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Introduction 

The concept of ASL (algebras with straightening laws) plays an 
important role in the interaction between commutative algebra, theory of 
partially ordered sets and simplicial complexes. Among many examples 
of ASL, the most interesting ones are those which are integral domains. 
We are interested in the condition for a poset (a finite partially ordered set) 
to satisfy when there is an ASL domain R on it. This question was an­
swered if dim R=2 or dim R=3 and R is Gorenstein in [8] and [3]. We 
call such posets integral posets. 

In this article and subsequent works, we will study Gorenstein 
ASL domains of dimension 4, or equivalently, homogeneous coordinate 
rings of three-dimensional Fano varieties. As the first step for this study, 
we will determine the integral posets defined by attaching a minimal element 
T to a poset H' which is a triangulation of a 2-sphere, where we will say 
that a poset His a triangulation of a toplogical space X if the underlying 
topological space of the simplicial complex Ll(H) associated to His homeo­
morphic to X. Our classification is described in (2.2) and there are 18 such 
posets up to isomorphisms. 

The concept of Cohen-Macaulay posets is defined by Cohen-Macaulay 
property of discrete ASL on the posets. As is shown in [8], the analogous 
definition of Gorenstein posets would be too strong a property for the 
study of Gorenstein ASL and the concept of a weakly Gorenstein poset 
was introduced in [8]. This property turns out to fit very well with the 
axiom of ASL via the theory of canonical modules. 

This article is divided into 4 sections. In Section 1, we will give a 
characterization of a poset H' which is a triangulation of a 2-sphere by 
the aid of weakly Gorenstein property for H'. 

In Section 2, we will review a graph-theoretical method to describe a 
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poset which is a triangulation of a 2-sphere from [4] and we will give 
examples of ASL domains for each of 18 integral posets arising from 
triangulations of a 2-sphere. 

As a preliminary work for the proof of our main theorem, we study 
ASL's on the poset Cn which is defined by attaching a minimal element to 
a circle with 2n vertices in Section 3. In Section 4, we will prove that the 
posets arising from triangulations of a 2-sphere are not integral except for 
the 18 ones listed in (2.2). 

The author wishes to thank T. Hibi for stimulating conversations on 
this topic and to thank H. Narushima and M. Tsuchiya for valuable 
advices on the properties of the posets which are triangulations of a 2-
sphere. 

§ 1. Preliminaries and a characterization of posets which define triangula­
tions of a 2-sphere 

First we recall some fundamental facts about ASL (algebras with 
straightening laws). Our definition of an ASL is the same as the one in 
[I]. 

(I.I) Let k be a fixed field, R=EBn;.;oRn be a Noetherian graded 
algebra with R0=k and H be a poset (a finite partially ordered set) with an 
embedding into R. In this article, we only treat homogeneous ASL. So, 
we always assume that HcR 1• A product of elements of His called a 
"monomial" and if a 1, a 2, ···,an e H, a 1<a 2 < ···<an, the product 
a 1a 2 • • • an is called a "standard monomial". We say that R is an ASL on 
Hover kif 

(ASL-I) R is a free k-module admitting the set of standard mono­
mials as a free basis over k. 

(ASL-2) If a, f3 are incomparable elements of Hand 

• 
a/3= I; cirioi (ci e k, i= I, · · ·, s) 

i-1 

is the unique expression for a(3 e R as a linear combination of standard 
monomials with ri~ot for every i, then ri::;;.a, (3 for every i. Note that if 
there is no element re Hwith r<a and r<(3, then af3=0. 

(1.2) We need some terminology on posets. 
A totally ordered subset of H is called a chain of H. We define the 

length of a chain so that the cardinality of the set is the length plus one. 
We say that His of rank r if every maximal chain in H has length r. If 
His of rank r and a e H, we define the rank of a, denoted r(a) by the 
length of a maximal chain descending from a. For example, if a is mini­
mal, r(a)=O and if a is maximal, then r(a)=r. We denote by ci(H) the 
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number of chains of Hof length i. For example, co(H)= #(H), the cardi­
nality of H. The number of maximal chains of H, cr(H) is called the 
degree of H. 

J(H) is the simplicial complex consisting of chains of H. We denote 
by IL1(H)I the geometric realization of Ll(H). We have dimlJ(H)I =r(H) 
=dimR-1. 

A subset IcH is a poset ideal of H if a e J and fi<a implies fie I. 
The fact that R/IR is an ASL over H-Jis very important throughout this 
paper. As a particular example of a poset ideal, we define I(a)= 
{fie Hlfila} and Ha=H-I(a)={fi e Hlfi>a} for a e H. When there 
is no fear of confusion, we denote the ideal IR of R by the same letter as 
the poset ideal I. 

If a, fi are incomparable elements of H, we write a 7' fi. 

(1.3) (i) P(H, J..)=P(R, J..)= I:n~o dimk Rn .J..n is the Poincare series 
of R or of H. In our case P(H, J..) is expressed as P(H, J..)= I:,~0 c,_1(H). 
J..'(1-J..)-' (cf. [7], II, 1.4), where we put c_1=1. 

(ii) If P(H, J..)=g(J..)/f(J..), where/().), g(J..) e Z[J..], we define 

a p(H) = deg g(J..)- degf(J..). 

If Risa Cohen-Macaulay ring, then ap(H) coincides with the invariant 
a(R) defined in [2], Chapter 2. (cf. [8], (1.2)) 

(iii) We say that His numerically Gorenstein if P(H, J..) satisfies the 
functional equation 

where r=r(H) and a=ap(H). We say that His weakly Gorenstein if 
there exists a Gorenstein ASL on H and that H is strongly Gorenstein if 
the discrete ASL k[H]=k[Xala e H]/(XaXpla7'fi) is Gorenstein. Weakly 
Gorenstein posets of rank 1 are completely classified in [8], (4.10). Recall 
that strongly Gorenstein implies weakly Gorenstein and weakly Gorenstein 
implies numerically Gorenstein ([6]). 

If R is a Gorenstein ASL domain on Hand dim R = 4, then r(H) = 3 
and H has unique minimal element, say, T and Rf TR is a Gorenstein ASL 
on H'=H-{T}. Thus the study of weakly Gorenstein posets of rank 2 
serves as a primary step for the study of Gorenstein ASL domains of di­
mension 4. 

(1.3) Let H be a numerically Gorenstein poset of rank two. 
( i) If ap(H)=O, then clH)=2(co(H)-2) and ci(H)=3(co(H)-2). 
(ii) If ap(H)= -1, then clH)=c 0(H)-1 and c1(H)=2(co(H)-I). 
(iii) If ap(H)= -2, then co(H)=4 and clH)=2. 
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(iv) If ap(H)= -3, then co(H)= 3. (H itself is a chain of length 2.) 
Case (i) (resp. Case (ii)) occurs only if co(H)~6 (resp. co(H)>5). 

We will investigate the relation between the two invariants a(R) and 
ap(H) for the case R is not necessarily Cohen-Macaulay. 

The invariant a(R) of a graded ring over k with dim R=d is defined 
by 

a(R)=max {nJ(H~(R))n =;t:0}= -min {nJ(KR)n =;t:O}, 

where m is the unique graded maximal ideal and KR is the canonical 
module of R. 
From (l.3), (ii), it is obvious that ap(R)~O for every ASL R. We can 
prove the same inequality for the invariant a(R). 

Proposition (1.4). If R is a homogeneous ASL on a ranked poset H 
with r(H)=r, then 

(i) a(R)~O. 
(ii) If H has unique minimal element, then a(R)<O and ap(H)<O. 

To prove this, we need a lemma. 

Lemma (l.5). Let R be a graded ring over k and x e Rm such that 
dim R/xR=dim R-l. Then a(R/xR)>a(R)+m. 

Proof If xis a non-zero divisor on R, we have an exact sequence of 
local cohomology modules, 

H<;,,-1(R)~H<;,,- 1(R/xR)--+H~(R)(-m)~H~(R)--+H~(R)--+O 

(d=dimR). 

We can deduce our inequality from this exact sequence. In this case, we 
have equality in (1.5) if and only if max {nJ(Im(f))n=;t:O}~a(R)+m. 

In general case, put R' = R/ U R(O), where U R(O) is the intersection of 
primary components q of (0) with dim R/q=dim R. Then xis a non-zero 
divisor on R' and a(R/xR)za(R'/xR')za(R')+m=a(R)+m. 

Proof of (l.4). (i) Put h= I:aEH,rank(aH a (i=O, · · ·, r). Then 
(fo, · · · Jr) forms a system of parameters of R and by (1.5), it suffices to 
show that a(R/(.fo, . · . ,f,.))~r+ I. But by the aid of (ASL-2), it is easy to 
see that every element of R/(fo, .. · ,f,.) can be written in a linear combina­
tion of monomials of the type a 1 • a 2 • • • a, with r(a 1) <r(a 2) < · · · <r(a,). 
This shows that a(R/(fo, ... ,f,.))~r+ 1 and so a(R)<O. 

(ii) This is obvious as R/TR is again an ASL on H-{T} and we 
have Oza(R/TR)-;;:;_a(R)+ 1, 02':ap(H-{T})=ap(H)+ I. 
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Remark (1.6). If His the disjoint union of V and I><l 
and if R is an ASL on H, then ap(H)= -1 and a(R)=O. So, ap(H)= 
a(R) does not hold in general. 

We can characterize the posets with l.d(H)l~S 2 by the aid of weakly 
Gorenstein porperty of H. 

Proposition (1. 7). Let H be a poset of rank 2. Then H gives a trian-
gulation of a 2-sphere if and only if H satisfies the following conditions; 

( i) His weakly Gorenstein with a(H)=O. 
(ii) For every f3 e H, r(/3)= 1, #{a e Hla<f3}>2. 
(iii) For every re H, r(r)=2, #{/3 e Hlr(/3)= 1 and f3<r}>2. 

Remark (1.8). It is easy to show from [5] or [7] that H is strongly 
Gorenstein with r(H)=2 and ap(H)=O if and only if IJ(H)I ~S 2 • On 
the other hand, we can construct examples of weakly Gorenstein posets 
with ap(H)=O which do not satisfy the condition (ii) or (iii) of (1.7). In 
fact, if H' is a weakly Gorenstein poset with ap(H')=O, r(H')= 1 and if 
we put H = H' U { a, e }, where a and e are "bigger" or "smaller" than any 
element of H' and a,f,e, then His weakly Gorenstein with r(H)=2 and 
ap(H)=O. As another example, the 4-th Veronese subring R of a poly­
nomial ring of 4 variables can be shown to be an ASL over the following 
poset H(cf. (3.8)). As R is Gorenstein with a(R)= -1, H'=H-{T} is 
weakly Gorenstein with ap(H')=O. 

Fig. 1 

To prove (1.7), we need some more properties of ASL. 

Proposition (1.9). Let R be an ASL on a poset H with r(H)>2. 
( i ) If H has unique minimal element T and H' = H -{ T} is not con­

nected, then R does not satisfy the condition (S2). 

(ii) If R satisfies (S2) and if r is a maximal element of H, then the 
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poset Hr={a e Hla<r} is connected. 
(iii) If R is Gorenstein, then for every f3 e H, r({3)= 1, #{a e Hla<;B} 

S:2. (Here, the assumption r(H)>2 is not necessary.) 

Proof (i) Assume that H -{ T} = H 1 U H 2, where the elements of H 1 

and H2 are not comparable at all. Then as in [3], Proposition A, we may 
assume <).,fr= 0 for every <) e H 1 and ,Jr e H 2 after a suitable fundamental 
transformation (cf. [3], § 4). Also, if<), ,fr e H 1 (resp. H 2), <),f,,Jr, [<p,fr] does 
not contain the monomial T 2• (Where [¢,Jr] denotes the set of standard 
monomials appearing with non-zero coefficient in the right-hand side of 
(ASL-2) for <)·,Jr.) Thus if we put li=RHi (i= 1, 2), then R/(/ 1+/2);;;. 

k[T] and / 1 • / 2 = 0. So, putting p = 11 +-'2, dim RP= r > 2 and depth RP= I. 
(ii) Assume tliat Hr= I U J, where there are no relations between 

elements of/ and J. As r is a maximal element of H, the poset ideal /(r) 
generates a prime idealp of R with ht (p)=r. If o e /(r) and if o,f,r, then 
by (ASL-2) applied to o. r, o e Hr. RP. Thus the maximal ideal of RP is 
generated by I-RP and J-RP with (/·Rp) ·(J-RP)=(O). So, depth RP= 1 
and R does not satisfy (S2). 

(iii) The ideal /({3) of R is an intersection of prime ideals as R/1({3) 
is reduced being an ASL. If S is the complement of the union of minimal 
prime ideals of /(/3), then {3 + /({3) is included in S as {3 is a non-zero divisor 
of R/1((3). By(ASL-2), l(f3)·S- 1R=(a 1, • • ·, a,)·S- 1R, where {a1, ···,a,} 
={a e Hla<f3}. So, if we put qJ={a e Hla</3, a::;l=aJ} and if p is a 
minimal prime ideal of /(/3), RP/ q J . RP is a regular local ring of dimension 
1 whose maximal ideal is generated by a J· As aia J = 0 (i ::;l:: j) being minimal 
elements of H, (RP)" is isomorphic to k(p)[[X 1, • • ·, X,]]/(XiXJii::;l=j). As 
RP is Gorenstein, s~2. 

Lemma (1.10). Let H be aposet with r(H)>2, ap(H)=O and R be a 
Gorenstein ASL on H. If a is a minimal element of H, then 

(i) #{/3 e HI r({3)= 1 and {3>a}>2. 
(ii) If H satisfies the condition (ii) of (1.7) and if Ha is a Cohen­

Macaulay poset or r(H)=2, then Ha (resp. H:=Ha-{a}) is a weakly 
Gorenstein pose! with ap(Ha)= -1 (resp. aAH:)=0). 

Proof Put l=l(a). By (1.4) (ii), Hhas at least two minimal elements. 
(i) If is f3 the unique element with r(/3)= 1, {3>a, {a, {3} is a regular 

sequence on Rf I and as Rf(/, a, {3) is again an ASL, a(R/l)S:. -2 by (1.4) 
and (1.5). On the other hand, KcR/Il~[O: /]R contains a, which implies 
a(R/ I)> -1. Contradiction! 

(ii) By our assumption, Kc RI I>;;;. [O: /] is generated by a, which implies 
KcR/Il;;;.(R/1)(-1). AsR//isanASLonHa,R//is Gorenstein if Ha is 
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a Cohen-Macaulay poset. As R/I~K<Rm(l) and a canonical module al­
ways satisfies (S2), Ha-{a} is connected by (1.9)(i), which implies that Ha 
is Cohen-Macaulay if r(H)=2. 

Proof of (1.7). First, we will prove that for every element o e H, the 
link Lk 0(L1) of L1=L1(H) is a cycle. If a is a minimal element of H, then 
H;=Ha-{a} is weakly Gorenstein with ap(H:)=0 by (1.10) (ii). By [8], 
( 4.10) and by the condition (iii) of (1. 7), H; ~ C~ for some n ~ 2, where C~ 
is the poset given by the following diagram. 

Fig. 2 

Thus Lka(Ll) is a circle with 2n vertices. If ft e H, r(ft)= I, by the argument 
as above and by (1.9) (iii) and (1.10) (i), #{re Hlr>ft}=#{a e Hla<ft} 
= 2. Hence LkiL1) is a circle with 4 vertices. Now, put {r1, •• ·, r n}= 
{re Hlr(r)=2} and put di=#{ft e Hlft<ri, r(fi)= I} and ei=#{a e Hla 
<ri, r(a)=0}. Then as each ft e H, r(fi)= I dominates exactly two elements 
of rank 0, di ~ei ~2di and di= ei if and only if the poset {o e HI o <r;}, 
which is connected by (1.9) (ii), forms a cycle. Now, as H is weakly 
Gorenstein with a(H)=0, c/H)=2(c 0 -2)=4· #{ft E Hlr(fi)= 1} and ci(H) 
=3(c 0 -2). This implies I:;?=1 di=c 0 -2= I:?=1 ei and we have ei=dt for 
every i. So, for every maximal element r of H, Lkr(Ll) is again a circle. 
Thus 1111 is a manifold of dimension 2 without boundary with X(IL11)=2 
and so ILll~S 2 • Thus we have proved the "if" part of (1.7) and "only if" 
part also follows from the argument above as liJ(H)l~S 2 implies that H 
is strongly Gorenstein with a(H)=0. 

§ 2. Integral posets arising from the triangulations of S 2 

In this section, let H' be a poset with I Ll(H')I ~ S 2 and H = H' U { T}, 
where Tis the unique minimal element of H. We say that His an integral 
poset if there exists an ASL on H which is an integral domain. By abuse 
of language, we say sometimes H' is integral or not integral when H is 
integral or not integral, although there cannot exist an ASL on H' which 
is an integral domain as H' has more than one minimal elements. 

The purpose of this section is to classify all the integral posets arising 
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in this way. As to describe H' is a big job, we start with a simpler way 
to describe such H' introduced in [4]. 

(2.1) For a poset H' with JLl(H')I ~ S2, we introduce a graph I'= 
I'(H') as follows; 

(i) The vertex set v(I') of I' is the set of minimal elements of H'. 
(ii) The set e(I') of edges of I' is the set elements of H' of rank 1. 

As each element f3 of H with r(/3)= 1 dominatesa exactly two minimal 
elements a, a' of H, the "edge" /3 connects the vertices a and a'. In this 
graph, the maximal elements of H correspond to the regions determined 
by edges of I'(H'). As H' defines a triangulation of S2, I'(H') is a plane 
graph. Note that there may be two or more edges connecting given two 
vertices. 

Conversely, if I' is a 2-connected (that is, for every v e v(I'), I'-{v} 
is connected) plane graph, we can construct a poset H' = H'(I') putting 
the elements of H' of rank 0, 1, 2 respectably as vertices, edges, regions 
determined by the edges of I', respectively and defining the order of ele­
ments of H' by incidence relations. 

Now, we can state our theorem. 

Theorem (2.2). Let H' be a poset of rank two with I Ll(H') I~ S2 and 
H = H' U { T}, where T is the unique minimal element of H. Then there 
exists an ASL domain on H if and only if I'(H') is isomorphic to one of the 
following 18 graphs. 

(1) o:::::=n 

(4) L 
(8) ~ 

(12) ~ 

(2) o--Lo 

(5) ~ 

(9) D 
(13) ~ 

(16) A cm 

(3) o-i-o 

(6) ~ (7) 

(10) a (11) 

(14) A (15) .A 
(18)A 

Fig. 3 
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Where a o~o a' indicates that there are n edges of I' connecting the two 
vertices a and a' or, there exist n elements of rank 1 in H' = H'(I') which 
dominate a and a'. 

In the rest of this section, we construct examples of ASL domains on 
the 18 posets defined above and in the following sections we will show 
that the poset H' with IJ(H')I ~S 2 and which are not isomorphic to either 
one of the 18 posets are not integral. 

Notation (2.3). Hereafter, we will denote the minimal elements of H' 
by A, B, ... , F, the elements of rank 1 of H' by J, K, · · · , Q or J0, J 1, • • • 

and maximal elements of H' by U, V, · · ·, Z or U0, U1, • • ·, and so on. 
When we indicate the order relations in H', we indicate only the order re­
lations between the elements of rank O and rank 1 and rank 1 and rank 2. 
Always, Tis the unique minimal element of the poset. 

(2.4) ( i) If H' = H" U { A, B}, where A and B are smaller than any 
element of H" and A ,f, B and if there exists an ASL domain R' on the 
poset H" U {T}, we can construct an ASL domain on H by putting R= 
R'[A, B]/(AB-Tf), where/is a sutitable linear form. In this manner the 
posets (1), (2) and (3) of (2.2) are integral (integral posets of rank 2 are 
completely classified in [3]). 

(ii) If H' = H" U { X, Y}, where X and Y are bigger than any element 
of H", X ,f, Y and if H" U {T} is integral, we can show that H is integral 
in the similar manner as in (i). In this manner the posets (1), (4), (9) of 
(2.2) are integral. 

(2.5) If R' (resp. R") is an ASL on a poset H' (resp. H"), then the 
Segre product R' # R" is an ASL on the poset H' X H" ([9], § 10). If we 
define the posets H2 and C,. (n~2) as follows, then H2, C2, Cs and C4 are 
integral posets (cf. [3]) and H2 X C2 (resp. H2 X Cs, H2 X C,) is isomorphic 
to the poset H coming from (16) (resp. (17), (18)) of (2.2). Thus the posets 
(16), (17), (18) of (2.2) are integral. 

A B x1 x2 x,. 
H2 V c": 

T 

T 

Fig. 4 

(2.6) Let R' be an ASL on a poset H0 with r(H 0) = r and with unique 
minimal element T, x be a variable over R' and put u=x- 1• We define a 
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subring R of R'[x, u] by R=R'[u, axTla e H 0]. Then R is an ASL on a 
new poset H=H 0 UH~ U {u} with r(H)=r+ 1, where H~={a'la e H0} and 
the order relations in H are defined as 

(i) a' <P' if and only if a</3, a<a', a</3' if and only if a<f3. 
(ii) u is "bigger" than any element of H0 and not comparable to any 

element of H~. 
Taking an ASL domain R' on H0= C2 (resp. C3, C4) indicated above, 

we can prove that the poset H defined by (5) (resp. (13), (12)) is integral. 
(2.7) (Torie ASL domains) We can construct an ASL domain 

generated by monomials of k[x, x- 1, y, y- 1, z, z- 1, T] by defining a mapping 
t: H'-z 3 which satisfy the following conditions; 

( i) If {a, [3, r} is a chain of length 2 of H', then {t(a), t(/3), t(r)} 
generates zs as Z-module. 

(ii) If o, 1: e H', o,f,1:, one of the following cases occur. 
(a) t(o)= -t(1:), (b) t(o)+t(1:) e t(H'), (c) t(o)+t(1:)=t(o')+t(1:') 

where o' <o, 1: and o' <1:'. 
(iii) {t(a)la e .d(H')} defines a triangulation of a polyhedron in R3 

which contains the origin in its interior. 
Given such t, we define i: H--+S=k[x, x- 1, y, y-1, z, z- 1, T] by i(a)= 

x 0')h•T if t(a)= (a, b, c) and i(T)~ T. Then the subring R of S generated 
by {i(a)la e H} is an ASL domain on H. In fact, if f=xaybz•rn e R, then 
the line connecting the point (a, b, c) and the origin in R3 intersects unique 
t(a) (a e .d(H)). · (Here, t(a) is the open simplex.) By (i), (a, b, c) can be 
expressed as a sum of elements of t(a) in a unique way, say, (a, b, c)= 
t(a 1)+ · · · +t(am). Asf e R, m~n and/ =a 1 • • ·amrn-m. Thus R satis­
fies (ASL-1) and the condition (ii) implies (ASL-2). 

Now, we will give an example of a toric ASL domain for each of the 
remaining seven posets in (2.2). 

(6) H'={A, B, C, J1, J2, K, L 1, L2, X, Y, U, W} (the order relation in 
His indicated by the following figure), 

t(A)=(l, 0, 0), t(B)=(0, 1, -1), 

t(C)=(0, -1, 1), t(J 1)=(1, 1, 0), 

t(J 2)=(0, 0, -1), t(K)=(-1, 0, -1), 

t(L 1)=(1, 0, 1), t(L 2)=(0, -1, 0), 

t(x)=(l, 1, 1), t(Y)=(- l, -1, -1), 

t(U)=(l, 1, -1), t(W)=(l, -1, 1). 

To illustrate the situation, let us figure the graph, the poset and the 
triangulation of S2 for this first example. 
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(X is the outside of 

the triangle ABC) 
A B C 

323 

(K is at the infinity) 

Fig. 5 

(7) H'={A,B,C,J,K 0,K 1,K 2,L,X, Y, U1, U2}: J>A,B;K 0,K 1,K 2 

>B, C; L>C, A; X>J, K1, L; Y>J, K2, L; U1>K 0, K1; U2>K 0, K2 • 

t(A)=(l, 0, 0), 

t(C)=(0, -1, 0), 

t(K 0)=(- l, 0, 0), 

t(K 2)=(0, 1, 1), 

t(X)=(l, -1, - 1), 

t(B)=(0, 1, 0), 

t(J)=(I, 1, 0), 

t(K 1)=(0, -1, -1), 

t(L)=(l, -1, 0), 

t(Y)=(l, 1, 1), 

t(U 1)=(-l, -1, -1), t(U 2)=(-l, l, 1). 

(8) H'={A, B, C, J1, J2, K1, K2, L 1, L2, X, Y, U, V, W}; J1, J2 >A, B; 
K1, K2 >B, C; L 1, L2>C, A; X>J1, K1, L1; Y>J 2, K2, L 2 ; U>J 1, J2; V> 
K1, K2 ; W>L 1, L2• 

t(A)=(I, 0, 0), 

t(C)=(0, 1, 1), 

t(J2)=(0, -1, 0), 

t(K2)=(0, 0, 1), 

t(L 2)=(I, 0, 1), 

t(Y)=(l, -1, 1), 

t(V)=(-1, 1, 1), 

t(B)=(-1, 0, 0), 

t(J1)=(0, 0, -1), 

t(K 1)=(0, 1, 0), 

t(L 1)=(1, 1, 0), 

t(X)=(l, 1, -1), 

t(U)=(-1, -1, -1), 

t(W)=(l, 1, 1). 

(10) H' = { A, B, C, D, JI, J2, Ki, K2, L1, L2, M1, M2, X, Y, u, V, z, W}; 
J1, J2 >A, B; K1, K2 > B, C; L 1, L2>C, D; M1, M 2 >D, A; X>Ji, K1, L1, M1; 
Y> J2, K2, L2, M2; U> JI, J2; V> K1, K2; Z> L1, L2; W> M1, M2. 

t(A)=(l, 0, 0), t(B)=(l, 1, -1), 

t(C)=(-1,0,0), t(D)=(-1, -1, 1), 



324 K. Watanabe 

t(J1)=(l, 0, -1), t(J2)=(l, 1, 0), 

t(K1)=(0, 0, -1), t(K2)=(0, 1, 0), 

t(L 1)=(-l, -1, 0), t(L 2)=(-l, 0, 1), 

t(M 1)=(0, -1, 0), t(M 2)=(0, 0, 1), 

t(X)=(0, -1, -1), t(Y)=(0, 1, 1), 

t(U)=(2, 1, -1), t(V)=(0, 1, -1), 

t(Z)=(-2, -1, 1), t(W)=(0, -1, 1). 

(11) H'={A, B, C, D, J, K, L, M, N, X, Y, Z}; J>A, B; K>B, C; 
L>C, D;M>D,A; N>B,D;X>J,K,L,M; Y>J,M,N; Z>K,L,N. 

t(A)=(l, 0, 0), 

t(C)=(-1, 0, 0), 

t(B)=(0, 1, 0), 

t(D)=(0, -1, 0), 

t(J)=(l, l, 0), t(K)=(-1, 1, 0), 

t(L)=(-1, -1, 0), t(M)=(l, -1, 0), 

t(N)=(0, 0, -1), 

t(Y)=(l, 0, -1), 

t(X)=(0, 0, 1), 

t(Z)=(-1,0, -1). 

(14) H'={A, B, C, D, J, K, L, M 1, M 2, N, P, X, Y, Z, W, U}; J>A, 
B; K>B, C; L>C, A; M 1, M 2 >A, D; N>B, D; P>C, D; X>J, K, L; 
Y>J, M 1, N; Z>K, N, P; W>L, M 2, P; U>Mi, M 2 • 

t(A)=(l, 0, 0), t(B)=(0, 0, -1), 

t(C)=(-1, -1, 0), t(D)=(0, I, 0), 

t(J)=(l, 0, -1), t(K)=(-1, -1, -1), 

t(L)=(0, -1, 0), t(M 1)=(1, l, 0), 

t(M 2)=(0, 0, 1), t(N)=(0, 1, -1), 

t(P)=(-1, 0, 0), t(X)=(0, -1, -1), 

t(Y)=(l, 1, -1), t(Z)=(-1, 0, -1), 

t(W)=(-1, -1, 1) t(U)=(l, 1, 1). 

(15) H'={A, B, C, D, J, K1, K2, L, M 1, M2, N, P, X, Y, Z, W, U, V}; 
J>A,B;K 1,K 2 >B, C;L>C,A; M 1,M 2 >A,D; N>B,D; P>C,D; X 
>J,K 1,L; Y>J, M 1,N; Z>K 2,N,P; W>L, M2, P; U>M 1,M 2 ; V> 
K1, K2. 

t(A)=(l, 0, 0), t(B)=(0, I, 0), 

t(C)=(-1, 0, -1), t(D)=(0, -1, 1), 
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t(l)=(l, 1, 0), t(K 1)=(0, 1, -1), 

t(K 2)=(- l, 0, 0), t(L)=(0, 0, -1), 

t(M 1)=(1, 0, 1), t(M 2)=(0, -1, 0), 

t(N)=(0, 0, 1), t(P)=(-1, -1, 0), 

t(X)=(l, 1, -1), t(Y)=(l, 1, 1), 

t(Z)=(-1, -1, 1), t(W)=(-1, -1, -1), 

t(U)= (1, -1, 1), t(V)= (-1, 1, - 1). 

Thus we have shown that the 18 posets indicated in (2.2) are integral. 

Remark (2.8). ( i) It can be shown that an ASL domain over the 
poset H defined by the graph (18) of (2.2) is isomorphic to the Segre pro­
duct (k[x, y])<2l#(k[u, v])<2l#(k[s, t])<2>, or, in another word, the homogeneous 
coordinate ring of the product of 3 projective lines embedded in P 26 by an 
anti-canonical divisor. It will be our further problem to study the family 
of ASL domains on each of our posets. 

(ii) By our construction in (2.7), if R is one of the toric ASL domains 
defined in (2.7), then the localization of R by T, Rr=k[x, x· 1, y, y-1, z ,z- 1, 

T, r- 11. In another word, the open affine scheme D + (T) of Proj (R) is iso­
morphic to (k*)3. 

§ 3. Further investigation of the axiom of ASL 

First we recall some facts which appeared in [8] and [3]. 
(3.1) ([8], (3.2)) If H = H, U H2, where Hi= H-Ii for some poset 

ideal /i(i=l,2) with I1 nl 2 =¢ and if R is an ASL on H, then R is 
isomorphic to the fiber product R1 X R 0R2, where Ri=R/Ji (i= 1, 2), R0 = 
R/(/ 1 U I,)R and the homomorphism Ri-+R 0 (i= 1, 2) is the canonical sur­
jection. 

(3.2) (Inductive construction of an ASL). Let Hbe a poset with r(H) 
=rand put Hli={a E Hlr(a)>i}, fli={a E HI r(a)<i} for i=0, · · ·, r. 
Then any ASL R on H can be constructed as follows; 

We start from an ASL on HI,, which is necessarily discrete. Then 
take an element a e H with r(a)=r-1 and construct an ASL R(a) on Ha. 
Then R/(f1"· 1)R which is an ASL on Hlr-i is given by the fiber product of 
{R(a)la e H, r(a)=r-1}. Then take an element f3 of Hwith r(f3)=r-2 
and consturct an ASL R(/3) on Hp, with the property that R(f3)/f3R(f3) is 
the ASL already constructed on Hp n Hlr- 1, and so on. 

(3.3) (Fundamental transformations for an ASL). Let R be an ASL 
on H. We specify the inclusion i of Hin R. A fundamental transform­
ation of R with respect to a e His a new embeddingj: H-+R of the form 
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j(a)=ca·i(a)+ l:;p<a di(fi) and j(a') = i(a') for a'-=f=a, where ca, dfl e k 
and ca-=f=O. Then R is again an ASL with respect to the new embeddingj 
of Hin R ([3], Proposition D). For simplicity, we call a composition of 
several fundamental transformations a fundamental transformation, too. 
Fundamental transformations are used to obtain an isomorphic ASL with 
simpler (ASL-2) relations. For example, if 

AB=T(aA+bB+cT), (a, b, CE k), 

then define a new embedding j: H-+R by j(A)=A-bT,j(B)=B-aTso 
that j(A)j(B)=(c+ab)j(T). In this manner, we may assume AB=dT2 
(de k), conserving the isomorphism class of graded rings. An isomorphism 
of two ASL's on a poset H is called an isomorphism as an ASL if it is 
given by a fundamental transformation. In the above example, if d-=t=O, 
define a new embedding j' by j'(A)=d- 1 -A, j'(B)=B, j'(T)= Tso that 
j'(A) · j'(B)=j'(T) 2• To sum up; 

Example (3.4). If R is an ASL on H 2 indicated by (2.5), Fig. 4, we 
may assume that R~k[A, B, T]/(AB-eT2) (e=O or 1) as an ASL. 

Notation (3.5). If R is an ASL on H, m is a non-standard monomial 
in Rand if 

we put 

• 
m= l:; c1, •n1, 

i=l 

(c, e k, c,-=t=O and n1, is a standard monomial, i= 1, · .. , s), 

[m]={n 1, • • ·, n,}. 

The set [afl] of the standard monomials appearing on the right hand 
side of (ASL-2) is much more restricted than it seems to be. In fact, 

Lemma (3.6). Let H be a poset with unique minimal element T, a, 
fl e H, with the property that the unique element of H smaller than a and fl 
is T and R be an ASL on H. If To e [afl], o =I= T, a, fl, then one of the fol­
lowing cases occur. 

(i) o>a, fl andfor every ~<o, ~,f,a, either 
(a) ~<fl, T7J e [a~]for some 7)>~ with ~o e [fl7J], or 
(b) a 17JE [a~]for some a'<a, ~. a'-=t=T, 7J>~. In this case,for 

some c>~. TC E [a' fl] and ~o E [7Jt;]. 
(ii) o>a, o,f,fl. In this case ~7/ e [flo] for some ~<fl, ~-=t=T, 7J>o 

with Tr; e [a~], t;>o and a2 e [7Jt;]. In particular, this case happens only 
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when r(H) >3. 
(ii') The same as (ii) with a and fi interchanged. 
(iii) o<fi. In this case for some 71>0, T71 e [ao] and 02 e [,871]. 
(iii') The same as (iii) with a and ,B interchanged. 
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(iv) o ,f,a, o ,f, ,B. In this case the following conditions (a), (a') are 
satisfied. 

(a) For some~. 71, i:; with ~<a, o and 71, i:;>o, ~71 e [ao], Ti:; e [,B~] 
and 02 E [71i:;]. 

(a') The same as (a) with a and ,B interchanged. 

Proof In case (i) we have Teo E [a,B~]. What we should do is only 
to deform the non-standard monomial to the standard one and to write 
down the conditions in (ASL-2) at each step. And the same procedure for 
other cases. 

Lemma (3.7). If R is an ASL on the poset Cn indicated by (2.5), Fig. 
4, then after suitable fundamental transformation we may assume, 

(i) ifn=2, K1K2=T(aX 1+bX2+cT), 

X1X2= T(a' K1 +b' K2 + c'T) +e1K~+e2K;, 
(a, b, c, a', b', c' Ek, e1 and e2 are either O or I). 

In the following, the index i denotes the equivalence class modulo n. 
That is, Ki or Xi means Ki-nor Xt-n if i>n and Ki+n or Xt+n ifn<O. 

(ii) if n=3, the standard monomials that may appear in 

[KtKt+il are T2 and TXt, 

[KiXt+1l are T2, TKi+I and TKi-1• 

[XtXt+1] are T2, TKt+i and K:+i for i= I, 2, 3. 

(iii) If n=4, the standard monimial(s) that may appear in 

[KtKt+il is TX,, 

[KtKt+2l is T2, 

[KtXt+1] is TKt+1, 

[XtKt+2] is TKt+i• 

[XtXt+i1 are Kt 1 and TKt+i• 

[XtXt+21 is T2 for i= I, 2, 3, 4. 

(iv) Ifn>5, then we may assume 

KtK 1=0 for j=!=i, i±I, 

K,X 1=0 for j=!=i, i± I, i-2, 

XtX 1=0 for j=!=i, i±I for every i, IS:iS:n. 
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Moreover, we may put 

Ki_,Xi=diTKi for some ai, bi, ci, di Ek, ei=O or I with the relations 
aibi=aibi+i=O, ci=eiai and di+i=ei+,aifor every i, I <i~n. 

Proof We only sketch the proof of (iv) here. The rest of the proof 
is in the same line and our method is unique, that is, to express the 
non-standard monomials of degree 3 in two different ways as the linear 
combinations of standard monomials and to compare the coefficients of 
the standard monomials. 

Now, by (3.6), the only standard monomials that may appear in 
[K;Ki+2] (resp. [XiXi+2D are T2, TKi, TKi+2 (resp. T 2, TKi, TXi+z)- As in 
[3], Proposition A, we have the equation of the type 

Now, by a fundamental transformation, we may assume KiXi+2 =0 for 
every i. Then, put KiKi+z=T(aT+bKi+cKi+z) and KiKi+a=T(a'T+b'Ki 
c'Ki+a)- As (KiKi+z)Xi+z=(KiKi+a)Xi+z=O, we have a=c=a' = c' = 0. 
That is, the only standard monomial that may appear in [KiKi+zl, [KiKi+al 
is TKi. Ifn=5, by the same argument with the index i interhcanged by 
i-2, we have KiKi+z=KiKi+a=O. If nz6, put KiXi+a=T(aT+bKi+ 
cXi+a)- As [KiKi+3]c{TKi}, comparing the coefficients of standard mono­
mials appearing in [KiKi+aXi+al we have a=c=O. Repeating this proce­
dure inductively we have [KiKJ (resp. [KiXj])c{TKi} for i+2~j <i+n-2 
(resp. i+2<j~i+n-3). 

On the other hand, put Xi_,Xi+z= T(a'T +b'Xi_, +c'Xi+z). As 
KiXi+z=O, we have a'=b'=O and by the same argument as above, we 
have [KjXi+2] (resp. [XjXi+zDc{TXi+z} for i> j>i-n+5 (resp. i-1 zj 
>i-n+5) for every i. Now, takej=;t=i, i±l and we claim KiKj=O. As 
we have seen, we can put KiKj=aTKi and KiXj=bTXj (ifj=i-2, take 
XJ_, instead of Xj). Then we have (KiK 1)Xj=aTKiX 1=abT2X 1, while 
K/KiKj)=Kj(bTXj)=bTKjX 1, which shows b=O and by XiK 1=0 (or 
Xi_,Kj=O) we have a=O. 

The other parts of(iv) can be proved similary putting XiXi+ 1=eiK~+i 
in R/TR. 

Example (3.8). As an example of "inductive construction" of an 
ASL, we will explain the construction of the poset indicated by (1.5), Fig. 
1, on which R= (k[X 0, X,, X 2, Xa])<4) is an ASL. As the anti-canonical divisor 
of pa is the union of 4 planes, take 4 planes H0, H,, H2, Ha in general posi-
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tion so that H1.= V+(A,), or, R/A,R is isomorphic to the 4-th Veronese 
subring of a polynomial ring of 3 variables for every i. Then V+(I(L, 1)) is 
the line determined by the intersection of H, and H, and V+(I(Lm is another 
line on A, in general position. The point V+(I(P1,)) (resp. V+(I(Pf1))) is 
the intersection of three planes H 1 (j=t=i) (resp. the intersection of L: and 
L,, and the point V+(I(P:')) is a point on Lf different from the three points 
V+CI(P~1)) (j=J=i). The poset His anti-isomorphic to the poset of sub­
spaces of ps given above with inclusion of spaces as order relation. 

§ 4. Proof of the main theorem 

In this section we will prove that the posets which are triangulations 
of S2 are not integral except for the 18 ones given in (2.2). Our method 
is very elementary; to construct zero-divisors or to show that the multipli­
cation by a certain element is not injective. We always denote by Ran 
ASL on H = H' U { T}, where H' is a poset with I il(H') I~ S2 and T is the 
unique minimal element of H. 

Definition (4.1). Let r, iJ be elements of H with r ,f,iJ. We say that 
the product ra is banal if [ra] is contained in {T2, Tr, Ta}. 

Lemma ( 4.2). ([3], Proposition A). Let a, f,, r be elements of H such 
that a,f,{3, a,f,r, r> f3 and the products a{, and ar are banal. Then R is 
not an integral domain. 

Now we will rewrite (3.6) to our poset H using the terminology of the 
graph I'(H'). We will identify points or edges or regions of S2 determined 
by I'(H') to the elements of H and also to the elements of R. 

We will always assume that for every minimal element a of H', R/I(a) 
is normalized as in (3.7). 

Lemma (4.3). (i) Let A, B be distinct points of I'(H'). If Ta e [AB], 
iJ =I= T, A, B, then either iJ is an edge connecting A and B or iJ is a two-sided 
region determined by two edges connecting A and B. In particular, if there 
exist no edges connecting A and B, then the product AB is banal. 

(ii) Let A be a point of I'(H'), L be an edge of I'(H') with A ,f, L. If 
Toe [AL], a=/= T, A, L, then either 

(a) iJ is an end point of L connected with A by some edge and for 
some r> A, a, Tr e [Ao] and iJ2 e [Lr]. 

(b) iJ is an edge connecting an end point fJ ,of L with A. In this case, 
for some region r;>a, Land a two-sided region C> A, a, f,r; e [iJL], TC e [A{,] 
and 02 e [r;C]. 

(c) iJ is a triangle with a> A, L. In this case, for either end point 
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[3 of Land an edgeµ connecting A and [3 with µ<a, Tµ e [A/3] and [30 e [µL]. 
(iii) Let A be a point of I'(H'), X be a region determined by I'(H') 

with X ,f, A. If To e [AX], o =I= T, A, X, then o <X and either 
(a) o is a point with deg(o)=3 and there is an edge µ connecting o 

and A with the property Tµ e [Ao] and 02 e [µX]. 
(b) o is a point with deg (o)=4 and there is a two-sided region r; with 

the property r;> A, a, Tr; e [Ao] and o2 e [r;X]. 
(c) o is an edge of X and there is a triangle r; with r;> A, o. In this 

case Tr; e [Ao] and 02 e [r;X]. 
Where, for a point B of I'(H'), deg (B) is the number of edges of I'(H') 

which are incident with B. 

Proof (i) and (ii) are almost direct consequences of (3.6). For (iii), 
apply (3.6) for our case. The cases (i) and (iv) do not occur in our 
situation. If a> A, o ,f, X, in the notation of (3.6) (ii), e is a point 
incident with X and o is an edge connecting e with A and for some region 
r;>o, er; e [oX]. But the last statement does not occur in R/I(e) by our 
normalization (3.7). If o<X and a is a point, our normalization (3.7) of 
R/I(o) implies deg (o)= 3 (resp. 4) in the case (a) (resp. (b)). 

Corollary (4.4). Assume that there exists a point A and an edge L of 
I'(H') with A ,f, L and either edge point of L is not connected with A by an 
edge of I'(H'). Then His not an integral poset. 

Proof If B is an edge point of L, the products AB and AL are banal 
by (4.3). Then (4.2) shows that R is not an integral domain. 

Corollary (4.5). Any region on S2 determined by I'(H') is either a 
two-sided region, a triangle or a quadrangle. 

Now, a vertex A of I'(H') with deg (A)~5 causes a serious obstruction 
for integrality of H. 

Corollary (4.6). Let A, B, C, be three points of I'(H'), L be an edge 
of I'(H') connecting A and B. If A, B, C, L satisfy the following conditions, 
H is not integral. 

( i) deg (A)> 5, B and C are not connected by edge of I'(H'). 
(ii) For any region X with X> L, C is not incident with X. 

Proof We apply (4.3) (ii) to the product CL. As deg(A)>5, A2 ~ 
[Le] for any e>A, e,;,L by (3.7) (iv) applied to R/I(A). So case (a) of 
(4.3) (ii) does not occur in this situation. Also cases (b) and (c) of (4.3) 
(ii) do not occur by our condition. Thus the product CL is banal and so 
is the product CB. Then His not integral by (4.2). 
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In general, a graph I' is a simple graph if for any two vertices v, v' of 
I' there exists at most one edge of I' connecting v and v'. We denote by 
[I'(H')l the underlying simple graph of I'(H') defined in an obvious way. 

Corollary (4.7). If His integral,for any vertex v of [I'(H')[, deg (v) 
:=:;4. 

Proof If there exists a vertex A of [I'(H')l with deg (A)~5, then 
we can find B, C, L e H' which satisfy the conditions of ( 4.6) together with 
A. 

Corollary (4.8). Assume that H is integral. Let v be a vertex of 
[I'(H')[ and X be a region of [I'(H')l not incident with v. Then either 

(a) there exists a vertex v' with deg (v')=3, incident with X and con­
nected to v by an edge of [I'(H')[, or 

(b) there is a triangle in [I'(H')[ incident with v and which shares an 
edge with X. 

Proof If (b) does not occur, then there is a vertex B of I'(H') not 
connected to A ( = v) by any edge of I'(H'). As the product AX is not 
banal, the case (a) or (b) of (4.3) (iii) occurs and this implies our condition 
(a). 

Now, by (4.4), (4.7) and (4.8), it can be shown that the underlying 
simple graph of I'(H') is either (4), (9), (11), (12), (13), (16), (17), (18) of 
(2.2) or one of the followings. 

0----0 

Fig. 6 

Now we will give a new criterion for non-integrality of H. 

Lemma ( 4.9). Assume that His integral and let A, B be two vertices 
of I'(H') not connected by an edge of I'(H'). If C is any other vertex of 
I'(H'), then the number of edges connecting A and C and the number of edges 
connecting B and C are equal and is at most 2. 

Proof Let R be an ASL domain on H. As the product AB is banal, 
we may put AB= T 2 by a fundamental transformation. Now let {ai, · ·., 
a,} (resp. {,81, ••• , .Sc}) be the set of edges of I'(H') connecting A and C 
(resp. B and C) and {~1, • • ·, ~ ,_ 1} (resp. {1)1, • • ·, 1)t_ 1}) be the set of two­
sided regions incident with A and C (resp. B and C). Then by ( 4.3), the 
product of A with an element the k-vector space V (resp. V') spanned by 
{T, B, C, ,81, ···,.Sc} (resp. {T, B, 1Ji, ·. ·, 1Jc-i}) is contained in the vector 
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space W(resp. W') spnnaed by {T2, TA, TC, Ta.1, • • ·, Ta 8}(resp. T2, TA, 
TC}. (Note that as AB= T2, Tfi; $ [Afi;] and T'Y/i $ [A'f/i].) As dim V=t+3 
and dim W=s+3 (resp. dim V'=t+l and dim W'=3), we have t<s 
(resp. t::S2) as the multiplication by A must be injective. As our situation 
is symmetric with respect to A and B, we have s= t. 

Example (4.10). Assume that His integral. By (4.9) we can show 
that (9) and (10) of (2.2) are only possibilities for I'(H') if [I'(H')[ is (9) of 
(2.2). By (4.9) and (4.6), we can show that I'(H') itself must be simple 
if I'(H') is (11), (12), (16) of (2.2) or the second graph in Fig. 6, after ( 4.8). 
Also, by (4.6), we can show that I'(H') itself must be simple if [I'(H')! 
is (17) or (18) of (2.2). After the next example ( 4.11 ), we have only to 
consider the graph whose simple underlying graph is either (4), (13) of 
(2.2) or o-o • 

Example (4.11). Let H' be the poset given by the graph illustrated in 
Fig. 6. We name the points of I'(H') by A, B, C, D, E so that deg (A)= 
deg(B)=3 and deg(C)=deg(D)=deg(E)=2. As the product CD is 
banal, we may assume CD=eT2 by a fundamental transformation. There 
are 3 regions determined by I'(H') and let X be the one which is not inci­
dent with D. Then Xis incident with other 4 points. Now, by (4.3), (iii), 
the standard monomials contained in [DX] are restricted to T2, TD, TX, 
TA and TB. Put DX= T(tT +aA+bB+dD+xX). If we multiply C to 
this equation, we conclude that CD=O as [AC] nor [CB] contains TX. 
Thus we have shown that this poset is not integral. 

There are several posets except the ones given in (2.2) on the underly­
ing simple graph (4) or (13) of (2.2) which can not be eliminated directly 
from our criterions given above. But we will omit the proof of non-inte­
grality of these posets as it will be rather boring work. In the rest of this 
paper, we will prove that the poset H given by the graph o-2:..o is not 
integral for n~5. 

Example (4.12). Let H={T, A, B, K1, ···,Kn, X1, • • ·, Xn} with the 
order relation A, B<K;, X; and K;, K;+i <Xi for every i. As in (3.7), the 
index i is defined modulo n. Now, we will prove that His not integral if 
n>S. In this example, we say that the product KiK 1 (resp. KtX 1) is banal 
if [K;K1] (resp. [K;X1]) contains at most T2, TA, TB and TK;, TK 1 (resp. 
TK;, TX 1). If we can find a pair of indexes (i,j) for which K;K 1 and K;X 1 

or K;K 1 and K;X 1_ 1 are banal, then we can construct a zero-divisor of the 
form K; + aT as in [3], Proposition A. In the following, we always assume 
n?.5. 

Now, consider the product K 1K4• If Tt; e [K1K4], as K1K4 e TR by 
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(3.7) (iv), T~2 e [K1K4~] (we always assume that ~=/=-T, A, B, K 1, K4). The 
only possible procedure for this is; A7J e [K1~], B~ e [K47J] and T~ e [AB] 
for some 7J (or the same procedure with K 1 and K, interchanged). Ex­
amining (3. 7) (iv), we see that this procedure is possible only when n = 5, 
~=Ks, 7J=Xs or ~=X 0 7J=Ks. This shows that if n>6, the product 
KiKt+s is always banal. The same argument as above also shows that the 
product K1X4 is banal and so His not integral if n>7. 

Before we proceed, one remark about the result of (3.7) (iv) is neces­
sary. If KiKw=a,TXi with ai=t=-0, multiplying Ki-I (resp. Ki+2), we have 
Ki_ 1Xt=0 (resp. Ki+zXi=0). In the notations of (3.7) (iv), ai=t=-0 implies 
di=0 and ct+i=0. 

Now, apply (3.7) (iv) to R/I(A)=R/(T, B) and R/I(B)=R/(T, A). We 
put (*) KiK,+ 1=a;Axi, Xt_ 1Xi=eiK!+b;AK,, X,_ 1K,+1=c;AKt, K,_ 1X,= 
d;AK, in R/I(A) and K,K 1+1=a~'BX,,, X,_ 1Xi=e,K~+WBKi, Xi_ 1Ki+i= 
ci'BKi and K 1 _ 1X,=d; 1BK, in R/l(B). 

Assume n=6. We will prove that His not integral. As we have 
shown, the product K 1K, is banal. So, it suffices to show the product K1X3 

or K1X, is banal. Assume T~ e [K1X,], ~=I=-T, A, B, Ki, X,. Then X, it TR 
and if K 1~ e TR, then T7J e [~Kil and ~2 e [TJX,] for some 7/· Only possibility 
in this case is ~=Ks, TXs e [K1K5] and K~ e [X4X5]. As ~=X 5 or ~=K 6 

does not occur also, TKs e [K1X,] if R is an integral domain. Now, TXs e 
[K1Ks] only if, say, AK 6 e [XsK1] and BXs e [KsK6]. In the notation of(*) 
above, c;=1=-o, e4= 1, a,' =t=-0 and consequently, a~=t=-0, e6= l, c~ =0, d;=0 
and c~'=dt=0. Also, as the product K2Xs must not be banal as K2Ks 
is banal, we must have TK 6 e [K2Xs], TX 6 e [K2K6]. As c~ =0, we must have 
BK 1 e [X6K2]andAX 6 e [K6K 1], having a?=c~'=l=-0, e1=1, c~'=di'=0. Con­
tinuing this way, if R is an integral domain, we must have ei = 1 for every 
i, a;= cf =d;' =0, a:=1=-0, a;'= cf' =/=-0 for every odd i and a~= c; =t=-0, d~' =t=-0, 
df =a;'= c:' = 0 for every even i. 

Now, after a suitable fundamental transformation, put 

K1K,= T(tT+aA+bB) 

K 1X,= T(t'T +a' A+b' B+x'X, + f' Ks) 

K 1Xs= T(t"T+a" A+b"B+x"Xs+ f" K3), 

where, f' and f" =t=-0 if R is an integral domain. Expressing K 1K,X, and 
K 1K4X 8 in two different ways, we have 

XitT +aA +bB)=Kit'T +a' A +b' B+x' X, + f' Ks), 

Xs(tT+aA+bB)=Klt"T+a" A+b" B+x"Xs+ JK 3). 

Comparing the coefficients of AX 0 BX,, AX 8 and B-Xs in both equations, 



334 K. Watanabe 

we have a=f'a~, b=f'a~', a=f"a~, b=f"a~', inducing a contradiction if 
f'=i=0,l"=i=0 as a~=0 and a~=/=0. Thus R cannot be an integral domain 
and H is not integral. 

Next, we will treat the case n=5. We record here only the proof of 
the case et= 1 for every i. The proof of the other cases is accomplished 
in a similar way. In the notation of{*), a~, a?, c~, c?, d~, d? are zero for 
at least three values of i. So, we can choose an index i, with a~= a~'= 0. 
Assume ai=a?=ci=Ci'=d;=d;'=0. Then, K1K2, K1X2, X5K2 e TR. By 
a similar argument as above, we can prove that the product K1K3 is banal. 
If T~ e [K1X3], ~=l=T, A, B, K1, X3, only possibility for~ is ~=K 4 under the 
condition TX4 e [K1K4]. So, if R is an integral domain, we may assume 
AK 5 e [K1X,] and BX, e [K4K5]. Then a~=di=/=0, a~=d~=0, a~'=d~'=l=0 
and ar=a,'=d~'=di'=0. Next, let T7J e [K1X2], 7J=/=T, A, B, K1, X2 • It 
is easy to show 7J=X1 or K2• Put 

K1K3= T(tT +aA+bB) 

K1X3= T(t'T+a'A+b'B+x'Xs+ f'K,) 

K1X2 = T(t"T + a" A+ b'; B + x" X2 + f" K2 + g" X1). 

Then we have 

Xs(tT +aA+bB)=Ks(t'T +a'A+b'B+x'Xs+ f'K,), 

Xz(tT +aA+bB)=Ks(t"T +a" A+b"B+x"X 2 + f" K2 +g"X 1). 

As a~'=0, b=0 by the first equation and also a'=b'=x'=0, a=aU'. As 
we are always assuming that R should be an integral domain, f' =i=0 and 
a=1=0. Comparing the coefficients of AX 2 in the second equation, we have 
a~f" = a=1=0. Then by the coefficients of BX2, we have a~'= 0. So, the 
non-zero a~ (resp. ai') are a;, a~, a~' and all others are 0. Now, by the 
same procedure as above, we can show that the products K3K5 and K3X5 

are banal contradicting our assertion that R is an integral domain. So, 
H can not be an integral poset. 
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