respectively. Let (X) denote the number of divi-

sors of X. (X, .-+, Xx) may be used as a vectorial notations, and [£] may be
used to denote the greatest integer such that it is <é&.
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and that
[UIVD Sty U4V4]>[V1’ ] V4]'(10gP)-

(v) Letus put Ut (i=1, - .., 4) as the square-free kernel of the odd
divisor part of U,, that is,

Ui=[lp  p;prime, p>2, p|U,
Let us put Z, as
p+1, Gou(UVy- - - UV, G(log log P)*;
Zy=max p are prime divisors of (U%. .. U4, Vy+-- V)
or of (U, U,,) @, iy=1, - - -, 4 and i,51,)

We suppose, then, that there exist an iy (iy=1, - - -, 4) and a prime p, such
that

p| U}, and p,=Z,

We suppose also that

(Ui UFT i oo V(U - UY2L[OY, -, UY
XA};D(Ux)' o 1GO(U4)><AI(Ul§ Z). - 4(U,; Zy)
<(log P)%.

Though very complicated the above assumptions are, we can see,
from the theory of continued fractions, ([16], for instance), or as the fol-
lowing Corollary 0.2.1 with 0.2.1.2 gives an example, that the assumptions
together are non-void. Apparently the conditions (iv) and (v) can be
welded. They are left divided, however, as the condition (iv) concerns
with 3.2.4, and (v) with 2.3.9, whose applications in 4.5.6 and 4.5.7.3,
respectively, can be expected to be improved. In the proof of the Theo-
rem 0.2 in Chapter 4, we need only the assumptions (i) ~ (iii) until the end
of 4.4. We need (iv) and (v) in 4.5. Whole of this note is devoted to
prove this Theorem.

0.2.1. Corollary. Let ,,---, 5, be =1 which are not in the same
signature. Let A(y,, - - -, 3,) be the subset of R* defined below, where P’s
are also defined. There exist, then, positive numerical constants c; and ¢/
(i=1, .- -,4) and ¢’ for which the following statements hold; Let (A, + - -, 2,)
belong to A(yy, - - -, 1), and ¢ be arbitrarily given positive small real number.
There exists, then, a (large) real P; such that, if P, defined in (i) below, is
> Py, the number of such solutions (x,, - - -, x,), that
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Xy coo,x€N,
CHA TP <x, e |A TP (i=1, - -, 4)
and
[2axi - - 25 <e,
is

=c’ (max |2,))%eP.

The set A(py, -+ -5 70) of (A, - - -, A,) € R* is defined as follows;

(0) Ry oo A are £0, sgn =y, (i=1, -, 4),
A, is irrational, and 2,= =+ 1.

(The last one is only for covenience of the statements.) They are supposed
to have infinitely many quintuples (RQ™', ViU, - - -, V,U7") of convergents
of |4,'s satisfying the following assumptions (i) ~(iii). Here R, Q, V,, U,
e Nand (R, Q)=1, (V,, U)=1 (i=1, - - -, 4).

(i) WUitand RQ™ are two consecutive convergents of |4,| such that

pllog @113 < U1 < Qo.os’
that ‘
WU, V,) <(log Q).

and that U, has a prime divisor p,, dividing U, exactly to an odd power of p,,
such that '

py>(log Q)**.

We define P by

P=(QU,(log Q)=

(ii) V,U;* are convergents of |2;| (i=3, 4) such that
2| — V.U <(P*(log P)"®),
that
w(U, V) <(log O)",

that, if 2, is irrational, then

(log P)"A U, <P

and that, if A, is rational, then
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ui!= ViUi—_ls (Ui and Vz<<1)-

We put V,=U,=1, for simplicity of statements.
@iy WV, U7 .-, V.U are supposed to satisfy that

U, Vi,)=1" forali,i,=1, ..., 4,
and that
U, U,)=1 Jor all i, i,=1, - - -, 4 and i,=1,.
0.2.1.1.%  Proof of 0.2.1. We put as
x, =24y, A =e Wit
and
P=(2:")2P
with ¢, e NU {0}, where we choose #,’s so that
4412,1> < max|2,},

and we may suppose that ¢! is modified to be an integer, so that rational
1,’s are integers. The Diophantine inequality is transformed into

APy, e\ PP (i=1, ..., 4)
and
|22+ -+ A03<2

We see that ,, (¢7*2%*'V,)U;* (or its reduced fraction) and RQ"! satisfy
the assumptions (i) ~(iii) in 0.2. Also

ST, u(U,V,) & (log Q)
which means that
4L (U V- - - UV )L exp (c(log 0)).
Therefore the assumption (iv) in 0.2 is satisfied also. We have also
Ae (U | 45,(U, V17 UV,
therefore that
}Jo( Ui) L el @07,

#*  The use of the set A(---) to state 0.2.1 follows the suggestion of Professor
Tamotsu Murata.
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If Z,, in (v) of 0.2, is=G,-w(U,V;- - - U,V,), then

A(Uy; Z)) | 46(U Vs - - UV,
therefore

AU, Z,) g elor @5,

If Z,is =G,(loglog P)?, then

w(U V- - UV)<(log log P).
Therefore

A(U,;; Z,)<{G(log log P)?}lieles P2 ¢ pllog @002,

As for U¥’s, we see that

[U1V1a cee, U4V4]“1.[V1, ceey, V4](U*1’ .. Uﬁ)—l/z.[Ut el Uﬁ]
<(Uy- - U 'x(Us--- U~
<(U,- - - U)1rL et @,

We see, then, we can apply the Theorem, and obtain that the number of
solutions (y,, -« -, ¥, is

> (7 max|2,)*(2¢™)*PY,
which gives the result.

0.2.1.2. The conditions (i), (ii) and (iii) in 0.2.1 together are non-
void. We can construct 2,, - - -, 4,’s satisfying the conditions as follows:
To construct |2, let us suppose we have already obtained V,U;* and RO
Let U? and V¢ be mutually different prime numbers such that

Uy >exp(Q™), MUT's VYU 'sRQ™ and [ROQ™'— VU <20 ™

Then RQ™! is one of the convergents to VU, ", owing to 1.2.3.2(1)). We
choose V5, and U7, so that

UPVoY—VoUS= 21, US> UL=0 and VUL 'sVSUL'=RQ.

Vo UL " may be equal to RQ~..  We choose a positive integer ° so that,
putting R°Q°~*as R°=a°Vy+ V7, and Q°=a°U; + Uy, we have

exp ((log Q°)) < US <Q°°.
These R°Q°-%, V2 U?™Y, V. Unsh, RQ™' and V,U* make a sequence of
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consecutive (except possibly between V3, U;s' and RQ™?) convergents to
R°Q°-'. We repeat the process beginning with VU, ! and R°Q°~%
Continuing in this way we obtain a Cauchy sequence V,Ur?, RQ™,
VeUL-Y R°Q°%, - .., which defines a real number |2,| (>0) satisfying
(i) for each choice of V;Ur' and RQ™'. Next we construct |1,| and |4,] in
relation to this |2,]. As for rational 2,, the construction is easy. So we
may suppose that we construct irrational ones. Suppose we have con-
structed V,Us! and V,U;%. By 1.2.3.1(iv), we have V,U;* and 7,0
satisfying, with P=(QU,(log Q)~*/*)"?,

Ov,—UV,=+1, P*>0>U, and T,U>2P%log P)"* (i=3,4).

Then, we can find mutually different prime numbers V', Uy, V2 and U,
also different from VY and U7, so that we have, with

P°=(Q°U;(log Q°)~'7%)7,
(log POy AU <P®, VU sVU°'=V,0:-,
PO — VUL <3 (0D

As we have P°>U? >exp (Q™), P>, and U?>(log P°)*2, we have
certainly that U2 >U,. We have, then, ¥,07* and V,U;* as consecutive
covergents to V. U;-!. Continuing in this way we obtain real numbers
|4;| and |4,| satisfying (i) and (iii) in relation with |2,]. The members
(A - - -, 4,) belonging to A(y,, - - -, 7,) are wider than those constructed as

above.
As for the existence of p, in (i), suppose that there are no such p’s.
Then we have U;=XY? where X divides 4'(U,; log P)**). This means

that
X< ellos Q)“"<< Ug(l)’

and then that U, is “nearly”’ a square of an integer. So the assumption
about p, is not so exceptional one.

0.2.2. Let X(- - -) be the characteristic function with respect to (- - -),
temporarily. We have easily, for given #,, - - -, 3, (,= =1, not in the
same signature), that

J‘ J’2Eloo Z
E100 gy, 020 €}120) = 12P <31 <cf 34| ~1/2P
1 i

XA pAi+ - - - A <2)ddy- - -da,
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> K Eln X (Exd™)'P*.

Therefore, the assumptions on the coefficients in the statements of the
Theorem 0.2 is too restrictive to be satisfactory. We have not, therefore,
tried to obtain best possible results along the method shown in this note.
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List of Proposition: 1.1.1, 1.1.2, 1.1.3; 2.1.4; 2.2.11, 2.2.12,2.2.14, 2.2.15;
2.3.7,239, 2.3.11.5; 3.1.4; 3.2.4; 4.4.19.
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The author expresses his thanks to Professor Tomio Kubota for
giving him an oppotunity to publish this lengthy note.
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Chapter 1. Three Metrical Propositions on Simultaneouus
Diophantine Approximations

1.1. Statements of the Propositions

1.1.1. Proposition. Yc¢, (>1), Ye, (>0), 3k, (> 1), 31 (>1), YE,,
(>100), 3P, (> 1) for which the following statements hold: Let 2, and 2,
be positive real numbers such that

%E100§25§2E1oo (i: 1: 2)
and that
A, A5 is irrational.

Let RQ™* (Re N, Qe N, (R, Q)=1) be one of the convergents of 245"
obtained from the regular continued fraction expansion of A,A;7' such that
Q>P,. Let P be any real number such that

Q'*(log Q)M <L P Q.
Let H and G be any real numbers such that
P>HZ=G>H(log P) 1= (log P)™.

We have, then, the number of such quadruples (A, B, A,, B;), satisfying the
conditions stated below, is

< P*H *(log P) .
The conditions imposed on (A,, B, 4,, B,) are; that

A,eN, B,e Z, (4,,B)=1,
PG'>A,=PH"! (i=1,2),
r(X)<(log P) Jor X=A,, By, Ay, B,.

and there should exist a real number « such that
(log H)*Za=(log H)™*
and
{A,04,— B;|< A,(log H)**P* (i=1,2).

The choices of h, and h| are independent of each other.
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1.1.2.  Proposition. V¢, (>1), Yh, (> 0), Ye, (> 0), 35 (> 0), VE,,
(>100), 3P, (>0), 3H, (> 1) for which the following statements hold: Let
A, and 2, be positive real numbers such that

%Etoo £11-<_=2Ezoo (i= 1, 2)
and that
MA7tis irrational.

Let RQ™* (Re N, Qe N, (Q, R)y=1) be one of the convergents of ;"
obtained from the regular continued fraction expansion such that Q> P,.
Let H be any real number such that

(log Q) *=H=H,.
Let P be any real number such that
0'(log Q"< PL Q.

We have, then, number of such quadruples (A,, B,, A;, B,), satisfying the
conditions stated below, is

< P*H *(log H)"*.
The conditions imposed on (A,, B, A,, B,) are; that

A,e N, B, e Z, (4,, B)=1,
PH (log H)"*<A,<PH™"  (i=1,2),

and that there should exist a real number a such that
| (log H)*Za = (log H)*
and
|44, — B;|<(log H)**(HP)"" (i=1,2).

1.1.3. Proposition. V¢, (=1), Yg,(>1), YE,, (=100), Yg(g=E%y
with cz1), 3P, 3g’, 3g” 3K, 3z, 3G,, 3G (all =1 and K = g""), for which the
Sfollowing statements hold: Let A, be a real number, such that

$Ein S <2Ey,

and that 2, has a convergent V.U:* (V, e N, U, € N, (V, U)=1), obtained
from the continued fraction expansion of 1,, which satisfies
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|4 —NUTH<gP™*
and
G, U, < P(log P)~ M.

We have, then, the number of quadruples (A, B, A,, B,), satisfying the con-
ditions stated below, but that all of A, B, A, and B, are not [K, K )-regular,
(the definition being given in 1.1.3.2 below), or that (A, A,)) X (B, B)=G", is

<g;'P
The conditions imposed on (A, B, A,, B)) are;

As AleNs B, Bl_e Z,
(As B)::ls (Al’ Bl)::l’
g PLX<LgP for X=A4, A,

and that there exists real o such that

g '<a<lg,
led—B|<gP™!

and
|Aad,— B |<gP~".

1.1.3.1. Definition. Let an interval [K, K?) be given. We define
Y, x(X), for a positive integer X, to be the number of different prime
divisors of X, lying in [K, K?).

1.1.3.2. Definition. Let positive constants K(>1),z(>1), g’ (e N)
and g” be given (K >g””>1). A positive integer X is called to be [K, K?)-
regular when

(i) if p<g”, then p*'}X,

(ii) if p=g”, then p*tX (p being a prime),
and

(i) 1 Zyg gn(X)<L1010gz.
(Strictly speaking, g’ and g’/ should explicitly appear in the terminology.)

1.1.4. The rest of this chapter is devoted to the proofs of these
propositions. In the followings ¢, ¢,, ¢,, - - - are positive constants depend-

ing on foregoing c’s, and e,,, - - - are positive constants, which may depend
on ¢e’s, moreover. ’ S
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1.2.

We quote some known facts in this section.

39

1.21. Lemma. Let &, ¢ and X be real numbers with 0, 1>(>0

and X >1.  We have, then, one of the following two alternatives:
(Case 1). If there exists a pair (u, v) such that

ue, veZ, W uv=lI,
[2ug20)!, and |Su—v|<Q2X)™,
then all solutions (x, y) such that

XGZ, yEZ,
1€x<X, and |Ex—y|<E,

have the ratio
yiX=U:u
(Case 2). If there exists a pair (u, v) such that

ueZ, vez, (WU v)=1,
QO '<ukL2X, and |Eu—u|<2X),

then the number of solutions (x, y) such that

xelZ, yvelZ,
1€x<X, ‘and |&x—yp|<{,
is
<24LX.

Proof. This is contained in the proof of Lemma 14 in [2].

1.2.2. Lemma. Let K, z and X be real numbers with K>2, z>0,
and X>1. Let 1| be, temporarily, the product of all prime numbers lying
in the interval [K, K*). We have, then, the number of such integer n that

1<n< X and that (n, [[)=11is

<<abso.szl+Kzz'

Proof. This is a simple corollary of the upper bound result of the
sieve of A. Selberg. For later applications, the sieve of Brun, for instance,

is insufficient. See [14], [20] or [21].
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1.2.3. We quote here well-known results in the theory of regular
continued fraction expansions of real numbers. See [16] or [22], for
instance. Notations in this section are independent of those in later
sections.

1.2.3.1. (i) Let a real number « be expanded into a regular con-
tinued fraction;

0‘=[ao§ ay, dg, dg, - - ']

=dy+
a, +
a,+ 1

as‘{"‘j-l-'—

with
ayeZ, and ag,eN (i=1,2,3,...).

(ii) If @ is irrational, then the expansion in (i) is unique.

(iii) If « is rational, then the expansion in (i) has only finitely many
terms. We have always two choices of the last term: one with 1 and the
other larger than 1. The length of the expansion varies by one, according
to the choices.

(iv) We put, using (i),

Pe=@uPx-1+Pi-2» DPy=0qy DP_1=1,
=0y 1+ qx_2» G=1, q_=0,
(k=1,2,3,..)

inductively. We have, then,
(v-)  (Pw g =1.
(iv-ii) g, increases strictly monotonely with k.
(%V'?ii) GePie-1—Prdi1=(—1* (k=0).
(v-1v) (g (@i +9)) ' S(= DM —pegc) S(qqe) ™ (£20).
(v-v) =W 2)" (k=2).
(iv-vi) Let Az=k—1=0. We have, then,

Pr=XpyPi-17VnrDr-2
G =Xp Qi1+ YVnrdr -2

with some pair (x,;, ¥,,) of integers such that
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X € N, Ve NU{O},
(X Ya) =1,
Xpo= Vae=0

and that,
if y,,=0, then x,,=1.

The irreducible fraction p,q;* is called as the k-th convergent to «.
(v) If an irreducible fraction ab~' (¢ ¢ Z, b € N, (a, b)=1) appears
as one of the convergents of a real number «, we denote

a(—>ab™!

in this note. If two irreducible fractions ab~* and a’b’~! (ae Z, &’ ¢ Z,
beN, b eN, (a0, )=1, (a, b')=1), with b>b'>1, appear as two con-
secutive convergents of a real number «, we denote, then,
a(—>ab~(=>a’b’ .

These notations are not optimal, owing to the ambiguities for rational «
stated in (iii).

1.2.3.2. (i) Leta real number « and an irreducible fraction ab~*
(ae Z,be N, (a, b)=1) satisfy

la—ab~'|<(26H,
then
a(—>ab*.
(ii) Let a real number ¢ and a fraction ab' (a e Z, b € N) satisfy

the condition that, for each pair (¢, d) of integers with 1<d<b and cd"!
+ab~!, we have

|da—c|>|ba—a).

Then ab~! is called as a best approximation (of the second kind) to «, [16].
The fraction ab~' is irreducible.

(ii-1) If a fraction is a best approximation to e, then it is one of the
convergents to «.

(ii-ii) Let « be a number which is not an integer. Then every con-
vergent to « is a best approximation to a.

1.3. Proof of Proposition 1.1.1

1.3.1. We eliminate « in the condition as follows.
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1.3.1.1. Lemma. The quadruples (A,, B,, A,, By), to be counted in
1.1.1, satisfy

|35 4,B,— A,B,| < (log H)*=G"",
1< 4,8, <(PG-*(log H)*™,
AyB,#0

and
(X)<(log P) Jor X=A,, By, A, B,.
Proof. Suppose that B,=0. Then, we have
|Aed,|< A (log H)*P 2,
which contradicts the fact that
|Aed |=2,4,(log H)~°,

if P is sufficiently large. Therefore, we have B;==0. Then, B, ¢ N. Simi-
larly for B,, We have

1< B, < PG '(log H)**! (i=1,2).
Therefore

la(2,4,B;— 1, 4,B,)| < G *(log H)*+**.
Dividing by A,«, we obtain the result.

1.3.1.2. We apply 1.2.1. We have one of the following two alterna-
tives;

EITHER (Case 1). There exists a pair (u, v) such that ue N, ve N,
(4, v)=1, and that we have

(AB)(AB) ' =vut
for all quadruples (4,, B,, 4,, B,) appearing in 1.1.1.
OR (Case 2). The number of pairs (x, y) such that

xeN, yveZ,
1< x< (PG Y (log H)e=

and
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|(Ad7)x—y|<G*(log H)e
is
< P:G~*(log H)*»,
1.3.2. We treat (Case 1) in 1.3.1.2. We have
ABy=uw and A,B,=uvw
with
w=(A4,B,, A;B)).

1.3.21. Lemma. Suppose, in (Case 1) of 1.3.1.2, that 1<u<Q,
Then, we have, by a suitable choice of hi, the conclusion of 1.1.1.

Proof. Suppose that {(4,27Yu—v|<(2Q)*. Then, this is <(2u)~.
This shows, according to 1.2.3.2 (i), that 3,4;! (——>vu~* with 1 <u<Q.
Then, the convergent v*u*~' of 2,4;" next to vu~" satisfies that u<<u* < Q.
We have, then, according to 1.2.3.1 (iv-iv), that

|Gk Y= ]2 (e +)> 20),
which is a contradiction. We have, therefore, that
|22 Ju—v|>2Q)"
Now we have that

w(O) ' <425 Huw —uw|
=|(247 )4, B,— A, B, |
<G-2(]Og H)c“,

that is
1<w<(20)G *(log H)°».

The number of quadruples (A4;, B, 4,, B,) to be counted is
<2 r(uw)Xe(ww) £ >3 1 X (log P)ter

<(2Q)G~* (log H) »(log P)**
< P*H Y(log P)~*YQP-Ylog P)*»

with ey, =6c,+cp+6€,4+2. If we choose A{ so that 2k, >e,+1 and P,
sufficiently large, then, we have the conclusion of [.1.1.
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1.3.2.2. Lemma. Suppose, in (Case 1) of 1.3.1.2, that uz=Q. Then,
we have the conclusion of 1.1.1, again.

Proof. We have
w=u"'4,B,<<Q (PG ") (log H)*>.
Taking into consideration the fact that admissible w’s satisfy
z(wu) and <(wv)<(log P)*,

we have that the number of the quadruples in this case is

< ; o(uw) X t(vw) < %} I X (log P)te

< O07(PG™Y)(log H)***(log P

< P*H *log P) *V X Q- (HG ") (log H)x(log P)ter+er+!,
We have

Q‘l(HG—1)2(log H)czo(log P)4c1+el+1
<Q—1(logP)601+cgo+e1+1=0(1)

by the assumptions, hence the conclusion of 1.1.1 in this case, again.
1.3.3. We treat (Case 2) in 1.3.1.2. We have the following

Lemma. We have, by a suitable choice of h,, the conclusion of 1.1.1
in this case, also.

Proof. We have, using the condition that #(X)<(log P)*** for X=
Ay, - -+, B,, that the number of quadruples in this case is

<(log P)** X #{(x, y); in (Case 2) of 1.3.1.2}
<(log P)*1P*G~*(log P)°=
éPZH—Z(lOg P)— {e1+1) X (HG—Z)Z(IOg P)4c1+cu+e1+1'

By the assumptions that G> H(log P)~, the last estimate is
§P2H—2(log H)—(e1+l)>< H"2(10gP)8“”'“+”“.
We have the conclusion of 1.1.1, by choosing 24, =8¢, +¢;, e, 1.

1.3.4. We have proved 1.1.1.
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1.4. Proof of Proposition 1.1.2

1.4.1. Lemma. The quadruples (A,, B,, A,, B,) to be counted in 1.1.2
satisfy
| 2,25 A4,B,— A, B;|<(log H)*=H~*

and
PH '(log H)y *»<B,<PH'(log H)*» (i=1,2).
Proof. 1t is obtained similarly as 1.3.1.1.

1.4.1.1. Corollary. The number of quadruples (4,, B,, 4,, B,), to be
counted in 1.1.2 with fixed A, and B,, is at most

14+ H*(log H)* («).
Similarly, with fixed A, and B,.
Proof. We have that
| By — (247 ) By AT | < P~H(log H)',

and that the Farey fractions of order PH ~* are mutually distant by P~*H?,
at least, from each other. The rest is easy.

1.4.1.2. Corollary. We may add the restriction that
(X)<(log P)eztea*! for X=A4,, -.., B,
on A;, B,, A,, and B, in 1.1.2.
Proof. We have
> (X))« PH"'(log P).
xsFR—1

Then, we have that the number of such A, that satisfies 7(4,)>
(log P)e*c2+! jg not larger than PH'(log P)~‘2*<®. Then, using 1.4.1.1,
we have that such quadruples (4,, - - -, B,) that z(4,)>(log P)***<**! i not
larger than P*H *(log P)~(e2*",

1.4.1.3. Such trick of proof, as in 1.4.1.2, that, if one of 4,, ---, B,
satisfies a certain restriction, then, the number of quadruples (4,, - - -, B,)
is smaller than the order to be obtained, will be used very often, later,

1.4.1.4. We have (4,B,, 4,B)=(4,, A))X(B,, B,), in 1.1.2. There-
fore, we put, as standard notations in 1.4,
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a=(A4,, 4,), A,=ad,, A,=ad, (4, 4;)=1
and '
b=(B,, B,), B,=bB, B,=bB, (B, B)=1.
We have (4,8,, 4,8)=1, We use X to represent any one of A, - - -, B,
1.4.2. We first treat those (4, - - -, By), in 1.1.2, for which
ab=(A,B,, A,B))>(log P)®,
up to 1.4.2.6. Actually, this condition is not needed until 1.4.2.5.

1.4.2.1. Lemma. We have, using 1.4.1.4, that the quadruples (4, - - -
B,) to be counted in 1.1.2 satisfy

144524, B, — 4,B,| < (abH*)*(log H)**
and
0<A,B,<(abH?"'P¥log H)".
Proof. It is easy,
1.4.2.2. Lemma. We have
I<ab<max (P, Q, P*Q")X H"*(log H)°*,
in 1.4.1.4.
Proof. Suppose, first, that
|4,B,|<iabH*(log H)°»,

then, we have, with the notation in 1.2.3.1(v),

25— 4B, (irreducible fraction).
A1B2
Suppose, moreover, that
‘ /Zlg 2 | < Q:

then, we have

(2Q)-—1 <|2122.1A~l§2 —Z2§1 ,
<(abH*)'(log H)"=.
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We have, therefore, one at least, of the three alternatives:

that  A,B,>labH(log H) >,
that 4.8,>0,
or that (2Q)"*<(abH?*~'(log H)*>.

Any one of them gives the conclusion, with a suitable c,,.

1.4.2.3. We apply 1.2.1. We have, for each time we fix a pair (a, b)
appearing in 1.4.1.4 with 1.4.2.2, one at least, of the following two alter-
natives:

EITHER (Case 1). There exists a pair (&, v) such that

ueN, veZ (uv)=1,
1<u<tabHlog H) ¢»
and that
1445 u—v| <3P labH(log H) °=.
OR (Case 2). There exists a pair (u, v) such that
ueN, veZ, (uv)=1,
{abH*(log H) e <u<2P%abH* '(log H)*»
and that
| 2,47 u—v|<3P *abH*(log H) .

1.4.2.4. Lemma. Choosing a sufficiently large h;, we have that the
number of such quadruples (A,, By, A,, By) appearing in 1.1.2, that the pairs
(a, b) in 1.4.1.4 fall into (Case 1) in 1.4.2.3, is

< P:H-*(log P)~*.

Proof. As we have (Case 1) in 1.4.2.3, we have, with the notations
in 1.4.1.4,

As (4,B,, 4,B;)=1, it follows that
A,B,=v and A4,B,=u.

We can suppose, using 1.4.1.2, that
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T(Y)<(log P)ea+cz+2 for Y:Jb - Ez-
Therefore, we have, for a fixed pair (a, b), that the number of quadruples
A, -+, By is
g(log P)4(¢2+cz+’l)_

We have, using 1.4.2.2, that the number of possible pairs (a, b) is, with
obvious notations,

< 2 1<3%, t(n)<max (P, 0, P*Q~")H ~*(log P).

" (a,b); under 1.4.2.2

We have, then, the number of such quadruples (4,, - - -, B,) to be counted
is

<max (P, Q, P*Q~")- H *(log P) X (log P)*es*e»,
Choosing 4; sufficiently large, we have the conclusion.

1.4.2.5. Lemma. We have that the number of such quadruples (A,,
B,, A,, B,) appearing in 1.1.2, that the pairs (a, b) in 1.4.1.4 fall into (Case 2)
in 1.4.2.3 and, moreover, the product ab are > (log P)®, is

<P*H"*(log P)~%.

Proof. We have that the number or quadruples (4, - - -, B,) with a
fixed (g, b) under (Case 2) of 1.4.1.4 is
§Z(z,‘y)7(x) * ‘L'(y),
where pairs (x, y) satisfy that
xeN, yelZ,
1<x< P¥ab H*)'log H)*=,
|2,25x — y|<(abH*)~(log H)°=
and

T(x) and T(y) <(10g P)2(ez+ ep 1)

We have one, at most, of y if x is given, and vice versa. Therefore, we
have that the number of (4,, - - -, B,), with a fixed (a, b), is

é{ (xZ’y) 1}1/2 . {; z_(x)4}1/4 . {; T(y)‘}ll‘,

which is, owing to 1.2.1 (Case 2) and taking into consideration that
(log Q)2 H = H,,
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<{P¥ab H*) *(log H)*»}'* X {P*ab H*)'(log H)***(log P)**}'/*
< P*H~*ab)~**log H)***(log P )***
< P*H"*log H) “**Y . (ab)~**(log P)"".
Now, we take into consideration that ab>>(log P)*. We have
(a, )< 37 n*¥¢(n)
(a,b); ab=(log P)30 n; n(log P)30
L(log Py ™.

Therefore, we have the conclusion.

1.4.2.6. Lemma. We have that the number of such quadruples (A,, B,,
A, By) appearing in 1.1.2, that the pairs (a, b) in 1.4.1.4 fall into (Case 1)
in 1.4.2.3, or into (Case 2) with ab>(log P)® in 1.4.2.3, is

& P*H *(log P)~*.
Proof. 1.4.2.4 and 1.4.2.5.
1.43. We consider (Case 2) in 1.4.2.3, with
1<ab<(log P)*.
Hereafter until the end of 1.4, we do not need the assumptions that
2325 (——>RO!
and that
O log OY< PO

What we need is only that (log P) > «(log Q). We prepare coustants K,
z, L and M, each =1 and to be chosen later depending on H. The pairs
(a, b) are considered to lie in

LZzab>=M.
We may regard L and M to be
(logPY*=L=M=1.
The constant M will appear at 1.4.5.

14.3.1. Lemma. Let L be fixed. Then, the number of such quadru-
ples (A,, B, 4;, B,) appearing in 1.1.2, that, with the notations in 1.4.1.4,

L= aandb =1
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and that one X, at least, of A,, - - -, B, has a prime divisor p with p=K and
P’ X, is

< P*H-%(log H)-“*Dx K-Y(log P)(log L)*
where €y =e,-}+Cy+ 3.

Proof. Let the pair (a, b) be fixed. Then, for instance, the number
of possible (4, - - -, B,), where A, has a prime divisor p with p>K and
p*| 4,, is owing to 1.4.1.1,

€ o & pP(aH) ' X P(bH) '(log H)*»+!
<<P;‘(ale“)-1K-l(10g H)es+!,
We have that
>, (ab)'«(log Ly,

a,b; L=za,b=1

therefore, the conclusion follows.

Corollary. We may add the restriction, hereafter, that each X of
A, - --, B, in 1.4.1.4 is not divisible by p*, if p is a prime not smaller than K.

The value of X will be chosen at 1.4.8.

1.4.3.2. (i) The constants K and z are restricted to lie in
(log P)°>K>(log H)®*
and
(log P)'*>z>(log H)®*,

where ¢ and e,, are constants. The values will be chosen in 1.4.8.

(ii) Let g xs(X) be that of 1.1.3.1 for a positive integer X, i.e., the
number of different prime divisors of X lying in the interval [K, K?). Let
7k, x5(X) be the number of such positive divisors 4 of X, that every prime
divisor of d lies in [K, K?), or that d may be 1.

(iii) We have that

”[K.K!)(X)§V(X)>

where y(X) is the number of all different prime divisors of X.
(iv) We have, for X in 1.4.1.4, that

Tox,n(B) = 2T EOD),

1.4.3.3. Lemma. Let K, z and L be fixed, under 1.4.3 and 1.4.3.2 (i).
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We have, then, the number of such quadruples (A,, B,, A;, B,) appearing in
1.1.2, that, with the notations 1.4.1.4 and 1.4.3.2 (ii),

L=z aandb =1
and that one X, at least, of 4,, - - -, B, satisfies that
v[K,K‘)(f ) =0,
is
< P’H-Ylog H) *Y X z"(log H)*(log L)

Proof. This is the only step in our proof, where we need the result
of the sieve of A. Selberg. Let (a, b) be fixed. We have that the number
of such (4,, - - -, B}) that v x:(4,)=0, for instance, is owing to 1.4.1.1,

<3 1X P(bH) Y(log H)"**".
A

We use 1.2.2 to obtain that the right-hand side is

<(P(aH) 'z"'+K*)P(bH) '(log H)"**
< PYabH?)"'z"(log H)"***,

taking into consideration 1.4.3.2 (i). The rest is similar to that of 1.4.3.1.

1.4.3.4. Lemma. Let K, z and L be fixed, under 1.4.3 and 1.4.3.2 (i).
We have, then, that the number of such quadruples (A,, B,, A,, B,) appearing
in 1.1.2, that, with the notations in 1.4.1.4 and 1.4.3.2 (ii),

Lz aandb =1
and that one X, at least, of A,, - - -, B, satisfies that

v(X)=(log log P)*=+*,

< P*H*(log log P)~(e2*¥,
Proof. We have, as a well-known result,

2, (X)L & loglog (£42).

Xsé

Let (4, b) be fixed. We have, then, that the number of such (4, - - -, B;)
that v(4,)=(log log P)*2*¢, for instance, is owing to 1.4.1.1,
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<<P2(abH2)“(log log P)-(ez+5).
The rest is similar to that of 1.4.3.1.

1.43.5. Lemma. Let K, zand L be fixed, under 1.4.3 and 1.4.3.2 (i).
We have, then, that the number of such quadruples (A,, B, A,, B;) appearing
in 1.1.2, that, with the notations in 1.4.1.4 and 1.4.3.2 (ii),

L= aandb =1
and that one X, at least, of A,, - - -, B, satisfies that
(log log P)***" Z e ()2 10 log 2,
is
< P*H *(log H) =¥V % z-*log H)**(log L)
The proof of this lemma will end at 1.4.3.5.4.

1.4.3.5.1. Sublemma. Lety be a positive integer, and &,, &, be real
numbers such that £&,>&,=>2. We have, then, that

2, (Prooop) = () (log log & —loglog &+ c(log £) )
where p,, - - -, p, are mutually different prime numbers such that
§Ep<p< - <p=Zé
Proof. This is a simple corollary of Mertens’ theorem.

1.4.3.5.2. Sublemma. Let & be a real number with €10, and v be a
positive integer with y=>10&.  We have, then, that

h g <ce ¥,
with a numerical positive constant c.
Proof. We have, by Stirling’s formula
I'(x)=+ 271 e~ ox71/2 as x—> -+ oo,
that
CHE=T+1) e,
where

JO)=v+vlogé—(v+3) log(v+1).
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We have, if y >max (&, 1),
v4+1/2
v+1
=logé—(2(v+1))"'—log(v+1)
<logé+(2v) '(1—y'+v ) —(ogy+v'— (Y)Y
=logé—logy—(2v) '+ (%!
<log&—logy<0.

b _14logé—log(v+1)—
dy

Putting y=p& with =1, we have, then,

JO)=pé +pg log§ —(pE+3) log (p+1)
<p&+ pElog§ — pg log pé
=k — pé log p=pé(1 —log p),

which is < —3&, if > 10.

1.4.3.5.3. Sublemma. Let K and z be fixed, under 1.4.3.2 (i).

have, then, that the number of such integers X, that
1<X<PH '(log H)*"!,
that, if p is-a prime lying in [K, K*), then, p*¥X, and that
(loglog P)***"Zyx x+(X) =10 log z,
is

< PH-'z-%(log H)***".

53

We

Proof. Let y, be =inf.{v e N;v=10logz}. Lety run through the
set of integers between y, and (log log P)*:*". We have that the number

of such X to be counted is

XeN; 1<X<PH-'(log H)*",

<>t PYX if p is a prime lying in [K, K?),
and V[K,K:)(X)-':P

#(XE N; 1< X< PH"'(log H)***!, >

<
A and X=0modp,-.-p,

v (D100 D)

where p,, - - -, p, are mutually different prime numbers such that

K<p<p,<---<p,<K*
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Using 1.4.3.2 (i), we have that the number above to be counted is

> 23 P(pi---p,H) '(log H)**'+(log log P)s*+'(K*)(oe o8 £,

v (P1yers5Dy)

which is, through 1.4.3.5.1,

<37 V) Y(log z+c(log K) ™'y PH"'(log H)***' 48 »™,

»=yg

We have that, for a real £> 10,

i wh e = ,,Z:E, () )~ igv+w

y=pg
éZ (Vo ! 'V!)-I‘S"””:(Vo 1)-1&vel,
y=0
which is
Le ™™,

through 1.4.3.5.2. Letting & be equal to log z4-c(log K)~', we easily obtain
the conclusion.

1.4.3.5.4. Sublemma. We have the conclusion of 1.4.3.5.

Proof. We use, for a fixed pair (@, b), 1.4.3.5.3 to count the number
of (4,, - - -, B,), then the method of the proof in 1.4.3.1 to let (e, b) run
freely.

1.4.3.6. Let us call a positive integer X to be [K, K?)-good, up to
1.4.6, if p>¥X for every prime p with K< p<<K?, and if 10log 2=z, g (X)
=>1.

1.4.3.6.1. Corollary. We may add the restriction, hereafter, that each
of 4y, -+, B, in 1.4.1.4 is [K, K*)-good.

Proof. 1.4.3.1,1.4.3.3, 1.4.3.4 and 1.4.3.5.

1.43.7. (i) We decompose 4,, B,, 4, B, of 1.4.1.4, which are
[K, K?#)-good, as follows:

11 =a{/i1, /Tz = a;A‘%
Bl‘: ;Bla B2=b;B25

where aj, bl, a; and b} consist of all prime divisors lying in the interval
[K, K?), and 4,, B,, A, and B, have no prime divisors in [K, K?).
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(i) We have, under (i),

K<al, a;, by and by < K¥% 152

P(daH)\(log H) < A, < P(ajaH)™,

P(bbH) '(log H) < B, < P(bbH) '(log H)*
and

(@, A)=1, &, B)=1 (i=1,2).
We have, also, for X=d], a}, b, and b}, that
T[K,Kl)(X) p— 2V[K,KZ)(X) §Zc

where c=101log 2.

1.4.4. Lemma. We have, using 1.4.1.4 and 1.4.3.7, that the quadru-
ples (A, - - -, B,) to be counted in 1.1.2 satisfy

|5 A, BT @by By) — (bias Ay) | <(abB,H?)~'(log H)".
Proof. A corollary to 1.4.2.1.
1.4.4.1. We have, each time we fix a, b, 4, and B,, one, at least, of
the following two alternatives;
EITHER (Casel). There exists a pair (i, v,) such that

ueN, vieZ (u,v)=1,
l<u,<3abB H*(log H)
and
|25 1A, B Yu, — v, | <(abA, H)(2P*(log H)**+) .
OR (Case 2). There exists a pair (u, v,) such that
ueN, v,eZ, (u,v)=1.
YabB,H¥(log H)~ % <u, <2P*(log H)***abA,H?
and

|45 2 A, BT Yu, — v, | < (ab A, HY)(2P*(log H)>*1)™".

1.4.4.2. Lemma. We have, if integers X and Y are fixed, that the
number of such sextuples (&, b}, &, b3, Ay, Bs),
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that they appear as in 1.1.2, 1.4.1.4 and 1.4.3.7,
dbiB,=X and bdd,=7Y,
s <L zo%,
Proof. We have, for example,
o(@5b]) = e, o (B S FTRADED
L 3wlogz g0
Also, we have a unique decomposition (&}b}) X B,=X. The rest is easy.

1.4.5. Lemma. Let K, z and M be fixed, under 1.4.3 and 1.4.3.2 (i).
We have, then, that the number of such quadruples (A4,, B,, A;, B;) appearing
in 1.1.2, with the notations 1.4.1.4 and 1.4.3.7 (i),

that they satisfy 1.4.3.6.1 and 1.4.3.7 (ii),

that we have (Case 2) in 1.4.4.1,
and that ab=M, is

< P*H- *(log H) ‘** Y (H*M ) 'z**»(log M )(log K)*(log H)**,
where e, is a suitable positive constant depending on e,.

Proof. Leta, b, A, and B, be fixed. We have, through 1.2.1 (Case 2),
that the number of such pairs (X, Y) that

XeN, YelZ,
1< X< (abA,HY ' P*(log H)**",
|25 A B )X — Y | <(abB,H? '(log H)**
is
< ((ab)*(A,B.H*) ' P*(log H)**.

We have, therefore, through 1.4.4 and 1.4.4.2, that the number of such
sextuples (d}, b), &}, b}, A,, B;), which combined with a, b, 4, and B,, give
quadruples (4,, B;, 4,, B,) to be counted, is

< z°%((ab(A,B,H"))"* P*(log H)*.
Now, let a pair (¢, b) be fixed. We have, then,
P(aH) ‘(log H) <K ~0218: 4, < P(aH) *(log H)*K"!

and similarly for B, with b in place of @. We have, therefore, taking
1.4.3.2 (i) into consideration, that
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> (4,B)'« (log (K**™(log H)*))*
" < 2(log K.

We have

Zzy(ab)_zézg,x-zt(x) «M-log M.

a,b; ab

We have the conclusion by combining the estimates obtained.

1.4.6. Lemma. Let K, z and L be fixed, under 1.4.3 and 1.4.3.2 (i).
We have, then, that the number of such quadruples (A,, B,, A,, B,) appearing
in 1.1.2, with the notations 1.4.1.4 and 1.4.3.7 (i),

that they satisfy 1.4.3.6.1. and 1.4.3.7 (ii),

that we have (Case 1) in 1.4.4.1,
and that Lz ab (=1), is

< P:H *(log H) “s*Yx K-*z:s5(log H)**(log L)*,
where ey, is a suitable positive constant depending on e,.

Proof. Leta,b, A, and B, be fixed. We have, through 1.2.1 (Case 1),
that

bads _ v
abiB, A

Both of these fractions are irreducible. We have
b d,=v, and db,B,=u,.

We have, then, through 1.4.4.2, that the number of such (d, b}, a}, b}, 4,,
B,), which, combined with a, b, A, and B,, give quadruples (4,, B,, A,, B,)
to be counted, is <z°*%. We have

#{(a, b, A, B)Y< Y P(aKH) ' X P(bKH) '(log H)***!
a.b
< PYKH)*(log L)*(log H)***.
We have, then, the conclusion by combining the estimates obtained.

1.4.7. Lemma. Let K, z, L and M be given, under 1.4.3 and 1.4.3.2 (i).
We have, then, the number of such quadruples (A,, B,, A;, By) appearing in
1.1.2, with the notation 1.4.1.4, that

L>ab= M,

is
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< P*H *(log H) (e**V
K~'(log H)**(log L)* +z"'(log H)***(log L) )
+(log log P)~*4-z"*(log H)***(log L)
+(H*M) z*(log K)*(log M)(log H)ee
4+ K-z¢s5(log L)Y (log H)ees

Proof. 1.4.3.1,1.4.3.3, 1.43.4,1.43.5,1.4.5 and 1.4.6.
1.4.8. Lemma. Let H be (log O)*>H (= H,), and L, M (=1) be
(log PY*=L>M = H*(log H)*(log L)°*,

with constants e,; and c,,. We have, then, the number of such (A, B, A,, By)
appearing in 1.1.2, that

L=(4,8,, 4,B) =M,

<P*H *log H) ‘**Y(log L) *
Proof. We take z and K as
z=max {(log H)**(log L)*, ¥/(log H)**x (log L)},
and .
K=max {(log H)*\(log L), +/z°(log H )** X (log L)}.
We restrict M to
(L>)YM = H*(log H)*»»z**(log K )*(log L)*.

This restriction gives the same one of the lemma, with suitable e,;, and c,,.
It is non-void if H, is suitably large. We apply 1.4.7. which gives the
conclusion.

1.48.1. Lemma. Let ey, and H, be positive constants such that H®
is sufficiently large with respect to e, We have, then, that the number of
such quadruples (A,, B, A,, B,) appearing in 1.1.2, that

(log P)*=(A,B;, A,B))=He*>,
is

< P*H-*(log H)~ ("0 (14 Hy).
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Proof. Let us define M, and L, inductively, as follows;
My=He®s,  L,=exp(M,HYs),
and
Ly=M,,,=exp (L, H"*)%) (=123, ...),

where ci=(2¢s)"'. (This L, has no relation with that in Theorem 0.2.)
We have, easily, that

IOngzMo(]'*'l) (J=0’ 1; 29 "'),
and that
L,>M ;= H*(log H)*'(log L,)**,

by choosing H¢» suitably large. We apply 1.4.8 for each pair (M,, L)),
giving an upper bound

P*H*(log H)™“**Y(M(j+1))7*
on the number of such (4,, - - -, B,) that
L,>(A4,B,, A,B)=M,.
Summing over j=0, 1, 2, - . -, we have the conclusion.

1.4.8.2. Lemma. Let e, be an arbitrarily given positive constant.
We have, by choosing H, suitably large, that the number of such quadruples
(A,, B, A,, B,) appearing in 1.1.2, that

He#*>(A,B,, A,B)= 1,
is
< P*H *(log H) (e2*h,
Proof. We can put L=H®*and M=1in 1.4.8.
1.4.9. We have proved 1.1.2.
Proof. 1.4.2.6,1.4.8.1 and 1.4.8.2.

1.5. Proof of Proposition 1.1.3

The proof of 1.1.3 is, as easily guessed, almost a corollary of that of
1.1.2. We simply list up the corresponding lemmas.
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1.5.1. we put, in 1.1.3,
a,=(4, 4), A=ad, A,=ad,
and
b,=(B, B), B=bB, B,=b,B,.
1.5.2. Lemma. We have, in 1.1.3, that
{2,4,B—AB,|< g%
Proof. Similar with 1.4.1.

1.5.2.1. Corollélry. We have, in 1.1.3, that the number of quadruples
(4, B, A;, B)) is at most O(g"), if the pair (4, B) or (A,, B)) is fixed.

Proof. Similar with. 1.4.1.1.
1.5.2.2. Corollary. We may, in 1.1.3, suppose that
f(X) < Gy(log Py’
and
v(X)<1.1(log log P) for X=A, B, A,, B,.
Proof. Because

>ot(X)g&logé and 3 (W(X)—loglog Py« PloglogP.
X<pP

Xs¢

1.5.3. Lemma. We have, in 1.1.3 with 1.5.1, that the number of such
quadruples (A, B, A, B)) to be counted, that satisfy

ab, = (log P)",
is
<gi'P,
where G, in 1.1.3. is chosen sufficiently large.
Proof. We have that
|2, 4, B~ AB,|<g¥ab,)"!
and

g_4P2(a1b1)_1§11§§g4P2(a1b1)—l’
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from 1.5.2. In the followings, we take 1.5.2.2 into consideration, where
G, are suitable large positive constants.

(I) Supposethat G7P*(logP) *=ab,=G,P.
We have that

Jlﬁé g*P¥a,b) ' <3g~¥ab,),
therefore, through 1.2.3.2 (i), that
11(“‘*(Z§1)(A‘1§)_15

the fraction being irreducible. We have at most O(log g) of X=4, B and
Y=AB,, because of 1.2.3.1 (iv-vi), therefore at most O((log g)(log P)®) of
(4, B, 4,, B), if a, and b, are fixed. We have O(G;*P*(log P)~®) of (a,, b,),
therefore the conclusion in this case.

(II) Suppose that U, < 1g7%a,by <GP and that |2,U,—V;|<
(2g*P»)'a,b,. 'We have, through 1.2.1 (Case 1), that

AB,=V, and A4,B=U,.

We have, therefore, that the number of quadruples (4, B, 4,, B) is
< GylogP). We have O(G,PlogP) of pairs (a,b,), therefore
O(G,P(log P)®) of quadruples (4, B, 4,, B,).

(IIf) Suppose that U, <1g~%a,b,< GP and that |3,U,—V,|=

2g*PY)'a,b,, We have |3,U,—V,|< g,U,P?, by the assumption of 1.1.3.
We put

|2,U,— V|=P~%0,.

We have, then, from the assumptions, that

gU,z0,2Q2¢"ab,,
therefore, that

2g°U,za,b,=2g%U,.
As ab, is =(log P)", we can suppose that

U>g-logP)® and £2,>(logP)".

Let a pair (a,, b,) and a real & be fixed. We count such (4, B, 4,, B)) that

§<ABs+300pP

and that 2,4,8— AB, is of a fixed signature. 1If this is non-void, we can
put, through 1.2.1 (Case 1), as
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A,B=X,+U,W,
AB,=Y +V\W
with
|W|<3(U.2)7'P*,
where (X, Y,) is a particular solution of
14X — Y| <g*(a,b)™,
X — Y, is of the fixed signature

and
§<X, SE+300 P
We have, therefore, at most
X 3UL2) P 4+ 1)G(log P! (U 2,) 'P¥(log P)®
of (4, B, 4, B), if a,, b, and & are fixed. We, then, have at most
Gy X g*(aby) "2, X (U, 2,)"'P¥(log P)’ < G, U *P*(log P)°
of (4, B, 4,, B,), if a, and b, are fixed. We have, therefore, at most
G, U'Pi(log P)*

of (4, B, A, B)) with ab,=(log P)*. As U, is >g~*(log P)"°, we have
done with this case also.

Now we can suppose that U,>1g ~*ab, if a,b, K P.

(IV) Suppose that U,> g ~*ab,, that g*P =a,b,=(log P)"° and that
14U, —7,|<(2g*P* 'a;b,.  We have, through 1.2.1 (Case 2), that the
number of pairs (X, ¥); for which there exist such (4, B, 4,, B)) that X=
A.B and Y=A4B8,, is

Lg"PXab),
if @, and b, are fixed, We have, then, that the number of (4, B, 4,, B)) is
& GyP*(log P)¥(a,b)) "
We have that

(a,b)~* < (log P)°,

a1,b1; a1b12(log P)10

therefore we have done in this case also.
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(V) Suppose that U,>1g*a,b,, that g*P >a,b,>(log P)* and that
|4 U, —V|=(2g*PH) 'a,b,. We put, as in (I1I),

\WU,— Vy|= P20,
We have
gU,=2,=22g% 'a;b,.
Let a pair (a,, b,) and a real ¢ be fixed. We count such pairs (¥, ¥) that

H:X" g 1<g*ab)?,
g< X<+ P
and that 2,X— Y is of a fixed signature.

We have, through 1.2.1 (Case 2), that the number of pairs (X, ¥) is
<G P(2,a,b)7",
therefore, that the number of (4, B, 4,, B)) is
<G P*(log P)¥($2.a,b,) 1,
for fixed a,, b, and &. We have, then, the number of (4, B, 4,, B)) is

= G, P¥(log P)*(£,a,b,)7' X 2y(a,b) ™!
<G P(log P)¥(a,b,) ™™

The rest is similar as in (IV).
(VI) We are left with the case that a,b,> G~ 'P*(log P)"*°. We sup-
pose, first, that 4,8<U,. We have, then,

!Zlglﬁ— A~B1 < g%aby)™! <(2J1§)_1,

and
(4,8, AB)=1.
This implies, through 1.2.3.2 (i) and 1.2.3.1 (iv), that
QUY'<|34,B— 4B, |< g¥ab),
therefore, that

a,b,<2g%*U,<2g*P¥(log P)~ ™.
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This is impossible by albi>~G"P2(log Py, ‘
We suppose, next, that 4,B>U,. We have, in this case, that
(4,B)'g|nU,—V,|<gU P,

therefore that

U, =(2g)'PH4,B)"
This implies that

U,z G P¥(log P)™ %,

which is impossible again, owing to the assumption. We have, therefore,
that

U=AB and V,=A4B,
and, then, that the number of (4, B, 4,, B)) is
= z( U1)T( V.

Suppose that 4,<UY2. Then we have B>U¥. This means that b,
gPU (and a,< gP). Suppose that 4,>U¥?%. Then a,&gPU;"* (and
b,« gP). In any case, we have that the number of (4, b,, 4, B, 4,, B)) is

LgPUTEX o(Upe(V))
LGPPIUTVIX (Eg U™,
which is
=g;'P

if U, is sufficiently large.
We have the conclusion of 1.5.3.

1.54. Lemma. We have, in 1.1.3 with 1.5.1, that the number of such
quadruples (A, B, A, B,) to be counted, that satisfy

(log PY°=ab, =G,
is
=gi'P’,
Jfor a sufficiently large constant G,.

Proof. The proof from 1.4.3 to 1.4.8.1 applies in this case also,
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1.5.5. Lemma. We have, in 1.1.3 with 1.5.1, that the number of such
quadruples (A, B, A,, B,) to be counted, that satisfy a,b,<G, and that all of
A, B, A, and B, are not [K, K*)-regular, is

=g;'P
Proof. The proof from 1.4.3 to 1.4.3.5.4 applies here.
1.5.6. We have proved 1.1.3.

Chapter 2. Gaussian Sums and Theta-Weyl Sums

2.1. Gaussian sums

‘We summarise classical results.

2.1.1. Definitions. (i) Let 4, B and v be integers such that (4, B)
=1, A>0 and B£0. We use the notations as follows;

S(_fi;u): e(izu-_’tz),
A ;;157=24 \2A4 24

(), (2
;17524 24

and

(ii) Let X be an odd positive integer and Y be a non-zero integer
such that (X, Y)=1. We use the notation

/(3

Py

to denote the Legendre’s symbol with respect to the solubility of x*=
Y mod p, where p is an odd prime, and correspondingly,
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/(x)
X
to denote the Jacobi’s symbol.
(iii)) Let X and Y be non-zero integers such that X>0 and (X, Y)
=1. Let X=2"X with 2}/ X. We put, then,

Jo(z—): =J(-Z)
X X

(iv) Let X and Y be non-zero integers such that X>0. We put,
then,

T(Y/X): =J,,(M).

X, Y)"'X
It is clear that

J(ZY]ZX)=(—1)®R-02](Y/X)
for X=2°X and Z=2"Z with 2} XZ.

2.1.2. Lemma. Let A and B be positive integers with (A, B)=1. We
put, temporarily,

A=24, B=2¢B,

where A (resp. B) is the odd part of A (resp. B).
(i) If both of A and B are odd, then,

S(E) —0.

A

(ii) If A is odd (a=0, A=A) and B is even (8=1), then
S(Z)==nmamns(2B) 7.

A A

(iii) If A is even with an even o (=2) and B is odd (=0, B=2B), then,

B 2B AB —
S(—-> =(=1 ((1/2>(3—1)>=J<__A_) ( )2 4.

1)~ 7))

(iv) If A is even with an odd o (=1) and B is odd (3=0, B=15), then,

S(g)—_—.(,/__1)«1/2)@3-1,)7(_52_)8(_(_:89_41)%/7‘
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(v) If both of A and B are odd, then,
S*(E) =(~/Tf)«1/z)u-1>)2](2£>2~/7_
A A
(vi) If A is odd and B is even, then,
s*(fl) =0.
A
(vii) If A is even with an even a (=2) and B is odd, then,
S*( ) (= T)md-m3( — )amds-nia-1
AP
(viii) If A is even with an odd a (=1) and B is odd, then,
S*('g—) = (v = D)md-m(_ 1)a/md-na-n

(B (_1)(1/2)(2(A+B>-1) —
X s
X y e g Wi

(ix) If both of A and B are odd, then,

S**( ) (V=T)amu-me, (AgB) (%)2\/74_.

(x) If Ais even and B is odd, then,
s**(fl) =o0.
A
(xi) If A is odd and B is even with =1 (B=28), then,
S**( ) (F)((W)(A m2, ( A8é )J(§)2¢'X_
(xii If A is odd and B is even with =2 (B=4B), then,
S**(’g) =/ = 1) M- 1)/ - 1)+1]< )2«/14

(xiii) If A is odd and B is even with B=3, then,
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S**(j?) = (/= T)am-m 1)<1/a)<A2—1>J(_§_)2J74‘_

Proof. Classical results in “Kapitel II, Siebenter Abschnitt™ in [1].

2.1.2.1. Corollary. Let A, B, A, B, « and Bbeasin2.1.2. We have,

then, S(f—), S*(%), S**(%) are of the form pJo<_§—)2¢7, where p=0

or o*=1. The values of p are determined if the residues of A, B, A mod 38,
and the residues of a and 8 mod 2 for larger values of « and B, or the values
of « and B for smaller values of a and B are given.

2.1.3. Lemma. Let A and B be positive integers with (4, B)=1, and
v be an integer. We have the followings;
(i) Ifvis odd and AB is even, then,

S(E;v>=0.
A

(ii) Ifvis odd and AB is odd, then,
A, 2
S(£ ; v) =(— 1)/‘e<——12‘a—)S* <£),
A 24 A

p=3(v—A) mod 4

where

and
BD= mod 24.
(iti) If y=4p, then,

(522 (2),

BD=1 mod A.

Wwhere
(iv) Ifv==20 with 2}5 and B is odd, then,
Ao
s(F0)=e(-20)5(3)
A 24 )7\ 4

BD=1 mod 24.

where
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(v) Ifv=25 with 25 and B=2B, (A being odd), then,
s(F o)== )s(Z)
A A A
2u=vmodA and BD=1mod 4.
(vi) S(ﬁ; —v):S(E;u)
A A

Proof. 1t is easy.

where

2.1.4. Proposition. Let A, B, A’ and B’ be positive integers and ¢ be
one of +1, such that

AB’'—BA"—=e¢.

$(235)= a5(2)e( Larara)
A ‘ A 8

B o

We have, then,

where §<—j—) is one ofS(f—) and S*(-g-), §=0o0r g?=1, p=0 or p*=1.

Their choices are determined by the residues of X mod § for X=A, B, A’, B’
and A with A=2°4 (2 A), and the residue of ymod 4. Especially, p is the
same for v and —v.

Proof. This is classical, and an easy corollary to 2.1.2.1 and 2.1.3.

2.2. Theta-weyl sums

22.0. Lemma. Let F(x)and G(x) be real functions such that G(x) is
monotonic and that F'(x) exists, is monotonic and F'(x)>m (>0). We have,
then,

U: G(x)e(F(x)) dx!<<m" sup |G(x)}

Z; asxsh

Proof. This is obtained from Lemma 4.2 in [23].

2.2.1. Lemma (van der Corput). Let f(x) be a real-valued function
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with a continuous and monotonely increasing derivative f'(x), on a<x<b.
Let $#>9>0 and b>a. We have, then,

2 _ey=_ [ ef—mudx

k; ask m; fla)~pEmsf'(D)+yJe

+O(log 2 +f"(B)—f"(@)) + 01 +797").
Proof. This is Lemma 4.7 in [23].

2.2.2. Lemma (van der Corput). Let f(x) be a real-valued function
with a continuous and monotonely increasing derivative satisfying | f'(x)|<
l—pona<x<h. We have, then,

(/) = elfENds-+001+77).
k; asksb a

Proof. This is Lemma 4.8 in [23].

2.2.3. Lemma (van der Corput). Let f(x) be a real-valued function
with a continuous and monotonely increasing derivative f’(x) and g(x) be a
realvalued function with a continuous, monotone and positive-valued deriva-
tive g'(x), on a<x<bh. Let #;>7>0 and a<lb. We have, then,

I e ()= . j :g(x)e( F () —mx)dx

m; fla)-rSmES(b) +

+0((2(@|+1g®)D(r™" +1log 2+/(6) — f"(@)))
+0((g’'@|+1g' B~ + 1))

Proof. This is Lemma 4.10 in [23].

2.2.4. Definition. Let ¢ be one of +1 and £ be real with £20. We

T:(E)=e( — %EEZ) f e(-;—eﬂ)dt.

This is one of the so-called parabolic cylinder functions. It can be ex-
pressed using Fresnel’s integrals.

put

2.2.5. Lemma. We have
(i) -df“—s—afa(s)=—1»-2w——1esaf;(s>.

(ii) 7,(0) =—;-e(-;—)



Quadratic Forms ‘ 71

(iii) If & is a non-zero real, then,

(sgn &7 (&)= —%;e(—-é—) f e““‘”(t—— e(_g_)g)"dt.

. 1 1 v 1 k »
(iv)  T@)= —2—e<——2—s(5 —2—)) ~ 2 (@h=D1)
X (—2m// = Te)* %71 O(((2k — 1) 1) ~'(2m) %),
v) TO= —h}ijl (2h—3)1)Qrr/ = Te)~ g~ @~
FO(k—DINER) kD). (= Dl1=—1).

(vi) The real part of U (&) decreases monotonely from (24/2)* to
04 as & varies from 0 to 4 oo, and similarly for the imaginary part of
el .(8). We have

Re ¥ (§)=(@n*6")",
Im ¥ (§)=(4n)™",  as §>+oo.

Proof. It is easy, or can be shown by the properties of Fresnel’s
integrals.

2.2.6. Lemma. Let B(50), &, &, & be real numbers with §>§&,.
We put e=sgn . We have, then,

o o(ae-sormsisre(s)

— [sene—otsrme(5-pe— e )aprmie—a]

=
¢=
where

1if §,>8>6,
5% Fé=t or =6,

0 otherwise,

X=

and sgn 0 is 0 by definition.
Proof. It is easy.

2.2.7. Definition. Let g(5£0), 7, &’ &” be real numbers with §”>
&4-2. Weput
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0BT 8,8 = 2. e@p) M x+1,
x; xEZ, £/ SasEY

which we call a theta-Weyl sum. ([19] with a minor change in the nota-
tions. Cf. [11]). Especially, we put

0(p; &, 8"):=0(8",0;¢,&")
= > e((2p)'x%).

r; x€Z, §'sx<8”

2‘2'8’ Lemma' Let ‘80 ( ¢ Z)’ TO’ S(,]: (,)Iy ,313 7’19 E; {’ be redl numbers,
b, be an integer and e= +-1, such that

Bz &' —&1=2p0
Bo=bo+ 5% B =4b,—T, mod 1,
S=E+T), &/ =BT
We have, then,
0(cBs To; & &) =e(e(E 4+ Q2B TDBYO(— B, 115 &1, &)
+ O(1 -+ ).

Proof. This is Lemma 3 in [19], or a corollary to Theorem in [26].

2.29. Lemma. Let 8(50) has two consecutive convergents A,B7'
and A, B7}, such that

(1) 4, KN Ay oy (L 00).
(That Ay, =00 means = A,B;"). (See 1.2.3.) We have, then,
16(87", 75 &, £+ N)|Kmin (NAZY?, AL,
for any ¥ and £.
Proof. This is a corollary to Theorems 1 and 2 in [19].

2.2.10. Definition. Let A4 and A4’ be positive integers such that
(4, A)=1. Let AA’~! has a regular continued fraction expansion

AA" =[by; by, by, - - -, by,

(The ambiguity of b, in 1.2.3.1 (iii) does not affect the followings.) Let
r.q;* be the convergents of 44’ corresponding to b,’s. Let g be a large
positive constant and let us have that 4>g'®.  Suppose we have that

by, <rt for every k with g'®<r,<{A4%?
and that
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b, ., <g®for every k with 1 <r,<g".

We call, then, the fraction 44’~* has “good partial fractions with respect
to g”.

2.2.11. Proposition. Let g>>1 and P=P,. We have, then, that the
number of such pairs (A, A’), that
g MP< Aand A7 <g''P,
(4, A)=1
and that the fractions AA’~! have NOT good partial fractions with respect
to g, is
L g Pt

Proof. We use the notations in 2.2.10. First, suppose that r,,,=4
(and ¢,,,=4’) and b,,,=r8. This means r,<(gP)"* and b,,, &L gPr;', as
Fra1D> € byoiti.  We have, then, that the number of those pairs (4, 4%) is

< D0 2 2K0 8y XgPrit L gt P T P =0(PY).

(T k) br+1 Tk

Next, suppose that 44’~* has a k with
g0, <A and by, =L
We can express, through 1.2.3 (iv-vi),
A=rp X +X 0,
A'=qy X+ quy
where
x,yeN, (x,y=1, xzy=l
We have
x<rimA<ring"*P.
We have that the number of those pairs (4, 4’) is

< 2 22l

T (ke ar)s TE>E10 b33 DEH1>TEY (5,9)

< 20 20 ((beyar)'gPY

(Tksq%) ble+1

< Z r,;ugl/sz

(rksqr)

<Z g’”r,cr,;ng‘/sz <g—1on.
Tk
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Next, suppose that A4’~* has a k with
r.<g® and b, ,>g"
We proceed as in the last case. We have that the number of those pairs
4, 4)is ‘
= 2 2ol

T (ks qr); T<g0 Dp+1; Dr+1>08 (%2)

< 20 25 ((beyar) '8P

(Tkyqk) Dr+1
< Z g -8y r;zgl/sz
(TksqK)
<Z gl/zrk Xg-ax r;*g‘/z}”
T®
<g~ "loggX P*<g~°P"
We have proved the proposition.

2.2.12. Proposition. Let &, & be integers with £">&42. Let S
be an irrational real number, B’A’~* and BA~* be irreducible fractions such
that, putting as

B=BA'+w and e=sgno,
we have

|dw§|<04  for §=&', &,

| Aol 1,

AB’— BA’ =¢,

1<4’< 4,

and that the fraction A(2A’)~* has “good partial fractions with respect to g’’,
2.2.9, where g is a given constant with A>g'° and g0.9. We have, then,

0(B; &, ") = %S(ﬁ—) X ‘[: e(%— a)x2>a'x

(g19) 1 B 1 1 E=¢"
s Hger- )
2 S\ AT g ®

ngn<§_2;w>|w‘~1ﬂ¢'e(|q>|1/z >e=e,

+0(g"WA),

where v runs through the set of integers such that

y
§ 240
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0, |o|<g
Note that we need not restrict ourselves that 4 &7 —¢’. Cf., [11].
Proof. We proceed as follows; Let L— 4 co. Then,
0(B; &, &)

214z}

Yol €/ S2AYHIEE",051<24 e( 24
; ($ear+07)
= —(24 1)t
2y;2Ay+Z=:e' or e”e 2( y+)
- BE)
ot2ia’ \24 + 5 j e<£’_(2Ay+1)2—yy)dy
WIS L J y; 7 <24y +1<8” 2
+o(1)
1 B 0]
— o -S<—-) f (——x”)d
ORI Uy 2l UL ) L
1 (B, ) (a) N Eu) ’e=e"
L os(2, Dp 5V
e\ o)

xsen (= 5ol ¥ (op7]e - )

24w

e=g

We have, by 2.1.4, that

@4 <4

(29

and that
B cA’ —
S — = — (-——————‘ 2)2 A',
(A ”) eyl o

where p=0 or p*=1, and g is the same one if 4, B, 4/, B’, ¢ and the
residue class of v mod 4 are fixed. We use the approximation 2.2.5 (v)
with k=1 to treat the sum over y. First, we have

(2A)"S<§; u) X 00| (o[ |6 —(24w)~'v])"?)

v L2lvlzg
&S || A7 |y —240E|
<<{w\A5ﬂg"2<<g'zA‘/2.

Next, we have
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(2A)‘1S( = )x(zA)(zAwg_,,) ><e( Eu)

v;i LZviz g 24

5 sG-S ()

g () soan

v; Lzivizg
— _ A’ &y
(gt
‘/ s=0;‘,3 05 vy v=D modz—,:LZIDIzg voe 8A 2A

We have that, with L’=[(44)"'L]+1,

2. (444D + (v —44D)7)|

vo;lvol=24 15 L'zlzg

<22 (44D)7* v« g7,

therefore, that

> eas(Ziv)x@aedst—) e -2 )<y A

v; LZ|v|l2g4

Now we treat the summation over vy with g4>|v|=g". We have, fixing ©
=0, ..., 3 and treating g4 and g as if they are integers,

_ A’ Ey
16(__ & z____)
v gAgp>§o, v=5 mod 4 Y 84 g 24
= 3 N e(-+)— e(--+)
N; gAZN>glo v; 1SySN,v=7 mod 4 v; 1SvSN-1,v=9 mod 4
< > N7 e(-- )
N=gi0,g4 v; 1SvEN,v=9 mod 4
+ 2. N7 e(-- )|
N; gA=Ngio v; 1Sv<N,v=5 mod 4
- 24’ 5
N-t (__ [ 2__ S )]
<<N=§,3A v 1§:2§:;—1N ¢ 2A g A
’
A )
N; gd=Nzgro v 1S0Z4-1N 24 24

+0(g™"),
where §=4&+4eA’>. Such N’s, that

_ SZAI 2____§_ )I No.s
v; 1SVEA—1N e( 24 g 2AV < ’

contribute
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& max N "gg-i

N; gAzZNzglo

Suppose that we have, for a certain N, that

e2A4’
v 15;‘/,_‘:~1N e( 24

then, the consecutive convergents ryq;* and r,,,g7L, of AQ2A")~! with r, &
N Ly, satisfy, through 2.2.9, that

(*) Nrg > N%¢ and  r¥f2;» N°,
i.e.,
re N and  r,,. >N

If (A=)r,=34, then ALK N gA, therefore,

| A g_j_)
éie( 247" 247)

This gives an admissible error O(g *4'?). 1f r, <3 A, therefore, if r,,,< 4,
then, using notations in 2.2.10,

<<NA-1/2<<gN1/2_

b1 KFiyal g >N D75
We may suppose that this conclusion is
by, >rd
by adjusting the implied constants, We have also
P <A,
Suppose especially that g'®>r,>1. This implies
by, > (g7 g0 =g",

as ry, ==N=g" As A(2A4’)" has good partial fractions with respect to
g, the existence of such N satisfying (x) with r, <44 is denied. We have
proved the proposition.

2.2.13. Lemma. There exists a positive numerical constant ¢ (small)
such that, if ¢, is a fixed constant with ¢>c,>0, then we have

=U 1
J e<———u2>du
v 2

>LU+UY!
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for any & and U with
142¢,>6>14¢, (51
and
oo > U>0.
The implied constant in ““ L’ is absolute, and that in > depends only on
Coe
Proof. (i) Suppose that U is >cc;'* with a large positive con-
stant ¢. We have
f(‘mz ()= Pdu = Qri) (£ U) " e(2U) — U~1e(U) + O(U-Y)
" =2ri) (U —-1HU?
+Q@ai)(e(s*U") —e(UD)(eU)™
+0(U",

by 2.2.5 (v).
(i-i) If we have

e (e U —e(UD 22| =1 (> <L),

then, we have

=02
J e(wu'"du
e

> Lle(W U —e(UY|X (£ U)™!
SU e —1>U""
We have also, by the mean-value theorem on integrals,

| («U)2
;I . e(Wyu~""du

WU

U

(i-ii) If we have
[ (@ U —e(UD) | <67 — 1],

then, we have

| pene
!f e(u)u"/zdu!>> Ll =1 U t> UL

(i-iii) Tf we have
e = 1< (e UY —e(UY) | < 2[5 — 1),

i.e., if we have
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[(F—=DU*mod 1> «le—1> <y
we have, then,
le(x*U?) — £~ 'e(U?) |=|(e((#* = DU = 1)+ (1 —£71)|
=|27i((s*—1)U* mod 1)+ (1 —&~ )|+ O(cd)
>><<|lf—ll>> <<C°,

for suitably chosen small ¢, Therefore we have the conclusion again.
(ii) Suppose that Uis <ccy? with a small positive constant c. We
have

f ‘: e(hui)du = J ’UU (1 + O@))du=(x— 1)U+ O(U?)
><LcU.

(iii) Suppose that ¢}? UL cy*%.  Using numerical tables of values
of Fresnel’s integrals, or the graph of “Cornu’s spiral”, we have

] f e dul> <1
U

if Uis > <1, the upper bound being absolute.
We have proved the lemma. See, also, Lemma 7 of [11].

2.2.14. Proposition. Let ¢, be asin2.2.13, Let & and & be positive
integers such that

> 42 (23)
and that
(142c)8’>8">(14cp)'.

Let B be a non-zero irrational real number. Let A, B} and A, ,.\Bi,, be
two consecutive convergents to B such that

AE" >t
and that
A€ S5
We have, then,
EITHER
l6(8~5 €, &)< AL
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OR
|0(B™"; &, &> K A}, X min (5, 577,
where B :=(AyAy,.1) " *"”. The implied constants depend only on c,.

Proof. Theorems 1 and 2 in [19] with the formula for X,,, in
“Corrigendum”, Lemma 2.2.13 and the fact that

IAB_I—BkoAl;oll>> <<(AkoAko+1)_1
through 1.2.3.1 (iv-iv).
2.2.15. Proposition. Let & and & be as in 2.2.14, We have, then,

2 |
«
0|z &'<aZer,zeN \ 2

Proof. Let r(n) denote the number of integer solutions (x, y) of x*+
y*=n. We have, then,

[ize(5®)

A slightly better estimate can be obtained, if we use 2.2.14.

4da<<$"(log gy,

s 3 (OFS Y EO)r<Elos ).

2.3. Jacobi’s symbol.

2.3.1. Lemma. Let A, B, A’, B’ be positive integers and ¢ be +1,
such that

AB’'—BA’ =e.
Let p and q be positive integers with (p, g)= 1. We have, then,
(0) (4p+A'q, Bp+B'q)=1.

. Bp-+-B'q \ ’ ~1\-172
(i) S(m) ((Ap+A’q)(4qA)~1)~Y

pSH (:iPL)S* (ii) if AB is odd,
q

( —ep )S(B) if AB is even and AA’+

A B(B’+1) is even,

( —ep )S(B) if AB is even and AA’+

q A B(B’+1) is odd.
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(if) s*(%j—%‘é)-((Ap+A’q)(4qA)~‘)—m
B

/ps**(___eli>s(2) if A is odd and B is even,
q

_ pS< _Ell)g*<£> if (4, BYs£(1,0) mod 2 and AA’
q A +{(A+BYA’+ B’ +1) is even,
pS*( —ep )S*<—B_) if (4, B)=(1, 0) mod 2 and AA’
q A +(A4+B)(A’4+ B’ +1) is odd.
In (i) and (ii), p°=1 and p is determined if the residues of A, B, A’, B’ mod §
(and e = 1) are given.

Proof. This lemma is implicitly well-known in the classical theory
of theta-series. So, we do not write down its proof. The explicit values
of p’s are, following the order of their appearances in the lemma,

(i) (—=D“7e(e(l+A(A+2)+(4+1)°B")),

e(ge),
e({e),

(i) (=D“%e(Fe(1+ A" (A+2)+(4+ 1A'+ B),

e(3e),
e(fe),
respectively.

2.3.2. Lemma. Let A and B be positive integers with (A, B)=1 and
A=224,2fA. Let S, be one of S(§> and S*(_ji), =1, 4 We
have, then,

SyX + e X S, =16pA2,

where p=0 or p*=1 and p is determined if the residues of A, A, Bmod 8,
the residue of @ mod 2, ¢ and the choices of S, are given.

Proof. 2.1.2.

23.3. Lemma. Let A, B, A’, B’ be positive integers and ¢ be +1
such that

AB'—BA’=¢

with A=2°4A, 2y A. Let p, and g, be positive integers with (p,, q,)=1,
i=1,...,4. Let S, be one of
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S(BP1+B"1¢) and S*(Bpi"_qui)
Ap,+A'q, Ap,+A'q,
for eachi=1, --.,4. We have, then,

SyX + - XS =160((Ap,+4'q) - - -(Aps+-4'q)'",

where p=0 or p*=1, and p is determined if the residues of A, A, B, A’, B’
mod 8, (¢), the residue of « mod 2, the values of p,, q,, and the choice of S,
are given.

Proof. This is a corollary of 2.3.1, 2.3.2 and 2.1.2.1.

234. Lemma. Let X, Y and Z be positive integers, such that X =
2°X, Y=2vY and Z=2°Z with 2y XYZ. We have, then,

JXIYZ)=T X J(X]Y)]\(X]Z),

(B )

Here we have put as

X=dd,d, X, Y=dd'd,¥, Z=dd'd,Z,

where

d=X,¥,2), d'=@'Y,d"'Z), d=W, X),
dy=(d"'X,(dd)'Y), d,=(d"'X, dd'"'Z)).

We have, also, a corresponding formula for J(YZ|X), in which J(Y/X)
appears in place of J(X]Y), etc. We have

(dysz, dl)=1s (dYY’ dzZ)'-—-l, (X, dyszZ)"—"l-
If (X, YZ)=1, we have J=1.
Proof. We have

~

(X YZ)= e(_l%x((YZ)z— 1))J,(X/ 72)
C —etI(K)ddnY D),

which is
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as (X,d)=1and (d-'X,d'dYX)=1. We have, then, this is
o SRV
eIV EEINEVE)

asJ ( "d) ( ) owing to 2YX. On the other hand, we have

J,(X/Y)=e(-11—x(f”— D)7

W( @)

(PN

and similarly for J,(X/Z). We have

(e (P27 =) =¢( (= D+Z*=1)).

as ¥ and Z are odd. Combining these, we obtain the result for J(X/YZ).
As for J(YZ/X), we have

J,(YZ/X)=e(—1%(y+z)<fz—1))11(?2‘/?),
I(Y|Z)= e(—116—y()?= - 1))11(?/2‘)

and similarly for J(Z/X). Then, the rest is similar as above.

2.3.5. Lemma. Let A, B, A%, B4, A, B, A, B/, p,, q,, t, U, Vi, a, b
be positive integers and §= +1, ¢;= =1 such that
UaB, = tx((P1+ql)E—Q1BA)=
VibA,=t((p,+ %)A.— q 11‘{4),
AB'—Bit=s,
ABi— B A{=¢,,
(@ b=1, (U, V)=1, (p,q)=1,
t‘=(UlaBl, Vle!).
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We divide t, as
t‘: t{ab)f{A)t{B>,
so that
t =(Ua, Vib), t0|(Ug, 4), t®|(V;b, B)).

We have, then,

Jo( B, )——-—pvl* % Jn( (171+‘I1)Bi"' qu:‘A )Jo< (p, +Q1)/i.—%/i." ) )
A, (p1+g)A—q,4° Pty Ua

Here we have put as

{4 ’ s (ab)—1
=g Vi JLIE AT el i iy
@@y e ) e )\ N @iy

(B) (ad) ¢ (43} -1 _
X J, 4 J, 1) Waa J, & ,
o) (® 1@

and p¥=1. This p, is determined if the residues of x mod 2, the residues of
X, Xmod 8 with X=2°X 24 X), for X=t7"Uya, t{'V'h, t%®, A, and B,
are fixed.

Proof. In this proof, p, has the same properties as those in the state-
ment of the lemma, but it may not be the same one, as it occurs. We
have, putting u, =1{4t{*» and v, =1t {"»,

17V, bA,

J( U U,a)(1{” ' B)) )
N Vbt 4,)

-1 (B)-1 -1 #{(B)—1
Jo( h U,a)Jo<t1 B‘)Jo( u; _Ula )Jo( £ - B,)
vriV.b viVib M4, 14,
_ Jo<t;1U1aBl)Jn( ur'Ua )Jn( BB, )Jo( 1A )
vitVLb t7YVibA, T4, Vb

TUa ui Ua
XJ(ul 1 )J( 1 YUy )
° 1B ’ viiv.b

1 :
J(U,aB,|V,bA,)= Jo( t; UlaBl)

I

i

We have, first
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Jo( t7'U,aB, )=Jo( (P1+q1)§'—qv§d)

Vb (vr'V.b)
:J( A4* >Jc< (pl+ql)A-A‘§_ql/i.AE4).
\(@r'7,b) (v7'V.b)

‘We have

(p+ ql)A.AB_ qxfi.dﬁd =(p:+ %)(fﬂ?d—‘é) - qlABA
= B“((Pl +q1)/i."‘ %A.A) —&(pi+q,)
=—&pi+4q) mod (vi'V,b).

This gives us that

J( tflUlaBl)=J<—§(P1+q1))Jo( A* )
\orvb \ @) (vr'V:b)

We have, next, that

J( ur'Ua )= J( 17'V,b4 >= o Jo( (P +q)A —a,4* )
° t7VibA, e urtUa urtUa

We have also
t§B>—1B1 — t§B) Bl t{B) Bl
Jo(——th)“A, = P\ )\,
— Z{B) —31A{ t{B) Bl
~J°( 1@ T 1@ % 4, )\ 4, )

Combining all the above, we have the result of the lemma.

2.3.6. Lemma. Let X, Y, Y, and D (D>>0) be integers such that
«X, V)| D, &, Y)|D
and that
Y=Y, modD.
We have, then,
&, V)=, Y,).

Proof. 1t is sufficient to prove the equivalence of the solubility in
integers x and y of
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and that in x, and y, of
Xxo+ Yy, =k,

for every integer k. Suppose that we have integers x, and y, satisfying
the second equation. We must solve the first one. It is sufficient to solve

X(x—=x0)+ Y (y—y)=(Yo— V).
Putting Z=(X, Y), we obtain the equation
(Z7X)(x—x) H(Z YNy =) =(Z " (Ys— Y)s,

where Z-}(Y,— Y) is an integer. This equation is clearly soluble in x and
y. The converse argument holds also. Therefore, we obtain the lemma.

2.3.7. Proposition. Let U, V,, ¢, t}, p. 455 Py G, (i=1, -+, 4), a
and b be positive integers and e= -1, such that

tti(pi+9)9:+q.p)="U,V ab,
(a’ b)=1’ (Uu Vi)=1’ (pt’ qi)zla (p;’ q;;)’:l

Let W, 4, B, 44, B, B,, A}, B, A,, B,, A}, B}, A®, B®, A/, B|® (i=
1, -« -, 4) be positive integers and §= =1, such that

AB*—BA‘=AB{— B,A{=¢,
A,LB:;-—BiA£=A,(;O)B;(D) B(O)A/(o) =§,

Ua 0\(B, B B B ti(p,—{-q,) tip;
(0 V&)(At Az)z(A A)( q)
Ua 0 \(BY B i(pt+q¢) tip;
(0 ol )~ N2 )
A=At mod bWV, ---, V]
and
tgA)tgab)lW

Jori=1, ..., 4 where t(* and t{* are defined from UaB® and V,bA®
similarly as in 2.3.5. We have, then,

Gl ) =e L AERSTE)

i=1,e Pt \Ua

where p*=1 and p is determined if U, V,, t,, t}, p,s 4;5 Pl 41r @, b, &, 4, AY,
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the residues of x mod 2, the residues of X, X mod 8, with X=2°X Q@ /{/X'),
for X=A, B, A%, B4, A,, B,, are given.

Proof. We apply 2.3.6 to J(B,/A,), for instance, and 2.3.3 to the
product

i==1U-~ . J(p,+ %)B - quA/(pt + qz)/i.-" qt/i"’).

We must check that the corresponding J* has the properties of p in the
proposition. We have the same #{* and (% for A4 and A¢, owing to the
assumption that #,| W and by 2.3.6. We have, therefore, the same ¢{® for
A% and A%, because ¢, is fixed. It is clear, then, that

AZ=A®, A=A, mod 10r®,
therefore, that we have the same J* for 44 and A4¢.

2.3.8. Lemma. Suppose the assumptions of 2.3.7 hold, and, moreover,
that we have

A4=A4% mod abW[U,V,, ---, UV

We have, then,

B B
J<_1))<...><J(_4.)= X
0 4, 0 4, o

where p has similar properties as in 2.3.7.
Proof. This is a corollary to 2.3.7.

2.3.9. Proposition. Let U, V,, t,, p,;, q, (i=1, ---,4) be positive
integers such that

(Ui9 Vi)=17 (pia qi)zl'
Let a, b, A, A2, A be positive integers such that

, AH=1, (a b)=1,
t((pi+g)A—AH=V AP,  (i=1,.--,4.

We put 1, t® and t{® as
te»=(U,a, V;b)

and
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ti‘—: t,(iab)tq(;d)th)

with

10U, AP) and (1P, AP)=1,
and suppose that all prime divisors of t{¥t{®® are smaller than T. Let U}
be the square-free kernel of the odd divisor part of U,a. Let W and Z
(=T =3), be positive integers. Let us suppose that they have the following
properties;

We suppose that all prime divisors of aXt,- - -t, X (U, q W[V, -+ -,

V.D) are smaller than Z, and that there exist one i, (1<i,<4) and a prime
divisor p, of U}, satisfying

pozza po [ U?o,

Do Ut Jorall iz£iy, i=1, ... 4

We let A4 vary so that

A'¢ &,
A4=A4A¢ mod 8abWI[V,, ---, Vi,
(44, A)=1

and

X<A‘<KX+8abWW'[V,, - -, V],

with fixed positive integers X and W', where & is a set of integers to allow
exceptions for A4. Putting

VibA,=t((p;+ Qi)/i.'— qi’i.d)a

where A, become integers, we suppose, moreover, that & contains all A,
Jor which [],_,.... . (U,a, A,) have prime divisors larger than T. We suppose
that, with ¢ and i for A4 similar as t{Y and t* as are in 2.3.7,

W=0 mod i@ j=1,... 4

for all A* to vary stated above, including t{®t® of A%;
Under these situations we have

(pi+qi)/i.— in'A )
;: i=1]:—.[‘.’4 Jo((i«EA)f§ab))_1Uia
LUt - UHTRUL, - ., Ut 4, log (U, - - - U))
X (@b)*-T] (Ui, A®)-o(4(4; 2))
i
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+Z W A)Ag(A) W
+u(U;- - - U4a)(T_1W,+ D
+2»(1) +Z" 1.

WY

Here, in the left-hand side, A varies as is stated above. Also >4 is taken
over such A* that

Ate &2,
A4=A4¢ mod 8abW[V,, ---, V],
(44, D=1,

X<A<XA8abWW'[V,, - - -, Vi,

and that all prime divisors of [];-y,....(Usa, A;) are smaller than T. We
put as

AMX; Z2)=
p; prime,p|X,p<Z
and
4= [ (U}, ULULUL,-4(UY; Z2)
1,2,3,9)
where (i, iy, i, 1,) is taken over possible permutations of 1, - - -, 4.

Remark. We can use, in Jy(---), t{* in place of 7{*, that corre-
sponds to A¢, as we have seen in the proof of 2.3.7.

2.3.10. The proof of 2.3.9 will end at 2.3.10.7.

2.3.10.1. Lemma. The number of A, for which [],(U,a, 4;) have
prime divisors larger than T, is

(U« - - Ua)(T*W’'+1).
Proof. 1t is easy.

2.3.10.1.1. Corollary. We may suppose, in the left-hand side
S aa [T1o I+ - -), the summation is taken over

At=42 mod 8abW[V,, - - -, V],
(44, 4)=1,
X<AA§X+8£ZZ7WW/[V1, AR V&]a

and may use t® given by A¢ instead of i{%.
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2.3.10.2. We use the Mobius function u(d) with d| 4, to get rid of
the condition that (44, A)=1. The conditions, that

A'=A? mod 8abW[V,, ---, Vi
and
A‘=0 modd,
give us that
A4=0 mod (d, 8abW[V,, ---, V).
This, with
d|A and (4, A)=1,
gives us that d must satisfy
d, 8abW(V,y, - -, Vi)=1.

The last condition is also sufficient for the existence of A as a solution of
the first congruences. We put, temporarily, U* as the square-free kernel
of (t#®t{)~'U,a. Then U* is a divisor of U¥, and p, and i, have the same
properties for U¥s, as all prime divisors of #{*¢{® are smaller than Z.
Taking into account 2.3.10.1.1 and the fact that

Jo( (Pi+qi)/4.—q’l/i.d )__:J( (pi+q'l)/i._qi‘A"A )
(1) U,a I

we must estimate the sum

p(d)x % 1 J( (pi+q)A—q. A" )’

&5 d14,(d,8abWLV 1,0+, VD=1 i=1,eeyd Ut
where A runs over such integers that

A‘=A¢ mod d8abW[V,, ---, V)],
and

X<A‘<X+8abWW'[V,, - - -, Vi].

2.3.10.3. Lemma. The contribution of such d’s to the sum in 2.3.10.2,
which have prime divisors not smaller than Z, is

LZ WAVAA) W' 42D,

Proof. Letting d run over as stated above, we have



Quadratic Forms 91

> u@) @ W)
< S (pd) W2

= p,d; pald,p2Z,p is & prime
<( >, ) p7Y-( Z._d—ly(d)z)W/—l-Z"(‘i)
p; prime,pld,p=Z “d; dj4
LZ WAYAYA) W 2D,
by the formula (1.5.24) in [20].

2.3.10.4. We consider a Gaussian sum

' ())

where U(>>1) is a square-free odd positive integer. Here we put J(I/U)
=0if (/, U)>1. Itis well-known that this sum has the absolute value

U2, and that

(o)) )= 5. ()T

for integers X. We let d’s run, in 2.3.10.2, over such integers that d are
square-free divisors of A whose prime divisors are all smaller than Z, i.e.,
d|4(4; Z). ltis sufficient to estimate the sum

(Ui-'-Uﬁ)"”;lZ 1 e 3o Ogd),

PICTT iy 44 i=1,-..,

where d runs as is stated above, A4 runs as is stated in the last of 2.3.10.2
and J, runs so that 1</, <U% and (I, 0%)=1.

2.3.10.5. All prime divisors of (0¥, 81,4, dW[V,, - - -, V,]) are smaller
than Z, but there exist a prime divisor p, and i, such that

7=Z, p|UO%, pt 0 forii,
by the assumption on Z. These mean that
2 U1, X 8dWTV,, - -+, V]
is not an integer. Therefore the summation over 44 in 2.3.10.4 is
<<||; Oyilgawiv,, - -, Vil

where ||£|| is the distance of & from the nearest integer.
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2.3.10.6. Sublemma. Let D, (i=1, ---,4) and D be
D,=U«T4, qdwv,, ---, V)
and
D=[D,, ---, D)),

temporarily. Then, the number of quadruples (I, ---,1) in 2.3.10.4 for
given I, such that

Z O 1,qdW[V,, -+, V]=D" modl,
is

< I (U3, ULULULA(UL; 2)),
»4)

1,2,3

where || 1.4 is taken over possible permutations of (1,2, 3, 4).

Proof. As (I,, U%) =1, the reduced denominator of the left-hand side
of the congruence is D. Putting X, as

D[1><Xz=[7f_’><qidW[Vp DR} V4], (Dzv X1)=15
temporarily, we must solve the congruence

ST (DDX)l,=! mod D,

[3

under
0<L,<D(Ut, qawiV,, - -, V),
(, UH=1.
We have
(DD;*X,, D)=1
as D is square-free. We have also
(DD*X)DL=! mod D(D,, D,D,D,)"'.

Therefore /, is determined mod D(D,, D,D,D,)~*. Then, the number of
possible /; is

<<(D13 D2D3D4)X((7’1$’ %dW[Vu ) V4D
L(UY, USUUA(US; 2)).

Similarly for other /;’s, and we have the conclusion.



Quadratic Forms 93

2.3.10.7. We return to 2.3.10.5. We have, putting the estimate
obtained as 4% temporarily, that

L Z-:l “Z ﬁfllqidW[Vb ttty VJH_I
1-1DX 4

L 1sls(1/2)D
& Dlog DX 4%
L[US, - - -, Uil X 44 log (U, - - U)).

We have, therefore, the sum in 2.3.10.4 to be estimated is

QO - - XTY VY, -, ULl log (Uy- - U)X 5] 1
QUL U] oy, - Uty
1 log (U, -+ U -<(d\(d; Z)).
As t®t {9 ab(U,a, A{®), we have the conclusion of 2.3.9.

2.3.11. To apply 2.3.9 effectively, let us consider the following
problem; Let g/, K be (large) positive integers which are regarded as
constants. Let A4, a, b, U, V,, U, Uys Ds» Qo Do @s 11 t5 (i=1, - -+, 4) be
fixed positive integers such that

U Vab=1tt((p;+9)9:+D1q)s
240U, 27|V, (uXv,=0),
((l/i', b):l, (Ui, Vi)=1,
2)ab, 281y 4,

(pi’ qi)—“_—l’ (p::a q:)=l

We put yy=max (u,, - - -, u,) and yy=max (v, -+ -, ;). Letgbe +1. Let
A?, B¢ and B¢ be positive integers such that

ABt{— B A{=¢,
261y x  for X=A4, BY, B,

Ua 0\(B® B/®\ (B, B)(t(p,+q) tip

0 v\ A4@) \dy A\ —ta, tiai
have integer solutions A®, A4/®, B®, B|® for i=1, -.-.,4. We have,
then,

and that
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APB|® _ B® 4,0 =g,
(UaB, VbAP)=t,
and
(UaBi®, VbA ") =t

The problem is: Let 7, W and & be as in 2.3.9. Find a positive
(small) integer W for which, for every integer A4 with

d, 49=1,
A'=A% mod 2%+ 1 abWW"[V,, - -+, V)]
and
¢ s
we can find B and B“ such that
AB*—BA“=;,

and that

Ua 0 B, B B B! t(p,+a) tiq;
0 Vvb/\4, 4}) \d 4\ —1q, tiq

have integer solutions A4,, 4}, B,, B} with
B=B, mod2¢'+u+ig,

(It follows from the assumptions that 4, and 4] are integers.)
The set ¥ can be restricted in connection with applications in 4.5.3.
Note that we have

(U,aB,, V,bA)=t,,
(U,aBj, V,bA))=t;
and
A,B,—B.A=¢.
2.3.11.1. Let Wbe bWW”[V,, ..., V,], temporarily. Let us put

B=Eo+2gl+u°“aﬂ, B‘:Eo"-i—Zg'*“““aﬁ”,
A4 = A4 28+ e h g W,

with integers B, f%, a?. As
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AB'— BAI= AB{— B A3,
we must have
A2 vuotigpt — Jups" runigg L B 0g w1 g,
i.e.,

Ap'=A"p+ B W

Preparing € and (4, which depend on A and 4%, so that

AC*—A4'C=1,
we have
CAR = A8+ B We')
— CB W+ (AC—1)p.
Therefore

B=CB,Wa* mod 4.
Then, we can put
B=CB, Wi+ Az

with an integer z.  We have, then, that

AB = ANCB Vo + Az)+ By
—(AC+1)B, W + A Az
— ACAB Wt + Az,
therefore that
B =CBWa'+ Az
Conversely, if
p=CBWa+ Az
and
B = COB Wat+ Az
with an integer z, we have

A= A“B+B,Wa*

and, then,
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AB*— BA‘=z.

2.3.11.2. Substituting these, we have
B B* > t{p,+9,) t.p;
4 A1 —tyq, 1]

Ua 0 B® B© VA, VbA,
— X +20’+uo+1az 0

0 Vb AP A[® 0
_(X,By Y.B,
20 aW ’1 ’ : ’
139 SRR ¥
where
X’L:ti((pi"l_qi)é_qiéd)’ !
and

Y, =t)(piC+qiCY).

Here A,, A, C, C* are considered to be known as they are obtained from
A% and A. The problem is reduced to show the following; Find W”, so
that, for every «? to be taken into account, we can find z satisfying

zV,bA,+Wa’X,B,=0 mod U,
and
zV,pA,+Wa'Y,B,=0 mod U,,
fori=1, --.,4.
2.3.11.3. Sublemma. The system of congruences
cPx=a® modb,
and
cPx=a® modb, (i=1,-.-.,4),
is soluble in x, if and only if

a®=0 mod (¢, b) (h=1,2;i=1,..-,4),

I 1
cPaP=cPa® modb(c c? b)) (=1, ---,4),
cPaW=c™a mod (bb;, b,c{™, bycl™
(h=1,2;i,j=1, -- -, 4; i#))

and
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cPaP=cPa® mod(bb,, bcP, bic®) (i, j=1,---,4;i%])).
Proof. It is elementary, Section 8.1 in [12], for instance.
2.3.11.4. Returning to the end of 2.3.11.2, it is sufficient for the solu-
bility in z (for every «?), if
(U,, V;bA,) | W, (U,, Vb4 | W,
VOWB(A,Y,— A, X)=0 mod U,(U,, V,bA,, V,bA)),
bWB(V,4,X,—V,A,X)=0 mod (U,U,, U,UbA,, U,V,bA,),
bWB(V, ALY, —V,A;Y)=0 mod (U,U,, U,V bA,, U,V,bA})
and
bWB(V,A,Y,~V,4;X)=0 mod (U,U,, UVbA,, U;V,bA),
fori,j=1, ...,4and ij. We have ,
A4, — 4 X )= A(t:4,(piC+qiCH—1,4((p,+4)C—q.C)
— 1A (PLAE+qUAC+1) — 1, 4((p,+9)AC — g (A°E 4+ 1))
=C(A X tUPiA+qiA%) — ;X (P +9) A~ 4, 47)
+1igid,+ 19,4,
=C(A, X VbA,— A, X V,bA,)
+ (VD) (g X t(p+9)A —q,A) + 1,4, X 1{(Pi A+ 414"
=Vt ti(pi+a)qi+pia)A
=AU,a,
therefore
VbWB(A,Y,— A'X)=U,V,abWh,
We have
(U, V.bA,, V,bA) | V.b(U,, 4,, A)).
Putting U, =U{(U,, U)) and U,=U{(U,, U,) temporarily, we have
(U, U, UV,bA,, UVbA)=(U, U)yX({(U, U)UU}, UV,bA;, U;V,bA,)
|(Us, UpXB(U,, V4, )Xy, VAN [6(U, U - (U, 4) (U, 4)),
the last owing to (U,, V,)=1and (U,, ¥V;)=1. Similarly
(U,U,, U,V;bA}, U, VA B(U, U)U,, AXU,, 4},

and
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(UU,, UV,bA;, UV bAD (U, U, AXU,, 4).
It is sufficient, therefore, to suppose that

W=0 mod (U, A, A4) (i=1,..--,4)

W=0 modbU, U)U,, XO)U,YP) (,j=1,---,4;i#]))
with X®=4,, A} and Y9 =A4,, 4/, for all 4* to be considered. Now let
us suppose

that pyXifpisaprime, p|U,.--U, 2<p<K,

that P rXifpisaprime, p|U,---U,, K< p<T,

and that p/X if pis a prime, p|U;--.-U, p>T,

for every X=A, and 4] with 44 ¢ &. Then, the assumption that

WW"=0 mod ( I D¢

»; prime,25p<XK
XL.CM. of {(U, U); ij=1, - - -, 4, i#j}
X A(U,- - -Uy; T)

is sufficient for the problem in 2.3.11. We have therefore the following
proposition.

2.3.11.5. Proposition. Ler g/, K be (large) constant positive integers.
Let A,a,b, U,, Vi, Py Qs Do @'n By t] (i=1, - - -, 4) be positive integers such
that

Uin‘ab:tit;((pi-*—qi)q{i—{—p;qi):
WU, V=1, (p,q)=1, (pi,qd)=1,
(ad,b)=1, 2yab, 25"*')A.

Let g be +1. Let A¢; B¢ and B, be positive integers such that

AB{— B A¢=z.
201X tor X=A¢, BE, B,

Ua 0 \(B{” B;© Eo B¢ t{p;+q) tp;

0 VbJ\a® 4] \4d AY\ —tq, t4q,
have integer solutions A%, A;®, B®, B/® for i=1, .--,4. Let T, W, ¥
be as in 2.3.9. Let W’ be such that

and that
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WW"=0 mod ( I p)¢’
p; prime,25p<K
XLCM. of {(U,, U)); i,j=1, ---, 4, i)}
XA(U,---Us T)

with the notation 4'(- - -) in 2.3.9.  Let u, be such that 2* || [U,, ---, U].
Let A* be an integer such that

A'=A¢ mod 28"+ gbWW 'V, - - -, V)],
(%, A)=1
and
A1¢ 2.
Putting A, and A} as
Vibd,=1((p;+q9)A—q,4”)
and
Vb= 1t(plA+qlA"),
which become integers, we suppose, in addition, for X= A, and A},
that P& YX ifpisaprime,p|U---U, and 2<p<K,
that P’YX ifpisaprime, p|U---U, and K<p<T,
and that pyX ifpis aprime, p|U,---U, and p>T.
We can find, then, B and B* such that

AB*—BA*=z¢,
B=B, mod 28 +**y,
and that, with above A, and A,
(Uia 0 ) (Bi B;>—(B B")(txmqi) z;pz>
0 Vvib)\4, 4;) \4d A\ —tq, t4q,
have integer solutions B, and B,

Chapter 3. Kloosterman’s Sum

3.1.

As for the so-called Kloosterman’s sum, it would be desirable to
consult the result of A. Weil, ((70), p. 35 [13], on its history). But we will
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not pursue here the best possible result along our method, and so we
consult Kloosterman’s original result, (2.43-Lemma 4c, p. 423, [17)]).

3.1.1. Lemma. Let p be an odd prime and u be an integer with p fu.
We have, then,

2

v

4
>V e<—1— (ux + vx))l <5p°,
z V4
where the summation are taken over so that
1Sv<p, 1=x=<p, pix
and
xXx=1mod p.

Proof. This is a corollary of what was proved originally on the line
9, p. 426, [17]. The notation ¢, was used in the proof of Lemma 4c.

3.1.1.1. Corollary. Let p be an odd prime, u and v be integers with
pluorpfv. We have, then,

> e<_1. (ux + w‘c)) ’<5l/4p3/4,
= \p

where the summation is taken over so that
1<x<p, ptx and xx=1modp.

3.1.2. Lemma. Let A(>0), u and v be integers. Let A has the
standard decomposition A=p¢...p%, where p;’s are mutually different
primes and e; e N.  We have, then,

;’ e(%.(ux + vf)) 2}1 {4?-;/ e(—plz;(ujxj + vja‘cj))},

where the summation is taken over
1<x<4, (x,4)=1, xx=1mod 4,
1<x,<p%, (x5, p)=1, x;%,=1mod p%,

and u;’s are suitably chosen so that, for every j, we have the equivalence
between p'||\u and p'||u,, and similarly for v,’s.

Proof. This follows from a standard argument, (2.42-Lemma 4b,
[17).
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3.1.3. Lemma. Let A=aAd (>>0), u and v be integers such that
WA)£0, 2f4, (@ A)=1.

We have, then,

Z/ e(j}l_(ux + w‘c)) lé{A35u<2(u,v>)(A-’ u, v)a}’/'*,

where the summation is taken over
1<x<g4, (4,x)=1, xx=1mod 4
and we have put
Ap= .
p; prime,pl4,ptX

for a square-free A.

Proof. Let A=p$ .. .pit (e,=11if p,|A) be the standard decompo-
sition of 4. We apply 3.1.2. If p, is such that p,| 4 and p, /(u, v), then,
we use 3.1.1.1. If p,|(4, u, v), then, we use trivial estimate that the abso-
lute value of the p,-component is <p,. If p,fA, therefore if p%|a, we
use again trivial estimate that the absolute value is <p%. These give the
stated estimate.

3.1.4. Proposition. Let F(x) be a complex-valued function of x e Z.
Let A=ad be a positive integer such that y(A)#0, 2y A and (a, A)=1. Let
& and &" be real such that + <&"-—-&<A. Let u, v, 2 and A be integers
such that 1< ALE”—&".  We have, then,

> F (x)e(—l—(ux-{— w’c))~
&3 ¢/ <aSE”, (£, 4) =1, x=2 mod 4 A
<<{A35”(‘Z°)a}1/4

A1 (4, Doy(4, v) X | F)e(4™ux)|

'LrL e, x=2 mod

+0_3u((4, v))(log 4) X S [Fe A )

— F(x+ De(4™"u(x+ 1)
+0_4u((4, v))log 4) X (F(x)|+IF(x)))
where xXx=1 mod 4 and x;, xi are such that
xi=2mod 4, XX+ 4,
x;=Amod A, X — ALEN XY

and
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0 (X)= 3 de.

d; a1 X

Proof. We have the left-hand side to be proved is

3 { s F(x)e(—i-(l—u)x)}

;15154 \x; ¢/<x<¢”,x=2mod 4

X {x; lgstZ,(l‘,A)-—-l e(%(lx + v)_‘:))}
<A SIS FOeC-- )5 el )l

As for the terms with /4=0 mod A, we proceed as follows: we have

-1

(A; l) l})l/4
g ST (A4, v, A(A, A)y
H »4)
< 3 oam )2 !
,0) 13 1<1<(4,4), A(4,4)~11=0mod d

gzw%MAw%dqum+u
am((A, )+, ) > d7¥(d, (4, 1) 'A).

d; dI(4,v)

A

We put, taking into account that y(4)+0, as d=d,d,, where
d|(4,v), @, 4, D) D=1, d|(4,v, (4, 1) A4).
‘We have, then,

2, 477, (4, N)7'4)

d; d}(4,v)

~ ar @)

da; d1)(4,0),(d1,(4,4)~14) =1 3 dal(4,0,(4,4)=14)

=0'—3/4((/i.’ U)((A,A)—lA))X01/4((1‘i; v, (Aa A)1A)).

Consulting 3.1.3, we have the contribution of such terms with /4=
Omod 4 is

§{0-3/4((A" U)((A,A) "lA)) X 0'1/4((/1; v, (4, )7 A)) X (4, 1) +0'1/4((/L v))}
X {ASS“(‘Z”)LZ}”" X {47 > F(x)e(A 'ux)|},

z; §/<x<€”,x=2mod 4

which is a slightly stronger estimation than the corresponding one in the

conclusion of the proposition.
As for the terms with /430 mod A4, we proceed as follows: we have,

using a partial summation,
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. F(x)e(— A~ (I—u)x)|

x; §/<x<E”, z=2mod

{FODIHIFE) I+ > F(e(4 )

; €/<x=<§", z=2mo

—F(x+ De(A  u(x+ A)|}- || A7 A1)
where[| £||=the distance of & and the nearest integer for a real £, We have

(A, L o) || A4l

1;1<1<A4, 4Alx0mod 4

= > an 2 | 4=l

d; di(4,v) 1; 151<d—14, Al50mod d—14

& >, d'”Xd'Alog A

d; d|(4,v)
<o_yl(4, v))4 log 4.
Consluting 3.1.3, we have the contribution of such terms with /4=
Omod 4, is
<o_u((4, V) X A log AX A~ A5 a)i st
XYFODIHIFOD)I+ > JF(e(4~ux)

§/<x<é"”, x=2mod

—F(x+ Aye(A u(x+ A))|}.
These give the conclusion of the proposition.

3.2. In this section, we prove a proposition, which will be used in
4.5.6, together with 2.3.8. We suppose similar situations as in 2.3.11.5,
but here, the moduli of congruences are chosen to fit 2.3.8.

3.2.1. Let K, z, g’ be large constant positive integers. Let a, b, U,,

Vi, Pis 9 p;: q:’ li t;, (i:l, R 4)9 é(_—: il)a /i., /i.(‘)" u(‘)'> Eo: Az@)a A;(o)’

B{®, B/®, T and & be as in 2.3.11.5. We suppose that p*} 4 if p>K,
that p&'+' Y 4 if p<K and that (a, 4)=1, Let @ and b satisfy

1<ab<g.
Let ¢’ be a positive integer such that
1<’ <ab.
Let us suppose that
A¢+t'A=0 mod b
and
Bi4+1t'B,=0 moda.
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Let a, be

a(): H p’
p; prime, K <p K%

and let us suppose that ab|a,. Let W be such that

28" ay - ( [] p)¥

p; prime, plU LV 1+ U4sVy, p<K
We=0mod | L.CM.of {(U,, U,); iy, iy=1, - -+, 4, iy #i} |
XAI(U1V1' . U4V4; T)

We put W, as
W,=W[UV, ---, UV,]
Let 44 vary so that
A‘=A44mod W,,
(A4, A)=1
and
A'¢ &,

where the set & is supposed to include the & in 2.3.9. We have, by
2.3.11.5, integers B, B4, A,, A,, B,, B}, such that

AB*—BA'=¢,
B=B, mod 28" +%+1q,,
A>A4>g 4,

Ua 0 \(B, B)\ (B B*\(t(p,+4q) t.p
0 Vvp/\4, 4,) \4 4]\ —tq, tiq})
3.2.2. Let E,, and g be large constant positive integers. Let P be a
positive real number which is supposed sufficiently large in relation with

Eandg. Letyp,#, - -, 7 be £1. Let a* and £, (=1, ---,4) be
real numbers such that

and

g>a*>1,
|2 1<(g°P)".

We put as
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Ai=n(V,U7*4+ Q)
and suppose that
%Eloo§ll»il§2Elooa
1SU(LP)
and that
g 'U;st,9,5gU, (i=1,---,4).

Later U;’s will be more restricted. Let # be an integer such that 0<r<g.
We choose B in 3.2.1, if possible, so that it satisfies

tA<B<(t+1)A.

Therefore B and B are at most one for A4 (and A), if they exist in the
stated interval. We put as

A=ad,  B=bB,
A’ =b"' A"+t A), B'=a"Y(B‘4¢'B),
which are positive integers and satisfy
AB’—BA’=:.
We suppose that

gP=A>A'=g P,
g§P=B>B'zg"'P,
gP=X=g™'P

for X=A, 4%, B,, B¢, 4%, B, B*, A", 4,*, B®, B/®, B, and B}, and that
Q&> A> A;>g el
We put
F,=0,BA™"
and
M, =&{[ 2,4 (A + A) " +1,0,(U,A4)),
fori=1, ---,4. We have, then,
(&*P)*<|M,|<(g7*P)™".
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Let y be one of 0 and 1. Lety, (i=1, - - -, 4) vary in the set of integers
such that their absolute values are <g. Let 4, and [, (i=1, - -.,4) vary
in the set of non-negative integers such that their values are 0</, €7, <K g.
Let & (i=1, ---,4) be one of the positive integers & and &) such that
gTP<E, &/ <¢gP.

3.2.3. Now we prepare pairs of functions of 44; Let I’ and I” be
such that I’ UI"={1, 2, 3, 4} and I’ N I""= @, one of which can be empty.
We put

f(BY=(AB~"Yx e(3n, > iR
and

<A1/2+zi—2hi M e gl )

§) = (et A X T .
’ X e(Fevid; A7t +% &M —nm.Ew,(24,)" )

?

>< H// %A;1/2\Mil_l/2,

where 3; and []; are taken over I/, and []; over I”. As these definitions
show, in g(A4’), A* can be regarded to vary as a real variable lying in an
interval, and similarly for B in f(B). We prepare constants c’, for each
choice of y, (W)=, - - -, v), W=y, - - -, h), D=, - -+, 1), I’ and I".
We put

Sdy= > 3 cif(B)g(4)e(47'uB),

2y ()5 (R),(1)5(8) I7,1"

where g, (), (B), (I), (&) vary as were described in 3.2.2. This is, in fact,
the main term without the factors of Jacobi’s symbol of 4.5.2, where the
product on the right-hand side is expanded. What we must consider is the

sum
>S4,
T

in which A“ varies as was described in 3.2.1 and 3.2.2, and others are sup-

posed to be fixed.

3.2.4. Proposition. Under the situations from 3.2.1 to 3.2.3, we have,
l..f‘ WO = O(P )3

ZS,(A.A): Z Z cikA-_l><A-;vigb(fi-%o)x(2gt+uo+1_ao)—1
Ad

#(0), (R), (1), (6) 17,17

a4, WYX Wit [ 840X T B A B)
A B

-+ O(ZA:” |S(A4))+ O(G{A, W) +2DY)
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+ O(GPM(/L W) X 5(1/4)"(;{)0'—3/4(A-W0)A.Wo¢(AW‘,)—1(10g P)).

Here G is a sufficiently large positive constant depending on E,, K, z, g and
cy’s. The notation A , is that in 3.1.3 with W,=L.C.M. of 2¢**“*'a, and
(4, W,). The sum over A* on the left-hand side is taken over as was de-
scribed in 3.2.1 and 3.2.2. The integral over A* on the right-hand side is
taken over the corresponding interval which is obtained from 3.2.1 and 3.2.2.
This is independent of A%, B¢ and B,. Its precise choice will be seen in
3.2.5.2,3.2.5.3 (i) and 3.2.5.7. (See also 4.5.3.1.) The sum over B is taken

over
tA<B<(t+1)A.
Also >4, is taken over
Aie s, (A%, A)=1 and A*=A¢mod W,
Remark. In application of this proposition in 4.5, we must take
Wy=o(P*).

3.2.5. The proof of 3.2.4 will end at 3.2.5.9. In the followings, G is
a suitably large positive constant which may not be the same one as it
appears. We will concern ourselves mainly in /- g-e(- - -) with I'={1, - - -,
4} and I’ =, as the calculations for other I” and I”’s go similarly and as
it is sufficient to keep in mind to take the summation over g, (v), - - -, (§), I
and I” before-hand. So the error terms, corresponding to O(374,|S(49))),
will be suggested by O(3147'S(4)).

3.2.5.1. Lemma. We have
lg(4)|=G.
Proof. 1t is easy.
3.2.5.2. The conditions on A, that
A>Av>gd,
gP=A>A'=zg P,

and
gE/>A>A>g e,

imply that 44 may be considered to vary so that
A'=A?¢mod W,,
(44, 4)=1,
A‘e¢ s
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and that A7 lies in a certain interval which is determined by a, b, U,, V,,
Dis Qo> D @' s 1 &5 A, 2, t/, a®, g, P and &/, and which is independent of
A4, B,, Bf. We denote this interval as J((A)), temporarily. We have

>, J(B)g(4))e(A™uB)

A4d; a5 above

= X  4dvx{ 0z g(ANe(A- AN}

1 ~/mA<i=/nid Ady 4L
€J((4)), 44=4¢ mod Wo

X{ > | J(B)e(A™ B+ A1z B))

By(B,A)=1, ti<B<@+1)4, B=Eo mod 28" +%o+1g,

+OZ S,

for which we put as
=3 AXTOX IO+ 0 |8(AY),  say.
[} A4 B Ad
Here BB=1mod A. Also on the right-hand side, the condition that

(44, A)=1is dropped off. This is because we have, on performing the
summation over / first, that

A'=(—&B mod 4,

which means that (44, A)=1. The term O(3.4?|S(4%))) arises from the
possibilities that B, with B= —&4“ mod A, may give that A¢ ¢ &.

3.2.5.3. Let us first treat the sum >, 4.
(i) As a rational function of 4, the numerator and the denomi-

nator of
{Ai/“l"z’“- . ‘}le1‘ll_h1' . ><(Aoz*+A’)’Z

are of degree O(|h,|+ - - - +|h|+1). Therefore, by dissecting J((4)) into
o\ + - - - +1h1+1)°) (Lg®) subintervals, we may suppose that this
rational function is monotone in each subinterval. On the other hand, the

argument part
(A =4t 347 +Jen, T &R A7 (e + 4) 41U, AA)™)
— 7 Z visiyi(ZAi)nl"l‘l/i‘Aff—l

of g(A4”)e(A ~'14*) satisfies that

e B =LA 0GP,

therefore that



Quadratic Forms 109

d ., » 3
JAi? &4 <=

As a rational function of 44, &,(A“) may be regarded to be monotone

in each subinterval stated above, by adding suitable O(G) points of dis-
section. We put, temporarily, as

=A+yW, e J(A)),
where y is considered as a real variable. We have, then,

— gL(A 9)=Wy(A 14 O(GP™Y).

We have at most one integer m, such that
— W47+ O(GP )| <3,

as Wy=o0(P). We apply 2.2.3, (in each subinterval and, then, by adding
the results), to obtain

S0= [ )@ (A —m )y

Adegdn

+0(sup lg(4) | +sup G[*gu')

)

The O(. - -)-terms contribute € G.
(ii) Suppose that / is such that

| AW ]| =G*W, P,

where || £]| is the distance of & from the nearest integer. Then 2.2.0 tells
us that

[ I8l —my) dy
AdeJd)

&sup |g(AN| XA W <G| A Wl ||
Thus we obtain

IZPIG AW,
A4

if |A-*Wl|=G*W, P
(iii) Suppose that / is such that

A=Wl | <G WP
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We take a trivial estimate to obtain
2P GAW;,
A4

The number of such /, that

—3A<I<{4
and
AW <GW,P-,
is
LG*'W,
because

\{l— W5 Am,|= || A W l| X WA« G
with |m, | W,
3.2.54. We treat the sum > ¥.

(i) We apply 3.1.4 to this sum, substituting

A= pex Il p, A=ax 4,
pip<Kpelld pipzK.pld

B, 0, &l X, U, U,

B=B,mod 2¢ *%e*lg, for | x=gmod 4,

t4, (t4+ 1A, &, ¢",

J(BYe(A™'uB), LF(x),

respectively. We have that
| SOy
B
A7'Gaoy (4, D) x \%f (B) e(4™"uB)|
X | Ao_ul(4, 1) log Ax EBJ |f(B)e(A™" uB)— f(B®)e(A™'uB°)| |,
+0_s((4, )log A) x g*
where B° is b(B4-2¢+**1g)). We have trivially
|22/ B)e( A uB) | <3 8" GA.
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‘We have that

| f(B)e(4~'uB) —f(B°)e(4~'uB°)| K GA ",
therefore that

Zﬁj [ f(B)e(A™'uB) —f(B°)e(A ' uB )| K G.
We have, then,
| Z P GAS( A} o,(4, 1) log P.
B
(ii) A trivial estimate is
201<g.
3.2.5.5. We have, from 3.2.5.3 (ii) and 3.2.5.4 (i), that

/i'—1>< Z(L) Z(z)
P B

1 — (/DAL /DA, | A=Wl liZG2WoP 1

LG 3 AN AW X {45 DY (A, 1)) log P.

l; as above
We have
L2 o Dy A
= 2 o > I (Ad=y w1
d; dld LIS (1/2) Ad=1, 11+« )IIZG2W o P —1
< Z_,‘Tm(d)X % " Ad--
d; dl4 1 (/2 dd-1z12G2W P ~14d~1
1

17, 0<1’ < (1/2) A4~ T, Wol’ =1 mod Ad—1

&> oyld)Ad- (W, Ad~") log A.
d

As p*y 4 if p> K, this is

G 5 pdod)dX 5 pd)ae(d)d X A4, Wy)log A
d; dl(We, Dy—14 d; a{Wo,4)

L Go —3/4(A.WD)A-W0¢(A.W0)_I X A(A: W) log P.

We have, therefore, that

ZIDILD I
I~/ AL/ AN AWl |ZG2We P 1 i B

CGA (A, W5 D _y (A ) dry $(dr,)log PY-

111
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3.2.5.6. We have, from 3.2.5.3 (iii) and 3.2.5.4 (i), that
Z A’-—l Z(l) Z(l)
i B

U - DAL,
VA—IWol |£G2WoP —1,(1,4) =10G2W 0

& 31 ATGAWF A 5Dy g, (4, 1)) log P.

l; as above
We have
PR (CH))
l; as ahove
= 2. a:(d)- 2. 1
d; d14,d=10G2W o 1< @ed) 14,

i (dd—1)=1Wol |SG2WoP —1
-0\ J-172
. 0'1/4(d)-(VV0,Ad )d W,
d; d|4,d510G2Wy

<< Go—3/4(/i'Wo)/i.Wo¢(/i.Wo)— ' (A.’ WO) WU'

Substituting this, we have

5 A o s
L ~amA<isami, i &
NA—1Wol |<G2WoP —1,(1,4)<10G2W

KGAM (A, W)X 509 Dg_ (A ) A d( Ay, log P.
3.2.5.7. Suppose that / is such that
(I, A)=10G*W, and ||A'Wl|<GW,P-
The irreducible denominator of A ~'W,l is, then,
<(10G*W,) A <IG*W,)~'P.
Therefore A-'W,/ is an integer. The m, in 3.2.5.3 (i) is
my=A"W,,

and, there,

AMA —myy=A V(AL +yW)— A Wly=A 1AL
We have, from 3.2.5.3 (i), that

SO —ed A [ g+ 0(G)

A4 Adeg((4)

= o(ALAY Wi LAEW)) g(4)dA*+0(G).

We have, therefore,
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> ZRDILDIY
I ~ (/A= /2 4, ) i B
WA-1Wol S G2W P 1, (I,4)21062W

= 5T A1

U —/DALATDA, A1 Wolez

% {e(A'~11,4'g) Wit f g(ANdA ¢ 0(G)}
X = S(BYe(A™ B+ A= 1zB)}

By (B, A)=1,t A<B<@t+1)4,
Be=Bg mod 28" +uo+lgg

— ST Ax {Wo"l L_A g(A')dA'A}

1; as above

X, T B B AU 2B}

B; as above

+O0(G(4, W,)).
We have that
e(A-1(A¢+:B))
V4

1~ (/A<= T/ 4, A~ Wole

= e((4, W) (Ai+:B))

—z; ~ /4, WH<I=(1/2) (4, Wq)
((/i', W) if Aé+&eB=0mod (4, W,),

0 otherwise.

The condition that A%4-:B=0mod (4, W,) is equivalent to that B=
B, mod (4, W,). Thus we have

Z A'—l Z(l) Z(l)
B

7; as above A4

=(Aw} A wy- (A"

AdeJg (4

X 3/ (B)e(A™iB)+ O(G(A, Wy),

where B is taken over
tA<B<(t+1)4,
(B, A)=1
and
B=B, mod 2¢ *»+*g, and also mod (4, W,).

3.2.5.8. We want to get rid of the last two conditions on B. We
have, putting W,=L.C.M. of 2&'**+g, and (4, W,),
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2 Sf(B)e(A™"uB)

By td<B<e+1) 4, (B, d)=1,

B=By mod Wy
=2 p@d 2 f(B)(AuB)
d; dld B; tA<BL(¢+1)4,
B=8y mod Wy, B=0mod d

Here d must satisfy that (d, W,)| B,. As (4, B;)=1, this means that (d,}I%,)
=1. Therefore, putting d as

dd=1 mod W,,
B satisfies
B=ddB, mod dW.
We have, then, the above sum is

= > w(d) > S(B)e(A™'uB).
d; d1d,(a, W) =1 By td<B<(t+1) 4,
B=(dd) Bo mod d Wy

Suppose that dW, & P. We have, if |B—B°|<dW,, then
f(BYe(A~'uB)=f(B°)e(A™'uB°) + O(GP~'dWy),
where B° corresponds to B°. Therefore we have that

f(B®)e(A™'uB®)
=@y > {f(B)e(4~"1:B) + O(GP'd W)}
By —(1/2)dWo< B~ Bo<(1/2)dWo
then, that
2 (B4 uB)
B;tA<B<(t+1)4,B=(dd)Bg mod dWg
=0(G)+@Wy 3 f(B)e(A'uB).

BitA<B<(t+DA

This last estimate holds good also if dW;,>> P.
We have, therefore, that

S(B)e(A~".B)

Bitd<B<(t+1)4,(B,4)=1,B=B8¢ mod Wy

= 2 D {@w)t 3 f(Be(47'uB)+0(G)}

d;dld,(d,Wo)=1 Bd<B<(t+D4A

=Wt AGgla)x{ 3 f(B)e(AuB)}+0(G2P).

Bitd<B<(t+1)4

We know that (4, W)Wt = (28 +uo+ig)) (28 +vovig, A, W,).
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3.2.5.9. Combining all, we have the estimates in 3.2.4. The impor-
tance of 3.2.4 lies in the fact that the “main” term in the right-hand side
does not depend on the choice of 4¢, B¢ and BZ. What we needed for
the proof was the existence of them for the given 4, W,, U,, V,, p,, q,, etc.

Chapter 4. Proof of the Theorem

We proceed to the proof of Theorem 0.2. The proof is, in principle,
traditional, a combination of [5] (= Chapter 20 of [8], see also Chapter 11
of [25],) and [17]. Up to the end of 4.3, we cut off such values of the
variable o of integration that can be treated metrically, using propositions
in Chapter 1 and 2.2.14. Then, we seek for relations of convergents of «
left and those of 4, (i=1, .--,4). They can be found in 4.4.14. We
apply 3.2.4, and 2.3.9, with 2.2.12 and 2.3.11.5. Then we will be done
with the proof. We will not need the assumptions (iv) and (v) of the
Theorem until the end of 4.4.

4.1. Formulation and easier parts of the proof

4.1.1. Lemma. For real &, we have

t e(§a)((za) ™" (sin zer))’de=max {0, 1 —|&[}.

Proof. Tt is easy (Lemma 50 in [8]).

4.1.2. Lemma. Letf,f,, ---.f, bereal. We put
Fl)= > elaf) (x e R).

f=1,e00e,

We have, then, for U>4,

L JF@F () sin me)da
<16U- r |F(e) P {(ze)~* (sin 7)) dc.

Proof. This is Lemma 2 in [6]. In fact, we can proceed without this
lemma.

4.13. Lety, ---,5 be +1, which are not in the same signature.
Let ¢, be as in 2.2.14. Let ¢/, ¢/ (i=1, ---,4) be positive small real
numbers, satisfying 142¢,>c/c,*>1+c¢,, which will be determined in
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4.1.77. Let E,, be a large positive integer. Let &, be a positive constant,
which will be determined in 4.3.2. Let L, be a positive constant, which
will be determined in 4.4.5, 4.4.11, 4.4.19, 44.21 and 4.5.2. Let 4, ---, 4,
(A, = + E,,) and P be real numbers satisfying the conditions (i) ~(v) of the
Theorem. Let us put

e=Edh K=clAl 0",
w) =c'| 2]+ O(P™Y,
g=kiP, and &'='P (i=1,---,4),
so that & and &/’ shall be positive integers.

In this chapter the positive constants g, g/, G are suitably chosen,
depending on ¢, ¢/, ¢/, h;, Ly, E;. They may be different as they appear.

4.1.4. Definition. Let o be real, to be used as a variable of integra-
tion. We put

Sya)= 2. e(32,0x7),

Ii;%ieN,e§<wi§5;/
for i=1, - - -, 4, which are one of (f7'; &,£&”)in 2.2.7. When we want
to treat one of S,(«), we write sometimes

Sy(a)= > , e(FAax®),

z; €N, 8’ <xs¢’

or
SB= > epd)

Z;ZE N, &' <z<§"

In the followings, the suffix i will be used correspondingly to S,(«).
This notation might cause slight confusions, as we have already used
S,(BA~") in Chapter 2 to mean Gaussian sum.

4.1.5. Formulation. We have the number of such quadruples
(xla ] x4)a that

X+ X, €N, §i<xi§$§, (l=1, Tt 4)
and
24 -+ 203 <2,
is
gr ((za)* (sin 7e))S,(a) - - - Sy(e)de.

Proof. 4.1.1 and 4.1.4.
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4.1.5.1. Our aim is to show; that the contribution of such «, that
|l Pt is > |4, - - 4,|"/*P?, and that the contribution of other « is a
“minor” one i.e. o(4---4,]72P%, if P satisfies the conditions in the
Theorem and P is sufficiently large. We estimate, for a certain portion
of | >P",

[a+aris@: - slde

from above in 4.1, 4.2 and 4.3. For the rest of « (|a|>>P~"), we must treat

I ()~ (sin 7a))*S (@) - - - S.(ex)det

itself, in 4.4 and 4.5. At each step of the proof, P, is supposed to be taken
sufficiently large, the number of steps being bounded.

4.1.6. Lemma. Such o, that|a|>(log P)*, gives a minor contribution
to 4.1.5.

Proof. We have, from 4.1.2 and 2.2.15, that

j ((me)™* (sin ma))? | Sy(a) | de
a;laj>(log P)4

L (log P)"HEwy*P) (log P’ P*(log P)~".
We have, then,

J‘a' lal> (log P)¢ ((rer)~* (sin 7a))* | Si(r) - - - Sy} | dx

< 2 ((m)™" (sin 7)) | S (@) [* da K P* (log P)~".
i=1,00,4 J a3 lal> (log P)4
4.1.7. Lemma. There exist small positive constants c},c/ (¢//>c/,
>0, 142¢,>cle; " >14¢, i=1, - - -, 4) and ¢y (>0) depending on 7is,
such that

j ()~ (sin 7))*S,(@) - - - S,(0)dex
a;lal <@_gm . {(2e}P) 1}

= )

:éul. Y AR 28
where § € C and (1>>) Re §>3c,.

Proof. It goes along a classical line, (Lemma 53 of [8]). The as-
sumption, that 7, - - -, 7, are not in the same signature, is needed only
here.
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(i) If |e2&”|<%, we have, through 2.2.2, that

S(@=|  erax)de+O),

z; ¢ <w<§
therefore especially
& 1+4min (&7, |ad|™').

Let U be such that 1 max, c,U<3, temporarily. We have
| ((za)™* (sin z)’Si(t) - - - Si()dee
ala|<UP—1

- f da((ze)” Sin 7)) ] (j
ajla|<UP-1 i=T,000,4 \J 245 85<wi <€}’

=I de((za) Gin 7)) ] ( j e(%al,.xﬁ)dxi)
aila|<UP-1 i=L,eee \J 23] <mi<y

e(%alixﬁ)dxi-i-O(l))

+o(] de(1+)"*(1-+ min (P, Egi”|al7)’):
a;la|<UP—1
We have, easily, that the O(- - -)-term is
L Ew*P.
(ii) We have
j de(za) sinma))? ] (f e(%azixﬁ)dxi)
a;la| <UP-1 t=Lyeee,d \J@gsei<ai<es

=|4-- -Ll"l’zP*J do((re) ! (sin 7e))*

ailal <UP=1
T ([, ettaPunan,),
where
NN P <u, <&\ 2,2 P
We have, easily,

[ ct@pyian,| <iap?n,

(or as a corollary to 2.2.13). The integral to be evaluated is, then,

da((ra) sinma) T ([ ekl pouydu,)

j—oola<eo 3

iz P
+ O(EiU™"P)
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SRR | max {1 —}P* |-+ - - 47,8, 0}
(Upyees,ua)
Xdu,- - -du,+ O(P),

where u;’s vary in the same intervals as before.
(iii) As,’s are not in the same signature, they are one of (1,1, 1, —1)
and (1, 1, —1, —1) in some re-arrangement. We have

J J‘(uh"-,ug);c%%—O(E%{)%P “Hy<u<ey —0(ENIP—1)

max {1 — 4P {pud+ - - - + 9, 0}duy - - -du,=4cy P2,
by choosing, for instance, as
a=ca=c=+3¢ if(p)=0111,-1)
and
== if (),=(, 1, —1, —1).
These give the result.
4.1.8. Lemma. Such «, that
3 min ((¢}P)") <|a|<P~**(log P)™,
gives a minor contribution to 4.1.5.
Proof. Let Ube P>U>1. Letabe

UP'>lal>P .
‘We have
|S(@) | lad|" 2+ ||,

by dividing the range of the summation into O(1 +|a1|&”’) subintervals of
length> «|ad|™, as, in each subinterval, we have

| 252070 (e ||,
by;2.2.2, 2.2.6 and 2.2.5(iv). We have, then,

((ma)~* (sin zee))?| S, + - - S, | dax

J.a;P‘1<M|<UP—'1

<<j da((oEs) ™"+ & (B |7
L EGP+E"E(UPY,
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which is
L P?(log P)'7,
if UgP#(log P).
4.1.9. We are left with such «, that
(log P)y*>|a|>P**(log P)~".

We may suppose that « and A,« are irrational, if needed.
(i) Weput, for j=1, ..., 4,

(aeR (log Py >|a|>P~ 2”“(logP) )
6\, ZIS@)] (=1, -, 4)

Up to the end of 4.3, j will be used in this meaning only. There, j will
be supposed to be a fixed one, even if it is not stated explicitly.
(ii) Let the successive convergents of |(2,2)™"|, (1.2.3.1 (iv)), be

APIBY k,=0,1,2, ..
We choose £ uniquely by

1/ 74
¢ >A((0) and 8] <A(l()o)+1

We will often write as

@) . 4@ @ — B
Ak(O)_A*: Bk(_O)—B*a
7 7
AW = A% B® — B@*,
0 11 ’ 1041

It is clear that we have 4 B{) ~0.

4.2, Intermediate domain I

4.2.1. Lemma. Such «, that
1S:,(2)|=(log P)*| S, ()]
Sfor some i, and i, with i,+1i,, gives a minor contribution to 4.1.5.
Proof. We have, for such «, that
ISi(@)- - - Se)|=(log P)*{S ()"
Then, 2.2.15 applied to |S,(«)|* gives the result.
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4.2.2. We may suppose, therefore, that « € ¥, satisfies that
(log P)~*[S(@)|=IS(@) | =[S
forall i=1, ..., 4.

4.2.3. Lemma. Let ¢, be a (large) positive numerical constants,
which will be chosen depending on 4.2.3.1, 4.2.4, 42.5 and 4.2.11.4. Then,
such «, that

« € wj’ lSj(“)\écaoo(S,j/)l/zs

and that

AP S Eg!
or

AD* =30 E &Y
for some i, gives a minor contribution to 4.1.5.

Proof. 'We have, for such «, that
[Si(e) - - - S| = cinoEi & CaneE e P

We have, for a fixed 7,

I (I+a*)'da < 50" E 1o,

a; ACO*z el Byg08 )

and similarly for those & with A <cz?Eréy. The contribution is, then,
KOl Ay - AR PR,

Choosing ¢, suitably large, we have the result. The choice of ¢, depends
only on ¢’s and ¢/”’s.

4.2.3.1. Lemma. Let|(2,)™"| has successive convergents as

ll(lia)_l\( )A(i)***B(i)***—l (ﬁA(i)**B(i)**—l (ﬁA(i)*B(’l)*'1
(== AP BY™,
with
A(i)***>A(i)**>A(i)*>COS;/zA$) (>1)

and
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By = AD*.
Then, such o, that
1S ()| = cann(87)
and that
AOKRZELE! or AV ZcEig
for some i, gives a minor contribution to 4.1.5.

Proof. If A®**=(...), then, a gives a minor contribution, similarly
as in the proof of 4.2.3. If AD**<(...)yand AD***>(...), then, similar
calculation gives the result again.

4.2.4. Such ¢, that
© € Zlfj and 1Sj(“)]§csoo(59,)1/2

and that o does not fit to satisfy neither 4.2.3 nor 4.2.3.1, will be treated
in 4.4 and 4.5,

4.2.5. We treat, up to the end of 4.3, such o, that ¢ ¢ ¥,
lSj(“)\_Z_caoo({:y)m
and that
(log P)~*|S ()| Z|Si(a) | Z|S (@)

foralli=1, ...,4. Choosing c,, suitably large depending on ¢] and ¢/,
we do not have the first alternative in 2.2.14, for S(«). Therefore, we
have

IS (@)]> < (ADR)2x min {&/(AP AD¥) 172, (&7 (AP AD*)"17)1
>>C3UU(‘§,/)1/23
for such .

4.2,6. Subdivision of the domain of integration
Consulting 1.2.3, we can divide the half-line of positive real numbers,
with a fixed j, into the disjoint union of subintervals of the form

(=D [(bB+B)(bA+A) ", (b+1)B+B')(b+ DA+ A)™)),

where



Quadratic Forms 123

BeZ band AeN, (4,B)=1, 1<AL[c&]I<bA+ A4,

B/A (==B’/A’ with AB’'—BA’=(—1)* and k=0, 1.
Similarly for the half-line of negative real numbers. Here the orientation
of the interval [, ) is supposed to be adjusted by (—1)*** to fit in increas-
ing order. As k is taken into consideration, there occurs no ambiguity
concerning 1.2.3.1 (iii). Note that, p, and ¢, in 1.2.3 (iv) are B and 4

here, but that they are A{” and B{” of |1,«|™*, when they are used in con-
nection with S,(«). The length of the subinterval is

{GA+ANB+DA+ AN (K04
4.27. Lemma. LetV,,V,, U, H,, H,, H, and H, be
(log PY >V, V> 1,
(PHT") (log P)"" > U > 1,
(log PY* ( min &) > H,>1
Gl eee,d
(log P)**>H,, H,, H, > 1.

Let j be fixed. Suppose that A, BY, AV* of L, for o in 4.2.5, satisfy
that

(log PY>|a|>U, or P~ (log P)~'<|a|<Us"

that
APy =2V, (BD)=V,
(&7 >)AP=ZH'ef] (>,
that
APAD* < H7Yc,&))? or APAV*=H(cg))
and that

|Si(@) S HH S ()]
for some i,. We have, then, the contribution to 4.1.5 of such «, is

KEDHPNHT)H (14 Uy)7'(1+log Hy)
X (1+Vi(log Py~ )7 (1+ V; (log P)™) 7"

Here (/\) is to suggest that the corresponding condition on AP AD* is
chosen.

The proof of this lemma will end at 4.2.7.6.



124 Y.-N. Nakai

4.2.7.1. Sublemma. It is sufficient for 4.2.7, to estimtate
H;l Z {1 +(BA—1)2}-1><min {(A2b)2§-/7/-4’ {(Aﬁb)2§;l—4}—l},
4,B,b
where A, B, b run such that
A,B,b e N, bA> e,
BA<HT () or bA™>H(be)),
affzZAZHi5ag] (>,
(AD=V,  (B)=Vs
U,<BA'<(logP)* or P *#(logP)'<BA'<U;.
Proof. We apply the subdivision of 4.2.6 to 1,« and use 4.2.5. The

b, A, B are b, AP, B, respectively. We have 264> AP*=bAP. In
each subinterval, we have

[Sy@)- - - S@)|SH 'S
KHHBAP) X (min {§7(bAY?) 17, {7 (AP
The length of each subinterval is
L (BAPY™™

The rest, then, is easy.
4.2.7.2. Sublemma. We have, for fixed A and b, that
}; {14+(BAY} < A(14V, (log P)™) ' (14 Uy~
Proof. We have

5 (L&) log (E42)+&7

X §sX<¢+61

for 1€ £, K&, because
2 . (X)=¢&log &+ (2r — D&+ O(E).

X;1=X<

We have, then, for an integer m with 0<mA <P?, that the sum of such
B, that

(m—1DA<B<(m+1)A and o(B)=V,

is
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L A(1+V, (log P)~") "+ (mA)'~.
We have
(+(BA)

B;r(B)2V2,(log P)4>BA~12U0

< X (14+m*)" X {A(1 4V, (log P)~) '+ (mA)'*}

m;(log Pi¢>m>Ug

A1+ ¥V, (log P)™) 71+ Up) ™'+ A1+ Uy~
LA+ V; (log Py )1+ Uy ™"

We have, also,

> 1(UG A+ 1)1+ ¥, (log P)™ )"+ (U A)*

Bic(B)2Vs, Uy 1>BA~1>0

LA+, (log PY- )14+ Uy~
These give the result.

4.2.7.3. Sublemma. We have
> AL (1+log H)(1+V; (log P)~")~.

4567/ >a>HT Y] sz

Proof. 1If V,Llog P, then, the estimate is trivial. If ¥, >log P then,
we have, by a partial summation, that

247 2] m=*( 2. 1)

7 -1.77 -
mi¢" >m>my e’ Aim2ASHT Y ()27

+&77X 2. 1
467 > a>aTY Y sz

<3 mm(1+ V, (log P)™) 4 m'7)
+&77 {81+ V, log P ) 877,

which is
<(1+log H)1+V, (log P)-)"'+(H'g)) '~
This is
< (1+log H)(1+V, (log P)™),
as

H, < (log P)~""¢7.

4.2.7.4. Sublemma. The contribution to 4.2.7.1, of such triple
(4, B, b) that bA*> H,(28Y, is
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L(EVH'H(14-log H)(1 4V, (log P)~)~!
X (1 +V,(log P)")'(14-U)~".

Proof. We choose (4°5)%¢/*in min{..-, -.-}in 42.7.1. Applying
4.2.7.2 on the summation over B, then, after summing over b A*H,&7/*,
we apply 4.2.7.3 on the summation over A.

4.277.5. Sublemma. The contribution to 4271, of such triple
(4, B, b) that bA*<H;'(2¢,&}Y, is

KEYYH*H(1+1log H)(1+V (log P)™)~*
X(A+V,(log PYy~)~'1+ T

Proof. We choose (4%)&/~* in min{...,...} in 42.7.1. We
proceed as in the proof of 4.2.7.4. Here we sum over 1<b< A H;'E),
instead.

4.2.7.6. We have proved 4.2.7.
4.2.8. Let H be

1 < H < min {&/} (log P)~*™.

Let j be fixed and we consider «’s as in 4.2.5 and satisfying
(e Z AL Z H (e
We impose the following conditions “(«),” on « such that

(log HY' z|ar| = (log H)"*,
(%); w(AP)=(log P)',  o(BY)<(log P)’,
(log H)X(ci&} Y= AP AD* z(log H) ™Y (¢of))"s

and that, for i=1, .- -, 4,
(log H)*|S{(@)|=[Se)]  (Z]S@)).

Here and in the followings, log H is considered to mean > «|1, if H is
>«

4.29. Lemma. Let H andj be fixed as in 4.2.8. Then, such « as in
4.2.5 and satisfying

C(}E;'/ =AY =H" ‘(0057),
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but that does not satisfy conditions in (x); in 4.2.8, gives a “minor” con-
tribution

<) log H)™*
to 4.1.5.
Proof. Let us have
AP AD* = (log H)Y(c,&7)

for instance. We substitute (log H)® for H,, and 1 for the rest, in 4.2.7.
The other cases are similar.

4.2.10. Lemma. Suppose that « satisfies the conditions in 4.2.8. We
have, then,

AP« AP (log HY®
Jori=1,... 4
Proof. 'We have, by 2.2.9, that
|Si(@)| K&/ (4L) .
We have, from 4.2.5 and the last but one condition in 4.2.8, that
1S,(a) 1> (49%)12 (log H)~**
>((E))(4¢ log H)™")'* (log H)™**
>E/{AY (log H)} '
The last condition in 4.2.8 implies
E/(AP) > &7{AY (log HY'} ' (log H)™*.
This implies the conclusion.

4.2.11. We have corresponding results about A,«, as are shown in
the followings.

4.2.11.1. Let H and H’ be
1«H and H’ <<rr1in {7} (og Py~
Let j be fixed and we consider «’s as in 4.2.5 and satisfying that
H 8] 2 AP = H™(c)

and
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(log H)*|S@)|<|Sde)]  (£[S,@))

fori=1, ...,4. We impose the following conditions “(x),” on « such
that

HY=0(eg)> AP 2 H' - (c&)),

(%) (log H) ' (log H) "< |a|<(log H') (log H)",
o(4P) < (log P)*,
o(BY)<(log P)",

and

(log H') ' (log H) *(c,£7 ) < AP AY* <(log H') (log H)*(c,§7)’,
for i=1, ...,4. Here log H’ is considered to mean > 1, if H is » «1.

4.2.11.2. Sublemma. Let H,jand i be fixed as in 4.2.11.1. Then,
such o as in 4.2.5 and satisfying

HYg) 2 AP 2 H(ef))
and
(log H)*|1S)(@) |8 @] (Z1S4(@))D,

but that does not satisfy the conditions (x), in 4.2.11.1 for this i, gives a
“minor” contribution L (&/) (log H)™* to 4.1.5.

Proof. We have
1:(@) - - Sy(@) =SS, < (log H)'|Sa) "
We proceed, then, similarly for i and H’ as in j and H of 4.2.7 and 4.2.8.

4.2.11.3. Sublemma. Suppose that « satisfies the conditions in
4.2.11.1 for i=1, - - -, 4 and the conditions in 4.2.8 for j. We have, then,

AP (log HY z AP =AY (log H) *(log H)™%,
if ¢y in 4.2.3 is chosen sufficently large.

Proof. The left-hand side to be shown is the same as 4.2.10. Suppose
that

IS (@)= ool £7)

Then, we have similarly as in 4.2.5 and as in the proof of 4.2.10, that
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|Se)>(log H')~* (log H)~ %7/ (A$) ™2,
Combining with
ISU)|SIS ()| ET(AP) P L&/ (AF) 7,
we have the right-hand side of the conclusion in this case. Suppose that

|Si(a) [ (AP E

Then,
ISi()|<[Sa)| (log HY* < (§)"* (log H) < (§7)"* (log H)".
Therefore
AP > &Y (log H)™F,
as

|S (@) |>&7(4) 7" (log H)™*.
This is impossible if H is >>v1 because
AP LETHE,

If His > <1, then 4 is > <&/, therefore | S,(a)| is > < (€)', by 2.2.9
and 4.2.5. We have |S,(e)|is > < (§7/)"?, which is > < (§/)"%. Therefore,
AP is >« &/, by 2.2.9. Then, we have 4P > A,

4.2.11.4. Sublemma. We may suppose, in 4.2.11.1, that log H' is
> (log H.

Proof. We have, from 4.2.11.1 and 4.2.11.3, that
H-7g] (log HY'> H'-'¢/
and
H'=1¢ > ¢ (log H')™* (log H)™.
These give the conclusion.
4.2.12. let H be such that
1€ HLP(log Py,

Let j be fixed and we consider «’s as in 4.2.5 and satisfying that
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(log HY'z|ar| = (log H)™*,
H'™cf)z AP ZH (cf7),
and that, for i=1, - - -, 4,
(log H)’|S (@) |=1S@)|  (Z1Si(@)).
We impose the following conditions “((x)),” on a such that

AP (log H)'= AP = AP (log H)™™,

(%)), ‘ o . "
t(A@P)<(og P)?,  «(BY)<(log P)¥,
and
(log H) (e, < AP AD* <(log H)*(c 7Y,
for i:l, .. -,4.

4.2.13. Lemma. Such « asin 4.2.5 and satisfying

(log HY'=|e|=(log H)"",
H""(cg))z AP = H-cd),

and, fori=1, -- -, 4,
(log H)?*|Sy(@) SIS (1S,

but that does not satisfy the condition ((x)), in 4.2.12 for at least one i, gives
a “minor™ contribution

L (log H)™*¢&7),
to 4.1.5.

Proof. By 4.2.11 and 4.2.12.

4.3. Intermediate domain II

4.3.1. Hereafter we will make use of the choices of Q, etc. Here
h, is the constant in the statement of the Theorem.

4.3.2. Lemma. There exist positive (large) numerical constants h,
and hy, h, being independent of h,, such that, for arbitrarily fixed H with
P(log P)~** = H=(log P)",

we have
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jﬂ 15@)- - - Su@) | X (1 + o)~ "dac < P* (log P)?,

where « varies under the conditions that

aecl, (log H)*<|a|<(log H)®,
H-1¢/ (log P)* 2 AP Z H™'¢// (log )™,
(log H) "6 < AP AD* <(log H)"¢}”

and
t(AP)<(log P)?,  «(BY)<(log P)*
for every i=1, ..., 4.
Proof. We have

[S@)- - - Si@)|Z|S (@) [ (&7 AP~
K (H"(Eyg*P)" (log P)*)* < H*EiP* (log P)™.

We can apply Proposition 1.1.1, substituting

AP, BY A, B, (i=1,2)
H(log P)*® H,
for
H(log P)® G,
&/ P,

as log H» <log (H (log P)°) owing to the assumption that H »(log P).
We obtain, for a certain 4, that

[ (o) dax [ duec @) Qog Y9 X 449, BY, 42, B}
< (&7 (log HY™)" X §/*H~* (log P)* < H~* (log H)* (log P)"™

We, then, obtain

ja\sl(oo- S| (1 +a) e

& H*E3P?.(log PY*. H-? (log H)* (log P)®
L EqyP* (log P)*« P*(log P)*.

4.3.3. Lemma. Using h, and h, of 4.3.2, we have
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5 j (1 +a)|S(a) - - - Si(a)| da < EiP* (log log P)"™,

where o varies as o e Uy, &/ (log P)" " =AY’ =(log P)*™, | S(e) | = s
Proof. Let us put H, as
H,=(log P)* (=0,1,2,...).
We have, with an /, (=(log P) (loglog P)~'+ O(1)), that
H, _<P(logP)"™<H,.

We estimate, for /=0,1,2, ---,/, as

77 =1 i 27 =1 77172
fa;aewj,ejHL zalze BT s @1z 0s008] Y

X (1 +a)7'[S(@) - - Sfa) | du <7 (log H}) ™,

using 4.2.13, 4.3.2 or 4.2.9 (and 4.2.1, if needed). We sum over /=0, 1, .. .,
to obtain

(log H)*K ; (/4+hy) " (loglog P)"*« (log log P)*.

1=0,1,-0

7

4.3.4. Lemmwma. There exist positive (large) constants hy, h, and H|
(depending on h,), such that, for arbitrarily fixed H with

(log Py =z H=H;,

we have
[ 156 5@+ e dages Qo ),

where « varies under the conditions that

ac¥,  (logH) <le|<(log H),
H-'¢ (log HY" 2 AP 2 H-'¢// (log H)™,
(log H)~ 461" < AP A©* < (log H) "¢/,

and
(4P)<(log P)*,  =(BY)=(log P)*
SJori=1,---,4.
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Proof. We have
|Sy(@)- - - S@) || Sy @) [ K (74P 17)
< (H™EZ*P)" (log H)"'
L H*(log H)*E i P*.
We apply Proposition 1.1.2, substituting

AP, BY 4,B, (i=1,2),
H for H,
7 (log H)* P, respectively.

We obtain, for certain 4, and H, that

[ e dacer dog i sicag, B, 42, B))
&7 (log HY'"(¢7 (log H)")" (log H)"*,
which is
<K (log H)~*
for ¢,=90.

4.3.5. Lemma. Using h, and h, of 4.3.2, h, of 4.3.4 and a suitable
H,, we have

1) aaermy e 24 za0sp) - ae Y s @)1z a0} V2

X1 4a")"|S(@)- - - Sla)| du K SEiP?,
for an arbitrarily given small positive constant 5.
Proof. We put H, inductively as
H,,,=H,(log H)* 1=2,3, ..

beginning with H,=e,(0 'E,,)- H;(log H;)™", where H; is that of 4.3.4
and e,(x) =exp expexp (). We have, obviously

H,>(loglog H,)' for [=2,3, .. ..
We have

f«;ae vouy e zaPeup e

XA +a) ! Sa) - - Sfa)| da 57 (log H)™*,
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by 4.2.13, 4.3.4, or 4.2.9. We sum over /, to obtain
3, (log H)* < (log loglog H))™* 3 I"* & iy (GE)-

These give the result.

4.3.6. Lemma. We have, with h, and H, of 4.3.5, that
4

2

=1 L;a v,y ¢/ 24 2 (log P)3000, 1S 1(a) 12 canot ) /2

X (1 +a®) 7| Sy@)- - - Sy(a)| doe K SETIP?,

for an arbitrarily given small positive constant 6. Here H, may depend on
E,, and o.

Proof. 4.3.3 and 4.3.5.

4.3.7. Lemma. There exists a positive (large) constant H,, for arbi-
trarily given small constant &, such that

fa (1+052)—1|51(a)' . 'S4(05)lda<<5E1-03P2’

where o varies under the conditions that

H,z|a|zH;",
o7 Z AP Z Hi ' (ef),
but that does not satisfy one, at least, of the following
H' S |=lS(@)] (28D,
HAQP ZAQZ H 49,
HiY ey ZAPAD* Z Hcik )",
(AP)<(log P)*,  z(BY)<(log P)"
fori=1,... 4.

Proof. 4.2.7 and by calculations similar to those in 4.2.9, 4.2.11 and
4.2.13.

4.3.8. We are left with such «, that
(i) Those in 4.2.4.
(ii) Those that have been left in 4.3.7, i.e., that satisfy all of
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H,z|a|zH7,

H SIS (1S,
oy Z AP Z Hi'(c)),

Hi (e S AP A < H(cf),
(4P)=(log P)*,  (BY)<(log P)",

fori=1, ..., 4.
(iii) Those satisfying, for i=1, - - -, 4,

(log PY™>4Q (=),
P?(log P) 2 AP AD* < P2 (log P)™,
and
(log P)*>|a|> P34,
The case (i) and (ii) will be treated in 4.4 and 4.5.
4.3.9. Lemma. Those « in (iii) of 4.3.8 do not exist, if h, is =8000.
Proof. This is classical, [S]. We have, for « in (iii) of 4.3.8, that
|| AP =B +O(P~* (log P))
fori=1,2. We have, as in 1.3.1.1, that
N 2251 (A9 BY) — (AL BY) | K P " (log PY™.
If B =0, then, BP=0. This contradicts that
la|>P %,

Therefore BP0 and BP=1. Similarly BP>1. As 1<APBPL
(log P)**=0(P*(log P)~™"), the fraction, (or its reduced one),

(APBYYAPBE)™

is a convergent to |2,4;"| with a smaller denominator than that of R’Q’"%,
by 1.2.3.2 (i). Then

1427 (AL BL) — (AP BLY) | X (4 BY), (A9 BY)™
=(20) ' zQ 7" =(P* (log P)~ ™).

This contradicts that the left-hand side is O(P-2(log P)™), if h,=8000.
The case (iii) of 4.3.8 is impossible.
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4.3.10. Lemma. We may add to (ii) of 4.3.8, the conditions that «
satisfies, moreover, by taking H, larger if needed,

HS(COS;/)zA(i)***’ A(i)** (1‘___1’ cen, 4),
where AD*KE AO*% gre those in 4.2.3.1.

Proof. Similar to 4.2.3.1.

4.4. Kloosterman’s domain I

We treat such « as is left in (i) and (ii) of 4.3.8. We will rely, in
4.5, 0n 2.3.7, 2.3.9, 2.3.11.5 and 3.2.4, where we need the essences of [17].
In this section, the key steps are 4.4.14 and 4.4.19.

44.1. (i) From (i) and (ii) of 4.3.8, we have to treat such «, with
a large positive constant H, depending on E,;, and an arbitrarily small
positive constant § of 4.3.5 and 4.3.7, that

Hi'<|a|<H,
and
H0§§’>A(i)***>A(¢)**>A(i)*>00§§/ZA$)>H6-1 ;”
where
PIOEES Ak AW AD
-1 *
2| ( 7B @k ( Blwx B BY’

and « and A,« may be considered as irrational if needed. As we have
obtained upper bounds of “L!-norm” of parts of 4.1.5, in the preceedings,
we can widen the range of & which is left as above, if needed. We will
take into consideration 1.1.3, 2.2.11 and lemmas in 1.4 up to}1.4.7.

(ii) With a large positive constant g,, which will be explained in
4.4.4, we prepare the convergents of |«| as

la| (—>B*/4* (==By/Ax (== Bus/ Asex
with
A*>g Pz A, >Ayy (21D
As we have

IS | (HEY”
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from (i), we may suppose that
GiP> A¥>g P2 A > Ay ZglP,

by taking g, large in connection with H,. See 4.2.3 and 4.2.3.1. The
notation will be modified later, in 4.4.3.1.

4.4.2. Lemma. Such «, as is stated in 4.4.1 and satisfying one of the
Jollowing conditions, gives a minor contribution &3|2,- - -2,|"'*P* to 4.1.5.

The conditions are;
(i) that X(2X’)™! has not “good partial fractions with respect to g},

2.2.10”, for some choice of
(X’ X’)=(A(i)***, A(i)**)’ (A(i)**, A(i)*), (A(i)*’ A;:))
or (ii) that X is not [K, K*)-regular, 1.1.3.2, for some choice of X=
A*’ B*’ A*’ B*, A**, B**’ A(i)***’ B(i)***’ A(i)**, B(i)**’ A(i)*, B(’l)*’

AP, BY
or (i) that, if 2, is irrational, (Y, Y')> G for some choice of

Y=A%, Ay, Ayy
and

Y’:.__A(‘l)***’ A(i)**’ A(i)*, A;:?),
or

Y=B*, B, By,
and

7 1 i 2 i
Y =B( )***’ B( )**, B(l)*, Bgl:)

Here, the positive constants g}, G, K and z are supposed to be sufficiently
large depending on on E,, (H, and g,). Also, G} in the assumption (iii) of
the Theorem is chosen sufficiently large. Their definite choices will be ex-
plained in 4.4.4.

Proof. Apply 2.2.11 to (i), 1.1.3 to (iii), and then, lemmas from 1.4.3
to 1.4.3.6.1, to (iii). Here, G, used in (iii) of the Theorem must be chosen

sufficiently large to fit G, of 1.1.3.

4.4.3. Now « is supposed to satisfy all of the followings;
(0) That « is as is stated in 4.4.1.
(i) That X(2X’)* has “good partial fractions™ for each choice of

X and X’ as in 4.4.2 (i).
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(ii) That X is [K, K*)-regular for each choice of X as in 4.4.2 (ii).
and (iii) that, if 2, is irrational, then (¥, Y’)< G for each choice of Y and
Y’ as in 4.4.2 (iii).

4.4.3.1. In the followings, we often put as
Ay=A=ad,  B,=B=bB,
A**=A’, B**=B’=

vyhere all prime divisors of ¢ and b lie in [K, K*) and no prime divisors of
A and B lie in [K, K7). We have

1<k, k() <10 log z
for x=a and b, by 4.4.3 (ii).

4.44. As we use so many positive constants, we list them up here,
according to their order of being fixed.

(i) #---p==1; given first in the Theorem.

(ii) &8 (>0); a sufficiently small positive numerical constant, pre-
pared to state 4.3.5, 4.3.7 and 4.4.2.

(ili) ¢}, ¢}, cg, Choo; given in 4.1.7.

(iii")  hA,; given in 4.3.6.

(iv) H,; given in 4.4.1.

(iv’)  g,; given in 4.4.1, and will be fixed in 4.4.5 and 4.4.7.

(v) g5 Gl G,K,z; given in 4.4.2 and

(v-0) G asin4.4.2,

(v-i) Gjasin4.4.2, and will be fixed in 4.4.7,

(v-ii) zis chosen as in 4.4.2, according to 1.4.3.3 and 1.4.3.5,
(v-iii) g4 will be fixed in 4.5.1,

(v-iv) K will be fixed in 4.4.5, 4.4.7, 4.4.9 and 4.4.15.

(vi) L,;appearingin (i) and (iii) of the assumptions of the Theorem
will be fixed in 4.4.5, 4.4.7, 4.4.11, 4.4.19, 4.4.21 and 4.5.2.

(vii) G, g’; will be fixed in 4.4.15.

(viii)  G,; appearing in (iii), (vi) and (v) of the Theorem will be fixed
in the final step in 4.5.7.6. Also T and Z in 2.3.11 will be fixed in con-
nection with G,.

In the followings, these constants are supposed to be taken sufficiently
large.

4.4.5. Lemma. Each of (UaY)V,bX)™', where (X, Y)= (AW**,
BWxx) (4% BO¥) (4P, BY) (i=1, - - -, 4), has BA* as one of its con-
vergents.

Proof. Suppose (X, Y)=(4D** B®*%) for instance. We have that
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12| — BEH* A HA(§7) 7
therefore that
|(ViBY(U A)~! — BO** AR H(§7) ™,
hence that
|(VbBY(Uad) ™' —BO** A5 | H(§)) ™™
This means that
|BA™'—(U,aB»**)(V bA“**)~! |« Hab (&))"
We have
A=aA<a g
and
ab=K*.

If K is >cH,g3, where the positive numerical constant ¢ is taken suffi-
ciently large, then,

/i'z <C_1H0_10-1b$;,2.
This means, by 1.2.3.2 (i), that
(U,-aB(i)**)(VibA@)**)—l ( BA-1.

4.4.6. Lemma. Let the preceding convergents of BA~* be B4A*~* and
B"A"', one lying to the right and the other to the left of BA™*, 1.2.3.1 (iii).
We have, then, for each choice of i, one of the following three alternatives;

(i) {(UiaB(i)**)(VibA(i)**)‘l (._)BA—l (ﬁﬁ//i'/-l,
i

(UaBO*)(V pA*)" (—>BA (= B'4",
or
iy, [V BAN (B (B
© (e bAg) (—> B (= BA",
or
(UiaB(“**)(VibA(”**)“ ( aBA" (: — ;Bth'Ai—l’
(iii), (U,aB@*)(V bAD*)"! (—>BA- (Z}E"A'Vf",
(UaBE)(V:bAP)™ (—> B (== Brdn,

where
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B4’V is one of BA*~* and B"A",
and
4,,7)) is one of (4,V) and (¥, 4).
Remark. We have
A A=A
B*+B"=B.
Proof. 4.4.5.

4.4.7. Lemma. Such o, that we have (i), or (ii), of 4.4.6 for some I,
gives a minor contribution & J|2;- - - 2,|"*P? to 4.1.5.

Proof. Suppose we have the case (i),, for instance. We have
|2set|=(V, U7+ O((LoP?) " )BA™ + O((g:,PH) ™)
=(V;B)(U, A+ O((H,L;* + Ey,5 )P ™).
We have, on the other hand, by 1.2.3.1 (iv-iv), that
|| Ry | — B @k 4Erkk=1] > (24 Dk g8 =1, (F £17) 2
and
1 2,00) = BO* AD* Y Z QAD**ADX) S (HE) ™

By choosing L, and g, sufficiently large, these mean that, if both of
B®¥k fOx%-1 gnd Bk 4M%-1 ]je on the same side to (U,B)(V,A4)"*, they
must lie on the same side to |2,¢|. This is impossible as A®** B@xx-1
and 4®*BM*-1 are consecutive convergents to |2,«|™". Therefore

BWkk fxkx-1z= (P, A)(U,A)~ & BE* AD*-1,

Suppose that 4, is irrational, then U,>Gj, owing to the assumption
(iii) in the Theorem. Suppose, moreover, that

BWxk g&%x-1_ () BY(U,4)",
then
(V.B, U A >(UP)HP) > UM
Then
(U, BY>UP? or (V, A)>Ur+ttspyls
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Then the number of possible pairs (4, B) is
< 2. d~'Hy(g,P)+ 2. d~'Hyg,P)

481U, a>UY° &1V i.a> VR
LU (U)+ Ve (V ) H(g.P)
LU P2

This gives a minor contribution to 4.1.5.

Suppose 2, is irrational and B@*4©*-1—(V,BYU,A)~'. We have a
similar conclusion as before.

Suppose that 2, is rational and B®W**g®¥x-1-(} BYU,A)"".
(U,=1 by the assumption of the Theorem.) We have

E> Vi Z(Vw A):(ViB, UiA) = UtA s AGFE
= AAD*RKR-1 > gl =1

which is impossible if g, is sufficiently large.

Suppose that 2, is rational and B®@*4©*~1—=(¥V,B)(U,4)"'. We have
a similar conclusion as before.

Suppose that we have no equality. But this case does not occur,
because (U,aB®**)-Y(V,b4AW**)"! and (U,aBO*)(V,bAD*)"! must lie on
the same side to B.A~", owing to (i),.

4.48. Lemma. We have, from (iii), (i=1, - - -, 4) of 4.4.6, that
(Uia 0 )(Bu')** B&* B;f))
0 Wb/ \AD*x g% 4®
=<i?"" ﬁ’f)(ff*(pi‘*wz"*) t¥p¥ ti*(m*Jrqi*))’
A% AT 1 pi* HpF4+ad) i
where

1R P 4, - du € N
pi*zg¥rz=l,  (pF*, qf)=1,
p¥zqi=l, (¥, aH)=1,
PF=qi21, (Pisos i) =1,
t;k*____(UiaB(i)**, VibA(i)**),
t¥=(UaBb*, V,pAD*),
tiw=(U,aBP, V,bAD).

Proof. (iii), of 4.4.6 and 1.2.3.1 (iv-vi). If ¢¥=0, for instance, then

(U,aBO*)(V,aB®*) ' = (B %4 B7)(A%+ A79)~'=BA~". This was discussed
in the proof of 4.4.7. Therefore g} =1.
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4.4.9. Lemma.
(i) Putting™®

AB—BA'=¢ (==+1),

AB"—BAT=¢' (=z1), (@44.6),

we have

(ii) Putting
AB'—BA'=¢ (=41), ((4.4.3.1)),

AB'—BA'=¢ (==1), ((44.9),
where (A’, B) is one of (A, B*) and (A", B"), we have
A’ =(eg')(bA’—1'4),
B’ =(et'Y(aB’—1t'B),
with
g5 abgt’' <ab.
If e’ =1, then t’ <ab.

Proof. (i) is well-known; Theorems 158 and 164 in [12], for in-
stance. As for (ii), it is easy except the order of #. We have, by choosing
K sufficiently large,

t'A=bA"—ged"> <bA',
therefore
t'>bA'A ' =abA’ A~ "> g7 ab.
We have
t'A<bA'+ A" <bA-+A=(ab+1)A4,
therefore t’<<ab. If e&’=1, then the same argument gives us that ¢’ <ab.
4.49.1. As a converse to 4.4.9, we have

Lemma. Let a, b, A, B, A", B’,#,¢ be given, so that (a4, bB)=1,
AB'—BA'=¢ and &, ¢ are +1. Let t’ be such that

*® These notations may cause of some irritations. See the end of 4.5.3.1.
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A"+ (&)’ A=0 mod b,
B’ 4(8"t’"B=0 mod q,
0<t'<ab,

(t'<ab if e¢=1). Let us put

A=ad, B=b3,
A'=b"Y A"+ (Nt'4), B'=a'(B'+(&)t'B).
Then, they are integers and
AB’— BA’=e.
Proof. It is easy.
4.4.10. Lemma. We have, from 4.4.8, that

(V,B)(U,A)"t — BO** A@kx-1 — (ghig 5% g ¥ %) (U, A AD*¥)"1,
(ViB)(U,A)"' — BO* A1 = — (et} g F) (U, AAD*)7,
(ViBYU,A) "' = BRAP ™" = (8"1,q::)(U,A40) .

Here we have put as
A4Bre_ B fri — g4 (=—8i=+1).
We have also
AGFRBOK _ BORK Ok — _ @K BE L BO* 4D =zt
Proof. 1t is easy.
4.4.11. Lemma. We have, for
|2,|=V, U 42, (Assumption (iii) of the Theorem)

and
la|=BA"'+0  ((4.43.1)
with
12,|S(LPH™ and w=cA (Aa*+A4")7,
that

sgn (Q,BA '+ w|A;)=sgn o=¢

where
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e=AB'—BA’'= +1.
Proof. We have
|2,BA~ | H(L,PH™?

and
|wi, > E(2g3P"),

the latter owing to Aa*+A4’<24* L glP. Then the conclusion follows
easily.

4.4.12. Lemma. We have, in 4.4.8 and 4.4.11, that
if e=th, then tfqf>1¥*qf*  (Z),
and
if e= —&% (=¢&"), then t,.q, . >1t¥q} =D.
Proof. We have
| At | — BO** 40%%-1 (VU 4+ 2, )(BA™ '+ ) — BO¥* g@% -1
=({(V,B)(U,d) — BO** 4@%*-1y L (. BA™ ' +w|1;))
=gV AL 1 (Q,BA7 +o |1,
by 4.4.10. Similarly
|2,ee| = BOFAD* = — (11 F g YU, AAD*) ' +(2,BA™ + 0| 4,)),
[2iot|—BY AL ™ =("1,541:)(UAAL) ' +(2,B47" + 0| 4,)).

On the other hand, the signatures of the above three formulae vary
between positive and negative values alternatively. We have also that

AP\ L | = BPAP > AV* | | = BOR A
>A(i)** Hzial___B(’l)**A(i)**—ll.

(See 1.2.3.1 (iv-iv)).
(i) Suppose that e=z‘t=1. We have, by 4.4.11, that
£,BA 4+ w|2,/>0.
Therefore
|| — B@H* g@kx-10,
Then
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|| — B©* 0% -17Q,
These mean that
(t¥gH(U,A4D*) ' —(2,BA™ "+ w|2,)>0.
Then
AOR((1F g U AAD) > —(2,BA + 0|1}
= AD*(—| 20|+ BO*ADx-1)
> AOFK(| 20| — BORK J@O%%-1)
= AVR(IF* gV AA) T (QBA™ +0|2,))
We have, then,
tFEGF> R GFF A (AOF L AD*) . U4 (2 BA +0|,])
g Sl e
(ii) Suppose that e=%=-—1. We have
lzial—B(i)**A(“** <0’
as
Q,BA™' +w|2,|<0.
Then we have

(tFg)UAAD*) ' >1QBA + 0|4,

as
|2, ] — B@*A®*-120,
We have
A3 U AAD*) " —|Q,BA™ + 0|4}
> AR [(¢F*gFONU,AADF) | Q,BA 0| 4,1}
Then

UEQE> R (A9 AU A1 QBA™ o)1)
>R

(iii) Suppose that e= —¢%=1. We have
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|2,a|— BO* %10,

as

Q,BA +w|2,|>0.
Then

1A,0|—BP AP~ <0.
Therefore |

(1:44::)(U;AAP) ' —(2,BA™ + 0 |2,)>0.
Then
A1)V, AAL) ' — (2,BA™ + 0| 2,])}
> AOK(tFqF)(UAADR) 4+ (2,BA +0 2D}
Therefore
LisGix > 15qF +(AQP + AV UA(Q,BA +o|4,)
>t¥qf.
(iv) Suppose that e=—g%=—1. We have
|2,0¢| — BO* 4% -1Q,

as

2,BA™ ' +w|2,]<0.
Then

[1,a|—BPAP>0.
Then

(1:59::)(U,AAL) "> |2,BA™ + 0| 4,].
Therefore
AP{(1:x4::) (U, AAQ) " —[Q,BA™ o |4}
> AD¥(tFqF)(UAAD*F) " +{Q2,BA™ + 0 |4,]]}.

Then

tolox > tEqFH(AP +AD*). U4 1Q,BA 0 |]|
>tfqf.
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4.4,13. 'With the notations in 4.4.11, 4.4.10, 4.4.8 and 4.4.3.1, let us

put 4,, B,, A,, B}, ¢, as follows;
(i) If e=#%, then
B, = B@*x B =B®%*,
A1=A(i)**, A= A%,
;=8 (=A,B|—B,A,=AB —BA'=¢).

OR (i) If e= —&% (=¢"%), then

B,=B®*,  B,=BY,
A=AD*  A=AP,
e,=&" (=A,B|—BA,=AB'— BA'=¢).

Corresponding to the above cases, the letters p¥,g¥, t¥, pF*, . ..

be denoted as

Do g ty for B,A;?
and

Ph it for BLAL.

Also, we choose 4, with & in 4.4.9, to satisfy

“E=¢
so that we have
4=4d, in (i)
or
4=r, in (ii).
4.4.14. Lemma. With the notations in 4.4.13, we have
(Uia 0 ) (Bi B§>=<}§ B"’) (ti(pi-{—qi) tf;p;)
0 vb/\4, &) \dA")\ —tq, t,p)
where

A;B;— B, Aj=¢,=¢, Hg.>A,>cé,
A=ad, B=bB, AB'—BA’=c: (4.4.3.1),
pi=9.=1, ri=zqi=1,

T

(P 9)=1, (ri a)=1,

etc., will
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t,=(U,aB,, Vib4),  t,=(UaB}, V,ad)),
ttip.qi+q.pi+4,9)=U,Vab,
1iqi>14,
and
t(pi+9)> 145

Proof. Suppose that =g (=¢?). We have, from 4.4.13 (i), 4.4.8,
4.4.9 (1) and 4.4.10, that

Ua 0 \(B, B)\_(Ua 0 )\(B©¥* B®x*

(0 Vib)(Ai Ag)”( 0 Vib)<A“>** Am*)
Bo B\ (155(pEE g 1ipF

=<A'“ A>( i t;“(p;“+qz“)>

:(B EV)( 1 0)(ti(pi+qi) t.p; )
A A\—1 U\ t,p,  1Upi+q)
=<B B")<ti(p,-+qi) tépé)
A4 47 —tq, tiq; .
Suppose that == —%=¢"*=¢?. Then
(Uia 0 )(Bi B§>=(Uia 0 )(Bm* ng),
0 V,b/\A4, 4] 0 Vh/\AD* 4@
:(B...Ai Bh)( t¥p¥ ti*(pi*_l_qi*))
A% AT\eF(pF ) tiaDix

:(B' EV)(l O© by e | ririran)
A A"/\—-1 U\l 0/\t(p,+q) tip;
_ (ﬁ B")(ti(pﬁqi) tépé)_

A* —1,4, t;q;

That t[q;>1t,q, follows from 4.4.12. We have
0<Vib(Ai—A;)z{ti(pi'i'qt)_tgq',i}/i.—{tiqi_i't;q;}‘/&.d‘
Therefore we must have t,(p,+q,)>t.q;.

4.4.15. Lemma. With the notations of 4.4.14, such «a, that does not
satisfy all of the following conditions, gives a minor contribution to 4.1.5.
The conditions are, with sufficiently large positive constants G’ and g’:

(i) That X is expressible as a product of a (square-free) divisor of
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4(U, V) and of integer of order O(G’), and also G’-2"U¥9>X(=1),
where X=t, and t’,.

(ii) That (X, Y) is expressible as a product of a (square-free) divisor
of 4+(Y) and of an integer of order O(G"), and also

G20z, ),

where X=A, B, A’, B’, A,, B, A}, B, and Y=U,, V,.

(iii)y That (X, Y) is a (square-free) divisor of A%.(Y), where X=
Pi»qi Pi+q, and Y=1t7'U,V,ab, or X=p}, q}, pi+q; and Y=t;"'U,V ab.
Also

G'U=t,p,>tq,2G"'U,
and
G'U,ztipi>1iq;=G""'U,.
(iv) That
(9> gD127| U,V ab,
(9, ¢G4T,

Also that p*¥(q,, q}), if p is a prime and p>K.
(v) And that

2041 f X
for X=A, B, A’, B, A,, B,, 4}, B,.
Remark. Above conditions are trivial, if 2, € Q.

Proof. 1t is easy for (v).
As for (iv), we have, from 4.4.14. that

1,t4(q: 4| UV ab,
and that
U V.abBiA,=tt(piB+q:B")(p.,+9)A—q.4").
Therefore we have
p.P\BA=0mod (g,, 97).
But (p;p}, (9, g7))=1. Therefore we have
BA=0mod (g,, ¢7).
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As (4, B)=1 and p*/ 4B if p>K, we have the latter assertion in (iv).
Suppose, then, that

(s, g =G40
We can put (g,, q;) =dd,, where
dd,|UV.ab, A=0modd,, B=0modd,

We have either d,=>G""/*2*V9) or d,>G"'*2*W7a, Also we can suppose
that p* yd,d, if p>K. The number of such (4, B), that d,=G"/*2*"+"? for
some i, is

<CHgP 3 3 (ad)g,P
CH,P 33 (aG 2 070y~ X K20 0g,P
K G- 1/2H0g§K”P2,

where K’ is [] ,.,<.~ p¥ and K" is K’-zlogz-log K. If G’ is sufficiently
large, the contribution of those (4, B) is of minor one. Similarly for d,.
Let us consider (i). We have

tz‘:(UiaBia VibAi)]ab(Ui5 A'i.)(Vi’ Bi)'

Similar consideration as in the latter half of the proof of (iv) gives us that
the contribution of those (4,, B,) with #,> G'2*W< js of minor one. We
can suppose that p*}t 4, B, if p> K, therefore p* Y A,B, if p>>K*. Then the
number of such pairs (4,, B,), that there exists a prime common divisor of
U, and A with p>G"(U), is, taking G'>K?,

< 2 P'&P-Hyg,P

p; prime, p|Us, p>G'»(Uz)
L(GWU)) WU )H,g:P
LG’ 'H,giP. k
This gives a minor contribution. Similarly for other cases, and we easily
have (i) for ¢;. Similarly for #/.

(ii) The proof is similar as in (i).
(iii) We have

t,p,<B'U,aB,=B'U,abB, (g, ""P)"'U,ab(H,P) K G'U,.

Similarly we have ¢;p;« G’U,. Suppose that ¢,p,<G’"'*U,. We have,
then,
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UaB,=t,((p,+ qi)B - quV) < tv;p—;B <@ UiB
«(G'a)""*U aB,.

This is impossible if G’ is large. Now suppose that #,p,>G’~*U, and
1,9, <G'"'U,. Then p,q;*>G"*. We have

(UaB)V.bA) ' —BA |\ =q A (p,+q)4d—q,4A")"
<g A (pA) <G 1A
"We have, then,
(V. B)(U,A)" —(aB)(bA,)""| < (ExeG) A",
This is
<3(b4)*

if G’ is sufficiently large in connection with H,, g,, K and z. Then we
have

(V. B)YU,A)"* (—> the reduced fraction of (aB)(b4,)".

We have (a, 4,)< (4, A))<G. Therefore, the denominator of the reduced
fraction of (aB,)(bA,)™" is

>(GH,) 'P.

This means that the number of possible reduced fraction arising from
possible (aB,)(bA,)"is K GH,, if A, B, @ and b are fixed. Then, 1.4.4.2
tells us that the number of (a, b, 4,, B,) is

£ z°GH,,

if A and B are fixed. We have 4 and B are <K~'(g,P). Therefore taking
K sufficiently large, the contribution is of minor one, if ¢,4,<<G’~'U,. The
proof is similar for t}q/.

Dividing ¢, as t,=y,z,, temporarily, with

yila(Ui’ A,), z,|b(V;, By), (e z)=1,

we see that (¢7'U,V,ab, X) is a divisor of (y;U,a, X)(z;'V,;b, X). Suppose
that

72U, V,ab, X) k 43¢ 72U,V ,ab).
As (U, V,)=1 and (a, b)=1, we have, then, either
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(r7'Ua, X) t de(y7'U a),
or
(z7Vb, X) ¥ A5 (z7V D).
Then, there exists a prime p, such that either
p>Gw(U,) and p|(y7'Ua, X),
or
p>Gu(V) and p|(z;'V.,b, Y).
If X is p,, for instance, this means that either
p>G'W(Uy), p|U, and p|(B—B")
or
p>G'u(V), p|V, and p|(B—B"),
because p Yq,. Then the number of possible pairs (B, B) is
< 3 prH(@PY{(GUUY) WU +(Gu(V)) " u(V))}- Hi(gP):

p; as above

LG 'H,g:P"

There are O(H2g3ab) at most of (4, A7) for given (B B”). Therefore, there
are at most O(G’~'(K**'°s* H,g%)*P?) of (4, B). Taking G’ sufficiently large
we have done with the case of (¢;*U,V,ab, p). Similarly for other cases.

4.4.15.1. Corollary. Hereafter we can add the conditions of 4.4.15
on 4.4.14.

4.4.16. Lemma. Ifi, t, t}, q;, q;, a, b are fixed, the number of pos-
sible pairs (p,, p}), satisfying the conditions in 4.4.15 and

titipgi+9q.pi+q.99)="U,Vab,
is
<G4 97).
Proof. We have
Pqi+piq,=t)" U, V,ab—q,q;.

Therefore the solution (p, mod (¢,, ¢7)~'q,, p; mod (g,, ¢;)~'q}) is unique,
if ab is fixed. Then we have
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«{ttiq,9y - {(g, 9DG U Y LG g, q71)
of (p;, p).

The next two lemmas 4.4.17 and 4.4.17.1 are to suggest the nature of
D 4,5 tc.

4.4.17. Lemma. If i,t,, t},a, b are fixed, the number of possible
quadruples (p;. 4., Pss q5), satisfying the conditions in 4.4.15, and also

(pi 9)=1, (pl.qd=1, p,=zq,=1, pi=qi=1
and
t.ti(pqi+4q.0i+4.9)="U,V,ab,
is
LG +17HUL

Proof. Fixing p, and g,, the solution (p; mod (p,+q,), 9; mod ¢,) is
unique, as (p;+¢,, g)=1. Therefore we have

<<{(pi+qi)—1t;_lG/Ui+ 1}'{Qi thG’Ui‘{‘ 1}
of pairs (p}, ¢7), if p, and g, are fixed. We have

(pi+4q) ' Klog G’

P3G Ui>pi>G —1U
and
g7 log G’ « (log G')%.

;G U>q¢>G —1Uy
We have, also,

2 (pita) 'K 216U,

Diyqi pi

> 47" € T 1xlog G'< 171 G log G- U
[

Pisq:

2. 1L 'GUY

Pi,q1

These gives us the number of quadruples (p,, 4,, P}, q7) is

T (1) 179G U
LGt YU

4.417.1. Lemma. We have
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2, ()7 <G {exp (30,p7)F L G" (log w(U, V3))*

22123

where p runs through the set of primes such that
pEGW(UYV,) and p|UYV,
Proof. Easily obtained from 4.4.15 ().

4.4.18. Lemma. We have, from 4.4.14,

(Vi 0)<B B’)=<B¢ B§><t£q2 1{ab) " (—pi+1'q7) )
0 U\ 4] N4, A)/\rg, 1(ab) (0 +4)+1'9))

where t’ is that of 4.4.9 (ii) (and 4.4.9.1) with ¥ =& (=2).
Proof. Itis easy.

4.4.19. Proposition. Suppose that integers A, B, A, B/, t’, t,, t}, p,,
q4:, P> 45, a, b are given, so that
' AB —BA'—e=+1,
A=ad, B=bB5,
et (fQQQ ti(ab) " (—pi+1t'q) )
t.q; t(ab)"(p,+9)+1'q)
G"”>(tig:)(tq,) ' > 1.
Let A" and B” be chosen as A’ and B’ of 4.4.9 (ii) with & =e. Suppose that

we have integers A,, B,, A., B satisfying 4.4.14 and that A,> A;>0. Then,
we have

EITHER that

=UVs

3 t 2

(j2,|BA~)! (—ﬁAiBZI (==>A4/B)!

OR that such o, that |a| (—>BA~' (==>B’A’~", gives a minor contri-
bution to 4.1.5.
We have to choose L, sufficiently large, depending on G’.

Proof. 'We have
VBYU, A ={(tig)B,+(1,9) B3} - {(t:g) A+ (t,9) A4}
= {CiBi +B;} : {CZA'[, +A;}-1,

where £,=(t;g)(t,q,)"'. Then, through Theorem 172 in [12] and by the
assumption that £, =(¢;g.)(t,q,)"' > 1, we have (V,B(U,4)~ )~ (——>A,B;*
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(==>4/B;"*. If 4, is rational, (therefore an integer by the assumption of
Theorem), then |2,|=V,U;*. Therefore, we are done with, in this case.
Suppose 1, is irrational. We have

|2:\=V. U7+ 2,
with |2,|<(L,PH™'.  Then, we have
(12,[BA™ ) ={(;+ )4, + AN+ ) B+ B},
where
7, =(—e){Q.BA7 (A, + AYH1 +,02,B47 4,4, + 4D}
Here, taking L, sufficiently large, we can suppose that
|2,BA7' 4,4, + 4)|<}
and that
|z | <Lg'2

If £, +7,>>1, then we are done with, by the same theorem in [12]. It
is impossible that £, +7,=1, as 4, is irrational. Suppose, then, {, 47, <1.
This means that ¢,2,<0 and 1>, +7,>1—L;"* as ,>1. Let us put as

Lot =+5)
Then &/>» Li?. And then,
(12,|BA) ' ={(1+& D)4, +4HA+-L7) "B+ B}
={Ci(A,+ 4D+ AHCUB, + B)+ B}
Therefore the theorem in [12] tells us that
(12,|BA™ ) (> (4, +4)(B,+ B) ™' (= AB.™".
Also we have
(A, +A4)B;—(B,+B)4;=¢,.
We have
|2,|BA™ — (B, + B)(A,+A)™*
=e{(4,+ADCUA,+ AD+ AN} KLy VH (A + A7)

We can suppose that A and B are [K, K?)-regular. Then, calculations,
similar to the proof in the case p,g;'>G"” of 4.4.15 (iii), applied to
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{a(B,+ BOHb(A, + 4D} —|2,| BA™ | K L5 V{b(A, + 4D} *,

tell us that there are O(L;'*P?) of (4, B, A’, B)). Then such « gives a
minor contribution O(L;*P?) to 4.1.5, by taking L, sufficiently large,

4.4.20. Lemma. Suppose we have

le|=BA '+ o,

\M= VtU;]+Q¢
and

llzia\—:BiA'i—i-wi’
so that

V:B=tiq/B;+t,q,B],

U*L‘A:t;qui_*—tiin;’
and

A,B,—B Ai=¢,(=+1).
We have, then,
w,=82,BA7+\2, |0+ (e,t,9 ) U, A4,)".
Proof. It is easy.
Remark. We will use this lemma, in the form that

w=c{A(4a*+ A"},
AB'—BA'=c(=+1),
a*>1 (real number),

and 4, B, 4, B/, A, t,, q,, t}, q are to satisfy 4.4.14, where A7 and B’
are A’ and B’ of 4.4.9 (ii) with & =-.

4.4.21. Lemma. With the notation of 4.4.20, we put

M, =¢|2,{A(Ada* + A")} " +e,t,9,(U,AA4,).
We suppose that, e=¢,, (See 4.4.14). We have, then,
(HogP) "< | M| G'(H5'P)~".

Proof. We have, from 4.4.1, that (1 <)a* € g2, because 4* > L a*4
and A=A,. The rest is easy.
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4.4.22. Remark. Suppose thate(==-1)a,b,a,,b,(i=1,---,4)are
fixed. Suppose 4 and B are given so that A=aAd and B=b43 lie in the
interval [g¥?P, g,P]. We have, then, by choosing K sufficiently large, at
most one possibility of (4,, B;) such that a,|4,, b,| B, and that 4, and B,
belong to [H;'P, H,P]. See 1.4.1.1. We have uniquely 47 and B’ such
that

AB" —BA"=¢
and
A> A1,
We have, also, uniquely 4/ and B/ such that
A,B,—B,Ai=¢
and
A, >A =1,

These mean that, supposing that ¢, @, b, a,, b, are fixed and K is sufficiently
large, the possibility for ¢,, ¢}, p,, q,, P’ q; (i=1, - - -,4) in 4.4.14 is one at
most, if 4 and B are fixed. Therefore, fixing ¢, @, b, @,, b,, we can divide
the set of (4, B)’s disjointly, according to ¢, t/, p,, ¢,» P 4, (i=1, - - -, 4)
in 4.4.14.

These arguments go similarly when we begin with a, b, A and 4”7, in
place of a, b, A and B.

Note that we have not used the assumptions (iv) and (v) up to now.
These heavy assumptions will be needed in 4.5.

4.5, Kloosterman’s domain I1

4.5.1. Lemma. Suppose that we have the conclusion of 4.4.14. Sup-
pose that A,(2A))" has “‘good partial fractions with respect to H,, 2.2.10”.
(We suppose that such «, that gives a minor contribution to 4.1.5, is not con-
sidered here, according to 4.1.3, 4.4.1, 443, 44.3.1, 44.4, 44.15, 44,19
and 4.4.21.) We put as

Sgna:ﬂg (:‘il)a sgn 2127}1 (:il)’
F,=0,BA™",
M, =e{|2| A7 (Aa* +A) "+ 1,4,(U,44,)7}.

Note that c,=¢ by 4.4.14. We have, then, for S,(«) in 4.1.4, that
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Sda)=7 p24)" S(%)(ewi>-1/2

+ 2(3) 2325 0.(@2h = D)™ (—gp2ev — 1)""‘(2Ai)‘13£”’(§—5)

A, 1 1
Xe (—%— Zi Df) e(gvomwiéﬁ - 24, 7717]0‘Si”i)
mrfs v 2hi-1
Xoi (& 2Aiwi>
+OH ),

Here &, is & or &, and + corresponds to this choice, h, is taken over 1< h,
< HYP, v, is taken over |y, |< H3". Also SP9(B,/A,) is one of S(B,/A,) and
S*(B,/A,), and p,, p,, are one of such p that p=0 or p*=1. Their choices
are determined by the residues mod 8 of A,, B,, A,, B}, (), and A,, 4,
being the odd divisor part of A,, and by residues mod 4 of v,, w,=F,+
M,

Proof. We apply 2.2.12. Putting |,0|=B,4;'+w,, we have w,=
F,+M,, owing to 4.4.20. We have, on the other hand, by 4.4.19, that

(12/BA~)")—> A,/B, (= 4}/B,,
and, therefore, with 0<4,, ¢, <1,

0, =\,|(BA™ +e0, A" —B,A;*
=ef, A7 +¢0,|12)47"

We have, then,
|A,0,8,|<A7'E/+AA4,E/2F;,<0.240(1)<0.3,
and
Ao 1.
We have, combining with 2.1.4, that

S(@)=2(5) 2 0.04) 7509 (B)e( L 0g1—@4) 20

Xsgn (51 - V¢(2A @)~ l)l w; r Ve wsq o, ll/zl &— ”1(214 10)1)— ! D
+O(H;*P'™),

where, v,, p,, and S¢*9(- . .) are as explained above. We substitute 2.2.5
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(iv) with k= H{" there. The term corresponding to
te(—3e(8"— 1)
in 2.2.5 (iv) appears as

~1500( Be “teanhe( L wer—(24)
3 0.04) 150 F)e(GAY edne( 0= 24) 5 0)
Xsgn (&i—vi(zAiwi)_l)lwi l—l/z
X e = ol Cd0)Y)e(+e)
We have

(84, 'edivi+ %wzéf —(Q24) % w,—30,6,—v24,0) D
=(84,) 'edpi—(84,)"0; "}
=(84,)""edi;—(84,) %A (A, B} + A}
= —'%5‘87?‘”3,

where we have put 8} as |w,|"'=4,(4,8F + 4}). We have
> (the above sum)

= 3004 509(F) o - o)
Xsen (&, —»,24,0) ) o, g ¢ )

As we have p,,=p_,, and sgn(§,—v,(24,0,) )= —sgn(§,— (—v,)24,0,)7")
if v,5£0, the terms with y,=£0 all cancel out each other. The term with
v, =0 gives us

et Joonr (2

3

which gives us the first term of the conclusion by adjusting p,. As for the
other terms of 2.2.5 (iv), we have

AT 0 P8~ A ) )
=0 (Ao b= Q4w
< AV(HHPY,

and that
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(@k— 1)1 < (k— 1))~ o=k,

The choice k= H:® is sufficient for the conclusion.

4.5.2. Lemma. Under the same assumptions as in 4.5.1, we have

((za)~* (sin 7))’ Si(cx) - - - Si(a) = Zﬂ(— D#(B*A)’e(A~'uB)
Locays(Z )1M [

+Z Z Z Z: c(l)lM llz—thlt+(1/2) thslz

§¢ v Ry lg

><' IH 4-‘ 2A 1/2 S( )<Bi (1 FSZ
F=1,0004, X ; . ivi i)l — F.&2
A) 2 )

Xe (‘;‘ eATI AN+ % 1 E1M,—(24,) 1’7°’7"$i”i)

+O(H;2PY).
Here
o= (V27 Vip, (2h, = DI (= g/ = Ty eh (1)

2h,—1\( 1 \m-i-ie
x( 1 )(7”) ’

where - corresponds to &,=¢§7 or &. (Ifv,=0, then Vi=1 and v:=0 for
[>0). Also I, is taken over 0<I,<<2h,—1. The other notations are the
same as in 4.5.1, and we must take L, sufficiently large as the last but one
step about 4.4.4. We have, also, that, after expanding the product on the

right-hand side, each term is

<H3g, H..4(1+\C(Z)I(Hogo)2hi) . p?

and

H (14c@ [(H,g )" )L exp (H g?).

(€),(0),(R)5 (1) ¢

Remark. We will often write the right-hand side of the formula of
the lemma as

£,(8),()5 ()5 (1)

when it is expanded.
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Proof. We have
((za)™" (sin ma))*= #;ﬂ (— l)"(4n2)“’(B"A)ée(A“ﬂB) +o(1).
We have, as for the first term in the right-hand side in 4.5.1, that

()™= (M |+|F )™ =M, (1+ O(L;'g?)).

Similarly
W = I M M1 4 02N Ly g ).
Also
€= @A)y =3 (PP et Do A R D
1; i

o e O L e (R Ay

Taking L, sufficiently large with respect to §, H, and g,, we obtain the ex-
pansion to be proved. The rest is easy.

4.5.3. Let the constants in 4.4.4, except G,, be fixed as have been
explained up to now. To treat @« which are left untouched in 4.4, we
proceed as follows: We suppose that

Z=T=Gu(UVy, - -+, UTD.

Then we take variables and constants, which are positive integers except
&, 7, o and @, in the following order.
(0) Leta, be

ady=
p;prime, K<p<K?

Let e=+1, 5,= 11, @ and b be fixed so that
ab\a,, (a, b)=1,
and
1<v(x)£101o0g 2 for x=a, b.
(i) Let us put, with », such that 2%||[U,, - - -, U}],
W ==28"ruorsg( 11 PEX LU, -U T)

p;prime,p<LK,p|Us++- Uy

XL.CM. of {(U,, U,); iy, b=1, - - -, 4and i,1,),

12
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W: =2g,+5ao( P)g’XA’(U1V1' . U4V4; T)

p;prime, p<K,p| U1V 1++-UsV4
XL.CM. of {(U,,, U,); i, iy=1, -+ -, 4 and]i,#1,},
W= W:{Z[Vu SR
and
WO: WS)[UIVD ) U4V4]-

See 2.3.9, 2.3.11.5 and 3.2.1. Clearly W, divides W,.
(i) ;06
(i) t; g h<t’'<ab. (4.4.9 (ii).
(i) 1,1, pi 40 Pl g7 (=1, -+, 4);
ttUp.qi+q.0i+q.9)="UVab,
pi=q;=z1, pizqizl, (p,q)=1, (i, q)=1,
tiq:>19,>0, t(p,+q)>1p],
and
G*>(tlg)t,q)™t (1) (4.4.19).

We impose 't.he conditions in 4.4.15 on them.
(iv) A4; has no prime divisor in [K, K?),
p& 1y A if pis a prime and 2< p<K,
p* YA if p is a prime and p>K,
g P>ad>gl*P,
v(A)<1.1 log log P.

The last condition is admissible by a well-known theorem of Hardy and
Ramanujan, Problem 20 on p. 31 [20], for insatnce.

(iv) (4%, B}, B); Representatives enough to cover the set of
(47, B”, B), in which A7 is taken mod W,, and B” and B are taken mod
2&'+uotsy  satisfying the following conditions;

AB" — BA" =,
p&*'yB  ifpisaprimeand 2<p<K,
Y B if p is a prime and p>K,

B has no prime divisor in [K, K?),
A"+’ A=0 mod b,
B’ 4++'B=0 moda,
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((Uza)—1 -0 )(B EV)<ti(pi+qz‘) t;p;)eMz(Z),
0 .bn A AT —1,9, t.q;

A>A">g7%4,
2,V bE! >t (i a)A—q, A7) > t{(pid+-9iAT) > H*V bEY,
(GA>)B>G 4
and
(t+1DA>B>14.
(v) 4’4, 4A)=1,

A"=Af mod W,,
A>A7> g0,
and
2e,VbE! > 1(pi+9)A—q, A7) >t ((piA+q/ A7) > Hy*V bEY.
) B, B"; AB"—BA"=¢,
B=B, mod 28"+ +3q,,
(t+1)A>B>max (14, G- 4).
(Uia)_l(ti(pi+qi)g—tiqigy) € Z,
(Ua) '(t,p}B+tiq'B ) e Z, (2.3.11.5).
(We have B"=B! mod 2¢"*%+g,))
(vi) (B B’); B=bB, B'=a'(B"+1'B),
A A A=ad, A'=b"'(A"41t'A4),
and A4, A’, B, B’ are [K, K*)-regular and satisfying the conditions in 4.4.15.

(vii) (Bi Bé); (Uia 0 )(Bi B2)=(i{ lfi”)(ti(pmtqi) tépé)
A, A, 0 vp/\4, 4)) \d A7J\ —1q, tiqg)

and A,, A}, B,, B; are supposed to satisfy the conditions in 4.4.15 and
4.5.1. (A4,, 4}, B,, B; are integers by (iv’), (v), (v)).)

(vii) o*; go=>a*>1 (real).

(viii) a=BA '+eA"(Aa*+A")"
We prepare the set & of A”’s for a fixed 4 of (iv), for which all of (iv") ~
(viii) are not satisfied.

4.53.1. Explanation of 4.5.3. The existence of A”, B, B! for given
A, AY, B,, B! is assured by 2.3.11.5, even to the modulus W?2[V,, - - -, Vi];
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or if they do not fall into the range stated above, they give minor contri-
butions to 4.1.5, as had been explained up to 4.4.22. We have
AB'—BA'=¢, A>A’>0, B>B'>0,
t,=(UaB,, VbA,), t;=(UaB], VbA),
208> A> A> Hig!.
Especially 2°2"#% y¢,. The conditions in (v) given by inequalities show that
A" in (v) lies in an interval J((4)), say, determined by (0) ~(iv) of 4.5.3,
not depending on A7, B/ and B, in (iv’) there. Let us use the notation

((4)) to suggest the choices of (0) ~(iv) in 4.5.3. Therefore A” in (v) of
4.5.3 may be considered as those, for which

(47, A)=1, A"=A7 mod W,
and
A" e J(4)),

where A] is one of (iv’) in 4.5.3. In (viii’) we may have cases to obtain
such « that was treated in the preceding sections. Estimates there had
been in “L!'-norm”, so we have no need to mind having such cases. By
(viii’) we can take o* in (viii) as a variable of integration in 4.1.5, after ¢,
A, A’ in J((A)) are fixed. Owing to the length of this note, there are con-
fusions in the use of 4 and *. Those 44, etc., in 2.3 and 3.2 should corre-
spond to A7, etc., in 4.4. See the footnote of 4.4.9 (i).

4.54. Lemma. We have, under (4)) in 4.5.3.1 that
B B
S<“)<—-‘>---S““<-—“)=16 A A
1 4, 4 4, P( 1 )

in 4.5.2, where p=0 or o°=1,
A"=A! mod W, B=B, mod 28" +#*5g,
and p is determined if A], v,, - - -, v, are fixed under ((4)).

Proof. From 4.4.15 (iv), (v) and the moduli W, and 28" ***3g, we
have the same residues mod 8 of x, X and X with X=2°X, @2y X), for X
=A" and 4], or for X=8 and B,, or X=4, and 4, or X=B, and B®,
Then we can consult 2.3.8.

4.5.5. We proceed from 4.5.2 and 4.5.3 as follows;
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j (e sin 'S @) - S @)

- the “main’ terms in the
doc*(—e)(Aac* + A’ Zx{ }
o (=N A+ A) X oht-hand side of 4.5.2

(4.5.3) Ja*; go>a*>1
+O@H;*PY),

where >, 5.5 is to suggest the choices in 4.5.3 and, in the integral, we use
4.5.3 (viii"). We have, by the remark in 4.4.22, that this is

=2i;4<:2)).[ 2 { 2 (e -)}da*+0(5H0—2P2),

a* a7, 85,80 a0 LA

where >4, suggests that the choices of (0) ~(iv) in 4.5.3, g,>a*>1, and
D8, BTy avy 18 taken over 4.5.3 (iv).  Also the sum 747, is taken over

4.5.3 (v) and, if there do not exist B and B of 4.5.3 (v/) ~(vii), we can
regard as A" ¢ &.

4.5.5.1. We suppose that W,=o(P).

4.5.6. We have, through 2.3.8 and 3.2.4 with the notations 3.2.3,
3.2.4 and S¢9(- - ) in 4.5.1 with g’+4 in place of g’ in ¥, in 3.2.4, that

J%:v)(. . ')zy,m,(‘tf;:(l),(e) I§1'0;16_1(A1' . .AJ-UZS{”)(%) N -Si""(%)
X A A, Ay X (208 0+ %a,) (2%, A)
X Wit f 1 EANATX S F(B)e(A™B)
+ 02|84
+O(GP*™(4, W,y (log P)".
Here we have used the fact that, from »(4)<1.1 log log P,
2D Log P, 5D L(log ), a_,u(A)<log P,
and
Ay $(dy) ' <log log P.

Also we have used the fact that (28" *%o*3q, A, W)=(28 ***5, 4, W)=
e, A).

4.5.6.1. By what were explained in 4.4.22. and 4.5.3.1, we have
doc* Z ZII 0(l'§(AV) N8|y - '24\—1/2})2.

L da G B Besav) &
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We have, also, that, each time adjusting G suitably larger,

| det 5T O(GPYH(4, W) (log P)Y)

A43((4)) Ja* (45, B, Boy; (v

&3 25 (4, W)X GP¥ (log P)*

i al

& (4, W)X GW, P log P,
P
which is, owing to 4.4.15 (ii) and 2.3.10.1,

LG{T WUV, - - UVYP+o(d'(Wy; T)PYW, P (log P)*
<<GP2{T_1U(U1V1' t U4V4)+T(AI(U1V1' UV T))}WQP-W (log P)A-
This is
&BiAy- - A, P

by the assumption of the Theorem, as 7" will be chosen = Gw(U,V;- - - U V)
in 4.5.7.6.

4.5.7. Let A, under the choices ((4)), be fixed. Let g, (&), (v), (),
(/) be fixed also. We consider the sum

5167y s (). spo(B)

%, B8, 8oy v 1 A4,

arising from the plausible “main’’ term in the right-hand side in 4.5.6.

4.5.7.1. We take up the modulus W, in 4.5.3 (i), which is a divisor

of:. W, Let (4%, BY%, B%)’s be representatives enough to cover the set of
(4L, BL, B)y's in 4.5.3 (iv’), in which 4% is taken mod W, and B% and B,
are taken mod 28" *%*3q,, We fix (4%, B%, B,) and let (47, B!, B,) run so
that

Ar=A% mod W,
and

Bi=B" mod 2¢ +%+3g,,

As 28"y X for X=A!, ---, Bo, we have the same power of 2 for A7 and
A%, etc.  'We have, then, through 2.1.2.1, 2.3.11.5, 2.3.7 and 4.4.15, that

- -egen( B (B (Pi+9)A—q,47
t 2Qenf Z1Y [, goof D) __ i 1 1420
1674(A4,- - - 4)7 28§ (A1> S§ (A) pi=§-,4 Jo( ()1 a )’

where ¢{* and 7{*® have the corresponding meaning to ¢{* and 7{* in
2.3.5 given with respect to (4%, B%, B.).
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4.5.7.2. We prepare Z, which will be the Z, in the Theorem, such
that Z>T (=3), that Z>a,, that all common prime divisors of U%. ..U}
and V,...V, are <Z, that all common prime divisors of U,, and U,
(i,+i,) are <Z, and that there exist one i, (i,=1, ---,4) and a prime
divisor p, of U¥, satisfying p,=Z (and, therefore, p, f U¥ for i=1,).

4.5.7.3. We want to apply 2.3.9 with this Z and W,. We have
Hi J o(' : )

(b, BY,Boys vy, 4 = A% modw ., By = B modze’ +vg+5aq,

= 2, [TeJo(- - ')+O(Z(;;%) 1),

A'g;ﬁ';; 47 moaw,
where Zi{i{) is used to suggest that we will first perform the summation
0

Do, 10 4.5.6, as were explained at the end of 3.2.5. We have,
then, the sum is

L(Ui- - - UYTPUS- - - UHA(Uy; 2) - - - 4Y(U,; Z)} log (U, - - - U,
X a5 [T, (Usa, AL)-=(4'(4, Z))
+Z- W, W3 (log log PY*+Gu(U,- - - U)T-'W,W 3!
+Gu(U,- - - U)+(log P)**+ 3 %1,

Z)) in 2.3.9 is a divisor of 4'(U,,; Z).

because (U¥,, U, U? Ut AU} ;

1% 12

4.5.7.4. As for Z(ﬁ/r: 1, we go backwards;

247 (the “main” term in 4.5.6)
AT (47 FY o) 4o
— “n
=z 5 Xy
i (i, 85,80

<0 >0 ((wa) ' (sin za))*| S(e) - - - Sia))

i dles

(Z 7. ((+ - +), the left-hand side in 4.5.6) )
4+ O((- - -) in the right-hand side in 4.5.6)

+37 52 0(-+ )+ 0|4y - - 2,7 2PY),

i Aey
which is absorbed in the estimates in 4.5.6.1.

4.5.7.5. Let us combine 4.5.7.3 with the “main” term in 4.5.6. We
have, by 3.2.5.1, the “main” term on the right-hand side is

LGW;'P,

because
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A7t g(Aw,) X (24 ®*a)~1(2¢", A)K 1.

Therefore the combined contribution of the “main” term of 4.5.6 and
4.5.7.3 (without O(32471)) to 4.1.5 is

< X 2 > 2. XGWiP

010,08 45,64,p5,q0,0%,05 A4 (A%, B5,B0)

( (Ut - UD 2 - - Xo(d(4; Z))  (asin 4.5.7.3) )
+Z7'W, W3t (loglog Py +Gu(U,- - - UXT W, W'+ 1}+(log P)*¢/°

This, is, owing to 4.4.22,
L 20 2 2GWFPX(--),

easb,t,tr A A

then
<<§ «(4(4; Z))x § [1(U.a, 47)
XGWi'P(Ui- -TUi)“’Z[Uf, won UA{4'(U; Z2) - - - 44U 2)}
Xlog (U,---U)
+P*Z-'G (log log P)*4 P*T-'Gu(U,- - - U))
+P:GW W, {u(U;- - - U)+(log P)*5}.
4.5.7.6. We put as
T=Gw(U,---UJV,---V))
with a large positive constant G,. We suppose that
Z>G, (log log P)* (and =T).
We have

WO_IW*<<2M[V19 ] V4]'[U1V19 ] U4V4]_1
<min (p;?, (G, log P)~*)Kmin (Z7%, (G, log P)~"%)

by the assumptions of the Theorem. It follows that the last three terms
in 4.5.7.5 are

SCIVERRP ALY S5
by choosing G, sufficiently large.

4.5.7.77. We treat the first term in the last estimate in 4.5.7.5. We
have, by 4.4.15 (ii), that
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1, AN K GWy TT 454(U).
an i

We have
21 o(d'(4; Z))K P (log P)"*.

i

We have, then, the contribution of the first term is

LGP Wi'Wy -(log P)*®log (Uy- - - U)X (Uf- - - UD~[UY, - - -, U]
XA (U« - - dp(UYX AU Z) - - - AUy Z)

&GP -(log PY8log(U,- - - UYX[UV,, -, UV ][V, -+ -, Vi
X(Ui---UD~'UY, -« -, UlIX AUy - - - 45U
X 4(U,; Z)- - - 4(U,; Z).

This is
CIVERRY AL
by the assumptions of the Theorem.

4.5.7.8. Thus, as was proposed in 4.1.5.1, we have treated all of a's
and obtain the Theorem, under so many restrictive assumptions on 2,’s.
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