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On a Question Arising from Complex 
Multiplication Theory 

Greg W. Anderson 

§ 0. Introduction 

An abelian variety A defined over C, equipped with complex multi­
plication and level structure, is described up to isomorphism by some 
invariants that are "analytic" in nature. (The details of this description 
are reviewed in Section 1.) Let s be an arbitrary automorphism of C. 
Tate conjectured [8] and Deligne proved [I] a formula for the analytic in­
variants of A', the conjugate of A under s, in terms of classfield theory. 
(See also Lang [4], in which summaries of the contents of [I, 8] can be 
found.) Tate's formula generalizes the classical reciprocity law of Shimura­
Taniyama [6, 7] to the case in which s does not necessarily fix the CM type 
of A. (Tate's formula is reviewed in Section 1.) 

Now figuring prominently in Tate's formula is a certain cocycle. The 
task we set for ourselves in this paper is to abstract the construction of the 
cocycle figuring in Tate's formula making possible the subsequent speciali­
zation of that construction to the function field case. This task is carried 
out in Section 2. 

The eponymous question of the paper is not the question answered 
by the investigation of Section 2, but rather the question raised by it: What 
interpretation can be given to the new cocycle which we have constructed 
in the function field case? This is an open problem; the author expects 
the solution to be found in an as-of-yet-undeveloped theory of higher­
dimensional Drinfeld modules with complex multiplication in which, in 
particular, an analogue of Tate's formula is valid. 

Acknowledgement. The author gratefully acknowledges the support 
and hospitality of the RIMS in Kyoto during the author's visit in October 
1985. 

§ 1. A basic problem of complex multiplication theory 

1.0. Notation. We denote by Q the algebraic closure of Q in C. 
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Complex conjugation is denoted by p. By the term number.field, we under­
stand an extension of Q of finite degree embedded in C. Given a number­
field K, let 

rx: (idele group of K)~Gal (Kab/K) 

denote the reciprocity law of classfield theory, where Kab denotes the 
maximal abelian extension of Kin Q. Let i denote the profinite comple­
tion of Z, and let X: Gal (Q/Q)-+Zx denote the cyclotomic character. Let 
Kabs denote the largest subfield of Kab in which every archimedean place 
of K splits completely, and let 

fx: (K@Z)X~Gal (Kabs/K) 

denote the unique homomorphism rendering the diagram 

(idele group of K)~Gal (Kab/ K) 

fo~g~ components l ,. l af--->a-1 Ix abs 

(K@Z)X ~Gal (Kabs/K) 
rx 

commutative. Note that, in particular, 

ra(X(a))=the restriction of a to Qabs. 

1.1. Let K be a CM number.field, i.e. a numberfield K such that for 
all x e K and a e Gal (Q/ Q), 

apx=pax E aK<;t.R. 

Let <bs;Hom (K, C) be a CM type, i.e. a subset <J) such that 

<J) U p<P=Hom (K, C). 

Let (!) x denote the ring of integers of K, and Hi(A) the first singular ho­
mology group of the complex manifold underlying A. A homomorphism 
8: @x-+Endc(A) relative to which Hi(A) becomes a rank one projective 
(!}x-module is termed (a structure of) complex multiplication by @x, The 
complex multiplication 8 is said to be of type <]) if 

<P={r e Hom(K, C) I Lie(A),=;t=O}, 

where for each r e Hom (K, C), 

Lie (A)~ {v e Lie (A) I Vx e @x, O(x)*v=r(x)v}. 
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An continuous parameterization of an abelian variety A defined over C 
endowed with complex multiplication 0 by (l)x is by definition an {l)x­

equivariant isomorphism of real Lie groups 

1: (a©R)/a~A(C) 

where a is a suitably chosen fractional ideal of (l)x, 

1.2. Let K be a CM numberfield. Let A be an abelian variety 
defined over C endowed with complex multiplication 0 by (I) x of type ,JJ. 
Lets be an automorphism of C. Let 17 e Gal (Q/Q) denote the restriction 
of s to Q. Let s0 denote the composition of 0 with the "transport of 
structure" isomorphism Ende (A):::;Endc(sA), where sA denotes the con­
jugate of A relative to s. Then sA is endowed with complex multiplication 
s0 of type srJ>. Select continuous parameterizations .:i: (a©R)/a :=; A(C) 
andµ: (o©R)/6:::;sA(C). Let Ator and sAtor denote the torsion subgroups 
of A(C) and sA(C), respectively. Then there exists unique g e (K©Z)X 
rendering the diagram 

A 
K/a~Ator 

x,._.gx l µ l a,-,sa 

K/6~sAtor 

commutative. It can be shown without great difficulty that modulo Kx <;; 
(K©ZY, g depends only upon K, ,JJ and 17, Set 

def -"' 
gx(17, rJ>)=gKX E (K@Z)X/Kx. 

One of the most basic problems of complex multiplication theory is the 
determination of gx(17, rJ>). The reciprocity law of Shimura-Taniyama 
[6, 7] is, in effect, a formula for gx(17, rJ>) in the case srJ>=rJ>. Tate con­
jectured [8] a formula in the general case more or less equivalent to the 
"0-dimensional case" of Langlands' conjecture [5] on the conjugation of 
Shimura varieties. Both Tate's conjectural formula and 0-dimensional 
Langlands' conjecture were later proven by Deligne [l, 2]. The remainder 
of Section 1 is devoted to a presentation of Tate's formula. 

1.3. The cocycle gi(?, ?) constructed in the preceding paragraph 
satisfies many functional equations. We note here several of the most 
important functional equations. Let K be a CM field, ,JJ a CM type of K, 
and 17, -r elements of Gal (Q/Q). Let L be a CM numberfield containing 
K, and let '/ff be the unique CM type of L such that 

rJ>={tlx E Hom(K, C)Jt E '/ff}. 
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Then the following relations hold: 

(1.3.1) 

(1.3.2) 

(1.3.3) 

(1.3.4) 

gK(<J, ,c(/))gK(1:, <fJ)=gK(<J1:, @). 

(1:0l)gK(a, <fJ)=g,K(a, <P1:-1). 

gK(a, <fJ)gK(a, p@)=X(a) mod Kx. 

gia, lff)=gK(a, {[)) mod £X. 

Of these relations, only (1.3.3) is not a purely formal consequence of the 
definition. In order to prove (1.3.3) one considers polarizations. (See 
Tate [8] or Lang [4].) 

1.4. Deligne uncovered a much deeper functional equation for 
gi(?, ?), a consequence of his theory of absolute Hodge cycles on abelian 
varieties [2]. Let K be a CM field. Given a CM type <fJ of K, one attaches 
the characteristic function 

def( 1 if ajK E </J}) _ [<fJ]K= a~ . : Gal(Q/Q)~{0, l}. 
Q If <JjK ~ (/J 

Deligne observed [l] that given CM types </J1, • • ·, <Pn and m1, • • ·, mn E Z 
such that 

one has 

(1.4.1) 

for all a e Gal (Q/Q). 

1.5. We consider Tate's half-transfer construction. Let K be a CM 
numberfield. For each embedding 1:: K-Q, select a lifting w, e Gal (Q/Q) 
subject to the constraint 

(1.5.1) 

Then, according to Tate [8], for each a e Gal (Q/Q) and CM type </Jof K, 
there exists unique FK(a, <fJ) e Gal (Kab/K) such that 

FK(a, <fJ)~~f [1 (w;;-,1-aw,) mod Gal (Q/Kab) 
<E1' 

independent of the choice of a lifting w, e Gal (Q/Q) for each embedding 
1:: K-Q subject to condition (1.5.1) and the choice of an ordering of the 
product. (A proof of this independence in a more general context will be 
given in Section 2.) Tate termed this construction the half-transfer because 
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(1.5.2) 

where Verx 1Q: Gal (Qab/Q)--+Gal (Kab/K) denotes the transfer homomor­
phism. Tate went on to show that there exists unique fx(a, <[)) e 
(K@ZY / Kx such that 

(1.5.3) 

(1.5.4) 

((p@l)fx(<l, W))fx(<J, W)=-X(a) 

fx(fx(<l, W))=Fx(<l, W). 

modKx, 

(A proof of this uniqueness result in a more general context will be given 
in Section 2.) Since gx(a, <[)) possesses property (1.5.3) and, in the case 
a</)=([), possesses (1.5.4) by Shimura-Taniyama reciprocity, Tate was in­
spired to conjecture [8] 

(1.5.5) 

According to Deligne [1], (1.5.5) is the consequence of (1.3.1, 2, 3, 4), 
(1.4.1) and Shimura-Taniyama reciprocity. Full details of the proof of 
(1.5.5) are not yet extant. A book by J. S. Milne is expected. In the 
interim, see Lang [4] for a precis of the contents of [1] and [8]. 

1.6. In order to complete the task of motivating the abstract cocycle 
construction of Section 2, we prove the following 

Proposition. Let f: Gal (QI Q)--+ Z be a locally constant function. 
The following two conditions are equivalent: 

(I) The function f is an integral linear combination of functions of 
the form [W]x, Kan arbitrary CM field and([) an arbitrary CM type of K. 

(II) For all a, -r: E Gal (Q/Q), 

f(ap-r:) + f(a-r:)= f(p) + f(l). 
Proof The implication (!)=}(II) is obvious. We turn to the proof 

of (II)=}(!). For all a, -r: E Gal (Q/Q), 

f(a(-r:p-r:-1 p)) = f(p) + f(l)-f(ap)= f(a). 

Therefore, for a suitable CM numberfield K galois over Q, the function f 
factors through Gal (K/Q). Select a CM type ([) of K arbitrarily and 
identify ([) with a subset of Gal (K/Q) in the evident fashion. Set 

def 
w=f(p)+ f(l). 

Replacing/ by f-w[([)]x, we may assume that w=O. For each -r: E </), set 
ctaf 

g,= [([)]x-[(([) U {p-r:})-{-r:}]x. 
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Then 
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f = "E,J(1:)g,. 
eE<I> 

§ 2. The abstract cocycle construction 

D 

2.0. Notation. Let k be a global field and let oo be a place of k. 
We assume that, in case char (k)=O, the place oo is the unique archi­
medean place of k. Let k 00 denote the completion of k at oo, k':x, a fixed 
separable algebraic closure of k 00 and ks the separable algebraic closure of 
kin ks. Note that ks is a separable algebraic closure of k. Let us agree 
to restrict the use of the term global field henceforth to the designation of 
subfields of k' containing k and of finite degree over k. Set 

G~Gal (k' /k), 

identifying D with a closed subgroup of G in the evident fashion. Given 
any subfield K of k' containing k, we write 

G(K)~Gal (k' / K) ~ G. 

Given a global field Kand a place v of K, we say that vis infinite if v lies 
above oo, and finite otherwise. We write 

Set 

Kab~the maximal abelian extension of Kink', 

Kabs~the largest subfield of Kab in which every infinite place of K 
splits completely. 

Given a E G(K), let aK E Gal (Kab•/K) be induced by a. 

A~{x E k[[x[.Sl for all finite v}, 

where the inverse limit is extended over all nonzero ideals a of A. Given 
a global field K, we write 

We denote by 

the reciprocity law homomorphism of global classfield theory, and define 

fK: KX--+Gal (Kabs/K) 
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to be the unique homomorphism rendering the diagram 

(idele group of K)~Gal(Kab/K) 

commutative. 

forget components 1 
at oo 

_KX~Gal (Kabs/ K) 
rx 
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2.1. Let X denote the set of locally constant functions <lJ: G - Z 
such that for all <1, Te G, 

L </J(<1pT)dp = L {[)(p)dp, 

where 

dp~normalized Haar measure on D. 

Given <1 e G and {[) e X, we define <1W e X and W<1 E X by the rules 

For each global field K, set 

def 
X(K)={W e XI v<J e G(K), W<1=W}. 

Lemma. Let K be a global field, B an abelian group ( written addi­
tively) and f: G-B a function factoring through the double coset space 
D\G/G(K). Then for all{[) e X(K), the function 

(Ji----+ I: /(<1T)W(T): Gi----+B 
,EG/G(K) 

is constant. 

Proof We may assume without loss of generality that B=Z and 
that f is the characteristic function of a subset S of G such that DSG(K) 
=S. Set 

dr~normalized Haar measure on G. 

Then 

[G: G(K)J- 1 I: /(<1T)W(T) 
,EG/G(K) 
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2.2. For each global field K, let W(K) denote the set of functions 
w: G--+G such that w factors through G/G(K) and such that for all a e G 
and-re D, 

w(a) E aG(K), w(w)w(a)- 1 e D. 

Given any -r e G(K), let -rx denote the image of -r in Gal (Kabs/K) under 
restriction. Note that W(K) is a nonempty set. 

Lemma/Definition. There exists for all global fields K, a e G, and 
q) e X(K) a unique element Fx(<l, W) ofGal(Kabs/K) such that for all we 
W(K), 

Proof Provisionally, let us denote the product on the right by 
Fx(a, W, w). At issue is the dependence of Fx(a, W, w) upon w. Given 
also w' e W(K), we have 

where h: G--+Gal (Kabs/K) is given by the rule 

Jef 
h(a)=(w'(a)w(at 1)x. 

Now the function h factors through the double coset space D\G/G(K); by 
the lemma of§ 2.1, 

D 

Theorem/Definition. There exists one and only one way to assign to 
each triple (K, <1, W) consisting of a global field K, a e G, and q) e X(K) an 
element fx(<J, W) of K"-/Kx such that for all global fields L2_K, W, q)' e 
X(K), a, 1: e G, the following relations hold: 

(I) 

(II) 

(III) 

(IV) 

(V) 

J'x(a, 1:W)fx(1:, W)=fx(a-r, ©). 

(1:©A l)fx(a, W)=/,.x(a, w-r-1). 

fx(<l, W)-=-fia, W) modP. 

fx(a, W)fx(a, W')=fx(a, W+W'). 

Fx(/x(<l, W))=Fx(<l, ©). 
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The proof is deferred, pending some discussion of the theorem and the 
proofs of some lemmas. 

2.3. Let us consider the theorem in the case (k, k':,,, k') = (Q, C, Q). 
Then for all a e Gal (Q/Q), CM numberfields Kand CM types{[) of K, the 
value of the symbol fx(a, W) defined in Section 1, following Tate, coin­
cides with the value of the symbol fx(a, [W]x) as defined by the theorem 
above. 

2.4. Next, let us consider the theorem in the case that the charac­
teristic of k is nonzero. Then the cocycle ft(?, ?) does not figure in a 
reciprocity law analogous to (1.5.5), as far as the author knows. But 
inspired by Drinfeld' s paper [3], we pose the central question of this paper: 
Does there exist a theory of higher-dimensional Drinfeld modules with 
complex multiplication in which a cocycle g1(?, ?) can be defined without 
the use of class field theory, such that a significant reciprocity law of the 
form "f = g" is valid? The author is convinced that this is indeed pos­
sible; a few steps toward this goal were taken in the author's paper [9]. 

2.5. Let K be a global field and let U(K) denote the set of nonzero 
elements of K such that for all finite places v of K, \u\v= l. For each 
finite set S of finite places of K, and O<s<l, let U(K; S, s) denote the set 
of elements u of U (K) such that for all places v of S, \ u - I Iv :s;; s. 

Lemma 2.5.1. For all positive integers n and global fields K, there 
exists a finite set S of finite places of Kand O<s<I such that U(Kt2 
U(K; S, c). 

Proof This is due to Chevalley in the characteristic zero case. In 
the general case, this follows from Theorem 1 on p. 82 of [O]. D 

Lemma 2.5.2. For all global fields K galois over k, the homomorphism 
Homa (X(K), _KX/Kx)-+Homa (X(K), Gal (Kabs/K)) induced by fxis an iso­
morphism. 

Proof The sequence 

1--+U(K)/U(K)--+KX/ KX ~Gal (Kabs/K)--+1 

is exact. Therefore it is enough to prove the following two statements : 

(2.5.3) U(K)/ U(K) is an injective Gal (K/k)-module. 

(2.5.4) Homa (X(K), U(K)/U(K))=O. 
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Now Z/Z is infinitely and uniquely divisible, i.e. a vector space over Q. 
The statement (2.5.3) now follows from the observation that there exists a 
Gal (K/k)-equivariant isomorphism 

U(K)/U(K)~ U(K)®(Z/ Z), 

and, further, (2.5.4) now reduces to 

(2.5.5) Homa (X(K), U(K)®Q) = 0. 

Let I ?I denote an extension to k',,, of the absolute value I ?I® of k®. Then 
for all u e U(K) such that there exists (J) e X(K) and f e Homa (X(K), 
U(K)®Q) such thatf((J))=u®la, and for all a e G, 

(2.5.6) log laul = L log lpqul dp=log lul, 

by appeal to the definition of X. But (2.5.6) implies that u is a root of 
unity, hence u®la=O. This establishes (2.5.5) and completes the proof 
of the lemma. D 

Lemma 2.5.7. For all global fields L"2_K, where L is galois over K, 
the sequence 

is exact. 

Proof Hilbert's Theorem 90. 

2.6. For each pair L"2,K of global fields, let 

denote the transfer homomorphism. Let 

denote the unique continuous homomorphism rendering the diagram 

Gal (Kah/ K) restriction Gal (Kab•/K) 

VerL;x 1 1 VersL;K 

Gal (Ub/L) . . Gal (Ub"/L) 
restriction 

D 

commutative; in order that VersL;x exist, it is necessary and sufficient that 
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(2.6.2) 

Now (2.6.2) follows from the well known fact that the diagram 

(idele group of K)~Gal (Kah/K) 

(2.6.3) inolusionl lVerL;K 

(idele group of L)~Gal (£Rh/L) 
rL 
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commutes. In turn, the commutativity of (2.6.1) and (2.6.3) implies that 
the diagram 

f' ' 
_KX~Gal (Kah•/K) 

(2.6.4) inclusion l l VersL;K 

f,x ~Gal (Lah•/L) 
TL 

commutes. 

Proposition. For all global fields L2_K, ifJ, if)' e X(K) and u, 1: e G, 
the following relations hold: 

(I) 

(II) 

(III) 

(IV) 

Fx(u, 1:W)Fx(1:, W)=Fx(u-r:, ifJ). 

1:Fx(u, W)-r:-1=F,x(u, w1:-1). 

FL(u, W)= VersL;x (Fx(u, W)). 

Fx(u, ifJ)Fx(u, W')=Fx(u, ifJ+ifJ'). 

Proof The proofs of (I), (II), and (IV) are not particularly difficult, 
and so we omit them. The proof of (III) is not particularly easy; we give 
full details. Select w e W(L) and v0 e W(K) arbitrarily. Set 

Note that 

(2.6.5) 

def 
V=Wo V0• 

Wo V=V e W(K). 

We define a function u: G-.G(K) by the formula 

def 
u(r)=v(ur)- 1uv(r). 

Given re G(K) and o e G(L), we denote by r Kand oL the images of rand 
o, respectively, in Gal (Kah•/K) and Gal (Lah•/L), respectively. For each 
r e G, we define a function h7 : G(K)-.G(K) by the rule 
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def i 
hlo)=v(r)- w(v(r)o). 

For each o e G(K), we define a functionp,: G-+Gal(L•h•/L) by the formula 

Note that p 0 depends only on the coset oG(L). We have 

(2.6.6) Fx(a, <P)= IT u(r)~fr) 
rEG/G(K) 

For each re G, h7 factors through G(K)/G(L) and has the property that 
for all ii E G(K), 

(2.6.7) h/o) E oG(L). 

Consequently, by definition, for all r e G, 

(2.6.8) VersL/K (u(r)x)= IT (h/u(r)o)- 1u(r)h/o))L. 
oE G(K)/G(L) 

For all re G and o e G(K), one verifies by direct calculation that 

(2.6.9) Pu(r)lar)- 1pu(r)lr)(h/u(r)o)- 1u(r)hrCo))L = ( w(av(r)o)- 10-w( v(r)o))L. 

By definition, 

(2.6.10) FL(a, <P)= IT IT (w(av(r)o)- 10-w(v(r)o))fCrl. 
rEG/G(K) oEG(K)/G(L) 

We claim that for all ii e G(K), the function p 0 factors through the double 
coset space D\G/G(K). To verify the claim, let re G, p e D, and re 
G(K) be selected arbitrarily. Then 

p.(pr-c)p.(r)-i = (hpr.Co)-1hr(o))L 

= ( W( V(pr-c)o)-IV(pr)u(r)-iw( V(r)o))L 

= ( w(p1 v(r)o)- 1 Pi w( v(r)o)h = ( w( v(r)o)- 1 P2P1 w( v(r)o)h 

= 1 e Gal (Phs/L), 

where p1, p2 E D are given by the formulas 

Pi ~rv(pr)v(r)-1, 

P2;::w(v(r)o)w(p 1v(r)o)- 1• 

By (2.6.8, 9, 10) and the lemma of §2.1, 
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VersL/x(Fx(a, (f)))-1FL(a, (f)) 

= IT ( IT (Puw(art 1Pu<no(r)t<n) 
rEGJG(K) oEG(K)JG(L) 

= IT ( IT (p.(ar)-1p.(r))ifi<rJ) 
rEGJG(K) oEG(K)JG(L) 

= IT C IT (p.(ar)-lp.(r))ifi<n) 
oEG(K)JG(L) rEGJG(K) 

=1. D 

2.1. Proof of the theorem. We claim that there exists a unique way 
to assign to each global field L galois over k, a E G, and I[> E X(L) an 
elementJia, (f)) of ix;Lx such that for all a, -r E G and I[>, (f)' E X(L), 

(2.7.1) 

(2.7.2) 

(2.7.3) 

(-r@l)JL(a, (f))= Jia, 1[1-r-1), 

JL(a, (f))JL(a, (f)')= Jia, (f)+(f)'), 

rifL(a, (f)))=FL(a, @). 

The claim is established by an appeal to Lemma 2.5.2 and to the propo­
sition of §2.6. We claim also that for all global fields M2._L, both M 
and L galois over k, a E G, and fJ) E X(L), 

(2.7.4) 

This claim follows from the definitions, Lemma 2.5.2, Lemma 2.5.7, and 
(III) of the proposition of §2.6. By Lemma 2.5.2, and (II) of the propo­
sition of §2.6, for all global fields L galois over k, a, -r E G and I[> E X(L), 

(2.7.5) 

By Lemma 2.5.7 and relation (2.7.4), there exists uniquefx(a, @) E J?.x;Kx 
such that for all global fields L2._K, with L galois over k, 

(2.7.6) 

By Lemma 2.5.7, (III) of the proposition of §2.6, and (2.7.3), fx(a, ff)) 
possesses property (V) of the statement of the theorem. The remaining 
properties of fx(a, @) are deduced via Lemma 2.5.7 from (2.7.1, 2, 3, 5). 
This settles the existence of fx(a, @). Relation (2.7.6) affirms the uni­
queness off x(a, @). D 
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