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Supersingular Abelian Varieties of Dimension
Two or Three and Class Numbers

Toshiyuki Katsura and Frans Oort

§0. Introduction

Let B be a definite quaternion algebra over the field Q of rational
numbers with discriminant p. We assume that p is a prime number. Let
U, be the positive definite quaternion hermitian space of dimension g over
B. We denote by H, the class number of the principal genus of U, (for
the definition of the principal genus, see Hashimoto and Ibukiyama [6,
Section 1]). Let k be an algebraically closed field of characteristic p. In
Ibukiyama, Katsura and Oort [7, Theorem 2.10], we showed that the class
number H, (g>2) is equal to the number of isomorphism classes of
principally polarized abelian varieties (X, ) of dimension g defined over
k such that X is isomorphic to a product of supersingular elliptic curves
(see also Shioda [23, Theorem 3.5] and Serre [22]).

When g=1, H, is nothing but the class number of the maximal orders
of B. The explicit formula for H, was given by Eichler [3, Satz 2]. Then,
Deuring proved that the class number H, is equal to the number of iso-
morphism classes of supersingular elliptic curves defined over k (Deuring
[2], p. 266). Finally, Igusa calculated the number of isomorphism classes
of supersingular elliptic curves defined over k by an algebraic method, and
using Deuring’s result, he gave a new proof of the explicit formula for H,
(cf. Igusa [8]). In the first part of this paper, we calculate, by an algebraic
method similar to the one in Igusa [8], the number of isomorphism classes
of principally polarized abelian surfaces defined over & such that X is iso-
morphic to a product of supersingular elliptic curves. Hence, using the
above result, we give a new proof of the explicit formula for H, which was
given in Hashimoto and Ibukiyama [6].

Recall that an abelian variety is called supersingular if it is isogenous
to a product of supersingular elliptic curves. Let /., be the coarse
moduli scheme of principally polarized abelian varieties of dimension g
defined over k, and let V" be the algebraic set in &7, whose points corres-
pond to supersingular abelian varieties. We call V the supersingular locus
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of o/, ,. In the case of dimension two, as was shown in Katsura and
Oort [10], the number of irreducible components of ¥V is equal to the class
number of the non-principal genus of U, (for the definition of the non-
principal genus, see Hashimoto and Ibukiyama [6, (II)]). In the second
part of this paper, we show that the number of irreducible components of
the supersingular locus ¥ in &, , is equal to H,. Hence, using the explicit
formula for H, by Hashimoto [5], we conclude that this locus ¥V is reduci-
ble if and only if p>>3. We show also that the a-number of the generic
member of every irreducible component of V is equal to one (cf. Theorem
6.5).

The authors would like to thank Professors K. Ueno, T. Ibukiyama
and K. Hashimoto for useful conversations. The authors would also like
to thank Professor Tadao Oda for his valuable advice and encouragement.
The second author visited Japan during the fall of 1984, and most of his
work for this paper was done at that time. The second author thanks his
Japanese colleagues and friends for warm hospitality, and is grateful to the
Japan Society for the Promotion of Science (JSPS) for financial support,
and to Kyoto University for excellent working conditions.

§1. Curves of genus two

In this section, we recall basic facts and some results of our previous
paper [7]. It should be noticed that all these facts were obtained by an
algebraic method similar to the one in Igusa [8].

Let p be a prime number, and let B be a definite quaternion algebra
over the field Q of rational numbers with discriminant p. We denote by
H,=H,(p, 1) the class number of the principal genus of the positive
definite quaternion hermitian space of dimension g over B (for the defini-
tion, see Hashimoto and Ibukiyama [6, Section 1]). We use the following
theorems.

Theorem 1.1 (Ibukiyama, Katsura and Oort[7]). Let k be an alge-
braically closed field of characteristic p, and let E be a supersingular elliptic
curve defined over k. Then, H, is equal to the number of principal polari-
zations on E¥€ up to automorphisms of E®.

Theorem 1.2 (Deligne). Let E; (i=1,2, ---,2g) be supersingular
elliptic curves. Assume g=2. Then, E,X - - - X E, is isomorphic to E,, X
oo X Ey.

For the proof, see Shioda [23, Theorem 3.5].
Using these two theorems, we see that H, is equal to the number of
isomorphism classes of principally polarized abelian varieties (X, @) of
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dimension g such that X is isomorphic to a product of supersingular elliptic
curves.

Now, we assume g=2. Then, we can consider a principal polariza-
tion @ as a complete (not necessarily irreducible) curve of genus two on X.
According to Weil [24, Satz 2], we have the following two possibilities for
O:

a) O is a non-singular complete curve of genus two and X is iso-
morphic to the Jacobian variety of 6.

b) O=E,+E, consists of two elliptic curves E,, E, which intersect
transversally such that X ~ E, X E,.

It is easy to see that H, coincides with the number % of isomorphism
classes of supersingular elliptic curves. Moreover, Igusa [8] showed that

(.1 h:{1-<:p_3>}/3+{1_(_—pi>}/4+(p—1)/12,

where (L) denotes the Legendre symbol. Then, the number n of iso-
p
morphism classes of principally polarized supersingular abelian surfaces

(X, ©) which belong to Case b) is given by
(1.2) n=h(h+1)/2

(for details, see Ibukiyama, Katsura and Oort [7, Section 2.2]). A non-
singular complete curve C of genus two has the canonical involution .
We denote by Aut (C) the group of automorphisms of C. We call RA (C)
=Aut (C)/{¢) the reduced group of automorphisms of C. We say that a
curve C of genus two is in Class (0) if the reduced group RA (C) of auto-
morphisms is trivial. For p>7, we said that a curve C of genus two is in
Class (i) (i=0, 1, - - -, 6) if RA (C) contains the group in (i) (cf. Igusa [9],
and Ibukiyama, Katsura and Oort [7]):

(1.3) ©) {0}, (1) Zz)2z, 2)S, (3)Z2ZxZ2Z, (4) D,
® S, (6 z/5z.

In this paper, we say that a curve C of genus two is of type (i) (=0, 1,
.-+, 6) if RA (C) is isomorphic to the group in (i). We denote by n;, (i=
0,1, - -, 6) the number of isomorphism classes of curves C of genus two
of type (i) whose Jacobian variety J(C) is isomorphic to a product of two
supersingular elliptic curves. Then, for p=>7, we already proved the fol-
lowing results (cf. Ibukiyama, Katsura and Oort [7]):

o nmome- (=) /2 (-()) /o
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- fi-(51) /- -2}/
(522

-fi-()

=fi-(3)

0 ifp=1,2 or 3 (mod)5),
1 if p=4 (mod 5).

§2. Curves of genus two in Class (1)

In this section, we assume char. k=p=>7. We use the notations in
Ibukiyama, Katsura and Oort [7, Section 1]. Now, we consider the curves
of genus two of type (1), (2) ,(3), (4) or (5). Since the reduced groups of
automorphisms of these curves contain an element of order two, they are
defined by the following equation:

2.1 Cupt V=(x*—1)(x*—a)(x*—b)
with @, b e k; a0, 1; b=£0, 1; a=+b.

Lemma 2.1. Let x be a local coordinate of A* in the projective line P'.
Let @ be the automorphism of order two of P* defined by

2.2) 0: x—>—x.

Then, the automorphisms of order two of P! which commute with § are of
the following form:

2.3) PX)=afx with aek*, or 06(x)=—x,
where k* is the multiplicative group of non-zero elements of k.

Proof. Since the automorphisms of P are of the form (ax+ B)/(rx
+0) with &, B, T, & € k, we can check this lemma by direct computation.
g.e.d.

Lemma 2.2. The reduced group RA (C,,) of automorphisms of C, ,
contains a subgroup which is isomorphic to Z[2Z X Z[2Z if and only if a="b?,
a*=>b or ab=1.
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Proof. The “if” part is trivial. Suppose that RA (C, ;) contains a
subgroup which is isomorphic to Z/2ZX Z/2Z. Then, by (1.3), we see
that RA(C, ;) is isomorphic to Z/2ZX Z/2Z, D,, or S,. The automor-
phism ¢ defined by (2.2) gives an element of order two of RA(C, ;). By
the structure of groups Z/2ZX Z [2Z, D,, and S,, we can find an element
p(p£8) of RA(C,,,) of order two which commutes with /. By Lemma
2.1, 5 is of the following form:

xX)=ca/x with «ek*.

We see that 5 induces a permutation of the six branch points 1, —1, 4/ a,
—+v'a, b and —v'b of C,, over P'. Since (1) =a, we conclude that
a==+1, ++/ a or +v'b. If =1, then we have p(v @)==+(1/¥ a)
==+4+/b bya=1and a=b. Hence, we have ab=1. If a==++/a, then
we have 5(++/ b)=(++ a)/(£+ b)==++b. Hence, we have a=>5b"
If a= -++/'b, then by the same method, we have a*=b. q.ed.

By Lemma 2.2, we see that the curves of type (1) or (2) can be defined
by (2.1) with ab=1, a#b? and a®+£b.

Lemma 2.3, Assume abs1, as=b* and a*=b.  Then, the curve C,. .
is isomorphic to C, , if and only if (¢, b) is equal to one of the following:

(@, b), (1/a, 1/b), (a, afb), (1/a, bja), (b, @), (1/b, 1]a),
(b, bja), (1/b, afb), (a/b, a), (b/a, 1/a), (a/b, 1/b), (b/a, b).

Moreover, these twelve pairs are different from each other.

Proof. The “if” part is trivial. Suppose that we have an iso-
morphism

Vi Cpy—>Co iy

The curve C, , (resp. C,. ) is a two-sheeted covering of P', and v induces
an automorphism +» of P, which also induces a bijection from six branch
points {I, —1, v a, —va, Vb, =V b} to {l, =1,V d, —v/ &, V7,
—4+/'b’}. By the assumptions ab== 1, ab% a’+b, both curves C, 5, C,. 4
are of type (1) or (2). If the curve C,, , is of type (1), then the element
of order two in the reduced group of automorphisms is unique, and is
given by (2.2). Therefore, we have yrofo+"'=0. If the curve C,, ;. is
of type (2), then the elements of order two in the reduced group of auto-
morphisms are conjugate to each other. Therefore, by a suitable choice
of ¥, we can assume Jroforp~'=0. Hence, in any case, we may assume



258 T. Katsura and F. Oort

2.4 Yolforp =40.

Thus, we see that +» is a bijection from three pairs {{l, —1}, {v @, —+v a},

(Wb, —+/ b}} to three pairs {1, —1},{v @, —v &}, (W ¥, =V}
First, assume ({1, —1})={1, —1}. Composing «» with 6, if neces-

sary, we may assume (1)=1 and +»(—1)= —1. Then, the automorphism

4 of P! is of the following form:

v(x)={1+e)x+(1—)}/{1—e)x+(1+¢)}

with a suitable element ¢ of k*. Since we have (v @)+ (—+ a)=0
and a1, we have e= +1, that is,

P(x)=x or 1/x.
Hence, we have
{a’:a {a’:b {a’: 1/a or {a’:l/b
b=b, |b'=a, |b'=1/b b'=1/a.
Secondly, assume ({1, —1})={v @, —+/ @}. Composing » with

6, if necessary, we may assume (1)=+ @’ and y(—1)=—+d. We
consider the automorphism " of P! defined by

W x—x/v d .

Then, using this «’, we see that the curve C,., is transformed into
Ci/ar.5r7a» and we have a morphism " o+ with ¢/ o(1)=1 and o
¥y(—1)=—1. Hence, by the same argument as above, we have

a=1la (a'=1/b a=a a'=b
r
b=bla, |b'=ab, |\B=ab  |b=ba.
Finally, assume ({1, —1})={+/ ¥, —+/#}. Then, by the same

method as above, we have

a'=alb a'=bla (d’=bla a’'=alb
p=1b, b'=b |F=l/a ° |p=a

The last statement of this lemma follows by direct computation from our
assumption. g.ed.

Now, we consider two automorphisms of the curve C, , defined by
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@5 ’: {XI——-)—X - {m———)—x

We denote by (g} (resp. {r)) the group generated by ¢ (resp. zr). We set
E,=C, ,/{¢) and E.=C, ,/{z)y, which are elliptic curves (cf. Igusa ]9,
Section-8]). We know the following lemma (cf. Ibukiyama, Katsura and
Oort [7]).

Lemma 2.4. The Jacobian variety J(C, ) is isomorphic to a product
of two supersingular elliptic curves if and only if both E, and E_ are super-
singular elliptic curves.

We set
X=x%,
{Y: y.
Then, the elliptic curve E, is defined by the equation
V’=(X—1D)(X—a)(X-b).
By the coordinate change
{uz(X—a)/(1 —a),
v="Y/(1—-a)"”,
E, is thus defined by the equation
2.6 V=ulu—1){u—(b—a)/(1—a)}.
As for E,, set

{X =1/x%,
Y=/(i/vab )(y/x"),

where i is a primitive fourth root of unity. Then, the elliptic curve E, is
defined by the equation

¥=(X— D{X—(1/a)}{X—(1/b)}.
By the coordinate change

{u:{X—(l/a)}/{l —(1/a)},
v="Y/{1—(1/a)}'",

E, is thus defined by the equation
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2.7 V'=v(v—D){v—(b—a)/b(1 —a)}.
For an elliptic curve E, defined by the equation

2.8) E;: y*=x{x—D(x—2),

we consider the Legendre polynomial
o@2)= Z§€;1>/2((1’_ b/ 2)%.
i

Then, we know that E, is a supersingular elliptic curve if and only if @(2)
=0 (for instance, see Mumford [14, p. 216]). We consider two sets

S={(a,b)|a,bek;a+0,1; b0, 1; as=b, and J(C, )
is isomorphic to a product of two supersingular elliptic curves},

S'={(, )| 2, g€ k; A p; D(R)=D(w)=0)}.

Then, by Lemma 2.4, we have a mapping f: S+— S’ which sends (a, b) to
(4, p) defined by

@9 {2——‘(1)—0)/(1—61),

p=(b—a)/b(l—a).

By (2.9) and Lemma 2.4, we see that f is bijective. Since @(2) is of degree
(p—1)/2 without any multiple zeros (cf. Igusa [8]), we have

|87 |={(p—D2H{(p— D)2} = (p— D/2=(p— 1)(p—3)/4.
Since f is bijective, we thus have
(2.10) IS |=(p—1D(p—3)/4.
We set
T={(a,b) e Slab=1, a=b*or &*=b} and T'=f(T).
By the definition of f, we thus have
T'={, pe S p=1/2, p=1—20r p=2/(2—1)}.

We have the following relation between the A-invariant and the j-invariant
of the elliptic curve defined by (2.8):

J=2%2— 2+ 1) #—1)

If 2=-1, 1/2 or 2, then we have j=1728. Therefore, these elliptic curves



Supersingular Abelian Varieties 261

E_,, E,,, E, are supersingular if and only if p=3 (mod 4). We denote by
 a primitive sixth root of unity. If 2={ or {%, then we have j=0. There-
fore, these elliptic curves E;, E, are supersingular if and only if p=2 (mod
3) (cf. for instance, Hartshorne [4, p. 334]). Using these facts, we can
compute the number of elements of 7" as follows:

| T7|=3(p— 1)/2—2{1~ (‘73>}— 3{1 _ (‘71)}/2

Since f'is bijective, we thus have

I T|=3(p— 1)/2_2{1 — (—73>}—3{1— (:’})}/2

By Lemmas 2.2 and 2.3, we have
n+n,=(|S|—|T)/12
e Y (-3
== (=4~ (p—1j8+{1-(=2)} /6

{-(5/®

Hence, by (1.4), we have the following:

Proposition 2.5.

et () o)
(52

§3. The class number of the principal genus for g=2

In this section, we assume char. k=p =5, unless otherwise mentioned.
Let o/, (resp. & 4, 4,4, (P, W) =1) be the coarse moduli scheme of polar-
ized abelian varieties of dimension g with polarization of degree d* (resp.
with polarization of degree d* and level n-structure) defined over k. In
case n=>3, it is well-known that </, ,, is a fine moduli scheme (cf.
Mumford and Fogarty [15, Section 7]). We consider in this section the
case g=2, d=1and n=3. Then we have a Galois covering

0 Ay > g
The Galois group is isomorphic to PSp (4, Z/3Z) (cf. Mumford and
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Fogarty [15, p. 190]). As is well-known, the order of this group is given by
|PSp (4, Z/3Z)|=5-3*-2".

We denote by & the set of points in o, , which correspond to abelian
surfaces which are isomorphic to a product of two supersingular elliptic
curves. We proved in Katsura and Oort [10] the following theorem by an
algebraic method.

Theorem 3.1. |&|=9%p—1)(p*+1).

The group PSp (4, Z/3Z) acts on . Let P be a point of &, and
(X, C) a principally polarized abelian surface which corresponds to ¢(P).
We may assume as before that C is a (not necessarily irreducible) curve of
genus two on X by the result of Weil mentioned in Section 1. The curve
C has the canonical involution ¢, which induces the inversion of X. We
set

RA (X, C)=Aut (X, C)/{5.
Then, we have
3.1 RA (C)~RA (X, C)~the stabilizer at P of PSp (4, Z/3Z).
Therefore, we have

(3.2 2o 530 2[RAX, CO)|=9(p—1)(p*+1),

where (X, C) runs through isomorphism classes of principally polarized
abelian surfaces such that X is isomorphic to a product of two super-
singular elliptic curves. The mass formula for supersingular elliptic curves
is as follows:

(3.3) 2.z 1/IRA (E)|=(p—1)/12,

where E runs through isomorphism classes of supersingular elliptic curves.
This is obtained by an algebraic method (cf. Igusa [8]). Using (3.2) and
(3.3), by elementary calculation, we have the mass formula

G4 2.0 1/IRA(C)|=(p—D(p—2)(p—3)/2880,

where C runs through isomorphism classes of non-singular irreducible
curves of genus two whose Jacobian varieties J(C) are isomorphic to a
product of two supersingular elliptic curves (cf. Ibukiyama, Katsura and
Oort [7, Section 3]). We note that if we use <7, , ; instead of .o/, , ,, then
we can prove (3.4) in the case of p=2, 3. If p=2 or 3, then the right-hand
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side of (3.4) is equal to zero. This means that in the case of p=2 or 3,
there exists no non-singular irreducible curve C of genus two such that
J(C) is isomorphic to a product of two supersingular elliptic curves.
Hence, by (1.2) and Theorem 1.1, we have

(3.5 H,=1 if p=2 or 3.
If p=>5, we have the curve C defined by
Ve=x(x*—1)

with |RA (C)|=120 (cf. Igusa [9]). The Jacobian variety J(C) is iso-
morphic to a product of two supersingular elliptic curves (cf. Ibukiyama,
Katsura and Oort [7, Proposition 1.22]). Therefore, in the case of p=35,
by (3.4) this curve C is the unique curve whose Jacobian variety J(C) has
such a property. Hence, by (1.2) and Theorem 1.1, we have

3.6) H,=2 if p=>5.

Now, we assume p=>7. Then, by (1.3) and (3.3), we have

3.7 ny+ny/2+1,/6+n,/4+n,/124+n,/24 +n,/5
=(p—1(p—2)(p—3)/2880.

Therefore, by (1.4) and Proposition 2.5, we have the following:

Proposition 3.2.
1y=(p— 1)(p*— 35p + 346)/2880— { ( )} /32

-G/ -5 )}/ 9
p p
0 if p=1, 2, 3 (mod 5),
+ —1/5 if p=4 (mod 5).
By Theorem 1.1, we have
H,=n4ny4n,+n,+n,+n,~+n;+n.

Hence, by (3.5), (3.6), (1.4) and Propositions 2.5 and 3.2, we have the
following:
Theorem 3.3. H,=1 ifp=2or3,
H,=2 lf p=>5,
and for p=T, we have
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H,=(p—1)(p+12)(p+23)/2880
+{(2p+13)/96}{1_<_fpi)}+{(p+11)/36}{1_(_—5)}

A=)
+ {2/5 Z:iz’(i; jd(rsr;)d s),

Remark 3.4. Ekedahl has proved the following result (and our claims
for g=2 and p<3 also follow from this: let C be a non-singular hyper-
elliptic curve of genus g>2 over a field of characteristic p whose Jacobian
variety is isomorphic to a product of supersingular elliptic curves. Then,
g<(p—1)/2 (cf. T. Ekedahl, On supersingular curves and abelian varieties,
preprint, Univ, Paris-Sud, Orsay (1984)).

§4. The flag type quotient and the theory of descent

In this section, we recall some basic facts on supersingular abelian
varieties and prove easy lemmas on the descent of polarizations.

Let k be an algebraically closed field of characteristic p>2. Let S
be a noetherian scheme over k, and let f: G—S be a group scheme over S.
For a geometric point x on S, we denote by G, the fibre f~%(x). For an
open set U of S, we denote f~'(U) by G;. Now, let Z—S be an abelian
scheme over S. 'We denote by Z°[F?] the kernel of the iterated Frobenius
morphism Fi: Z—& @9 (cf. e.g. Oda [17, p. 78]). For the sake of sim-
plicity, we write Z " instead of Z®/9. For an integer n, we denote by
[n], the multiplication by n in & over S. From here on, by a polarization
pon &, we mean a polarization in the sense of Mumford and Fogarty
[15, Definition 6.3], that is, x is an S-homomorphism from & to &
which satisfies usual conditions. For an abelian variety X over k, we
denote by X the formal group associated with X.

For a polarized abelian variety (X, 1) over k of dimension g with
polarization 2 of degree d°, we denote by [(X, 2)] the point of &/, , which
corresponds to (X, 1). We denote by

VC A,

the locus of supersingular abelian varieties, that is, [(X, 2)] € V if and only
if X is isogenous to a product of g supersingular elliptic curves (cf. Qort
[20, Theorem 4.2]). We call ¥ the supersingular locus.

We denote by «, the local-local group scheme of rank p over k. For
a commutative group scheme (or a formal group) X over k, we define
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a(X):=dim, (Hom («,, X)),

where Hom («,, X) is a right module over End (a,)~k (this number was
denoted by z(X) in Oort [19, II, 12-3]). Let ZC ./, , be an irreducible
closed subset and let K be an algebraically closed field containing the func-
tion field k(Z) of Z. We define

a(—/ZCdg,d):za(X)’

where (X, 1) is a polarized abelian variety corresponding to the k-generic
point of Z. (cf. Norman and Oort [16, p. 431]); note that this implies
that there exists a non-empty Zariski open set Z ° C Z such that

[(Y, w]le Z° if and only if a(Y)=a(—/ZC o, ,).
For an abelian variety (or a formal group) X over k, we denote by
AX)CX

the smallest subgroup scheme of X such that any homomorphism from «,
to X factors through 4(X); note that 4(X) exists for any abelian variety
(or any formal group) X, and we have

A= (@),

From here on, we fix a supersingular elliptic curve E defined over the
finite field F, with p elements (for the existence, see Deuring [2, p. 199-
p- 200]).

Definition 4.1. A flag type quotient (ftg, for short) is a sequence of
isogenies ¢, (1<i<g~—1) of abelian varieties ¥, (0</<g—1) of dimension

g
@.1) E¢—Y,

g-1

with Ker o, ~ (o) (I1ZiZg—1).

- —2
Y, S Y-S Y=Y

By Oda and Oort [18, Theorem 2.2] and Shioda [22, Theorem 3.5],
we know that for any supersingular abelian variety X there exists a ftq
ending at Y,=X. It should be noticed that our condition for ftq is
weaker than the condition in Oda and Oort [18, Definition on p. 606].

Definition 4.2. A principally polarized flag type quotient (ppftq for
short) is a ftq as in (4.1) with polarizations p, of Y; (0<i<g—1) such that
o= 12 1s an isomorphism from ¥, to Y, and that ¢f(y;_)=p, 1ZiZg—1)
and Ker 4, CY,[F*] (0<i<g—1). We denote this by
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Vg Qg2 ¢
(Yg-la ﬂg—l)L;(Yg—Za ,ug-2)—g_) st ——I—)(Yoa #o)

Lemma 4.3. Under the notations as in Definition 4.2, assume g=2.
Then, Ker y,~ E*[Fl~(e,)* and Ker p,_,~E4[F#7']. In particular, deg y,
=p* and deg pp,_,=p&E",

Proof. By definition, we have degp,_,=p%¢~". Therefore, the
latter part follows from Ker p,_,C E¢[F#7'] and deg F& '=p#¥~Y, Since
1, is a polarization, Ker (y,) is isomorphic to its Cartier dual (cf. Mumford
[14, p. 234, Corollary 2]). Since Ker g, is killed by F, we see that Ker g,
is also killed by the Verschiebung V. Hence, by deg y,=p’, we have
Ker py=~(a,)" q.e.d.

Lemma 4.4 (Oda and Oort [18, Theorem 2.2]). Let (X, 2) be a princi-
pally polarized supersingular abelian variety, and assume a(X)=1. Then,
there exists a ppftq ending at (X, )=(Y,, p,). Set

YO =Xt/AXY), YO=YDJAYD), ... YEH=Ye-D/4(YE&-D),
V=(YOF, Y=(Y®), -, Y, =(Y D)
Then, Y,_,=~E# and the ppftq ending at (X, 2) is uniquely given by

Pg— Pg- ¢
(Yg-la /“g-l)'—g’_;(yg-za ,Ug—z)“—g—;' ‘ "—I)(Yos ﬂo),

where o, (1 Zi<g—1) is the dual homomorphism of the canonical projection
i YO DY D, and where p,=of(p,.) 1Zi<g—1).

Now, we give two lemmas on the descent of polarizations.

Lemma 4.5. Let (X, p) be a polarized abelian variety over k such that
Ker p contains a subgroup scheme H which is isomorphic to ct,. Then, the
polarization y descends to a polarization on X/H.

Proof. This lemma follows from Mumford [14, p. 223, Lemma 1,
and p. 231, Corollary to Theorem 2]. q.e.d.

Lemma 4.6. Let y be a polarization on Y=E¢ such that Ker uD
Y[F¥l=Ker[ply. Then, there exists a polarization p on Y such that p=
F*(p).

Proof. We consider the immersion 7, of «, to the first factor of E%.
We denote by

m: Y=E¢—>(E[r (@) X EET'=Y,
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the canonical projection. Then, by Lemma 4.5, we can find a polarization
o4 on Y, such that p=n¥(y,). By our choice of 7, it is easy to see that

Ker p, D E=-[F?].

Next, we consider the immersion 7, of «, to the second factor E of (E/7,(«,))
X E&-', Then, by Lemma 4.5, the polarization g, descends to a polariza-
tion g, on (E[7\(a,)) X (E[T(a,)) X E£~* with Ker y, D{0} X {0} X E¢~-*[F?].
We continue this procedure g times. Since Ker F~(a,)¢, we conclude
that there exists a polarization p on Y such that p=F*(p). q.e.d.

§5. The construction of families

In this section, we construct families of principally polarized super-
singular abelian threefolds. We keep the notation in Section 4. As in
Section 4, we fix a supersingular elliptic curve E defined over F,. Let u
be a polarization on Y= E® such that

5.1) Ker p=Y[F?.
We set
P={{|¥: (a,)'=>E’=Y}/k*,

which is clearly isomorphic to the projective plane. We denote by [v] the
point of P which corresponds to an immersion 4. We write Im +»C Y for
the image of +», and we set

Z,=Y/Im .
We have the canonical projection zn: Y—Z,,.

Lemma 5.1. Under the notation as above, for any +r, there exists a
polarization p, on Z, such that

n=r*(py)-
Proof. Since the Frobenius morphism F of Y factors through =, this
lemma follows from Lemma 4.6. q.e.d.

The following proposition is essentially due to Oda and Oort [18,
Lemma 4.2], and our proof is inspired by Moret-Bailly [13, p. 138-p. 139].

Proposition 5.2. Under the notation as above, there exists a non-
singular curve I'(p) in P with
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deg I'(p)=p+1
such that Ker p, CZ, [F] if and only if [y] € ['(w).

Proof. In order to carry out the computation, we use the contra-
variant Dieudonné module theory. Thus, the Dieudonné module #(E)
= M is generated over the ring W= W_ (k) of infinite Witt vectors by

(5.2) e, Fe,=Ve, e, Fe,=Ve, e, Fe,= Ve,
and the morphism +- corresponds to a surjective homomorphism

LA o

5.3) k
The Dieudonné module .#(Z,)=Ker (.#(\)) is generated over W by
G4 Xy, Fe,, Fe,, Fe; pe;, pe, pe,

where x,=a,e,+ a6, +a,e; with a, e W (i=1, 2, 3), and where o;=a, mod p
€ W/pW~k are thought of as the coordinates of [§'] ¢ P. We set

K=Ker p.
By (5.1), we have
(5.5 M(K)=M|F*M ~M|pM.
The polarization p gives a Riemann form on K:
e: KXK—>G,

(cf. Mumford [14, p. 222]). We denote by (Ker x)! the subgroup scheme
perpendicular to Ker = with respect to the form e. Then, we have

Ker p, = (Ker n)t/Ker n

(cf. Mumford [14, p. 232, Lemma 2]). By (5.5), .#(K) is a vector space
over W/pW ~k, and by (5.2), the image of

(5.6) {e1, es, €,, Fe,, Fe,, Fe,}

is a basis of the Dieudonné module .#(K) over k. We again denote by
{ew, e, ey, Fe,, Fe,, Fey} (resp. x,) the image of {e,, e,, e,, Fe,, Fe,, Fe,} (resp.
x,) in A(K). The homomorphism #(y) in (5.3) induces a homo-
morphism

Vi MKy —>kE



Supersingular Abelian Varieties 269

By (5.4) and (5.5), a basis of Ker ' over k is given by
6.7 {x,, Fe,, Fe,, Fe,}.

We denote by #(K)* the dual vector space of #(K). Then, in our case,
A (K)* is isomorphic to 2(#(K)) in Oda [17, Definition 3.5] as a WIF, V]-
module. Therefore, we have a non-degenerate skew-symmetric bilinear
form on #(K)* X #(K)* induced by e. Hence, we have a non-degenerate
skew-symmetric bilinear form

b: M(K)X MK)—>k
induced by e such that
(5.8) b(Fx, y)=b(x, Vy)

for any elements x, y in #(K) (cf. Moret-Bailly [13, p. 138], and see also
Oda [17, Section 3]). As is stated in Moret-Bailly [13], we can easily prove

M (Ker p,)~ M ((Ker 7)+/Ker 7)~ Ker v/(Ker ).

as W[F, V]-modules. Hence, we see that

Ker o, CZ,[F] if and only if F(Ker v)C(Ker ¥)L.
By (5.5), (5.6) and (5.8), we see that
5.9 F(Ker ¥)C (Ker ¥)+ if and only if b(Fx,, x,)=0.
With respect to the basis (5,6), the bilinear form b is given by the 6X6
matrix (b,;), where

b,;=b(e;, e)), b; .5, ;=b(Fe;, e;), b; ;. ;=b(e, Fey), b, 5 ;,,=b(Fe,;, Fe,)

for 1<i<3,1<j<3. We consider the curve I'(y) in P defined by the
equation:

(5.10) 204, 7-1 b(Fe;, e)X?X,=0.
Then, by (5.4) and (5.9), we conclude that
Ker p, CZ,[F] if and only if []=(«,) satisfies Equation (5.10).

By (5.5) and (5.8), the 3 X 3 matrix (b(Fe;, Fe,)),<;, ;<5 IS the zero matrix.
Since b is a non-degenerate bilinear form, we see that the 3 X3 matrix
(Bb(Fe,, €;))1<:, <5 18 Tegular. Hence, the hypersurface I"(u) defined by (5.10)
is non-singular. g.e.d.

Lemma 5.3. Let % be a formal group of dimension two over k which
is isogenous to (E)?.
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1) If a(%)=1, then (%/H)=2 for the unique subgroup scheme H of
& which is isomorphic to a,.
iy If (9)=2, then ¥=(E).

Proof. This lemma follows from Oort [21, Corollary 7 and Theorem
2]. g.e.d.

Proposition 5.4. Let (X, 2) be a principally polarized supersingular
abelian threefold. Then, there exists a ppftq ending at (Y,, p)=(X, 2).

Proof. We distinguish the cases:
(D) aX)=1, Q) aX)=2, ) a(X)=3.

In Case (1), the conclusion follows from Lemma 4.4.
In Case (3), by Oort [2]1, Theorem 2] and Shioda [22, Theorem 3.5],
we have X ~E3. We set

Y,=E} Y,=X~FE° @: =F: Y,—>Y,, and p,=0%Q).
Then, we see Ker y,=Y,[F?]. We choose an immersion

Vi(a)f=—Y,  [ylel(w)

Then, by Proposition 5.2, there exists a polarization g, on Y, =Y,/Im
with

0.1 Yo— Y, of(p)=p, and Ker y,~a, X a,,

where ¢, is the canonical prbjection. Since Ker g, CKer @, we have the
natural morphism

0 Y,—>Y, |
such that ¢, o p,=®. It is clear that Ker g, ~w,. We set
=0 (2).

Then, (¥, ) —>(Y;, pt)—->(Yy, 19)=(X, 2) gives a ppftq ending at (X, 2)
in Case (3). .

In Case (2), we have a(X?*) =2 (cf. Oda and Oort [18, p. 599, Remark])).
Since 2 is a principal polarization, and since g=3 and a(X)=2, there
exists a formal group ¥ of dimension two with @(%)=1 such that X* is
isomorphic to X E (cf. Oda and Oort [18, Proposition 4.1 and the proof
of Corollary 4.3]). By a(%)=1, the formal group ¢ has the unique sub-
group scheme A which is isomorphic to a,. We denote by H the subgroup
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scheme in X* which gorrgsponds to Hin X*. Since a(¢/H )=2 by Lemma
5.3, we have a((¥ X E)/H)=3. Therefore, we have a(X’/H)=3. We set

—=(X*/HY.

Then, we have a(Y;)=3 (cf. Oda and Oort [18, p. 599, Remark]). There-
fore, we have isomorphisms X*/H ~ E® and Y,~ E®, and we have a com-
mutative diagram:

Y, 2sx

(5.11) m 2

3

XH <X,

where ¢! is the canonical projection, where ¢, is the dual of ¢! and where
t=¢FA). Corresponding to this diagram, we have a commutative
diagram of formal groups:

A
~ ©1 ~
Y, -2 5%

(5.12) ﬁll . lﬂ‘

(Xt HY <%

where /, (resp. 4, resp. ¢;, resp. 1) is the homomorphism induced by M
(resp. A, resp. ¢, TeSP. ¢). Since 4 is an isomorphism and X=gxE, we
see X'=%xE. By our construction, the diagram (5.12) becomes the
following:

ExExE - PsgxE
(5.13) i} 1) l l = %)
At

ExExE 2saxE,

b 3

where 2, (resp. 4, resp. 4;, 1esp. 4,) is a homomorphism from & to & (resp.
Eto %, resp. % to E, resp. E to E), and where g, (resp. g, resp. Ye» TESD.
o) is a homomorphism from EX E (the first two factors) to £ X E (the
first two factors) (resp. E (the last factor) to EXE (the first twofactors),
resp. ExXE (the first two factors) to E (the last factor), resp. E (the last
factor) to E (the last factor)). It is easy to see that 1, is zero on theJunique
subgroup scheme «, of ¥. From this and the fact that 2 is a principal
polarization it follows that

A:%~% and 1:E~E.
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Therefore, by the definition of ¢!, we conclude
Ker g, ~a, X a,~Ker y, CE X E.

Hence, by Oort [21, the argument on p. 40], we can find a subgroup
scheme I of Ex E such that [ is isomorphic to «,, and that (Ex E)/I~E
x E. 'We denote by I the subgroup scheme of ¥, which corresponds to f
in E*~Y,. Then, by the choice of f, we see

Y/ I=EXEXE.
Let z: Y,—Y,/I be the canonical projection. Since
Kerr~a,CKer g, =a, X,
we can find a principal polarization p on Y;/I such that
ti=7*(0)
by Lemma 4.5. We set
Y,=(¥,/D)%™,

and we consider the Frobenius morphism F: Y,—Y,/I. Then, by the
property of the Frobenius morphism, we can find a morphism

0t Yo—>Y,
such that F=mo¢,. We set
t=F*(p).
Then, we have
=0¥(y,) and Ker p,~Y[F?.
Hence, we get a ppftq
(Y 12)—25(Y,, pr)—(Yo, p)=(X, )
ending at (X, 2). q.e.d.
Definition 5.5. Let S be a k-scheme. Let

v, sy, s,

be a sequence of abelian schemes %, (i=0, 1, 2) over S with polarizations
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poon %, (i=0, 1, 2) (cf. Mumford and Fogarty [15, p. 120, Definition 6.3])
and homomorphisms ¢, (i=1, 2) such that

oFf(_)=p: (i=1,2) and Kerp,C¥ [F9](i=0,1.2).

This sequence is called a principally polarized flag type quotient over S
(ppfiq/S, for short) if for every point x of S, there exists a Zariski open
neighborhood % of x in S such that

Yy u=E*X% and (Kerg),~(a,)' X %.

Now, we construct a family of principally polarized supersingular
abelian threefolds. We consider an abelian threefold Y= E*® with polari-
zation ¢ which satisfies Condition (5.1). Let I'(z) be the curve obtained
in Proposition 5.2. We set

and we consider the group scheme
pit ¥i—>T(p),

where p; is the projection to the second factor I'(¢z). For a scheme S, we

denote by idg the identity mapping from S to S. We denote by g the
polarization of the abelian scheme p: #;—I'(p) defined by pXidp,.
Let py/: #—I'(x) be a subgroup scheme of p;: #,—I"(y) which satisfies the
following two conditions:

(i) all geometric fibres are isomorphic to «, X &,

(i) for the point [] e I'(x), the fibre (py) *([+]) coincides with
Im .
By the construction of I'(x), such a subgroup scheme exists. We set

Y ={YXT'(p}/7.

Let ¢}: ¥{—% be the canonical projection. Denoting by F the Frobenius
morphism of the abelian scheme p,: #,—I"(y), we see that there exists a
morphism X from %/ to %, such that the following diagram commutes:

EXT () =959,

(5.14) F 2
E3><F(ﬂ)_~_@;(?) .

By Lemma 4.6, the polarization p4 on %} descends to #}». Hence, by
(5.14), there exists a polarization g on %1 such that
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=¥ (1)
Moreover, by construction, we have
Ker yf C #1{[F].

Let A(Ker y))—I'(1) be the smallest subgroup scheme of Ker pf— I'(z)
having the following universal mapping property:

(5.15)  for any affine open subset % of I'(¢), and for any group scheme
G—% over % whose geometric fibres are isomorphic to «,, and
for any morphism g: G—(Ker ), over %, there exists a morphism
h from G to (A(Ker y))), over % such that g factors through 5.

By the theory of p-Lie algebras, which works over any integral domain of
characteristic p (cf. Demazure and Gabriel [1, II. 7.4.3]), such a group
scheme exists and is of rank two and height one over I'(z) by the con-
struction of I'(yr). We define

F ()= P(Lie (A(Ker 1))—>I'(1)).
We denote by
(5.16) [ F—>I'(
the natural morphism.

Proposition 5.6. % (y) is a non-singular variety of dimension two.

Proof. This proposition follows from the above construction of
& () and Proposition 5.2. g.e.d.

We set
=¥ Xrw F() and  p=p X p idgq (=1, 2).
We have group schemes over F (u):
Dt ¥i—>F(p (i=1,2),

where p,’s are the natural projections onto #(x). We have also the homo-
morphism '

0y Yy—>%,
induced by ¢;. Since A(Ker p)—I'() is a flat group scheme over I'(x)

whose geometric fibres are isomorphic to («,), for any point x of I'(1) we
can find a Zariski open neighborhood %(y) of x such that
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(A(Ker 0)g (o =(a)* X () and [ (U(p) =P X U(p).
We set
(5.17) T () =f"(%()-
Since A(Ker p,)= AKer pf) X ¢,y F (1), we have
Y, s = (@) X T (%)= (a,)* X P' X U(p)-

We denote by g the projection from («,)? X P* X %(p) onto (a,)* X P'. We
consider the subgroup scheme H of (a,)*X P over P! which was con-
structed in Moret-Bailly [13, p. 128]. We set

Ho=q~(H).

Then, & is a subgroup scheme of («,)* X 7 (%(y)) over I (%(y)), hence a
subgroup scheme of %, (. over 7 (%(r)). For the sake of simplicity,
we write &/, instead of ¥, ,(,()- We set

Y=Y, H.
This is a group scheme over 7 (%(y)). We denote by
0. Y —>Y,

the canonical projection. We consider the following commutative dia-
gram:

(5.18)

> qu/{)(l/p),

where F,, F, are the Frobenius morphisms. Since Ker ¢, CKer y,, we can
find a homomorphism v from %, to #!. Therefore, we can find v%/» from
YD to (wHMP. By the property of the Frobenius morphism, we can
find a homomorphism X from (#%)%/? to &/} such that Fi=¢!0 X.

Lemma 5.7. Under the notation as above,
(5.19) Ker Fy,CKer (X o p/P).

Proof. Since on each fibre over 7 (%(y)), the polarization p, descends
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to a polarization on %, by Lemma 4.5, we see that (5.19) holds on each
fibre over 7 (%(p)). This shows Ker F,CKer (X o /7)), q.e.d.

Using this lemma, we can find a 9 (#%(p))-homomorphism g, from
%,to #i. By Lemma 4.5, this (% (p))-homomorphism g, is a principal
polarization on %, in the sense of Mumford and Fogarty [15, Definition
6.3]. Hence, for every polarization g on Y= E® such that Ker ()= Y[F?],
we have constructed a ppftq/7 (#(w)):

(5.20) (@ )25y 1)L, o).

§6. The structure of the supersingular locus in <7, ,

In this section, we keep the notation in Sections 4 and 5. We again
assume g=3. We denote by V the supersingular locus in .7, ,. Let E be
a supersingular elliptic curve defined over F,, and let (E®, 1) be a polarized
abelian threefold with polarization p which satisfies Condition (5.1):
Ker (¢)=Y[F?]. As in Section 5, using (E?, p), we can construct a family
of principally polarized abelian threefolds over 7 (%(y)):

(6.1) Dot ¥y —>T (U(W).
Therefore, by the property of the moduli variety .«7, ,, we have a morphism
6.2) g: T(U()—> 5.
We set
T(UW)° ={x e T(UW)|a(¥,,.)=1}.
Lemma 6.1. 7 (%(w)°isa non-empiy Zariski open subset of T (%(1)).

Proof. Since I (%(1))° is a Zariski open subset, it suffices to prove
that 7(%())° is non-empty. By Oda and Oort [18, Theorem 2.4 (i) and
Theorem 3.2], we can find a Zariski open subset J(%'(y)) and a point x
of I(%'(p) such that a(%,,)=1. Hence, T (%'(1))° is a non-empty
Zariski open subset. As in (6.2), we have two morphisms

(6.3) g T (U(W)y—>st,, and g': T (U (W)—>Ls.
By the construction of our families, we see
(6.4 gT(UINT (U (=8 (T (UW)NT (%' ().

Hence, 7 (%())° is non-empty. g.e.d.
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Proposition 6.2. The closure of the image of g in (6.2) does not depend
on the choice of open sets %(p) of I'(p).

Proof. Let %(y) and %'(p) be two Zariski open sets of I'(i). As
in (6.3), we have two morphisms g and g’, and we see that (6.4) holds.
Using the notation in (5.16), we see that /= (%(x) N %’(1)) is dense in F ().
Hence, we conclude that the closure of the image of g coincides with the
closure of the image of g’. q.e.d.

Proposition 6.3. The morphism g in (6.2) is of finite degree.

Proof. By Lemma 6.1, the set 7 (%(p))° is a non-empty Zariski open
set. Let x, and x, be two points of 7 (%(p))° such that g(x,)=g(x,). We
set

piix) =", 27  (j=1,2)

where X9 are abelian threefolds with principal polarization 2). Since
aXM)=1 (j=1,2), by Lemma 4.4, we have the unique ppftq of
(XD, p9): '

(E?, p)—>(Y, D, pfP)—>(XD, 29) (i=1,2).

Since g(x,)=g(x,), by the uniqueness of ppftq, there exists an auto-
morphism : E*—E?® such that x®=6*(p"). Since the group Aut (E?, z)
of automorphisms of E® which preserve the polarization p is a finite group
(Matsusaka [12, p. 72, Corollary 1]), the restriction of g to T (%(p))° is a
finite morphism. Hence the morphism g is of finite degree. q.e.d.

Theorem 6.4. Every irreducible component V' of the supersingular
locus V in o, can be obtained as the closure of the image of g as in (6.2)
with a suitable polarization u on E® which satisfies Condition (5.1). In par-
ticular, the dimension of V' is equal to two.

Proof. Let[(X, 2)] be a point of ¥/ which is not contained in any
other component of V. By Oda and Oort [18, Corollary 4.3], we have
dim V’<2. By Proposition 5.4, we can construct a ppftq:

(Es’ #)‘“‘"’(Yy ﬂl)__)(X, 2)

Starting from (E®, y), we can construct a family of principally polarized
supersingular abelian threefolds over a Zariski open subset I (%(p)) as in
(6.1). Then, the closure of the image of g as in (6.1) contains the point
[(X, 2)]. Moreover, since the dimension of I (#(y)) is equal to two, we
conclude by the assumption on the point [(X, 2)] and Lemma 6.3 that the
closure of the image of g coincides with our V7, and that the dimension of
V' is equal to two. g.e.d.
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Theorem 6.5. Every component V' of V satisfies
a(—V'Cot,)=1.

Proof. By Theorem 6.4, we can find a morphism g as in (6.2) such
that the closure of the image of g coincides with V7. Since I (%(n))° is
non-empty by Lemma 6.1, the image g(7 (#(1))°) is non-empty. Hence,
we have a(—/V'C .o/, ,)=1. g.e.d.

Theorem 6.6. There exists a bijective correspondence between the set
of irreducible components of the supersingular locus V in s, and the set of
isomorphism classes of pairs (E®, p) with polarization p such that Ker y=
E¥F?.

Proof. As in the proof of Theorem 6.4, for any irreducible component
V' of V, we get (E°, p) with a polarization g such that Ker p=E*F*] and
that the closure of the image of g as in (6.2) coincides with V’. Suppose, -
now, we have two polarizations p (j=1, 2) on E* with Ker p» =E*[F?]
such that the closures of the images of 7 (%(x'")) (j=1, 2) give the same
irreducible component ¥’ of V. Then, as in the proof of Proposition 6.3,
we see that (E°, ) is isomorphic to (E3, u®). g.e.d.

Let B be a definite quaternion algebra over the field Q of rational
numbers with discriminant p, where p is the characteristic of k. Let U,
be the positive definite quaternion hermitian space of dimension 3 over B.
Then, we have the following theorem.

Theorem 6.7. The number of irreducible components of the super-
singular locus V in o/, , is equal to the class number H,(p, 1) of the principal
genus of U,.

Proof. Let p be a polarization on E? with Ker p=E*[F*]. Then, by
Lemma 4.6, there exists a principal polarization 1 on E® such that F*(2)
=u. Conversely, for a principal polarization 2 on E?, we set p=F*(2).
Then, p is a polarization on E® with Ker u=E*[F®]. Moreover, it is clear
that (E3, 2) with principal polarization 2® is isomorphic to (E®, 1®) with
principal polarization 2® if and only if (E®, F*(2™)) is isomorphic to (E?
F*(2®)). Hence, by Theorem 6.6, the number of irreducible components
of V is equal to the number of isomorphism classes of principally polarized
abelian threefolds (X, 1) such that X~E®. By Ibukiyama, Katsura and
Oort [7, Theorem 2.10], the latter number is equal to Hy(p, 1). g.ed.

Corollary 6.8. The supersingular locus ¥ in 7, , is reducible if and
only if p=>3.
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Proof. By Hashimoto [5], we have
H(2,1)=1, and Hy(p, D>1 if p=3.
Hence, this corollary follows from Theorem 6.7. g.e.d.
We add here some remarks which are easily proved by our method.

Remark 6.9. a) Considering the images of n-torsion points of Z,
over Z(%(w) in (5.20) with a positive integer » such that (p, n)=1, we get
a level n-structure on (%, y,) over F (%(y)). Therefore, we get a morphism
from F(%(y)) to ,,,,, for each choice of the level n-structure.

b) By a suitable choice of #(y), we may assume that F(%(p))° is
invariant under the natural action of Aut(E® g). Then, by a method
similar to the proof of Proposition 6.3, we can show

F(U(w)°[Aut (E°, )=Img

(see also Oda and Oort [18, Proposition 4.1]).

¢) Let [(X, 2)] be a point on the intersection of two components of
VC«;,. Then, we have a(X)=2.

d) The morphism g in (6.2) is not necessarily a finite morphism. For
any point [] € (W CP, ¥: (a,) G E?, we set Z, =E*[{((«,)?). We have
a natural homomorphism

iy: E¥F) (e = a,=—>Z,.
Clearly we have
Z,[i,(a,)=E*|E*[F]~E".

By Lemma 4.6, there exists a principal polarization 2 on E® such that p=
F*(2). Then, the point on .7 (#%(y)) which corresponds to (v, 7,) maps to
the point [(E®, 2)] for any point [y/] of #(x). Thus

i) ={( i) [V] € U} F ()

is a section of I (%(y))—%(y) and this section is contracted to the point
[(E®, D).

Remark 6.10. Let V'’ be an irreducible component of the super-
singular locus V in &, ,. What can be said about dim ¥”, and about
a(_/V/C&{s,d)?

a) If d=1, then we have

dim V’'=2 and a(—/V'C;,) =1,



280 T. Katsura and F. Oort

as we have seen in Theorems 6.4 and 6.5.
b) If d=p°, then there exists a component V'’ with

dim V’'=3 and a(—/V'C, =1

(cf. Oda and Oort [18, Corollary 3.4]). These are the numbers one could

expect.
¢) However, it seems difficult to describe the situation in general.

We can easily prove:
if d=p, then every component V' C </, , satisfies

dim V’'=2 and a(—/V'C,,)=2,
and

if d=p?, then there exists a component V' C 4, ,. such that
dim V’'=3 and a(—/V'C; 0)=1.

It seems difficult to guess the general behavior of these invariants for the
strata in 7, , if we stratify by isogeny type (for the case of stratification
by p-rank, see Norman and Oort [16, Theorem 4.1]).
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