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Torsion Points on Curves 

Robert F. Coleman 

§ 1. 

Let C be a smooth complete curve defined over a field K. Let K 
denote the algebraic closure of K. We define an equivalence relation on 
C(K) as follows. If P, Q e C(K), then we write P - Q iff a positive in­
tegral multiple of the divisor P- Q is principal. We call an equivalence 
class under this relation a torsion packet. 

Suppose Jis the Jacobian of C, Pe C(K) and i: (C, P)-(J, 0) is an 
Albanese mapping. Then Abel's theorem implies ;- 1((i(C) n JTor)(K)) is 
the torsion packet containing P. 

Examples. (i) C=Pk then C(K) is the unique torsion packet on C. 
(ii) C is an elliptic curve. Then the torsion packets are the sets 

{P + T: Te C(K)Tor} for P e C(K). Hence every torsion packet is infinite 
and if char (K) = 0 or K has positive transcendence degree, the number of 
non-trivial torsion packets is infinite. 

(iii) K is a field of positive characteristic and transcendence degree 
0. Then C(K) is a torsion packet. 

(iv) char K =0 and g(C)>2, then Raynaud has proven that every 
torsion packet is finite [R-1] and if g(C):2:3 there are only finitely many 
non-trivial torsion packets [R-2]. 

(v) If g(C)=2 the morphism 

CXC-+J 

(P, Q)-+(P- Q) 

is surjective and since #J(K)Tor= oo, #{(P, Q): Pc:/=Q, P-Q}= oo. This, 
together with the previous example, implies that if char (K) = 0 the number 
of non-trivial torsion packets on C is infinite. 

(vi) Suppose K = Q, m is a positive integer and Fm is the complete 
projective curve with homogeneous equation 
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Let Tm=locus of XYZ =0 on Fm. Then we can show 
(a) Tm is a torsion packet if m=(p- l)/k with p a prime number 

and k an integer such that 1 ~k~S [C-2]. 
(b) If m=p- l, m> 12, then Tm is the only non-trivial torsion packet 

in Fm(Q). 
(vii) If C is a modular curve then the cusps on C are contained in a 

torsion packet, but it is not known when the set of cusps is a torsion 
packet. (On Xi(13) it is not. [C-1]) 

(viii) Suppose f: c-Pk is a cyclic p-covering. Then the branch 
points off on C are contained in a torsion packet. 

There are still several interesting unsolved problems concerning tor­
sion points on curves. We begin with the following generalization of the 
Manin-Mumford conjecture: Let Xbe a Zariski open in C. Suppose 

is a family of Abelian varieties over X. Let I' denote a group of sections 
of r::. Suppose there is no non-constants e I' such thats factors through 
a section of a subfamily of one-dimensional group varieties (i.e., an exten­
sion of an elliptic family by a family of finite group schemes). For Pe 
X(K) let AP denote the fiber at P and 

(1) 

Conjecture 1. Suppose char (K) = 0, then 

rank I' P = rank I' 

for all but finitely many P e X(K). 

Suppose X = C and J is the Jacobian of C and a: c-1 is an Albanese 
morphism. Let I' be the group of sections of cx1-c generated by 
(id, a). Then if g(C)>l, rkI'=l and if g(C)~2 the above conjecture 
is just the Manin-Mumford conjecture. We also note that Mordell's 
conjecture is a consequence of this conjecture. 

When Ks;Q, Silverman [S] has proven, with the above hypothesis on 
I' replaced by the hypothesis that no non-zero element of I' is "constant", 
that (1) holds for Pe C(Q) of sufficiently large height. (Note: this is 
stronger than the result stated in (S] but the proof is the same.) On the 
other hand, Szpiro [Sz, Note 4] has shown there are finitely many points in 
C(Q) of "small" height (where "small" is not yet completely understood). 
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When char (K)>O not much is known; as explained in example (iv), 
the analogue of the Manin-Mumford conjecture for curves over finite fields 
is false. Does it hold for curves which do not come by extension of 
scalars from a curve over a finite field? This would be a consequence of 
the function field analogue of the above mentioned result of Szpiro. Even 
over finite fields there are some interesting questions. Does the analogue 
of Bogomolov's theorem [B] hold? I.e., let C be a curve over a finite field 
K. Let m be a positive integer, and let a: C-d be an Albanese morphism 
from C into its Jacobian. Suppose g( C) > 2. 

Problem 2. ls #((a( C) n J[m 00 ])(K)) < oo? 

We can prove: Let S be a set of rational primes. Let S(N) denote 
the set of positive integers divisible only by primes in S. Suppose S is 
finite. 

Theorem 3. 

lim #(a(C) nJ[m](K)) O. 

The proof of this when char (K) $ S will be given in Sections 2-4. 
On the other hand, Anderson and Indik [A-I] have proven the follow­

ing result. Let II m: J[Fp]-+J[m 00
] denote the natural projection. 

(J(Fp)= TI J[/ 00 ](.Fp)). 
l prime 

Then the composition 

is a surjection. 
Now let us return to curves defined over number fields. We for-

mulate yet another conjecture. 
Let ~ be a prime of K. 
( i) at which K/Q is unramified, 
(ii) at which Chas good reduction, 
(iii) which does not divide 6. 

Let The a torsion packet in C(K) which is stable under G((K/K)). Sup­
pose g( C) > 2. 

Conjecture 4. K(T)/K is unramified above~-

We can prove the following [C-3]: Let~ be a prime of K which 
satisfies, in addition to (i)-(iii) above, one of the following conditions: 
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(a) Chas ordinary reduction at 113, or 
(b) Chas superspecial reduction at 113, or 
(c) char 113>2g. 

Then if g(C)>2, K(T)/K is unramified at 113. (Note: Ordinary means the 
Hasse-Witt matrix is invertible and superspecial means it is zero.) This, 
combined with results of Bogomolov [B], can be used to give a new proof 
of the Manin-Mumford conjecture. 

We can also prove Conjecture 4 for the cuspidal torsion packet on 
abelian covers of Pi:-unramified outside {O, 1, oo} [C-4]. (This is the tor­
sion packet which contains the inverse image of {O, 1, oo}.) 

In view of example (viii) one could attempt to make counter-examples 
to Conjecture 4 by constructing cyclic p-covers of P~ with good reduction 
over QP. However, one can prove 

Proposition 5. Suppose K is an unrami.fied extension of QP. Suppose 
C is a curve with good reduction over K and a is an automorphism of C of 
order p. Then if p > 3, a has no fixed points. 

This will be proved in Section 5. 
Finally we would like to state one last conjecture. Let g be an in­

teger g>4. 

Conjecture 6. There are only finitely many curves over C of genus g 
whose Jacobians admit the structure of a CM Abelian variety. 

This is an analogue of the Manin-Mumford conjecture because the 
CM points on the moduli space of principally polarized Abelian varieties 
of genus g are analogous to torsion points. In fact the CM liftings to 
QP of an ordinary Abelian variety over FP are the torsion points in the 
moduli space of all liftings (see [K]). Dwork and Ogus have obtained a 
partial result in this direction, see lD-0]. 

§ 2. Torsion points on curves over finite fields 

In this section we will begin a proof of Theorem 3. Let K be a finite 
field of characteristic p and C a curve of genus > 2 over K. Suppose S 
is a finite set of rational primes. Let J be the Jacobian of C. We will 
suppose C is embedded in J. Let cp: J-+J denote the Frobenius endomor­
phism of Jover K. Then <fi: J[m](K).::;J[m](K) for all integers m. In 
particular if f3 e EndK(J) such that (</>n-{3)J[m]=(0), then 

(2) (C n J[m])(K)s;(Cn f3C)(K). 

Let Wk= the image of Ck in J under the map 
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(Qt,••·, Qk)f----+Q1+" "• +Qk. 

Lemma 7. If j3 e EndK(J) and j3C=t=C then #(Cnj3C)(K):::;;Wg_1 ·f3C 
where "·" denotes the intersection pairing. 

Proof All we need show is that there exists an x e Wg_2 such that 
j3Cr;t,.-x+ Wg-t· Otherwise f3C+ Wg_2 <;; Wg-i· Since j3C=!=C this con­
tradicts Lemma 5.4 of [C-1]. 

Lemma 8. There exists a constant Mr depending only on r such 
that if j3 = .z::;r,;;l nt<fi, j3C=!=C and j3 e EndK(J). Then 

#(C n j3C)<maxt, 1 {\ntnj\}Mr. 

Proof #( C n j3C) < Wg-i · j3C. By Theorem 5, IV Section 3, of [L], 

Wg-1 · j3C=(J3-1 Wg-1) · C. 

By Proposition 2 of IV, Section 1 of [L], we have 

213-1(Wg_1)= l: ntn1Dij, 
i,j 

where Dt1=((¢t+¢i)- 1·-(¢-i+¢- 1))Wg_1• Hence 

1 
Wg_1 • J3C=- l: nin/Dij' C). 

2 i,j 

If we take Mr=(r 2/2) max [Di1 • q we obtain the result. 
Let Z[¢] denote the subring of EndK(J) generated by ¢. Let r = 

rkZ[¢]. Let e>O. Suppose we could show that for each sufficiently 
large m e S(N) there exists a j3 = .z:::r:-l ni¢i e Z[¢] and an n e N such that 

( i) (j3-¢n)J[m]=(0) 
(ii) \nt\<em for all i, and 
(iii) j3C =I= C. 

Then it would follow from Lemma 8 and equation (2) that 

for sufficiently large m e S(N). This would imply Theorem 2. 
When p <$ S we will establish the existence of such j3 and n for large 

me S(N). This additional hypothesis simplifies the argument. For 
then (i) translates into 

(i') j3 = ¢n mod mZ[¢]. 
In any case, (iii) is equivalent to 

(iii') /3 =I=¢"¢ 
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for any k e N, p e Aut (J) such that p preserves C, since the genus of C 
is strictly greater than one. 

§ 3. S-adic uniform distribution 

Let S be a set of rational primes. By Zs we mean lim Z/mZ where 
m ranges over S(N). If S is the set of all primes, then w;;et i = Zs. 

For x e (R/zr we let <x> denote its unique representative in [O, 1r. 
There is a natural embedding (Q©Zs)/ Zs---+Q/ Zand so of 

(Q©ZsY / Z's---+(Q/ Z)'. 

For x e Q©Z's we let <x>=<(x+Z's)/Z 8). 
Now suppose Mis a free Zs module of finite rank rand g: N---+M is 

a function which extends continuously to a function g: Z---+M. It follows 
that for each m E S(N) there exists a rem EN, rcm>O such that g(x+rcm)= 
g(x) mod m for all x e N. We say g is uniformly distributed if for each 
isomorphism L: M ~ Zs and each open subset U of [O, 1 )', 

m-= 
mES(N) 

Note that the term in this limit corresponding tom is independent of the 
choice of rem. We have the following Weyl-type criterion for uniform dis­
tribution. 

Theorem 9. g is uniformly distributed iff for each non-zero Zs-linear 
map L: M---+Zs, 

lim _!-_'f1e(Log(a))=o 
m--+= 7t a=O m 

mES(N) m 

where e(x)=exp (2rci<x)). 

We call the mth term in this limit I:m (g). It is independent of the 
choice of rcm-

Example. Suppose g: N---+Z is given by g(n)=f(n) e zr;;_i for some 
non-constant polynomialf(x) E Z[x]. Then the estimates on exponential 
sums due to Deligne [D] and lgusa [I] show that g is uniformly distributed. 

Suppose now M =Zs. For le S, let g 1 be the composition of g with 
the projection from Zs onto Z 1• We say g is nowhere constant if g 
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does not vanish on any non-empty open subset of Z, locally analytic 
if for each l e S and each a e N there exists a neighborhood U of a in 
i of the form U' XD where U' = IT ,,.1 Z, and DCZ 1 is of the form 
{x e Z1: lx-azl<WI} for some kin N and there exists a restricted power 
series 

h(T) e Q1(<T)> 

such that for x e U, g(x)=h(xi-a 1jlk). 

Proposition 10. Suppose Sis finite and g: N----+Z8 is nowhere constant 
and locally analytic. Then g is uniformly distributed. 

Proof It suffices to show that under these assumptions, 

(3) lim I:; (g)=O 
m-oo M 

meS(N) 

because bg satisfies the same hypotheses as g for each be Zs, b1=/=0, le S. 
Suppose <ef is a finite open covering of i. It suffices to prove 

lim - I:; e -- = 0 . 1 ~ ... -i (g(a)) 
m-oo 'Ir a=O m 

mES(N) m aEU 

for each U e <ef. Hence after passing to a suitable covering and a change 
of variables using the fact that g 1 is locally analytic, we may suppose 

gi(x)=hi(x 1) 

for some h1(T) e Qi( (T)> ). After passing to a finer covering, using the 
fact that g is nowhere constant, takes values in Z and perhaps applying 
another change of variables we may suppose hi(T) e Z 1( (T)) and h~(a)=O 
for all a e Z1, a=1=0. 

Suppose now m e S(N), m= IT ies [n 1• We may write 

where bi(m) e Z, (b1(m), l)= 1. One checks easily that 

Hence it suffices to prove 

Lemma 11. Leth e Z 1( (T)) such that h'(a)=l=O for all a e Z 1, a*O. 
Then if 
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In(bh) converges to zero uniformly with respect to be Zf. 

Proof Let k be any natural number. We first observe that if a e 
Z 1 and ord1 h'(a)<k then ord1 h'(a+i/k)<k, using the Taylor expansion 
for h'(T). Second, let a1, • • ·, a1 be representatives mod 1n-k for these 
a e Z 1 such that ord1 h'(a)<k. Then if n2:2k we have 

As ord1 h'(a,)=ord 1 h'(a)< k, h(a, + j/n-k)= h(at) + h'(a,)j/n-k mod /2<n-kJ 

and 2(n-k)>n, the above sum equals 

Since (bh'(a,)f/1'') ~ Z1, this sum is zero. Hence if n<2k 

(4) 12 (bh)I=[_!-_ i~1 e(bh(a))j<_!-_N 
,. I" f;;I, I" - zn n,k 

ord 1 h(a):!:k 

(h'(a)) s=max ord 1 -- • 
aez, a' 
a;"O 

Then r, s<oo and are independent of b. Moreover, if t1 is any natural 
number and ord 1 h'(a)>s+rk it follows that ord1 a>t unless r=0. If 
r=0, then N,.,s+1 =0 so it follows from (4) that 2,.(bh)=0 for n>2(s+ 1). 
Hence we may suppose r>0. It follows that if n>2(s+rt) then 

Hence 2,.(bh)</-t for n>2(s+rt). This proves the lemma and so the 
proposition. 

§ 4. End of proof of Theorem 3 

Suppose (1) is a flat finite integral extension of Zand (i)=Z[a] where 
a" -1 is not a zero-divisor and r = rk (1) = rk Z[a"] . for all n e N, n > 0. 
Suppose S is a finite set of primes of Z such that a is a unit in (1) 8 = (1)@Z8 • 

Let g: N--+(1)8 be the map n>-+a". 
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Proposition 12. g is uniformly distributed. 

Proof First it is clear that g extends to a continuous function from 
N onto (!)s since a is a unit in (!)s· Let L: 0s-Zs be a non-zero Zs-linear 
map. It is also clear that L o g is locally analytic. After Section 3, all we 
need show is that L o g is nowhere constant. If L o g is constant on a 
non-empty open subset of Z, it follows tha:t there exists a c e Zs and in­
tegers a>O, b>O such that L(aa+nb)=c for all n e N. So if c=O then it 
follows that aa, aa+b, · · ·, aa+cn-t)b are dependent over Zs. Since a is a 
unit it follows that I, ab, . · ·, a<r-t>b are dependent. So 

is not free of rank r, which contradicts our hypotheses. Now suppose 
c~O. Letf(x) be the minimal monic polynomial over Z satisfied by ab. 
Then 

and so since f(I) e Z and C ~0, f(I) = 0. It follows that ab - 1 is a zero 
divisor in {!}, a contradiction. 

In contrast to the results of [K-S], we have 

Corollary 12.1. Let Fn denote the nt " Fibonacci number. Let S de­
note a finite subset of the rational primes not containing 5. Then the function 

is uniformly distributed. 

Proof Let T: Q( Js)-Q denote the trace. As is well known, 

Since (1 + Js)/2 is the fundamental unit in Q( Js), the corollary is an 
immediate consequence of the proposition. 

We now are ready to apply these results on uniform distribution to 
estimate #(CnJ[m])(K), me S(N),p 1$ S. We may suppose 

r=rk Z[¢]=rk Z[¢n] 

for all n e Z, n>O by replacing K by a finite extension. Then the ring 
Z[¢]~End (J) and ¢ satisfy the hypotheses of the previous proposition 
since ¢ has no root of unity eigenvalues, and ¢ is a unit outside p. Hence 
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for each c>0, 0<c<I and form e S(N) sufficiently large 

#{;3= %i n;<ji: [ni[<cm, f==-<r mod mZ[¢] for some n e N} 
>(cm)'c. 

This certainly supplies us with ;3 satisfying (i) and (i') of Section 2. It 
remains to check that (iii') can be fulfilled also. Let a: Z[¢]-+C be a ring 
homomorphism. Suppose ;3 e Z[¢], 

(5) ;3=</J"p 

p e Aut (J) fixing C, and some k e N. Since p is necessarily of finite order, 

where q= #K, by the Riemann hypothesis. On the other hand, if 

(6) 

then [a(;3)[:S::cm(,vq)'. So if ;3 satisfies (5) and (6), 

k:s;:(log Jq (cm))+ r. 

Let w = the number of automorphisms of J which preserve C. This 
number is finite since Aut ( C) is finite. It follows that the number of ;3 
satisfying (5) and (6) is at most 

w(Iog.,iz (cm)+r+ 1) 

which form sufficiently large is less than (cm)'c since r::2:1. This insures 
the existence of a ;3 satisfying (i), (ii) and (iii) for m sufficiently large in 
S(N) and hence completes the proof of Theorem 2 when p ~ S. When 
p e S, the same ideas can be made to work but the required definition of 
uniform convergence becomes more complicated as the rank over ZP of 
the closure of the image of Z(¢] in End Tp(J) is smaller than the rank of 
Z[¢] over Z. 

§ 5. Cyclic p-extensions of curves over QP 

Let K denote the maximal unramified extension of QP. Suppose 
p > 3. Let (I) denote the ring of integers in K. We will now begin the 
proof of Proposition 5. Suppose Y is a curve over K with good reduction 
and a is an automorphism of Y of order p with fixed points. Since the 
proposition is easy when Y =Pk we may suppose that the genus of Y is 
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positive. Then Y has a canonical model over the integers 0 of K with 
good reduction and a extends to this model. We claim there is an open 
disk in Y, isomorphic to the open unit disk over K, fixed by a. We may 
take any residue class containing a fixed point of a as our disk. 

Proposition 5 will now follow from 

Proposition 13. There are no non-trivial analytic automorphisms of 
order p of the open unit disk over K. 

Lemma 14. Let k be an integer. Suppose R is any ring in which k is 
not a zero divisor. Let g(x) e R[[x]] such that 

g(x):=xmodx 2 and gogo•••og(x)=x. 
k times 

Then g(x)=x. 

Proof Suppose g(x)~x. Let n be such that g(x)-x+cxn modxn+i 
with c:;t=O. Then 

gogo ... og(x)=x+kcxnmodxn+i_ 
k times 

Hence kc=O and so c=O, a contradiction. 

Lemma 15. Consider tha series 

over Z[[a 0, a1, • • ·, an, · · · ]]. Then 

in 0. 

f 0 f 0 • • • 0 f(x)=ao(l+a 1+ · · · +af- 1)+afx 
k times 

Proof This follows easily by induction on k. 

Lemma 16. There are no solutions of 

Proof Suppose x were a solution. Then it is easy to see that x= 
1 +a for some a e (p). Then 
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l+x+ · · · +xP- 1=p+p(p-l) amodp 2 

2 

=P mod p 2 since p > 2. 

Proof of Proposition 13. Let f be an analytic isomorphism of the 
open unit disk over K. Then/ may be expressed as a series 

with an e m, a0 e peJ, a1 e 0*. Suppose f has order p. Then after Lemma 
15 we have 

ao(l +a 1 + · · · +ar- 1)=0 mod cfo(a0, a2) 

af = 1 mod ao(a0, az). 

It follows that either 
(i) a0=0, af= 1 

or 
(ii) 1 +a1 + ... +ar- 1=0 mod aoCao, az). 

In case (i) we have a1= 1 since p>2, hence f(x)=x after Lemma 14. In 
case (ii) we have 0 0(0 0, a2)=p0 after Lemma 16 and so a0 epeJ*, 
0 1 = 1 mod p0 and 0 2 e 0*. From this we see that f has exactly two fixed 
points which are defined over a quadratic extension of K. Let a be one 
of these fixed points. Set 

g(x)=f(x+a)-a. 

Then 

with CE K(a) 

p times 
and gogo · · · og(x)=x. It follows from Lemma 15 that cP=l. But 
since p > 3 there are no non-trivial p th roots of unity in a quadratic exten­
sion of K. Hence c= 1 and applying Lemma 14 again we have 

x=g(x)=f(x) 

as required. 

Remarks. 1. lfp=2 or 3, the statement of the theorem fails to be 
true. E.g., PJ11 has the automorphisms x>--+1/x and x>--+1/1-x, which 
have order 2 and 3 respectively. By pulling back one can make examples 
of higher genus. 
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2. The proof of Proposition 5 may be adapted to prove that the 
same conclusion holds of the ramification index e of K over QP is strictly 
less then (p-1)/2 or if p=3 and the order of a is 9 or if p=2, g>O, 
and the order of a is 4. This raises the question, what are ihe general 
conditions on the order of a and e that insure the conclusion of Proposi­
tion 5? 

3. As a corollary, one deduces that if p>3 andf: X-+P} is a Galois 
covering of smooth curves over Kand the ramification index with respect 
to f of some point of Xis divisible by p, then X has bad reduction. 
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