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§ O. Introduction 

Let B be a definite quaternion algebra over the field Q of rational 
numbers with discriminant p. We assume that p is a prime number. Let 
Ug be the positive definite quaternion hermitian space of dimension g over 
B. We denote by Hg the class number of the principal genus of Ug (for 
the definition of the principal genus, see Hashimoto and Ibukiyama [6, 
Section 1]). Let k be an algebraically closed field of characteristic p. In 
Ibukiyama, Katsura and Oort [7, Theorem 2.10], we showed that the class 
number Hg (g>2) is equal to the number of isomorphism classes of 
principally polarized abelian varieties (X, e) of dimension g defined over 
k such that X is isomorphic to a product of supersingular elliptic curves 
(see also Shioda [23, Theorem 3.5] and Serre [22]). 

When g= 1, HI is nothing but the class number of the maximal orders 
of B. The explicit formula for HI was given by Eichler [3, Satz 2]. Then, 
Deuring proved that the class number HI is equal to the number of iso­
morphism classes of supersingular elliptic curves defined over k (Deuring 
[2], p. 266). Finally, Igusa calculated the number of isomorphism classes 
of supersingular elliptic curves defined over k by an algebraic method, and 
using Deuring's result, he gave a new proof of the explicit formula for HI 
(cf. Igusa [8]). In the first part of this paper, we calculate, by an algebraic 
method similar to the one in Igusa [8], the number of isomorphism classes 
of principally polarized abelian surfaces defined over k such that X is iso­
morphic to a product of supersingular elliptic curves. Hence, using the 
above result, we give a new proof of the explicit formula for H2 which was 
given in Hashimoto and Ibukiyama [6]. 

Recall that an abelian variety is called supersingular if it is isogenous 
to a product of supersingular elliptic curves. Let d g,l be the coarse 
moduli scheme of principally polarized abelian varieties of dimension g 
defined over k, and let V be the algebraic set in d g,l whose points corres­
pond to supersingular abelian varieties. We call V the supersingular locus 
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of d g,'. In the case of dimension two, as was shown in Katsura and 
Oort [10], the number of irreducible components of V is equal to the class 
number of the non-principal genus of Ug (for the definition of the non­
principal genus, see Hashimoto and Ibukiyama [6, (II)]). In the second 
part of this paper, we show that the number of irreducible components of 
the supersingular locus V in d g" is equal to Hg. Hence, using the explicit 
formula for H3 by Hashimoto [5], we conclude that this locus V is reduci­
ble if and only if p > 3. We show also that the a-number of the generic 
member of every irreducible component of V is equal to one (cf. Theorem 
6.5). 

The authors would like to thank Professors K. Ueno, T. Ibukiyama 
and K. Hashimoto for useful conversations. The authors would also like 
to thank Professor Tadao Oda for his valuable advice and encouragement. 
The second author visited Japan during the fall of 1984, and most of his 
work for this paper was done at that time. The second author thanks his 
Japanese colleagues and friends for warm hospitality, and is grateful to the 
Japan Society for the Promotion of Science (JSPS) for financial support, 
and to Kyoto University for excellent working conditions. 

§ 1. Curves of genus two 

In this section, we recall basic facts and some results of our previous 
paper [7]. It should be noticed that all these facts were obtained by an 
algebraic method similar to the one in Igusa [8]. 

Let p be a prime number, and let B be a definite quaternion algebra 
over the field Q of rational numbers with discriminant p. We denote by 
Hg=Hg(p, 1) the class number of the principal genus of the positive 
definite quaternion hermitian space of dimension g over B (for the defini­
tion, see Hashimoto and Ibukiyama [6, Section 1]). We use the following 
theorems. 

Theorem 1.1 (Ibukiyama, Katsura and 00rt[7]). Let k be an alge­
braically closed field of characteristic p, and let E be a supersingular elliptic 
curve defined over k. Then, Hg is equal to the number of principal polari­
zations on Eg up to automorphisms of Eg. 

Theorem 1.2 (Deligne). Let Ei (i=1,2, ... , 2g) be supersingular 
elliptic curves. Assume g > 2. Then, E, X ... X Egis isomorphic to E g+' X 
... X Ezg• 

For the proof, see Shioda [23, Theorem 3.5]. 
Using these two theorems, we see that Hg is equal to the number of 

isomorphism classes of principally polarized abelian varieties (X, 8) of 
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dimension g such that X is isomorphic to a product of supersingular elliptic 
curves. 

Now, we assume g=2. Then, we can consider a principal polariza­
tion 8 as a complete (not necessarily irreducible) curve of genus two on X. 
According to Wei! [24, Satz 2], we have the following two possibilities for 
8: 

a) 8 is a non-singular complete curve of genus two and X is iso­
morphic to the Jacobian variety of 8. 

b) 8=E,+E2 consists of two elliptic curves E" E2 which intersect 
transversally such that X::::::. E, X E2• 

It is easy to see that H, coincides with the number h of isomorphism 
classes of supersingular elliptic curves. Moreover, Igusa [8] showed that 

where (~) denotes the Legendre symbol. Then, the number n of iso­

morphism classes of principally polarized supersingular abelian surfaces 
(X, 8) which belong to Case b) is given by 

(1.2) n=h(h+ 1)(2 

(for details, see Ibukiyama, Katsura and Oort [7, Section 2.2]). A non­
singular complete curve C of genus two has the canonical involution t. 

We denote by Aut (C) the group of automorphisms of C. We call RA (C) 
= Aut (C)«t) the reduced group of automorphisms of C. We say that a 
curve C of genus two is in Class (0) if the reduced group RA (C) of auto­
morphisms is trivial. For p>7, we said that a curve C of genus two is in 
Class (i) (i = 0, 1, ... , 6) if RA (C) contains the group in (i) (cf. Igusa [9], 
and Ibukiyama, Katsura and Oort [7]): 

(1.3) (0) {O}, (1) Z(2Z, (2) S3' (3) Z(2ZXZ(2Z, (4) D'2' 

(5) S4' (6) Z(5Z. 

In this paper, we say that a curve C of genus two is of type (i) (i=O, 1, 
... , 6) if RA (C) is isomorphic to the group in (i). We denote by ni (i = 
0, 1, ... ,6) the number of isomorphism classes of curves C of genus two 
of type (i) whose Jacobian variety J(C) is isomorphic to a product of two 
supersingular elliptic curves. Then, for p~7, we already proved the fol­
lowing results (cf. Ibukiyama, Katsura and Oort [7]): 
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na=(p-I)/8-{1-( / )}/S-{l-( -;2)}/4 
_ { 1 - ( -;3 ) } /2, 

n4={ 1-( -;3)}/ 2, 
n5={1-( -;2 )}/2, 
n6={O ifp_1,2 or 3 (mod 5), 

1 if p=4 (mod 5). 

§ 2. Curves of genus two in Class (1) 

In this section, we assume char. k=p~7. We use the notations in 
Ibukiyama, Katsura and Oort [7, Section 1]. Now, we consider the curves 
of genus two of type (1), (2) ,(3), (4) or (5). Since the reduced groups of 
automorphisms of these curves contain an element of order two, they are 
defined by the following equation: 

(2.1) 

with a, b E k; a*O, 1; b*O, 1; a*b. 

Lemma 2.1. Let x be a local coordinate of Al in the projective line pl. 
Let fJ be the automorphism of order two of pI defined by 

(2.2) fJ: x~-x. 

Then, the automorphisms of order two of pI which commute with fJ are of 
the following form: 

(2.3) 7}a(x)=a/x with a E k*, or fJ(x) = -x, 

where k* is the multiplicative group of non-zero elements of k. 

Proof Since the automorphisms of pI are of the form (ax + ~)/(rx 
+5) with a, ~, r, 5 E k, we can check this lemma by direct computation. 

q.e.d. 

Lemma 2.2. The reduced group RA (Ca,b) of automorphisms of Ca,b 
contains a subgroup which is isomorphic to Zj2Zx Zj2Z if and only if a = b2, 

a2 =b or ab= 1. 
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Proof. The "if" part is trivial. Suppose that RA(Co.,b) contains a 
subgroup which is isomorphic to Z/2ZXZ/2Z. Then, by (1.3), we see 
that RA(Co.,b) is isomorphic to Z/2ZXZ/2Z, DI2 or S4. The automor­
phism 0 defined by (2.2) gives an element of order two of RA (Co.,b). By 
the structure of groups Z/2ZX Z /2Z, DI2 and S4' we can find an element 
7)(7)=/=0) of RA(Co.,b) of order two which commutes with O. By Lemma 
2.1,7) is of the following form: 

7)(X)=ct/X with ct e k*. 

We see that 7) induces a permutation of the six branch points 1, -1, v'a, 
-v'a, [li and .,-v'7i of Co.,b over pl. Since 7)(I)=a, we conclude that 
a= + 1, ±v'-a or ±v'Ii. If a= ± 1, then we have 7)(v'a) = ±(1/v'a) 
= ±v'1i by a=/=l and a=/=b. Hence, we have ab=1. If a= ±v'Ci, then 
we have 7)(±v'Ii)=(±v'a)/(±v'Ii)= ±v'7i. Hence, we have a=b2• 

If a= ±v'7i, then by the same method, we have a2=b. q.e.d. 

By Lemma 2.2, we see that the curves of type (1) or (2) can be defined 
by (2.1) with ab=/=l, a=/=b2 and a2 =/=b. 

Lemma 2.3. Assume ab=/=l, a=/=b2 and a2=/=b. Then, the curve Co.',b' 
is isomorphic to Co., b if and only if (a', b/) is equal to one of the following: 

(a, b), (1/a, lIb), (a, a/b), (1/a, b/a), (b, a), (I/b, I/a), 

(b, b/a), (I/b, a/b), (a/b, a), (b/a, I/a), (a/b, I/b), (b/a, b). 

Moreover, these twelve pairs are different from each other. 

Proof. The "if" part is trivial. Suppose that we have an iso­
morphism 

The curve Co.,b (resp. Co."b') is a two-sheeted covering of pi, and t induces 
an automorphism",. of PI, which also induces a bijection from six branch 
points {I, -I, v'a, -v'a, v'7i, -v'Ii} to {I, -I, v' a', -v' a', v' b', 
-v' b/}. By the assumptions ab=/= I, a=/=b2, a2 =/=b, both curves Co.,b' Co.',b' 
are of type (1) or (2). If the curve Co.',b' is of type (1), then the element 
of order two in the reduced group of automorphisms is unique, and is 
given by (2.2). Therefore, we have",. 0 0 0 ",.-1=0. If the curve Co.',b' is 
of type (2), then the elements of order two in the reduced group of auto­
morphisms are conjugate to each other. Therefore, by a suitable choice 
of t, we can assume",. 0 0 0 ",.-1=0. Hence, in any case, we may assume 
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(2.4) 

Thus, we see that + is a bijection from three pairs {{I, -I}, {-v'a, --v'a}, 
{-v'b, --v'li}} to three pairs {{I, -1},{-v' a', --v' a'}; {-v' b', --v' b'}}. 

First, assume +({1, -1})={ 1, -I}. Composing + with fJ, ifneces­
sary, we may assume +(1)= 1 and +( -1)= -1. Then, the automorphism 
+ of pi is of the following form: 

+ (x) = {(1 +e)x+(l-e)}/{(I-e)x+(1 + e)} 

with a suitable element e of k*. Since we have +( -v'Ci) + +( - -v'a) = 0 
and a =1= 1, we have e= ± 1, that is, 

Hence, we have 

{
a'=a 

b'=b, 

+(x)=x or l/x. 

{a'=b {a'= l/a 
b'=a, b'= l/b or 

{
a' = l/b 

b' =I/a. 

Secondly, assume +( {I, - I}) = {-v' a', - -v' a'}. Composing + with 
fJ, if necessary, we may assume +(1)=-v' a' and +(-I)=--v' a'. We 
consider the automorphism +' of pi defined by 

+': x~x/-v' a' . 

Then, using this +', we see that the curve Ca',b' is transformed into 
C1/a',b'la" and we have a morphism +' 0 + with +' 0 +(1)= 1 and +' 0 

+( -1) = -1. Hence, by the same argument as above, we have 

{
al =l/a 

b'=b/a, 
{a' = l/b 

b'=a/b, 
{
a'=a 

or 
b'=a/b 

{
a'=b 

b'=b/a. 

Finally, assume +({1, -1})={-v' b', --v' b'}. Then, by the same 

method as above, we have 

{
a'=a/b 

b'=l/b, 
{
a'=b/a 

b'= l/a 
or {

a'=a/b 

b'=a. 

The last statement of this lemma follows by direct computation from our 
assumption. q.e.d. 

Now, we consider two automorphisms of the curve C",b defined by 
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{X~-X 0: 
y~y, 

{X~-X -c: 
y~-y. 
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We denote by (0) (resp. <-c») the group generated by 0 (resp. -c). We set 
E,,=Ca,bj<O) and E.=Ca,b!<-C), which are elliptic curves (cf. Igusa [9, 
Sectionn 8]). We know the following lemma (cf. Ibukiyama, Katsura and 
Oort [7]). 

Lemma 2.4. The Jacobian variety J(Ca,b) is isomorphic to a product 
of two supersingular elliptic curves if and only if both E. and E. are super­
singular elliptic curves. 

We set 

Then, the elliptic curve E. is defined by the equation 

yz= (X -1)(X -a)(X -b). 

By the coordinate change 

{
u=(X -a)j(l-a), 

V= Yj(l_a)3/z, 

E" is thus defined by the equation 

(2.6) v2=u(u-l){u-(b-a)j(l-a)}. 

As for E., set 

where i is a primitive fourth root of unity. Then, the elliptic curve E. is 
defined by the equation 

Y2= (X -1){X -(lja)}{X -(ljb)}. 

By the coordinate change 

{
u= {X -(lja)}j{l-(lja)}, 

V= Yj{1_(lja)}3/z, 

E. is thus defined by the equation 
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(2.7) v2= v(v-l){v-(b-a)/b(l-a)}. 

For an elliptic curve E, defined by the equation 

(2.8) EA: y=x(x-l)(x-A), 

we consider the Legendre polynomial 

Then, we know that EA is a supersingular elliptic curve if and only if (b(A) 
=0 (for instance, see Mumford [14, p. 216]). We consider two sets 

S={(a, b)la, b E k; a*O, 1; b*O, 1; a*b, and J(Ca,b) 
is isomorphic to a product of two supersingular elliptic curves}, 

S'={(A, p)IA, p E k; A*P; (b(A)=(b(p)=0}. 

Then, by Lemma 2.4, we have a mapping f: S-.S' which sends (a, b) to 
(A, p) defined by 

(2.9) 
p=(b-a)/{l-a), 

l,u=(b-a)/b(l-a). 

By (2.9) and Lemma 2.4, we see thatfis bijective. Since (b(A) is of degree 
(p-l)/2 without any multiple zeros (cf. Igusa [8]), we have 

IS'I={(p-l)/2}{(p-l)/2}-(p-l)/2=(p-l)(p-3)/4. 

Since f is bijective, we thus have 

(2.10) ISI=(p-l)(p-3)/4. 

We set 

T={(a, b) E Slab=l, a=b2 or a2=b} and T'=f(T). 

By the definition off, we thus have 

T'={(A, p) E S'lp=I/A, p=I-A or p=A/(A-l)}. 

We have the following relation between the A-invariant and the j-invariant 
of the elliptic curve defined by (2.8): 

j=28(A2_ A+ l)s/A2(A_l)2. 

If A= -1, 1/2 or 2, then we havej= 1728. Therefore, these elliptic curves 
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E_I> El/z, Ez are supersingular if and only if p=3 (mod 4). We denote by 
C a primitive sixth root of unity. If A=C or C5, then we havej=O. There­
fore, these elliptic curves E" E,5 are supersingular if and only if p=2 (mod 3) (cf. for instance, Hartshorne [4, p. 334]). Using these facts, we can 
compute the number of elements of T' as follows: 

IT'I=3(P-I)/2-2{1-( ~3)}_3{1_( ~I )}/2. 
Since f is bijective, we thus have 

ITI=3(P-I)/2-2{1-( ~3 )}~3{1-( ~I )}/2. 
By Lemmas 2.2 and 2.3, we have 

n1 +nz=(IS I-I TI)/12 

=(p-l)(P-3)/4-(P-I)/8+{ 1-( p3 )}/6 
+ { 1-( ~ 1 )} / 8. 

Hence, by (1.4), we have the following: 

Proposition 2.5. 

n1=(p-l)(P-I7)/48+{I-( ~2 )}/2+{1-( ~3 )}/2 
+{1-( ~3 )}/8. 

§ 3. The class number ofthe principal genus for g = 2 

In this section, we assume char. k=p-:c.S, unless otherwise mentioned. 
Let d g,il (resp. d g,il,n' (p, n)= I) be the coarse moduli scheme of polar­
ized abelian varieties of dimension g with polarization of degree d Z (resp. 
with polarization of degree dZ and level n-structure) defined over k. In 
case n>3, it is well-known that d g,d,n is a fine moduli scheme (cf. 
Mumford and Fogarty [IS, Section 7]). We consider in this section the 
case g=2, d= I and n=3. Then we have a Galois covering 

The Galois group is isomorphic to PSp (4, Z/3Z) (cf. Mumford and 
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Fogarty [15, p. 190]). As is well-known, the order of this group is given by 

We denote by Y the set of points in d.,1,3 which correspond to abelian 
surfaces which are isomorphic to a product of two supersingular elliptic 
curves. We proved in Katsura and Oort [10] the following theorem by an 
algebraic method. 

Theorem 3.1. IYI=9(p-I)(p2+1). 

The group PSp (4, Z/3Z) acts on Y. Let P be a point of Y, and 
(X, C) a principally polarized abelian surface which corresponds to cp(P). 
We may assume as before that C is a (not necessarily irreducible) curve of 
genus two on Xby the result of Weil mentioned in Section 1. The curve 
C has the canonical involution c, which induces the inversion of X. We 
set 

RA(X, C) = Aut (X, C)/<c). 

Then, we have 

(3.1) RA (C)::::: RA (X, C)::::: the stabilizer at P of PSp (4, Z/3Z). 

Therefore, we have 

where (X, C) runs through isomorphism classes of principally polarized 
abelian surfaces such that X is isomorphic to a product of two super­
singular elliptic curves. The mass formula for supersingular elliptic curves 
is as follows: 

(3.3) L:E 1/IRA(E)I=(p-l)/12, 

where E runs through isomorphism classes of supersingular elliptic curves. 
This is obtained by an algebraic method (cf. Igusa [8]). Using (3.2) and 
(3.3), by elementary calculation, we have the mass formula 

(3.4) L:c l/IRA (C)I=(p-l)(p-2)(p-3)/2880, 

where C runs through isomorphism classes of non-singular irreducible 
curves of genus two whose Jacobian varieties J(C) are isomorphic to a 
product of two supersingular elliptic curves (cf. Ibukiyama, Katsura and 
Oort [7, Section 3]). We note that if we use d 2,1,5 instead of d 2,1,3, then 
we can prove (3.4) in the case of p=2, 3. If p=2 or 3, then the right-hand 
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side of (3.4) is equal to zero. This means that in the case of p=2 or 3, 
there exists no non-singular irreducible curve C of genus two such that 
l( C) is isomorphic to a product of two supersingular elliptic curves. 
Hence, by (1.2) and Theorem 1.1, we have 

(3.5) if p=2 or 3. 

If P = 5, we have the curve C defined by 

y2=x(x4 _1) 

with IRA(C)I=120 (cf. Igusa [9]). The Jacobian variety fCC) IS ISO­

morphic to a product of two supersingular elliptic curves (cf. Ibukiyama, 
Katsura and Oort [7, Proposition 1.22]). Therefore, in the case of p = 5, 
by (3.4) this curve C is the unique curve whose Jacobian variety fCC) has 
such a property. Hence, by (1.2) and Theorem 1.1, we have 

(3.6) if p=5. 

Now, we assume p>7. Then, by (1.3) and (3.3), we have 

(3.7) no+nj/2+n2/6+ns/4+n4/12+n5/24+n6/5 

=(p-l)(p-2)(p-3)/2880. 

Therefore, by (1.4) and Proposition 2.5, we have the following: 

Proposition 3.2. 

no=(p-l)(p2-35P+346)/2880-{1-( ~l )}/32 

-{l-( ~2 )}/S-{l-( ~3 )}/9 
{ 

0 ifp=.1,2,3(mod5), 

+ -1/5 if p=.4 (mod 5). 

By Theorem 1.1, we have 

Hence, by (3.5), (3.6), (1.4) and Propositions 2.5 and 3.2, we have the 
following: 

Theorem 3.3. H2=1 ifp=2 or 3, 

H2=2 ifp=5, 

and for p>7, we have 
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H2=(p-l)(p+ 12)(p+23)/2880 

+ {(2p+ 13)/96} {1-( ~ 1 ) }+{(p+ 1l)/36}{ 1-( ~3 )} 
+{1-( ~2 )}/8+{1-( ~3 )}{1-( ~1 )}/12 
+{O 

4/5 

if p= 1, 2, 3 (mod 5), 

if p=4 (mod 5). 

Remark 3.4. Ekedahl has proved the following result (and our claims 
for g=2 andp<3 also follow from this: let C be a non-singular hyper­
elliptic curve of genus g>2 over a field of characteristic p whose Jacobian 
variety is isomorphic to a product of supersingular elliptic curves. Then, 
g«p-l)/2 (cf. T. Ekedahl, On supersingular curves and abelian varieties, 
preprint, Univ. Paris-Sud, Orsay (1984)). 

§ 4. The flag type quotient and the theory of descent 

In this section, we recall some basic facts on supersingular abelian 
varieties and prove easy lemmas on the descent of polarizations. 

Let k be an algebraically closed field of characteristic p>2. Let S 
be a noetherian scheme over k, and let f: G-+S be a group scheme over S. 
For a geometric point x on S, we denote by G:c the fibre f-l(X). For an 
open set U of S, we denotef-l(U) by Gu. Now, let fl' -+S be an abelian 
scheme over S. We denote by fl'[Ft] the kernel of the iterated Frobenius 
morphism Ft: fl' -+fl'(pi/S) (cf. e.g. Oda [17, p. 78]). For the sake of sim­
plicity, we write fl'(pl) instead of fl'(pl/S). For an integer n, we denote by 
[nls the multiplication by n in fl' over S. From here on, by a polarization 
p. on fl', we mean a polarization in the sense of Mumford and Fogarty 
[15, Definition 6.3], that is, p. is an S-homomorphism from fl' to fl't 

which satisfies usual conditions. For an abelian variety X over k, we 
denote by X the formal group associated with X. 

For a polarized abelian variety (X, A) over k of dimension g with 
polarization A of degree £P, we denote by [(X, A)] the point of d g,d, which 
corresponds to (X, A). We denote by 

VCdg,d 

the locus of supersingular abelian varieties, that is, [(X, A)] E V if and only 
if X is isogenous to a product of g supersingular elliptic curves (cf. Oort 
[20, Theorem 4.2]). We call V the supersingular locus. 

We denote by lXp the local-local group scheme of rank p over k. For 
a commutative group scheme (or a formal group) X over k, we define 
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a(X):=dimk (Hom (ap, X)), 

where Hom (ap, X) is a right module over End (ap)~k (this number was 
denoted by !'(X) in Oort [19, II, 12-3]). Let Zcd g,d be an irreducible 
closed subset and let K be an algebraically closed field containing the func­
tion field k(Z) of Z. We define 

a( -/ZCd g,d):=a(X), 

where (X, A) is a polarized abelian variety corresponding to the k-generic 
point of Z. (cf. Norman and Oort [16, p. 431]); note that this implies 
that there exists a non-empty Zariski open set Z 0 cZ such that 

feY, ,u)] E ZO if and only if a(Y)=a( -/ZCd g,d). 

For an abelian variety (or a formal group) X over k, we denote by 

A(X)cX 

the smallest subgroup scheme of X such that any homomorphism from a p 

to X factors through A(X); note that A(X) exists for any abelian variety 
(or any formal group) X, and we have 

From here on, we fix a supersingular elliptic curve E defined over the 
finite field Fp with p elements (for the existence, see Deuring [2, p. 199-
p.200]). 

Definition 4.1. A flag type quotient (ftq, for short) is a sequence of 
isogenies CPi (1 ;:S; i < g - 1) of abelian varieties Yi (0 < i < g - 1) of dimension 
g: 

(4.1) 

with Kercpi~(apY (l;:S;i:Sg-I). 

By Oda and Oort [18, Theorem 2.2] and Shioda [22, Theorem 3.5], 
we know that for any supersingular abelian variety X there exists a ftq 
ending at Yo=x. It should be noticed that our condition for ftq is 
weaker than the condition in Oda and Oort [18, Definition on p. 606]. 

Definition 4.2. A principally polarized flag type quotient (ppftq for 
short) is a ftq as in (4.1) with polarizations,ui of Yi (O<i<g-l) such that 
,uo = A is an isomorphism from Yo to Y6, and that cpr(,ui -1) =,ui (1 < i < g - 1) 
and Ker ,uiC Yi[pi] (O<i;:S;g-l). We denote this by 
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ipg-l ipg-2 ipl 
(Yg- I, Pg-I)~(Yg-2' Pg-2)~' .. ~(Yo, Po)· 

Lemma 4.3. Under the notations as in Definition 4.2, assume g;;;:::2. 
Then, Ker PI:::::E2[F]:::::(lrp)2 and Ker pg_I:::::Eg[Fg-I]. In particular, deg PI 
=p2 and deg Pg_I=pg<g-ll. 

Proof. By definition, we have degpg_I=pg<g-ll. Therefore, the 
latter part follows from Ker Pg-I cEg[Fg-I] and deg Fg- I =pg<g-ll. Since 
PI is a polarization, Ker (PI) is isomorphic to its Cartier dual (cf. Mumford 
[14, p. 234, Corollary 2]). Since Ker PI is killed by F, we see that Ker PI 
is also killed by the Verschiebung V. Hence, by deg PI=p2, we have 
Ker PI::::: (lr p)2. q.e.d. 

Lemma 4.4 (Oda and Oort [18, Theorem 2.2]). Let (X, "<) be a princi­
pally polarized supersingular abelian variety, and assume a(X) = 1. Then, 
there exists a ppftq ending at (X, "<)=(Yo, Po). Set 

Y<ll=XtIA(Xt), Y<2l=Y<llIA(Y(ll),"', y<g-ll= y<g-2lIA(y<g-2l), 

YI=(Y<llY, Y2=(Y<2l)l,"', yg_1=(y<g-llY· 

Then, Yg_I:::::Eg and the ppftq ending at (X,"<) is uniquely given by 

where <Pi (1 <i<g-l) is the dual homomorphism of the canonical projection 
<p~: Y<i-l l-4Y<il, and where Pi=<Pt(Pi-l) (1 :::;'i<g-l). 

Now, we give two lemmas on the descent of polarizations. 

Lemma 4.5. Let (X, p) be a polarized abelian variety over k such that 
Ker P contains a subgroup scheme H which is isomorphic to lrp. Then, the 
polarization P descends to a polarization on XI H. 

Proof. This lemma follows from Mumford [14, p. 223, Lemma 1, 
and p. 231, Corollary to Theorem 2]. q.e.d. 

Lemma 4.6. Let P be a polarization on Y=Eg such that Ker p-:::J 
Yep] = Ker [p]y. Then, there exists a polarization p on Y such that P = 
F*(p). 

Proof. We consider the immersion rl of lrp to the first factor of Eg. 
We denote by 
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the canonical projection. Then, by Lemma 4.5, we can find a polarization 
pIon Y I such that P= 71:'t(PI). By our choice of rH it is easy to see that 

Next, we consider the immersion r 2 of ap to the second factor E of (Ejrl(ap)) 
xEg-I. Then, by Lemma 4.5, the polarization PI descends to a polariza­
tion P2 on (Ejrl(ap)) X (Ejr2(ap)) X Eg- 2 with Ker p2:::J{O} X {O} X Eg- 2[P]. 
We continue this procedure g times. Since Ker F-:::::.(ap)g, we conclude 
that there exists a polarization p on Y such that p=F*(p). q.e.d. 

§ 5. The construction of families 

In this section, we construct families of principally polarized super­
singular abelian threefolds. We keep the notation in Section 4. As in 
Section 4, we fix a supersingular elliptic curve E defined over Fp- Let ,u 
be a polarization on Y = E3 such that 

(5.1) Ker P= Yep]· 

We set 

which is clearly isomorphic to the projective plane. We denote by [1/F] the 
point of P which corresponds to an immersion 1/F. We write 1m 1/FC Y for 
the image of 1/F, and we set 

Zt = YjIm 1/F. 

We have the canonical projection 71:: Y~Zt. 

Lemma 5.1. Under the notation as above, for any 1/F, there exists a 
polarization Pt on Zt such that 

P=71:*(Pt)· 

Proof Since the Frobenius morphism F of Y factors through 71:, this 
lemma follows from Lemma 4.6. q.e.d. 

The following proposition is essentially due to Oda and Oort [18, 
Lemma 4.2], and our proof is inspired by Moret-Bailly [13, p. 138-p. 139]. 

Proposition 5.2. Under the notation as above, there exists a non­
singular curve rep) in P with 
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deg r(fl)=p+ 1 

such that Ker PtcZt [F) if and only if[t] e r(fl). 

Proof. In order to carry out the computation, we use the contra­
variant Dieudonne module theory. Thus, the Dieudonne module vIt(E) 
=M is generated over the ring W= W~(k) of infinite Witt vectors by 

(5.2) 

and the morphism 1/r corresponds to a surjective homomorphism 

(5.3) k2~M. 

The Dieudonne module vIt(Zt) = Ker (vIt(t)) is generated over Wby 

(5.4) 

where xt=ajej + a2e2 + ases with at e W(i= 1, 2, 3), and where at=at modp 
e W/pW-::=.k are thought of as the coordinates of [W] e P. We set 

K=Ker fl. 

By (5.1), we have 

(5.5) vIt(K) -::=. M/ F2 M -::=. M/pM. 

The polarization fl gives a Riemann form on K: 

(cf. Mumford [14, p. 222]). We denote by (Ker nY- the subgroup scheme 
perpendicular to Ker rr with respect to the form e. Then, we have 

Ker pt-::=.(Ker rr)l./Ker rr 

(cf. Mumford [14, p. 232, Lemma 2]). By (5.5), vIt(K) is a vector space 
over W/pW-::=.k, and by (5.2), the image of 

(5.6) 

is a basis of the Dieudonne module vIt(K) over k. We again denote by 
{ej, e2, es, Fe j, Fe2, Fes} (resp. Xt) the image of {ej, e2, es, Fe j, Fe2, Fes} (resp. 
Xt) in vIt(K). The homomorphism vIt(t) in (5.3) induces a homo­
morphism 
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By (5.4) and (5.5), a basis of Ker + over k is given by 

(5.7) 

We denote by vI/(K)* the dual vector space of vI/(K). Then, in our case, 
vI/(K)* is isomorphic to f!2(vI/(K» in Oda [17, Definition 3.5] as a W[F, V]­
module. Therefore, we have a non-degenerate skew-symmetric bilinear 
form on vI/(K)* X vI/(K)* induced bye. Hence, we have a non-degenerate 
skew-symmetric bilinear form 

b: vI/(K)XvI/(K)~k 

induced by e such that 

(5.8) b(Fx, y)=b(x, Vy)P 

for any elements x, y in vI/(K) (cf. Moret-Bailly [13, p. 138], and see also 
Oda [17, Section 3]). As is stated in Moret-Bailly [13], we can easily prove 

vI/(Ker p,,)::::::: vI/«Ker ;r)1.jKer;r)::::::: Ker +1(Ker +)1.. 

as W[F, V]-modules. Hence, we see that 

Ker p"CZ,,[F] if and only if F(Ker +)c(Ker +)1.. 

By (5.5), (5.6) and (5.8), we see that 

(5.9) F(Ker +) c (Ker +)1. if and only if b(Fx", x,,)=O. 

With respect to the basis (5,6), the bilinear form b is given by the 6 X 6 
matrix (bij), where 

bjj=b(ei, e j ), bi+3,j=b(Fei , ej), bi,j+3=b(ei, Fe j), bi+3,j+3=b(Fei, Fe j) 

for l;;;;;i<3, l~j;;;;;3. We consider the curve T(p) in P defined by the 
equation: 

(5.10) 

Then, by (5.4) and (5.9), we conclude that 

Ker p"CZ,,[F] if and only if [1fr]=(a i ) satisfies Equation (5.10). 

By (5.5) and (5.8), the 3 X 3 matrix (b(Fei, Fe j»1;;;i,j;;;3 is the zero matrix. 
Since b is a non-degenerate bilinear form, we see that the 3 X 3 matrix 
(b(Fei, e j»l;;;i,W is regular. Hence, the hypersurface T(p) defined by (5.10) 
is non-singular. q.e.d. 

Lemma 5.3. Let 'll be a formal group of dimension two over k which 
is isogenous to ("£)2. 
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i) If a(~)= 1, then a(~/H)=2 for the unique subgroup scheme H of 
~ which is isomorphic to CY.p. 

ii) If a(~)=2, then ~-::=.(t)2. 

Proof This lemma follows from Oort [21, Corollary 7 and Theorem 
2]. q.e.d. 

Proposition 5.4. Let (X,.:t) be a principally polarized supersingular 
abelian threefold. Then, there exists a ppftq ending at (Yo, Po) = (X, .:t). 

Proof We distinguish the cases: 

(1) a(X)=I, (2) a(X)=2, (3) a(X) =3. 

In Case (1), the conclusion follows from Lemma 4.4. 
In Case (3), by Oort [21, Theorem 2] and Shioda [22, Theorem 3.5], 

we have X -::=.E8. We set 

Then, we see Ker P2= Y2[P]. We choose an immersion 

Then, by Proposition 5.2, there exists a polarization Pion Yl = Y2/Im t 
with 

CP2: Y2~YI' CP't(PI)=P2' and Ker PI-::='cy'pXCY.P' 

where CP2 is the canonical projection. Since Ker CP2 C Ker <P, we have the 
natural morphism 

such that CPI oCP2=<P. It is clear that Kercpl-::='cy'p • We set 

PI = CPt 0)· 

Then, (Y2, P2)~(YI' PI)~(YO' Po) = (X, A) gives appftq ending at (X, A) 
in Case (3). 

In Case (2), we have a(Xt) = 2 (cf. Oda and Oort [18, p. 599, Remark]). 
Since A is a principal polarization, and since g=3 and a(X)=2, there 
exists a formal group ~ of dimension two with a(~)= 1 such that Xt is 
isomorphic to ~xt (cf. Oda and Oort [18, Proposition 4.1 and the proof 
of Corollary 4.3]). By a(~)= 1, the formal group ~ has the unique sub­
group scheme Hwhich is isomorphic to CY.p. We denote by Hthe subgroup 
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scheme in x t which corresponds to Hin X'. Since a(C§/H) = 2 by Lemma 
5.3, we have a«C§ X E)/H) =3. Therefore, we have a(Xt/H) = 3. We set 

YI=(Xt/H)t. 

Then, we have a(Y1)=3 (cf. Oda and Oort [18, p. 599, Remark]). There­
fore, we have isomorphisms X'/H'.:::.E3 and Y I '.:::.E3, and we have a com­
mutative diagram: 

(5.11) 

where soi is the canonical projection, where SOl is the dual of soi and where 
/11 = sor(A). Corresponding to this diagram, we have a commutative 
diagram of formal groups: 

(5.12) 

where /11 (resp. ~, resp. ¢I' resp. ¢D is the homomorphism induced by /11 
(resp. A, resp. SOl' resp. soD. Since ~ is an isomorphism and X'.:::. C§ X E, we 
see Xt=C§XE. By our construction, the diagram (5.12) becomes the 
following: 

(5.13) 

where Al (resp. A2, resp. A3, resp. A.) is a homomorphism from C§ to C§ (resp. 
E to C§, resp. C§ to E, resp. E to E), and where /1a (resp. /1b' resp. /1e, resp. 
/1d) is a homomorphism from EXE (the first two factors) to EXE (the 
first two factors) (resp. E (the last factor) to EXE (the first two~factors), 
resp. EXE (the first two factors) to E (the last factor), resp. E (the last 
factor) to E (the last factor». It is easy to see that A3 is zero on the!unique 
subgroup scheme ap of C§. From this and the fact that A is a principal 
polarization it follows that 

AI: C§ '.:::. C§ and A4: E'.:::. E. 



272 T. Katsura and F. Oort 

Therefore, by the definition of sDi, we conclude 

Ker .u1~apXap~Ker f1aCEXE. 

Hence, by Oort [21, the argument on p. 40], we can find a subgroup 
scheme 1 of EXE such that 1 is isomorphic to ap, and that (ExE)/1~E 
xE. We denote by !the subgroup scheme of Yl which corresponds to 1 
in E3 ~ fl' Then, by the choice of 1, we see 

Let 1C: Yc -+ Y l / I be the canonical projection. Since 

Ker1C~apCKer f11~apXap, 

we can find a principal polarization p on YJI such that 

f11=1C*(p) 

by Lemma 4.5. We set 

and we consider the Frobenius morphism F: YC+YI/I. Then, by the 
property of the Frobenius morphism, we can find a morphism 

such that F = 1C 0 cpz. We set 

f1z=F*(p). 

Then, we have 

f1Z=CP;(f1I) and Ker f12~ Y[P]. 

Hence, we get a ppftq 

ending at (X, A). q.e.d. 

Definition 5.5. Let S be a k-scheme. Let 

be a sequence of abelian schemes q]/ i (i = 0, I, 2) over S with polarizations 
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Pi on Wi (i=0, 1,2) (cf. Mumford and Fogarty [15, p. 120, Definition 6.3]) 
and homomorphisms q;i (i = 1, 2) such that 

This sequence is called a principally polarized flag type quotient over S 
(pp!tq/S, for short) if for every point x of S, there exists a Zariski open 
neighborhood C'If of x in S such that 

Now, we construct a family of principally polarized supersingular 
abelian threefolds. We consider an abelian threefold Y = E3 with polari­
zation p which satisfies Condition (5.1). Let T(p) be the curve obtained 
in Proposition 5.2. We set 

and we consider the group scheme 

p~: W~~T(p), 

where p~ is the projection to the second factor T(p). For a scheme S, we 

denote by ids the identity mapping from S to S. We denote by p~ the 
polarization of the abelian scheme p~: W~-+T(p) defined by pXidr (I')' 

Let p~/: .Y-+T(p) be a subgroup scheme of p~: W~-+T(p) which satisfies the 
following two conditions: 

(i) all geometric fibres are isomorphic to apXap, 
(ii) for the point [1ft'] E rep), the fibre (p~/)-I([1ft']) coincides with 

1m1ft'. 
By the construction of T(p), such a subgroup scheme exists. We set 

Wi = {YXT(p)}/.Y. 

Let q;~: W~-+Wi be the canonical projection. Denoting by F the Frobenius 
morphism of the abelian scheme P2: W~-+T(p), we see that there exists a 
morphism X from Wi to W~(p) such that the following diagram commutes: 

(5.14) 

By Lemma 4.6, the polarization p~ on W~ descends to W~(p). Hence, by 
(5.14), there exists a polarization pi on Wi such that 
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Moreover, by construction, we have 

Ker pie <ZVi[F]. 

Let A(Ker pi)-+TCp) be the smallest subgroup scheme of Ker pi -+r(p) 
having the following universal mapping property: 

(5.15) for any affine open subset Ol/ of rep), and for any group scheme 
G-+Ol/ over Ol/ whose geometric fibres are isomorphic to ap , and 
for any morphism g: G-+(Ker pD", over Ol/, there exists a morphism 
h from G to (A(Ker pm", over Ol/ such that g factors through h. 

By the theory of p-Lie algebras, which works over any integral domain of 
characteristic p (cf. Demazure and Gabriel [1, II. 7.4.3]), such a group 
scheme exists and is of rank two and height one over rep) by the con­
struction of TCp). We define 

.%'(p)=P(Lie (A(Ker pi)~r(p))). 

We denote by 

(5.16) 

the natural morphism. 

Proposition 5.6. .%'(p) is a non-singular variety of dimension two. 

Proof This proposition follows from the above construction of 
.%'(p) and Proposition 5.2. q.e.d. 

We set 

<ZVi=<ZV~Xr(#)Y(p) and Pi=p~Xr(#)id!F(#) U=I,2). 

We have group schemes over .%'(p): 

(i= 1,2), 

where p/s are the natural projections onto .<F(p). We have also the homo­
morphism 

induced by SO~. Since A(Ker pi)-+r(p) is a flat group scheme over T(p) 
whose geometric fibres are isomorphic to (ap)2, for any point x of rep) we 
can find a Zariski open neighborhood Ol/(p) of x such that 
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We set 

(5.17) 

Since A(Ker ,u1)~A(Ker ,u;)Xr(P) :JF(,u), we have 

I1,}/I,F('O(P» ~(apY X .'T(t1!I(p))~(ap)2 XPI X t1!I(,u). 

We denote by q the projection from (ap)2 XPI X t1!I(,u) onto (ap)2 X pl. We 
consider the subgroup scheme H of (ap )2 X Plover pI which was con­
structed in Moret-Bailly [13, p. 128]. We set 

;;If=q-I(H). 

Then, ;;If is a subgroup scheme of (ap)2 X .'T(t1!I(,u)) over .'T(t1!I(,u)), hence a 
subgroup scheme of I1,}/I,s-('O(P» over .'T(t1!I(,u)). For the sake of simplicity, 
we write l1,}/i instead of l1,}/i,s-('O(p»' We set 

11,}/ 0 = 11,}/ I/;;If. 

This is a group scheme over .'T(qf(,u)). We denote by 

SOl: 11,}/1---+I1,}/O 

the canonical projection. We consider the following commutative dia­
gram: 

(5.18) 

ml PI mit 

~IT.2fr~1 
OJ! ~ 11,}/~ ""'" FI 

v X····. 
L'O ". j l/(I/P) ..•. 

11,}/~I/p) ••.....•.......... ~ (I1,}/D(I,P), 

where Fo, FI are the Frobenius morphisms. Since Ker SOl C Ker ,ul, we can 
find a homomorphism lJ from l1,}/o to l1,}/i. Therefore, we can find lJ<l/p) from 
11,}/8!/P) to (I1,}/D(1/p). By the property of the Frobenius morphism, we can 
find a homomorphism X from (I1,}/D(1/P) to I1,}/g such that FI = soi 0 X. 

Lemma 5.7. Under the notation as above, 

(5.19) Ker FocKer (X 0 lJ<I/P»). 

Proof Since on each fibre over .'T(t1!I(,u)), the polarization,ul descends 
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to a polarization on qlfoby Lemma 4.5, we see that (5.19) holds on each 
fibre over !T(dJt(p». This shows Ker FocKer (X ° IPIPl). q.e.d. 

Using this lemma, we can find a !T(dJt(p»-homomorphism Po from 
qlfo to qlf~. By Lemma 4.5, this !T(dJt(p»-homomorphism Po is a principal 
polarization on qlfo in the sense of Mumford and Fogarty [15, Definition 
6.3]. Hence, for every polarization p on Y = E 8 such that Ker (p) = Y[P], 
we have constructed a ppftqf!T(dJt(p»: 

(5.20) 

§ 6. The structure of the supersingular locus in .5118,1 

In this section, we keep the notation in Sections 4 and 5. We again 
assume g= 3. We denote by V the supersingular locus in .5118,1' Let E be 
a supersingular elliptic curve defined over Fp , and let (E 8, p) be a polarized 
abelian threefold with polarizationp which satisfies Condition (5.1): 
Ker (p)= Y[F2]. As in Section 5, using (E 8, p), we can construct a family 
of principally polarized abelian threefolds over !T(dJt(p»: 

(6.1) 

Therefore, by the property of the moduli variety .5113,1, we have a morphism 

(6.2) 

We set 

!T(dJt(pW ={x E !T(dJt(p» I a(qlfo,z) = I}. 

Lemma 6.1. !T( dJt(p» 0 is a non-empty Zariski open subset of !T( dJt(p». 

Proof Since !T(dJt(P»)O is a Zariski open subset, it suffices to prove 
that !T(dJt(P»O is non-empty. By Oda and Oort [18, Theorem 2.4 (i) and 
Theorem 3.2], we can find a Zariski open subset !T(dJt'(p» and a point x 
of !T(dJt'(P» such that a(qlfo,z) = 1. Hence, !T(dJt'(p»O is a non-empty 
Zariski open subset. As in (6.2), we have two morphisms 

By the construction of our families, we see 

(6.4) g(!T(dJt(p» n !T(dJt'(p»)=g'(!T(dJt(p» n !T(dJt'(p»). 

Hence, !T(dJt(p»O is non-empty. q.e.d. 
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Proposition 6.2. The closure of the image of g in (6.2) does not depend 
on the choice of open sets d/i(f-I) of r(f-I)' 

Proof Let d/i(f-I) and OII'(f-I) be two Zariski open sets of r(f-I)' As 
in (6.3), we have two morphisms g and g', and we see that (6.4) holds. 
Using the notation in (5.16), we see thatf-l(d/i(f-I) n d/i'(f-I» is dense in ,rF(f-I). 
Hence, we conclude that the closure of the image of g coincides with the 
closure of the image of g'. q.e.d. 

Proposition 6.3. The morphism g in (6.2) is of finite degree. 

Proof By Lemma 6.1, the set !Y(d/i(f-I)O is a non-empty Zariski open 
set. Let Xl and X2 be two points of !Y(d/i(f-I» ° such that g(xl )=g(X2). We 
set 

(j=1,2) 

where X(J) are abelian threefolds with principal polarization 1(j). Since 
a(X(j» = 1 (j= 1, 2), by Lemma 4.4, we have the unique ppftq of 
(X(J), f-I(j»: 

(Ea, f-I(j»~(YI(J), f-IP»~(X(j), 1(j» (i=1,2). 

Since g(xl )=g(X2), by the uniqueness of ppftq, there exists an auto­
morphism 8: P~Es such that f-I(2)=8*(f-I(1». Since the group Aut (ES, f-I) 
of automorphisms of E S which preserve the polarization f-I is a finite group 
(Matsusaka [12, p. 72, Corollary 1]), the restriction of g to !Y(d/i(f-I»O is a 
finite morphism. Hence the morphism g is of finite degree. q.e.d. 

Theorem 6.4. Every irreducible component V' of the supersingular 
locus V in ds,1 can be obtained as the closure of the image ofg as in (6.2) 
with a suitable polarization f-I on E S which satisfies Condition (5.1). In par­
ticular, the dimension of v' is equal to two. 

Proof Let [(X, 1)] be a point of V' which is not· contained in any 
other component of V. By Oda and Oort [18, Corollary 4.3], we have 
dim V'<2. By Proposition 5.4, we can construct a ppftq: 

(ES, f-I)~(Y' f-II)~(X, 1). 

Starting from (Ea, f-I), we can construct a family of principally polarized 
supersingular abelian threefolds over a Zariski open subset !Y(OII{J-I» as in 
(6.1). Then, the closure of the image of g as in (6.1) contains the point 
[(X, 1)]. Moreover, since the dimension of !Y(OII{J-I» is equal to two, we 
conclude by the assumption on the point [(X, 1)] and Lemma 6.3 that the 
closure of the image of g coincides with our V', and that the dimension of 
V'is equal to two. q.e.d. 
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Theorem 6.5. Every component V' of V satisfies 

a{-jV'cda,l)=1. 

Proof By Theorem 6.4, we can find a morphism g as in (6.2) such 
that the closure of the image of g coincides with V'. Since Y'{o/1{p.»O is 
non-empty by Lemma 6.1, the image g{Y'{Olt(p.W) is non-empty. Hence, 
we have a{ -jV'cda,l)= 1. q.e.d. 

Theorem 6.6. There exists a bijective correspondence between the set 
of irreducible components of the supersingular locus V in ds,l and the set of 
isomorphism classes of pairs (E3, p.) with polarization p. such that Ker p.= 
E3[£2]. 

Proof As in the proof of Theorem 6.4, for any irreducible component 
V' of V, we get (E a, p.) with a polarization p. such that Ker p.=ES[F2] and 
that the closure of the image of g as in (6.2) coincides with V'. Suppose, 
now, we have two polarizations p.(j) (j= 1, 2) on E S with Ker p.(j) =E3[F2] 
such that the closures of the images of Y'{Olt{p.(j») (j= 1,2) give the same 
irreducible component V' of V. Then, as in the proof of Proposition 6.3, 
we see that (E3, p.(l» is isomorphic to (ES, p.(2». q.e.d. 

Let B be a definite quaternion algebra over the field Q of rational 
numbers with discriminant p, where p is the characteristic of k. Let Us 
be the positive definite quaternion hermitian space of dimension 3 over B. 
Then, we have the following theorem. 

Theorem 6.7. The number of irreducible components of the super­
singular locus V in da,l is equal to the class number H3{p, 1) of the principal 
genus ofUa• 

Proof Let p. be a polarization on E3 with Ker p. = £3[£2]. Then, by 
Lemma 4.6, there exists a principal polarization A on E a such that F*(A) 
=p.. Conversely, for a principal polarization A on E S, we set P.=F*{A). 
Then, p. is a polarization on E3 with Ker p.=£3[P]. Moreover, it is clear 
that (E a, A(l» with principal polarization A(l) is isomorphic to (E S, A(2» with 
principal polarization A(2) if and only if (E S, F*{A(l») is isomorphic to (E a, 

F*(A(2»). Hence, by Theorem 6.6, the number of irreducible components 
of V is equal to the number of isomorphism classes of principally polarized 
abelian threefolds (X, A) such that X~Ea. By Ibukiyama, Katsura and 
Oort [7, Theorem 2.10], the latter number is equal to Ha{P, 1). q.e.d. 

Corollary 6.S. The supersingular locus V in ds,l is reducible if and 
only if p>3. 
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Proof By Hashimoto [5], we have 

Hence, this corollary follows from Theorem 6.7. q.e.d. 

We add here some remarks which are easily proved by our method. 

Remark 6.9. a) Considering the images of n-torsion points of <!!f2 
over .fF(Cf//(fJ-)) in (5.20) with a positive integer n such that (p, n)= 1, we get 
a level n-structure on (<!!fo, fJ-o) over .fF(Cf//(fJ-)). Therefore, we get a morphism 
from .fF(Cf//(fJ-)) to d 3,I,n for each choice of the level n-structure. 

b) By a suitable choice of Cf//(fJ-), we may assume that .fF(Cf//(fJ-W is 
invariant under the natural action of Aut (E 3, fJ-). Then, by a method 
similar to the proof of Proposition 6.3, we can show 

(see also Oda and Oort [18, Proposition 4.1]). 
c) Let [(X, .:1)] be a point on the intersection of two components of 

VCd3,1' Then, we have a(X)~2. 
d) The morphism g in (6.2) is not necessarily a finite morphism. For 

any point [t] E Cf//(fJ-)CP, t: (ap )2 CE3, we set Z,,=£3/t((ap)2). We have 
a natural homomorphism 

Clearly we have 

By Lemma 4.6, there exists a principal polarization .:1 on E 3 such that fJ- = 
F*(.:!). Then, the point on .:T( Cf//(fJ-)) which corresponds to (t, i,,) maps to 
the point [(£3, .:1)] for any point [t] of Cf//(fJ-). Thus 

i(Cf//(fJ-))={(t, i,,) I [t] E Cf//(fJ-)}c.fF(fJ-) 

is a section of .:T(Cf//(fJ-))---+Cf//(fJ-) and this section is contracted to the point 
[(E 3, .:1)]. 

Remark 6.10. Let V' be an irreducible component of the super­
singular locus V in d 3,d' What can be said about dim V', and about 
a( -IV'cd3,d)? 

a) If d= 1, then we have 

dimV'=2 and a(-jV'cd3,1) =1, 
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as we have seen in Theorems 6.4 and 6.5. 
b) If d=p\ then there exists a component V' with 

dim V'=3 and a(-/V'Cd'g,p.)=l 

(cf. Oda and Oort [18, Corollary 3.4]). These are the numbers one could 
expect. 

c) However, it seems difficult to describe the situation in general. 
We can easily prove: 

if d=p, then every component V'Cd'g,p satisfies 

dim V'=2 and a(-/V'C.s1'g,p)=2, 

and 

if d=p2, then there exists a component V'Cd'g,p2 such that 

dim V' =3 and a( -/V'Cd'g,p2)= 1. 

It seems difficult to guess the general behavior of these invariants for the 
strata in d' g,d if we stratify by isogeny type (for the case of stratification 
by p-rank, see Norman and Oort [16, Theorem 4.1]). 
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