One-Parameter Family of Linear Representations of Artin's Braid Groups

Toshitake Kohno

§ 1. Introduction

The central theme of this note is linear representations of Artin's braid groups. There is a classical series of such representations called the Burau representations, which is defined by means of an embedding of the braid group in the automorphism group of a free group. Recently V. Jones [9] and several authors studied the one-parameter family of linear representations of the braid groups induced from representations of the Hecke algebra of the symmetric group. These representations turn out to be a generalization of the Burau representation. In this note we propose another generalization. Namely we shall consider the integral of the form

$$F(x_1, \dots, x_n) = \int \prod_{1 \le i < j \le n+p} (x_i - x_j)^{-\mu_{ij}} dx_{n+1} \wedge \dots \wedge dx_{n+p}$$

and we study the monodromy of the above multivalued functions. permits us to define a one-parameter family of linear representations of the braid groups. As a special case p=1, it is shown that this representation is equivalent to the Burau representation. The study of this direction is motivated by the work of K. Aomoto [2], in which he computed the system of differential equations satisfied by the above multivalued func-This note is organized in the following way. Section 2 is concerned with the definition and basic properties of the Artin's braid groups. In Section 3 we shall explain the principle of the vanishing of cohomology of a "generic" local system and by using this formulation, Section 4 focuses our new one-parameter family of linear representations of the braid In Section 5 we discuss the image and the kernel of the Burau representation for special values. Our principal tool is the theorem of Picard type for hypergeometric functions proved by Deligne-Mostow [5] and Terada [16].

Received March 29, 1986.

§ 2. Review of basic facts on Artin's braid groups

Let $X_n = \{(z_1, \cdots, z_n) \in C^n; z_i \neq z_j \text{ if } i \neq j\}$. The symmetric group S_n acts on X_n by $(z_1, \cdots, z_n) \cdot g = (z_{g(1)}, \cdots, z_{g(n)}), g \in S_n$. We denote by Y_n the quotient space X_n/S_n . The Artin's braid group is by definition the fundamental group of Y_n . We shall denote it by B_n . The fundamental group of X_n , which is denoted by P_n , is called the pure braid group. We have an exact sequence

$$(2.1) 1 \longrightarrow P_n \longrightarrow B_n \longrightarrow S_n \longrightarrow 1.$$

Let us denote by $p: X_n \to Y_n$ the natural projection. We choose a base point $x_0 = (0, 1, \dots, n-1) \in X_n$. Any element in $\pi_1(Y_n, p(x_0))$ is represented by a path $f: (I, \{0\}) \to (X_n, x_0)$. Let $b_j, 1 \le j \le n-1$, be the element of $\pi_1(Y_n, p(x_0))$ corresponding to the path in X_n given by

$$f(t)=(0, \dots, j-2, f_{j-1}(t), f_j(t), j+1, \dots, n-1)$$

where

$$f_{j-1}(t) = (j+t-1) - \sqrt{-1} \sqrt{t-t^2}, \quad f_j(t) = (j-t) + \sqrt{-1} \sqrt{t-t^2}.$$

Let A_{ij} , $1 \le i < j \le n$, denote the element of P_n defined by

$$(2.2) A_{ij} = b_{j-1}b_{j-2}\cdots b_{i+1}b_i^2b_{i+1}^{-1}\cdots b_{j-1}^{-1}.$$

Let us recall the following fundamental theorems.

(2.3) **Theorem** (Artin [1]). The braid group B_n admits a presentation with generators b_1, \dots, b_{n-1} and defining relations

$$b_i b_j = b_j b_i if |i-j| \ge 2$$

$$b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1}, 1 \le i \le n-2.$$

The pure braid group P_n is generated by A_{ij} , $1 \le i < j \le n$.

(2.4) **Theorem** (Chow, see [3]). If $n \ge 3$, the center of B_n is the infinite cyclic group generated by

$$(b_1b_2\cdots b_{n-1})^n = (A_{12})(A_{12}A_{13})\cdots (A_{1n}A_{2n}\cdots A_{n-1,n}).$$

We have a faithful representation of B_n as an automorphism group of a free group $F_n = \langle x_1, \dots, x_n \rangle$ ([3] Corollary 1.8.3). The representation is induced by a mapping h from B_n to Aut (F_n) defined by:

(2.5)
$$h(b_i): x_i \mapsto x_i x_{i+1} x_i^{-1}$$
$$x_{i+1} \mapsto x_i$$
$$x_i \mapsto x_j \quad \text{if } j \neq i, i+1.$$

The pure braid group P_n is characterized as the subgroup of $\operatorname{Aut}(F_n)$ consisting of the elements $g \in \operatorname{Aut}(F_n)$ satisfying:

(2.6)
$$g(x_i) \sim x_i \quad \text{(conjugate)}, \ 1 \leq i \leq n$$
$$g(x_1 \cdots x_n) = x_1 \cdots x_n.$$

From this point of view the *profinite braid groups* defined by Y. Ihara [7] may be considered as an arithmetic analogy of the pure braid group.

There is a well-known family of linear representations called the *Burau* representations which are induced from the above representation h. The Burau representation $\beta_n : B_n \rightarrow GL_{n-1}(\mathbf{Z}[t, t^{-1}])$ is given by

(2.8) **Definition.** For $n \in \mathbb{N}$, $n \neq 0$ and $q \in \mathbb{C}$, we denote by $H_n(q)$ the algebra over \mathbb{C} generated by $(t_i)_{i=1,\dots,n-1}$ with relations:

$$(t_i+1)(t_i-q)=0,$$
 $1 \le i \le n-1$
 $t_it_j=t_jt_i,$ $|i-j|\ge 2$
 $t_{i+1}t_it_{i+1}=t_it_{i+1}t_i,$ $1 \le i \le n-2.$

The algebra $H_n(q)$ is called the *Hecke algebra* (or *Iwahori algebra*) of the symmetric group S_n . The original definition for any Coxeter system is due to [8].

The irreducible representations of $H_n(q)$ are parametrized by Young tableau for a generic g. Since we have a natural homomorphism from the group ring $C[B_n]$ to $H_n(q)$, we obtain a family of linear representations of B_n with one-parameter. V. Jones and several authors studied these representations systematically and obtained new polynomial invariants of links (see [4], [9]). These linear representations of B_n contain the Burau representation in the following way.

(2.9) **Theorem** (Jones [9]). The representation of B_n corresponding to the Young tableau of type (n-1, 1) is the tensor product of the Burau representation and the one dimensional parity representation.

Cohomology of rank one local systems

Let us preserve the notations of Section 2. For n, p > 0, we consider the natural projection $\pi: X_{n+p} \rightarrow X_n$, which has a structure of a fibration. We see that the induced homomorphism $\pi_*: \pi_1(X_{n+n}) \to \pi_1(X_n)$ admits a natural section, which we denote by s. Let $\tau: \pi_1(X_{n+p}) \to \mathbb{C}^*$ be a homomorphism which is trivial on $s(\pi_1(X_n))$. Let L be the local system over X_{n+p} associated with the representation τ . Let us recall that $\pi_1(X_{n+p}) =$ P_{n+p} is generated by the elements A_{ij} , $1 \le i < j \le n+p$ (see (2.3)). We choose $\mu_{ij} \in C$ such that $\exp 2\pi \sqrt{-1} \mu_{ij} = \tau(A_{ij})$. Let us put $I_k = \{(i, j);$ $1 \le i < j \le k$. Since τ is trivial on $s(\pi_1(X_n))$, we have $\mu_{i,j} \in \mathbb{Z}$ if $(i,j) \in I_n$.

We shall assume the following condition on $\mu_{i,i}$:

- For any subset S of $I_{n+p}-I_n$, $\sum_{(i,j)\in S} \mu_{ij}$ is not an integer.
 - Under the hypothesis (3.1), we have (3.2)Proposition.
 - (i) $\mathbf{R}^{j}\pi_{*}L=0$ if $j\neq p$.
 - The local system $\mathbf{R}^p \pi_* L$ has rank (n+p-2)!/(n-2)!.

Proof. Let Z denote a fiber of π . The first assertion is a special case of the vanishing of cohomology of a local system discussed in [12]. Let V be a smooth compactification of Z such that D = V - Z is a divisor with normal crossings. Let $i: Z \rightarrow V$ be the inclusion map. By means of the hypothesis (3.1), we have

$$(3.3) i_* L|_Z = i_! L|_Z$$

where $i_1L|_Z$ is an extension of $L|_Z$ by zero. We have the following isomorphisms.

(3.4)
$$H^{j}(V, i_{*}L|_{Z}) \cong H^{j}(Z, L|_{Z})$$
$$H^{j}(V, i_{!}L|_{Z}) \cong H^{j}_{C}(Z, L|_{Z}).$$

Here the right hand side stands for the cohomology with compact sup-By the Poincaré duality we have an isomorphism

(3.5)
$$H_{\mathcal{C}}^{j}(Z, L|_{Z}) \cong H_{2p-j}(Z, L|_{Z}).$$

Since Z has a homotopy type of a CW complex of dimension p, we have $H^{j}(Z, L|_{Z}) = 0$ if j > p. This completes the proof of (i). By an elementary computation we see that the Euler characteristic of Z is

$$(-1)^p(n+p-2)!/(n-2)!$$
.

Hence the assertion (ii) follows immediately. For more details and extensive treatments of the vanishing theorem of this type see [12]. (cf. [2], [11]).

The rest of this section is devoted to the study of Hodge structure on $PR^p\pi_*L$ in the case p=1. We put $\mu_i=\mu_{i,n+1}, 1 \le i \le n, \mu_{n+1}=2-\sum_{i=1}^n \mu_i$. The following Lemma is due to Deligne-Mostow [5].

(3.6) **Lemma.** If $0 < \mu_i < 1$, $1 \le i \le n+1$, then the projective local system $\mathbf{PR}^i \pi_* L$ admits a global Hermitian form of signature (1, n-2). This determines a linear representation of the pure braid group P_n in PU(1, n-2).

Proof. Let Z be the fiber over $(a_1, \dots, a_n) \in X_n$. Any section u of $\Omega^1(L|_Z)$ can be written in the form $u = z^{-\mu_i} \cdot e \cdot f \cdot dz$ locally around a_i , where e is a horizontal section of $L|_Z$ and f is a holomorphic function on a punctured neighbourhood of a_i . If f is meromorphic at a_i , we define $v_i(u)$ by $v_{a_i}(f) - \mu$. Let $H^{1,0}(Z, L|_Z)$ be the space of the forms of the first kind, i.e., the meromorphic forms u on P^1 satisfying $v_i(u) + \mu_i \ge 0$ for $1 \le i \le n + 1$, where we put $a_{n+1} = \infty$. Let $H^{0,1}(Z, L|_Z)$ be the complex conjugate of $H^{1,0}(Z, \overline{L}|_Z)$, where $\overline{L}|_Z$ denotes the complex conjugate local system of $L|_Z$. We have the Hodge decomposition:

(3.7)
$$H^{1}(Z, L|_{Z}) = H^{1,0} \oplus H^{0,1}$$

with dim $H^{1,0}=1$, dim $H^{0,1}=n-2$. There exists a Hermitian form on $H^1(Z,L|_Z)$ which is positive definite on $H^{1,0}$ and is negative definite on $H^{0,1}$. Such a form is unique up to positive constant. Hence we obtain a horizontal Hermitian form of signature (1, n-2) on $PR^1\pi_*L$, which proves Lemma.

(3.8) **Notations.** By means of the above argument, we obtain a multivalued holomorphic map $w: X_n \to D_{n-2}$, where D_{n-2} denotes the (n-2)-dimensional complex ball. If $\mu_1 = \cdots = \mu_n = \mu$, this map descends to a multivalued holomorphic map from Y_n to D_{n-2} , which we denote by the same letter w. The corresponding linear representation of B_n in PGL(n-1, C) is denoted by $\beta_n \langle \mu \rangle$.

§ 4. Examples of one-parameter families of linear representations of braid groups

The local system $R^p\pi_*L$ over X_n defined in Section 3 determines a linear representation of the pure braid group

$$\rho: P_n \longrightarrow \operatorname{Aut} H^p(Z, L|_Z)$$

where Z denotes a fiber of π . If we suppose moreover that

then the local system $R^p\pi_*L$ is invariant under the operation of S_n on X_n . Hence this defines a local system over $Y_n = X_n/S_n$. In this situation the representation ρ gives a representation of the braid group B_n in Aut $H^p(Z, L|_Z)$, which we denote by the same letter ρ .

Let us consider the case p=1. We put $\mu_{1,n+1} = \cdots = \mu_{n,n+1} = \mu$, $\alpha = \exp 2\pi \sqrt{-1} (-\mu)$. We observe that the dual representation $\rho^* : B_n \to \operatorname{Aut} H^1(Z, L|_Z)$ is obtained from the Burau representation

$$\beta_n: B_n \longrightarrow GL_{n-1}(\mathbf{Z}[t, t^{-1}])$$
 (see Section 2)

by putting $t = \alpha$.

We consider the case p>1. Let us suppose that $\mu_{ij}=\mu$ for any $(i,j)\in I_{n+p}-I_n$, with some $\mu\in C$ satisfying the condition (3.2). By considering $\exp 2\pi\sqrt{-1}(-\mu)$ as a parameter, we get a one-parameter family of linear representations:

$$(4.3) \qquad \beta_{n,p} \colon B_n \longrightarrow GL_N(\mathbf{Z}[t, t^{-1}]), \qquad N = (n+p-2)!/(n-2)!.$$

Since $\beta_n = \beta_{n,1}$, these representations may be considerd as a generalization of the Burau representations.

For p>1, the representation $\beta_{n,p}$ is not irreducible. In fact the following method permits us to decompose the local system $\mathbf{R}^p\pi_*L$. By our hypothesis on μ_{ij} , the symmetric group S_p acts naturally on $H^p(Z, L|_Z)$. Let $\Gamma=(d_1, \dots, d_k)$ be a partition of p, i.e., $d_1 \ge d_2 \ge \dots \ge d_k \ge 0, \sum_{i=1}^k d_i = p$. We denote by e_Γ an idempotent element of the group ring $C[S_p]$ corresponding to the Young tableau of type Γ (see [18]). Let V_Γ be the left ideal of $C[S_p]$ generated by e_Γ . We have

(4.4)
$$\operatorname{Hom}_{S_{\mathfrak{p}}}(V_{\Gamma}, H^{\mathfrak{p}}(Z, L|_{Z})) \cong e_{\Gamma} \cdot H^{\mathfrak{p}}(Z, L|_{Z}).$$

We denote the right hand side by U_r . We observe that the action of S_p on $H^p(Z, L|_Z)$ is commutative with the operation of B_n . Hence we obtain the following Proposition by using standard arguments in representation theory.

(4.5) **Proposition.** We have a direct sum decomposition

$$H^{p}(Z,L|_{Z}) = \bigoplus_{\Gamma: \ partition \ of \ p} [V_{\Gamma} \otimes U_{\Gamma}]$$

and for any Γ , U_{Γ} and $V_{\Gamma} \otimes U_{\Gamma}$ are invariant subspaces with respect to the operation of the braid group B_n .

By means of the above Proposition, the representation $\beta_{n,p}$ has a factor corresponding to Γ , which we denote by $\beta_{n,p,\Gamma}$.

(4.5) **Example.** Let us consider the case n=3, p=2, $\Gamma=(1, 1)$. The representation $\beta_{3,2,\Gamma}$: $B_3 \rightarrow GL_3(\mathbf{Z}[t, t^{-1}])$ is given by

$$b_1 \mapsto \begin{bmatrix} -t^2 & 0 & 1 \\ 0 & -t & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad b_2 \mapsto \begin{bmatrix} 1 & 0 & 0 \\ t & -t & 0 \\ t^2 & 0 & -t^2 \end{bmatrix}.$$

This representation cannot be obtained from the representations of B_3 induced from the natural homomorphism $C[B_3] \rightarrow H_3(q)$.

§ 5. Image and kernel of $\beta_n \langle \mu \rangle$

The object of this section is to study the linear representations $\beta_n \langle \mu \rangle$ for special values of μ (see Section 3 for notations). We shall prove the following Theorem.

- (5.1) **Theorem.** Let μ be a real number such that
- (i) $n^{-1} < \mu < 2n^{-1}$
- (ii) $(1-2\mu)^{-1} \in \mathbb{Z} \cup \{\infty\}, ((n-1)\mu-1)^{-1} \in \mathbb{Z} \cup \{\infty\}.$

We put $\kappa = (1-2\mu)^{-1}$, $\kappa_{\infty} = ((n-1)\mu-1)^{-1}$. Then the kernel of the linear representation $\beta_n \langle \mu \rangle$: $B_n \to PU(1, n-2)$, $n \ge 3$, defined in (3.8) is normally generated by the following elements:

$$b_1^{2\kappa}$$
, $(b_1 \cdots b_{n-2})^{(n-1)\kappa_{\infty}}$, $(b_1 \cdots b_{n-1})^n$.

The complete list of μ satisfying the hypothesis of Theorem is given in the following table:

- (5.2) Table
- the case n=3
 - (i) $\mu = 2^{-1}(1 \kappa^{-1}), \kappa \ge 3, \kappa \in \mathbb{N}$
 - (ii) $\mu = 2^{-1}, \kappa = \infty$
 - (iii) $\mu = 2^{-1}(1 + \kappa_{\infty}^{-1}), \kappa_{\infty} \ge 3, \kappa \in \mathbb{N}$

the case $n \ge 4$

	n=4					n=5			n=6	n=7
μ	1/3	3/8	2/5	5/12	4/9	1/4	1/3	3/8	1/4	1/4
κ	3	4	5	6	9	2	3	4	2	2
	∞	8	5	4	3	∞	3	2	4	2

We devide the proof of Theorem (5.1) into several steps. First we review briefly the theory of M. Kato [10] on branched coverings (see also [19]).

Let us start with a pair (G, M), where M is a connected complex manifold and G is a properly discontinuous group of holomorphic transformations of M. We obtain the orbit space X, which is an irreducible normal analytic space. Let $b: X \rightarrow N$ be a function defined by b(x) = #G. for $x \in X$, where $z \in M$, G.z = x and G. denote the isotropy subgroup of Gat z. We write $G \setminus M = (X, b)$. Conversely, given a pair (X, b), where X is an irreducible normal analytic space and $b: X \rightarrow N$ is a function, we shall say that (X, b) is uniformizable if and only if there exists (G, M) such that $(X, b) = G \setminus M$. The pair (G, M) is called a uniformization of (X, b). We call (X, b) an *orbifold* if (X, b) is locally uniformizable. Let (X, b) be an orbifold. We put $\Sigma X = \{x \in X; b(x) \ge 2\}$ and $X_0 = X - \Sigma X$. Let $\{D_i\}_{i \in J}$ be the set of irreducible hypersurfaces is ΣX . The function b attains a constant value b_j on the regular part of D_j . Let μ_j denote a normal loop around D_i . Let N be the smallest normal subgroup of $\pi_1(X_0)$ containing $\{\mu_i^{b_i}\}_{i \in J}$. We shall only state the correspondence between coverings and groups. The following Proposition is a part of Theorem 1 of [10].

(5.3) **Proposition** (M. Kato [10]). Let (X, b) be a uniformizable orbifold. There is a one-to-one correspondence between the normal subgroups of $\pi_1(X_0)$ containing N and the covering maps of orbifolds: $(X', b') \rightarrow (X, b)$.

The above correspondence may be illustrated in the following diagram:

$$\begin{cases}
K: \text{ normal subgroup of} \\
\pi_1(X_0) \text{ containing } N
\end{cases}
\longrightarrow
\begin{cases}
X'_0 \longrightarrow X_0: \text{ covering} \\
\text{ corresponding to } K
\end{cases}$$

$$\longrightarrow
\begin{cases}
X': \text{ Fox completion of} \\
X'_0 \text{ over } X([6])
\end{cases}$$

In particular, if we start with K=N, we obtain the universal uniformization $(\pi_1(X_0)/N, M)$.

(5.4) **Notation.** We put $M_n = \{(z_1, \dots, z_{n+1}) \in \mathbf{P}^1 \times \dots \times \mathbf{P}^1; z_i \neq z_j \text{ if } i \neq j\}$. Let $PGL(2, \mathbf{C})$ act diagonally on M_n and we put $Q_n = M_n/PGL(2, \mathbf{C})$.

We see that there is a natural inclusion $X_n \to M_n$. We denote by $PGL(2, \mathbb{C})_{\infty}$ the isotropy subgroup of $PGL(2, \mathbb{C})$ at ∞ . We have $Q_n = X_n/PGL(2, \mathbb{C})_{\infty}$, where $PGL(2, \mathbb{C})_{\infty}$ acts diagonally on X_n . We have an isomorphism:

$$(5.5) P_n/\text{Cent}(B_n) \cong \pi_1(Q_n).$$

Since the natural projection $\pi_1(X_n) \to \pi_1(Q_n)$ has a section, we shall consider $\pi_1(Q_n)$ as a subgroup of P_n .

We have defined in (3.8) a multivalued holomorphic map $w: X_n \to D_{n-2}$. This map descends to a multivalued holomorphic map from Q_n to D_{n-2} , which we denote by the same letter w.

Following Deligne and Mostow [5], we consider the following stable partial compactification of Q_n (cf. [14]). Let us fix $(\mu_1, \dots, \mu_{n+1})$ with $0 < \mu_i < 1$, $1 \le i \le n+1$ and $\sum_{i=1}^{n+1} \mu_i = 2$. We shall assume moreover the following integer condition:

(5.6) (INT) For any
$$i \neq j$$
 such that $\mu_i + \mu_j < 1$, $(1 - \mu_i - \mu_j)^{-1}$ is an integer.

Let S denote the set $\{1, \dots, n+1\}$ and let $(P^1)^S$ be the set of functions from S to P^1 . We consider M_n as a subset of $(P^1)^S$ and we define M_n^{st} to be the set of functions $f: S \rightarrow P^1$ such that for any $x \in P^1$ with $f^{-1}(x) \neq \phi$ we have

(5.7)
$$\sum_{f(s)=x,s\in S} \mu_s < 1.$$

Let $PGL(2, \mathbb{C})$ act diagonally on M_n^{st} . We define Q_n^{st} to be the quotient space $M_n^{st}/PGL(2, \mathbb{C})$. The partial compactification Q_n^{st} has a natural structure of a complex manifold.

Let $\tilde{Q}_n \to Q_n$ be the covering corresponding to the kernel of the linear representation of P_n in PU(1, n-2) defined in Section 3. Let Q_n^{st} be the Fox completion of $\tilde{Q}_n \to Q_n$ over Q_n^{st} . Let $\tilde{w} : \tilde{Q}_n \to D_{n-2}$ denote the lift of w on \tilde{Q}_n . The following Picard type theorem was proved by Deligne and Mostow [5], and independently by Terada [16].

(5.8) **Theorem** (Picard [15], Terada [16], Deligne-Mostow [5]). If $(\mu_1, \dots, \mu_{n+1})$ satisfies the condition (INT) (see (5.6)), then the corresponding map $\tilde{w}: \tilde{Q}_n \to D_{n-2}$ extends to a homeomorphism $\overline{w}: Q_n^{st} \to D_{n-2}$ which is equivariant with the action of $\pi_1(Q_n)$.

Under the condition (INT), we consider the orbifold (Q_n^{st}, b) defined in the following way. Let K_{ij} be the divisor of Q_n^{st} corresponding to the divisor $z_i = z_j$ in M_n^{st} . We define the value of b at a regular point of K_{ij} by $\kappa_{ij} = (1 - \mu_i - \mu_j)^{-1}$. Let c_{ij} denote a normal loop around K_{ij} . By using the notion of orbifolds, the theorem of Picard type (5.8) may be interpretated in the following way.

(5.9) **Theorem.** Under the condition (INT), the universal uniformization of the orbifold (Q_n^{st}, b) defined above is isomorphic to $(\pi_1(Q_n)/N, D_{n-2})$,

where N is the smallest normal subgroup of $\pi_1(Q_n)$ containing $c_{ij}^{\epsilon_{ij}}$ for $i \neq j$ with $\mu_i + \mu_j < 1$.

Proof. Let $(\pi_1(Q_n)/N', M)$ be the universal uniformization of the orbifold (Q_n^{st}, b) . We observe that the order of $(\beta_n \langle \mu \rangle)(c_{ij})$ is equal to κ_{ij} . Hence by means of Theorem (5.8) and Proposition (5.3), we obtain an unramified covering $M \rightarrow D_{n-2}$. Since D_{n-2} is simply connected we have $M = D_{n-2}$, N = N'. This completes the proof of Theorem (5.9).

We shall now complete the proof of Theorem (5.1). By the hypothesis on μ , the condition (INT) is satisfied. We have a natural action of S_n on Q_n^{st} . Hence $(\pi_1(Q_n)/N, D_{n-2})$ may also be considered as the universal uniformization of $(Q_n^{st}/S_n, b)$ with certain b. By using the correspondence in (5.3), we conclude that Ker $\beta_n \langle \mu \rangle$ is equal to N. The proof of Theorem (5.1) is reduced to show the following conjugate relations in $B_n/\text{Cent}(B_n)$:

(5.10)
$$c_{ij} \sim b_{ij}^2, \quad 1 \le i < j \le n, \\ c_{i,n+1} \sim (b_1 b_2 \cdots b_{n-2})^{n-1}, \quad 1 \le i \le n.$$

These relations are checked by using relations of type:

$$(5.11) \quad (b_1b_2\cdots b_{n-1})^n = (b_1b_2\cdots b_{n-1})^{n-1}(b_{n-1}b_{n-2}\cdots b_2b_1^2b_2\cdots b_{n-1}).$$

This completes the proof of Theorem (5.1).

- (5.12) **Remarks.** (i) In the case n=3, the image of representations of P_3 in PU(1, 1) associated with (μ_1, \dots, μ_4) satisfying the condition (INT) is the Schwarz triangle group. In general, we obtain a series of complex reflection groups operating on the complex ball D_{n-2} as the image of P_n in PU(1, n-2). The image of P_n in PU(1, n-2) in the case listed in the table (5.2) is arithmetic if $n \ge 4$.
- (ii) Let us consider the case n=4 and $\mu=2/5$. Let Γ denote the image of P_4 in PU(1,2) by this representation. In this case the commutator subgroup $[\Gamma, \Gamma]$ acts freely on D_2 and the quotient variety $D_2/[\Gamma, \Gamma]$ is one of the Hirzebruch's examples of surfaces of general type with $c_1^2=3c_2$ (see [19]).
- (iii) We now consider the case $\mu=1/2$. This representation gives an isomorphism $B_3/\text{Cent}(B_3) \cong PSL(2, \mathbb{Z})$ in the case n=3. This fact was used to show that the Burau representation is faithful if n=3 (see [3] Theorem 3. 15).

The faithfulness of the Burau representation is an open problem in the case $n \ge 4$. It is known by Varchenko that the image of the representation of B_n in $SL(n-1, \mathbb{Z})$ obtained in this way is equal to $Sp(n-1, \mathbb{Z})$

(see [17]). This representation may be lifted to a representation of B_n in the Steinberg group $St(n-1, \mathbb{Z})$. The proof of this fact is based on Lemma 9.4 of [13].

References

- [1] Artin, E., Theorie der Zöpfe, Hamburg Abh., 4 (1925), 47–72.
- [2] Aomoto, K., Gauss-Manin connection of integrals of difference products, preprint, 1985.
- [3] Birman, J. S., Braids, links, and mapping class groups, Ann. of Math. Studies, 82 (1975).
- [4] Connes, A., Indice des sous facteurs, algèbres de Hecke et théorie des noeuds (d'après V. Jones), Sem. Bourbaki, 1984–1985.
- [5] Deligne, P. and Mostow, G. D., Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. IHES, 63 (1986), 5-90.
- [6] Fox, R. H., Covering spaces with singularities, Lefschetz Symposium, Princeton Univ. Press, (1957), 243–262.
- [7] Ihara, Y., Profinite braid groups, Galois representations and complex multiplication, Ann. of Math., 123 (1986), 43–106.
- [8] Iwahori, N. and Matsumoto, H., On some Bruhat decomposition and the structure of the Hecke rings of p-aidc Chevalley groups, Publ. IHES, 25 (1965), 5-48.
- [9] Jones, V., Braid groups, Hecke algebra and type II₁ factors, Proc. of US-Japan Seminar, Kyoto 1983, Pitman Research Notes in Math., 123 (1986), 242– 273.
- [10] Kato, M., On uniformization of orbifolds, preprint.
- [11] Kita, M. and Noumi, M., On the structure of cohomology groups attached to certain many valued analytic functions, Japan. J. Math., 9 (1983), 113– 157.
- [12] Kohno, T., Homology of a local system on the complement of hyperplanes, Proc. Japan Acad., 62, Ser. A, (1986), 144-147.
- [13] Milnor, J., Introduction to algebraic K-theory, Ann. of Math. Studies, 72 (1971).
- [14] Mumford, D., Geometric invariant theory, Springer Verlag.
- [15] Picard, E., Sur les fonctions hyperfuchsiennes provenant des séries hypergéométriques de deux variables, Ann. ENS III2, (1985), 357–384.
- [16] Terada, T., Fonctions hypergéométriques F_1 et fonctions automorphes I. J. Math. Soc. Japan, 35 (1983), 451-475.
- [17] Varchenko, A. N., On the bifurcation of multiple integrals depending on a parameter, Funct. Anal. Appl., 3 (1969), 322-324.
- [18] Weyl, H., Classical groups, Princeton Univ. Press, 1939.
- [19] Yamazaki, T. and Yoshida, M., On Hirzebruch's examples of surfaces of general type with $c_1^2=3c_2$, Math. Ann., **266** (1984), 421-431.

Department of Mathematics Faculty of Science Nagoya University Chikusa-ku, Nagoya 464 Japan