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On Polarized Manifolds Whose Adjoint Bundles 
Are Not Semipositive 

Takao Fujita 

Introduction 

Let L be an ample (not necessarily very ample) line bundle On a pro­
jective variety M with dim M = n having only rational normal Gorensteib. 
singularities. Let m be the dualizing sheaf and let K be the line bundle 
such that (!}M(K)=m. We will study the line bundles K+tL, where t is a 
positive integer. By the base point free theorem (cf. [K2; Theorem 2.6]), 
we have Bslm(K+tL)I=0 for m~O if K+tL is numerically semipositive 
(=nej, for short), which means (K+tL)C~O for any curve C in M. We 
do not know, however, how large m should be. Here we just pose the 
following: 

Conjecture. Bslm(K+ tL) 1= 0 ifm>n+l-t and if K+tL is nef 

In this paper we will study the case in which K + tL is not nef. Our 
result is similar to those in [MI] and is based on the theory in [K2], [KMM]. 
We use also techniques in [MI] and [M2]. 

Basically we use the customary notation in algebraic geometry. Line 
bundles and the invertible sheaves of their sections are used interchange­
ably. Tensor products of them are denoted additively while we use multi­
plicative notation for intersection products in Chow rings. The pull-back 
of a line bundle B on V by a morphism h: T~V is denoted by B r , or 
often just by B when confusion is impossible or harmless. 
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based on a theorem which we use in (2.13) to prove Theorem 4. Without 
this technique, I would not have been able to complete the proof of 
Theorem 4 by ruling out the possibility of bad contractions. I thank him 
very much for sending this preprint. I should mention also that he gives 
various results on a threefold which contains a surface of non-general type 
as an ample divisor. 

§ 1. Statement of main results 

Definition. The L1-genus of the polarized variety (M, L) is defined by 
L1(M, L)=n+Ln-hO(M, L). 

A precise definition of the sectional genus geM, L) can be found in 
[Fl], [F2; (1.2)]. Here we recall the formula (K+(n-l)L)Ln-!=2g(M, L) 
-2, which may be used to define geM, L). 

The polarized variety (M, L) is said to be a scroll over a variety W if 
there exists a surjective morphismf: M~Wsuch that (F, LF)~(pr, (!J(1» 
with r=n-dim Wfor every fiber F of f. This condition is equivalent to 
saying that (M, L)~(Pw($), (!J(1» for some ample vector bundle $ on W. 

Theorem 1. K+nL is nef unless (M, L)~(pn, (!J(l». In particular, 
K+(n+l)L is always nef. 

Theorem 2. Suppose that K+nL is nef. Then K+(n-l)L is nef 
except in the following cases.' 

(a) M is a hyperquadric in pn+! and L=(!JM(l). 
(b) (M, L)~(P2, (!J(2». 
(c) (M, L) is a scroll over a smooth curve. 

Corollary 1. geM, L) = 0 if and only if L1(M, L)=O. Moreover, 
geM, L) >0 always. 

Corollary 2. geM, L)= 1 if and only if one of the following conditions 
is satisfied: 

(a) (M, L) is a del Pezzo variety, which means, K+(n-l)L is linearly 
equivalent to zero (more precisely, see [F2; (5.6)]). 

(b) (M, L) is a scroll over a smooth elliptic curve. 

Theorem 3. Suppose that K+(n-l)L is nef. Then K+(n-2)L is 
nef except in the following cases: 

(a) There exist a birational morphism f: M~ Wand an effective Wei! 
divisor Eon M such that feE) is a point and that K+(n-l)L is trivial in 
Pic (E). 

(b) There exists a surjective morphism f onto a normal projective 
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variety Wwith Picard number p(W)=p(M)-I and dim W~2. Moreover, 
any general fiber F off is of one of the following types: 

bO) .if dim W=O, then (F, LF)=(M, L) is isomorphic to either (PS, 
(!J(j» withj=2 or 3, (P" (!J(2», a hyperquadric in p 4 with L=(!JM(2), or a del 
Pezzo variety. 

bI) .if W is a curve, then (F, L F) is either (P 2, (!J(2» or a hyperquadric 
in pn with LF=(!JF(1). 

b2) .if dim W=2, then (F, LF)~(pn-2, (!J(1». 

Theorem 3'. Let things be as in Theorem 3 and suppose in addition 
that M is non-singular. Then: 

In the above case (a), (E, LE)~(pn-t, (!J(I» andf is the contraction of 
E to a smooth point. 

In case bI) and if(F, LF)~(P2, (!J(2», then every fiber off is (P2, (!J(2». 
In case b2), Wis smooth andfmakes (M, L) a scroll over W. 

Theorem 4. Suppose that M is non-singular, n>4 and K+(n-2)L is 
nef Then K + (n - 3)L is nef except in the following cases: 

(a) There is a birational morphismf: M~W onto a normal projective 
variety W with Picard number p(W)=p(M)-l. Moreover, X={x e WI 
dimf-l(x»O} is at most of dimension one and E=f-I(X) is a prime divisor 
on M. The type of E is classified further as follows,' 

aI) dim X = 1 and (E"" L",)~(pn-2, (!J(I» for any smooth point x on 
X, where E", is the fiber of E~X over x and L", is the restriction of L to E",. 
In this case the restriction of (!JM[E] to E", is (!J( -1). 

a2) X is a point and E is isomorphic to a (possibly singular) hyper-
quadric in pn. In this case LE=(!JE{l) and (!J[E]E=(!JE(-I). 

a3) X is a point and (E, LE)~(PS, (!J(2». In this case (!J[E]E=(!J( -1). 
a4) X is a point, (E, LE)~(pn-t, (!J(I» and (!J[ElE = (!J( -2). 
(b) There is a morphism f: M ~ W onto a normal projective variety W 

with dim W~3 and p(W)=p(M)-I such that any generai fiber F off is 
connected. Moreover, the type of the polarized manifold (F, L F) is classified 
as follows: 

bO) .if dim W=O, then (F, LF)=(M, L) is isomorphic to either (P6, 
(!J(2», (PS, (!J(2», (P\ (!J(j» with j=3 or 4, a hyperquadric in p6 with L= 
(!J(2), a hyperquadric in ps with L=(!J(2) or (!J(3), (M, 2A)for some del Pezzo 
4-fold (M, A), or a Mukai manifold (this means K=(2-n)L). 

bI) .if dim W= 1, then (F, L F) is isomorphic to either (PS, (!J(j» with 
j=2 or 3, (P" (!J(2», a hyperquadric in p 4 with L=(!J(2), or a del Pezzo 
manifold. 

b2) .if dim W=2, then (F, L F) is isomorphic to either (P2, (!J(2» or a 
hyperquadric in pn-I with L=(!J(I). 

b3) .if dim W=3, then (F, LF)~(pn-S, (!J{l». 
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§ 2. Proofs 

(2.1) Let 7r : M' ~ M be a desingularization of M and let w' (resp. K') 
be the canonical sheaf (resp. bundle) of M'. Then 7r*w'=w since M has 
only rational singularities. Hence, by [GR], [KI] and [V], we have 
hi(M, K+A)=hi(M', K' +7r* A)=O for any i>O and any nef line bundle 
A on M with An>o. 

(2.2) Using the natural homomorphism rr*7r*w' ~w', we infer that 
K'=rr*K+E for some effective divisor E on M'. Hence M has only 
canonical singularities. Now we apply the theory in [K2] (Cone Theorem 
and Contraction Theorem, see also [KMMD to obtain: 

Key Lemma. If K+tL is not neffor t>O, there exist a curve R in M 
and a morphism f: M ~ W onto a normal projective variety W such that 

I) every fiber off is connected, 
2) a curve C in M is numerically proportional to R (this means C - mR 

for some m > 0, where - denotes the numerical equivalence) if and only if 
f( C) is a point, 

3) BEPic(M) comes from Pic(W) if and only if BR=O, 
4) BE Pic(M) is relatively ample with respect to f if and only if BR>O, 
5) (K+tL)R<O. 

Such a morphism f will be called the contraction of the extremal ray 
spanned by R. Note that p(W)=p(M)-1 by the condition 3). 

(2.3) Lemma. Let things be as in (2.2) and suppose in addition that f 
is birational. Let x be a point on Wand let X be a subscheme of M with 
dimX>O such that Supp(X)Cf-I(X). Then Hq(X, @x(K+B»=Ofor any 
q>dimf-I(x) and any B E Pic(M) with BR~O. 

Proof (due to the idea in [M2]). Clearly it suffices to consider the 
case q= dimf-I(x) = dim X. Take a very ample line bundle H on Wand 
let A be the linear subsystem of IHI consisting of members containing x. 
Take general members D1, •• " Dn _ q off* A and let Vj=dD 1 n ... n dDj. 
Then codim Vj=j. Moreover, we take a sufficiently large d such that X is 
a subscheme of Vn _ q. Setting Vo=M, we claim HP(Vj, K+B+sH)=O 
for any p>O,j;:;;O, s:?>O. 

Whenj=O, the assertion follows from (2.1) because of the properties 
3) and 4) in (2.2). So suppose j>O. Since dim Vj=n-j, the defining 
equations of D/s form a regular sequence at every point of Vj' Hence we 
have an exact sequence O~@Vj-l( -dH)~@Vj_l~@Vj~O. This gives an 
exact sequence HP(Vj _ l , K+B+sH)~HP(Vj' K+B+sH)~HP+I(Vj_I' 

K + B + (s - d)H). So we easily finish the proof of the claim by induction 
onj. 
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Now we use O~~~@Vn_q~@X~O, where ~ is the ideal of the sub­
scheme X in Vn _ q. Since dim(Supp(~)):::;;q, we infer hq(X, K+B+sH) 
<hq(Vn _ q, K+B+sH)=O for s»O from the above claim. On the other 
hand Hx=O sincef(X) is a point. So Hq(X, K+B)=O. 

(2.4) Lemma. Let f, x be as in (2.3) and let X be an irreducible 
component of f-l(X) such that dimX=dimf-l(x)=q>O. Let g: Y~X be 
a desingularization of X. Then Hq(y, g*(K+ B)) = 0 for any BE Pic(M) 
with BR?:.O. 

Proof Let Cf? be the cokernel of the natural homomorphism @ x~ 

g*@y. Since Supp(Cf?) is the set of points at which X is not normal, its 
dimension is <q. So hq(X, g*@y(K+B)):::;;hq(X, K+B)=O by (2.3). Next 
we use the Leray spectral sequence with E~,J=Hi(X, RJg*@y(K+B)) con­
verging to Hi+J(Y, K+B). In order to prove the lemma, it is enough to 
show m,J=O if i+j=q,j>O. 

Now, since x E Supp(RJg*@y) implies dimg-l(x)> j, we infer 

dim (Supp (Rig *@y)) <dim E-j <q - j, 

where E is the exceptional divisor of g. This implies E~,j=O for j=q­
i>O. 

(2.5) Lemma. Let f be as in (2.3) (in particular birational) and sup­
pose that r=dimf-l(x»O for some point x on W. Then (K+rA)R;;;;:;O 
for any ample line bundle A on M. 

Proof We will derive a contradiction assuming (K+rA)R<O. We 
may assume that there is X as in (2.4) such thatdimX=dim(j-l(x))=r 
for x=f(X). Let g: Y~X be as above. By the property 4) in (2.2), we 
infer that -(K+sA) is ample on X for s:::;;r. So Hi(y, K+sA)=O for 
i<r, s<r. Combining this with (2.4), we obtain X(Y, K+sA)=O for 
O<s<r. This implies X(Y, K+sA)=O because X(Y, K+sA) is a poly­
nomial in s of degree :::;;r. This is impossible by the Riemann-Roch 
theorem because Ay>O. 

(2.6) Proof of Theorem 1. Suppose that K + nL is not nef. Take R 
and f as in (2.2) such that (K+nL)R<O. By (2.5), f is not birational. 
Any general fiber F of f has only rational Gorenstein singularities, and its 
canonical bundle is the restriction of K. So Hi(F, K+sL)=O for any 
s>O, i>O. 

On the other hand, -(K+nL) is ample on F by the property 4) in 
(2.2). Hence X(F, K+sL)=O for 1 <s:::;;n. If dimF<n, this would imply 
X(F, K+sL)=O, which is absurd. Thus we conclude dimF=n, M=F 
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and W is a point. 
Moreover we may set X(M, K+sL)=c(s-1)(s-2)· .. (s-n) for some 

constant c. On the other hand, by the Riemann-Roch theorem, we have 
X(M, K+sL)=ds njn!+ksn-1j(n-1)!+@(sn-2) for d=P and k=KLn-Ij2. 
Hence d=c(n!)= -KLn-Ij(n+ 1). So (K+(n+1)L)p- I=O while haeM, K 
+(n+ l)L)=X(M, K+(n+ l)L)=c(n!)=d>O. Therefore K+(n+ l)L=O 
since L is ample. Moreover d= 1. Now we have haeM, L)=hO(M, K+ 
(n+2)L)=X(M, K+(n+2)L)=n+ 1. So J(M, L)=O. This implies (M, L) 
-::::::.(pn, mel)). Thus we complete the proof. 

(2.7) Proof of Theorem 2. Assume that K + (n - l)L is not nef. 
Take Rand f as in (2.2) such that (K+(n-l)L)R<O. Then f is not 
birational by (2.5). 

Suppose that dim W>O. Since any general fiber F of f has only 
rational Gorenstein singularities, Theorem 1 applies to (F, LF). Thus we 
obtain dim W= 1, (F, LF)-::::::.(pn-I, @(1)). Now, for every fiber Z off, we 
have L n -I Z = L n -IF = 1 since W is smooth. So Z is irreducible and reduced 
because L is ample. Moreover we have J(Z, Lz)=O by the lower-semi­
continuity of the J-genus since f is flat. So (Z, Lz) -::::::. (pn -I, @(1)). Thus 
we are in Case c). 

Suppose that dim W = O. Then every curve in M is numerically pro­
portional to R, hence every line bundle on M is numerically proportional 
to L. 

If L=aA numerically for some a> 1 and A e Pic(M), then K+ 
(n-1)aA is not nef. So (n-l)a:=;:n by Theorem 1. This is possible only 
when n=a=2. Moreover (M, A)-::::::.(P2, @(1)). Thus we are in Case b). 

If the above is not the case, any line bundle on M is numerically an 
integral multiple of L. Since K + nL is nef while K + (n - l)L is not so, we 
have K= -nL numerically. Moreover, by the property 3) in (2.2), we 
have K+nL=O in Pic(M). Using (2.1) and the Serre duality, we obtain 
O=hi(M, sL)=hi(M, K+ (n+s)L) =hn-i(M, -(s+n)L) for i>O, s> -no 
So X(M, sL)=Ofor -n<s<O and 1 =X(M, @M)=(-l)nX(M, -nL). From 
this we obtain X(M, sL)=(s+ 1)· . . (s+n-1)(2s+n)jn!. So Ln=2 and 
haeM, L)=X(M, L)=n + 2. Hence J(M, L)=O and M is a (possibly 
singular) hyperquadric in pn+1 with L=@M(l). Thus we are in Case a). 

(2.8) Proof of Corollary 1. The "if" part is well-known. So it suffices 
to show J(M, L)=O assuming geM, L)~O. Since (K+(n-1)L)P- 1= 
2g(M, L)-2<O, K+(n-1)L is not nef. In Case a) or b) of Theorem 2, 
we have J(M, L)=O. So we may assume (M, L) is a scroll over a smooth 
curve C. Then (M,L)-::::::. (Pc(0"), @(l))forsomevectorbundle0" on C. Hence 
K= -nL+f*(Kc+det 0"). So 2g(M, L)-2=(f*(Kc+det 0")-L)Ln-l= 
deg(Kc+deg0")-cl0")=degKc. Thus the genus of C is geM, L) and C 
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is a rational curve. One easily sees J(M, L)=O for rational scrolls. Thus 
we complete the proof. 

(2.9) Proof of Corollary 2. The "if" part is easy and well~known. 
We will prove the "only if" part. If K +(n-I)L is not nef, we argue as 
in (2.8) to conclude that we are in Case b). If K+(n-l)L is nef, we have 
De Jm(K+(n-I)L)J for some m>O. Since Ln-1D=m(2g(M, L)-2)=0, 
we infer D=O because L is ample. So there is a cyclic etale covering 
g: M~M such that g*(K+(n-I)L)=O. By (2.1) we have X(M, @M)=I 
and similarly X(M, @jJ)=1. Hence g must be an isomorphism. Thus 
K+(n-I)L=O in Pic(M) and we are in Case a). 

(2.10) Proof of Theorem 3. Assume that K + (n - 2)L is not nef and 
let/, R be as in (2.2) such that (K+(n-2)L)R<0. 

If w=dim W<n, let F be a general fiber of f By Theorem I, K+ 
(n-w+ I)L is nef on F. So w<2. Moreover, if w=2, we have (F, LF) 
::::.(pn-z, (!J(1)) and b2) is the case. 

If w= I, -KF is numerically proportional to LF. If (F, LF) is a scroll 
over a curve, then we get KF=(I-n)LF by restricting to fibers ::::.pn-Z. 
This implies that (F, L F ) is a hyperquadric. If (F, L F ) is not a scroll, we 
apply Theorem 2 to show that bl) is valid. 

If w=O, every line bundle on M is numerically a multiple of L. By 
Theorem I, (K+(n+l)A)R>O for any ample A. So the number AR is 
bounded below. Let us take an ample line bundle A such that AR attains 
the minimum. Then, numerically, K-kA and L-IA for some integers 
k, I. By assumption we have k+(n-I)/>O and k+(n-2)/<0. More­
over k> -n-I by Theorem 1. From these inequalities we infer 1= I and 
k= I-n unless (n, -k, 1)=(3,4,2), (3,4,3), (3,3,2) or (4,5,2). Using 
preceding results we easily see that we are in Case bO). 

If w=n,jis birational and we apply (2.5) to infer that dim f-I(x) = 
n-l for some x e W. If(K+(n-I)L)R>O, then we can find A e Pic(M) 
such that LR=mAR for some integer m> 1. This is impossible by (2.5). 
Hence (K+(n-I)L)R=O. So K+(n-I)L comes from Pic(M) by the 
property 3) in (2.2). Thus we are in Case a). 

(2.11) Proof of Theorem 3'. 
Case a): Take a prime divisor E as in Theorem 3, a). Taking hyper­

plane sections successively and applying the index theorem for surfaces, 
we infer that EC<O for some curve C in E. So ER<O. Hence EZ<O 
for every curve Z such thatf(Z) is a point. This implies ZcE. Thus, f 
contracts E to a point, but nothing else. 

Now, using the exact sequence O~@M[ -E]~@M~@E~O, we infer 
Hi(E, K+sL) =0 for any ;>0, s>O similarly as in (2.3) because Hi(M, K+ 
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sL+tH)=Hi(M, K+sL+tH-E)=O for t~O. Now, since K+(n-1)L 
=0 in Pic(M), we infer X(E, sL)=O for l-n:::;:s<O and X(E, (T)= 1. 
Since this is a polynomial in s of degree n-l, we infer that X(E, sL)= 
(s+ 1) .. ·(s+n-l)/(n-l)!. This implies P-1E= I by the Riemann-Roch 
Theorem. Now we have hO(E, L)=X(E, L)=n and hence J(E, L)=O. So 
(E, L)==(pn-t, (T)(l». By the adjunction formula we obtain [Eh=(J)(-I). 
So f(E) is a smooth point on w. 

In Case bl) and (F, L F)==(P2, (J)(2», set A=K+2L. Then, for every 
fiber X of f, we have A2X=A2F= 1. Similar as in (2.7; case c), we infer 
thatfmakes (M, A) a scroll over W. S6 (X, L X )==(P2, (T)(2». 

In Case b2), similarly as above, we have (X, L x )==(pn-2, (T)(l» for the 
fiber over any smooth point of W. Moreover, dim Z=n-2 for every fiber 
Z off Indeed, if f(D) is a point for some effective divisor D on M, we 
would have DR<o. similarly as in Case a). So DC<O for any curve C 
such that f( C)is a point, which is clearly absurd. Thus we reduce the 
problem to the following: 

(2.12) Lemma. Let f: M -+ S be a surjective morphism from a 
manifold M onto a normal projective variety S. Let L be an ample line 
bundle on M and suppose that (F, LF)==cpr, (J)(l» for every general fiber F 
of f Suppose further that dim Z = r for every fiber Z off Then S is 
non-singular andfmakes (M, L) a scroll over S. 

Proof Let B be the singular locus of S. Then f is flat over S - B 
and makes (M, L) a scroll there. So we will derive a contradiction as~ 
suming B* 0. Cutting by hyperplane seCtions on S if necessary, we reduce 
the problem to the case dimB=O. 

Take a point x on B. Note that, for any irreducible component Xi 
off-I(x), we have dimXi=r by assumption. Set di=L'Xi for each i. 

Take a large integer a such that aL is very ample and let DIO .. " Dr 
be general members of laLI. Then N=D1n ... nDr is non-singular. 
Moreover, applying Bertini's theorem to the restriction of laLI to each Xi; 
we infer that N n Xi is a non-singular subscheme consisting of ar di points. 

Now, take a small enough neighborhood (with respect to the metric 
topology) U of x such that any connected component Ul of f-I(U) n N 
meetsf-I(x) at only one point. This is possible becausefN: N-+S is proper 
and finite over x. Let h. be the restriction off to Ul. We may assume 
thath. is a finite morphism of degree ml. Then deg(fN) = L:lml~L:iaTdi' 
because the number of Ul's are equal to # (Nnf-I(x» = L:,aTdi • On the 
other hand, we have F==pr and D J e 1(J)(a)1 for any general fiber F off 
So deg(fN)=aT. Combining them we obtainL:idt= I and 111l= 1 for every 
.t In particular h.: Ul -+ U is bimeromorphic. So, by the analytic version 
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of Zariski's Main Theorem, h. is an isomorphism. Since U), C N is smooth, 
U must be non-singular, contradicting x E B. 

(2.13) In order to prove Theorem 4, we need the following: 

Lemma. Let things be as in (2.2) and suppose that M is non-singular. 
Let X={x E W[dimf-1(x»0} and E=f-l(X). Then there is a curve C in 
E such that f( C) is a point and that KC~n -1-2 dim E. 

This is just a reformulated version of [10; (0.4)]. 

(2.14) Outline of the proof of Theorem 4. First we apply the Key 
Lemma (2.2) and consider f: M -+ W. If f is not birational, similarly as 
in (2.10), we can show that (b) is the case. So, let us assume that f is 
birational. 

Take X and E as in (2.13). If dimE<n-l, then KC?:.3-n for some 
curve C withf(C) being a point. Since LC>I, we have (K+(n-3)L)C 
>0, contradicting the property 5) in (2.2). Thus we conclude dimE=n-l. 

Similarly as in (2.11 ; a), we infer EiZ < 0 for some component Ei of 
E and a curve Z in Ei such that feZ) is a point. Then EiR<O. So Ei 
contains every curve which is mapped to a point. This implies Ei = E. 
Hence E is a prime divisor. 

By the method in (2.5), we conclude that dimE",?:.n-2 for every 
x E X, where E", is the fiber of E-+X. Hence dimX:-:;:l. 

When dimX=l, take a general hyperplane section H of Wand let 
x be a point on Xn H. Then E", is the divisor Enf-1(H) on the manifold 
f-l(H). Similarly as in Case (a) in (2.11), we infer that (E"" L",)::::=.(pn-2, 
(9(1)) and (9[Eh~= (9( -1). Since E-+X is flat and the fiber is irreducible 
and reduced over every smooth point x of X, this is a scroll over the 
smooth part of X. Thus we are in case aI). 

When dim X = 0, take an ample line bundle A on M such that AR 
attains the minimum. Then we may set LR=jAR and KR=kAR for some 
integers j, k. From k+(n-2)j?:.0, k+(n-3)j<0 and k+n-I ?:.O we 
infer j= 1 and k=2-n unless (n, k,j) = (4, -3,2). 

In the latter case we infer (E, A E )::::=.(P3, @(I)) similarly as in (2.11; a). 
So (E, L E ) is of the type a3). 

In casej= 1 and k=2-n, we may assume A=L. We setER= -eLR 
for some positive integer e. Since K+(n-2)L=0 in Pic(E) as before, the 
dualizing sheaf WE is (2-n-e)L E • Moreover, similarly as in (2.11; case a), 
we have Hi(E, K+sL)=O for any i>O, s>O. This implies X(E, sL)=O 
for 2-n::::::s<0. Moreover hi(E, _sL)=hn-1-i(E, WE [sL]) =0 if i<n-l 
and s>e. Hence X(E, -sL)=O for e::::::s<n-2+e. Since X(E, sL) has 
at most (n-I) zeros, [2-n, 0)U(2-n-e, -e] contains at most (n-I) 
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integers. Hence e::;;2. 
If e=2, we infer (E, LE)~(pn-l, (9(1)) similarly as in (2.6). Thus a4) 

is the case. If e = I, similarly as in (2.7), we infer that a2) is the case. 

§ 3. Comments 

(3.1) Our Theorem 3' can be viewed as a polarized version of the 
following classical: 

Theorem. The canonical bundle of a smooth projective surface S is nef 
except in the following cases,' 

a) There exists a curve E such that E ~ pI and E2 = -1. 
bO) S~P2. 

bI) S is isomorphic to a pI-bundle over a smooth curve. 

(3.2) Our Theorem 4 can be viewed as a polarized version of Mori's 
theory in [MI], [M2]. 

(3.3) For general t >0, we have the following: 

Proposition. Let L be a line bundle on a manifold M with dim M = n 
such that Lis nefand big (so Ln>o). Then IC(K+tL, M)<n+l-t or =n. 

Proof By virtue of [Ii], there is a birational morphism 7': : M' ---+ M 
together with a surjective morphism (f): M' ---+ W such that dimW=IC(K+tL), 
that every general fiber F of (f) is connected and that IC(K + tL, F) = O. 
For the canonical bundle K' of M' we have HO(M', m(K' + t7':* L)) ~ 
HO(M', m7':*(K+tL)) for any m>O. So IC(K'+tL, F)=O. Moreover, LF 
is nef and big if F is general. Hence it suffices to show the following: 

(3.4) Lemma. Let L be a line bundle on a manifold F with dimF=f 
such that L is nef and big. Then IC(K' +tL, F)~Ofor t>f So IC(K+tL) 
=fift> f+2. 

Proof If IC(K+(f+I)L)<O, then hO(K+tL)=O for l::;;t~f+l. 
Using Kawamata.Viehweg's vanishing theorem, we infer X(K+tL) =0 for 
l<t<f+1. Hence X(K+tL)=O because this is a polynomial in t of 
degree <f This contradicts £'>0 by the Riemann-Roch theorem. 

(3.5) Remark. In Case a) of Theorem 3, E is not necessarily a 
Cartier divisor. A simple example can be constructed as follows. 

Take a manifold X whose canonical bundle is sufficiently ample. Let 
XI be the blow-up of X at a point and let El be the exceptional divisor on 
it. Let X2 be the blow-up of XI at a point p on EI. Let E2 be the ex­
ceptional divisor over p and let E~ be the proper transform of E1• This is 
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isomorphic to the blow-up of E1 c:::.pn-l atp and is a pI-bundle over pn-Z. 
The restriction of the normal bundle of Ei to each fiber c:::.Pl is (D( -2). 
Let g: Xz~M be the contraction of Ei along this direction. So, g(Ei)c:::. 
pn -2 and M has a hypersurface singularity of the type x 2 = yz at any point 
on g(Ei). Let A be the pull-back of an ample line bundle on X. Then 
sA - El - E2 = sA - Ei - 2E2 is the pull-back of an ample line bundle L on 
M for s~O. One easily sees that E=g(E2) is the obstruction for K+ 
(n-2)L to be nef, and we are in Case a) of Theorem 3. E is not a Cartier 
divisor although so is 2E. 

(3.6) Sommese obtained similar results assuming Bs[L[=0. How­
ever, his assumption on the singularity of M is weaker than ours. 

(3.7) If M is a smooth threefold, as [BP] pointed out, our results 
follow from Mori's theory [MI], [M2]. 

(3.8) Theorems 3 and 3' will be useful in the study of polarized mani­
folds with g (M, L) = 2. See [BP] and a forthcoming paper of the author. 
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