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On Polarized Manifolds Whose Adjoint Bundles

Are Not Semipositive

Takao Fujita

Introduction

Let L be an ample (not necessarily very ample) line bundle on a pro-
jective variety M with dim M=n having only rational normal Gorenstein
singularities. Let w be the dualizing sheaf and let K be the line bundle
such that 0,,(K)=w. We will study the line bundles K4-¢L, where ¢ is a
positive integer. By the base point free theorem (cf. [K2; Theorem 2.6]),
we have Bs|m(K+tL)|= for m>0 if K+tL is numerically semipositive
(=nef, for short), which means (K+¢L)C=0 for any curve C in M. We
do not know, however, how large m should be. Here we just pose the
following:

Conjecture. Bs|m(K+tL)|=@ if m>n+1—t and if K+tL is nef.

In this paper we will study the case in which K-+¢L is not nef. Our
result is similar to those in [M1] and is based on the theory in [K2], [KMM].
We use also techniques in [M1] and [M2].

Basically we use the customary notation in algebraic geometry. Line
bundles and the invertible sheaves of their sections are used interchange-
ably. Tensor products of them are denoted additively while we use multi-
plicative notation for intersection products in Chow rings. The pull-back
of a line bundle B on V by a morphism A: T—V is denoted by B,, or
often just by B when confusion is impossible or harmless.
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§1. Statement of main results

Definition. The 4-genus of the polarized variety (M, L) is defined by
AWM, Ly=n~+L"—h"(M, L).

A precise definition of the sectional genus g(M, L) can be found in
[F1], [F2; (1.2)]. Here we recall the formula (K+ (n— 1)L)L"~'=2g(M, L)
—2, which may be used to define g(M, L).

The polarized variety (M, L) is said to be a scroll over a variety W if
there exists a surjective morphism f: M— W such that (F, L;)~(P", ¢(1))
with r=n—dim W for every fiber F of f.. This condition is equivalent to
saying that (M, L)~ (Py(&), 0(1)) for some ample vector bundle & on W.

Theorem 1. K+-nL is nef unless (M, LY~(P", 0(1)). In particular,
K+(m+ DL is always nef.

Theorem 2. Suppose that K+nL is nef. Then K+m—1)L is nef
except in the following cases:

(a) M is a hyperquadric in P™** and L= 0,(1).

(by (M, L)=(P?, 0(2)).

() (M, L) is a scroll over a smooth curve.

Corollary 1. g(M, L)=0 if and only if A(M, LY=0. Moreover,
g(M, L)=0 always.

Corollary 2. g(M, L)=1 if and only if one of the following conditions
is satisfied:

(@) (M, L)is adel Pezzo variety, which means, K+ (n—1)L is linearly
equivalent to zero (more precisely, see [F2; (5.6)]).

(b) (M, L) is a scroll over a smooth elliptic curve.

Theorem 3. Suppose that K+ (n— 1)L is nef. Then K+m—2)L is
nef except in the following cases:

(a) There exist a birational morphism f: M—W and an effective Weil
divisor E on M such that f(E) is a point and that K4-(n-—1)L is trivial in
Pic(E).

(b) There exists a surjective morphism f onfo a normal projective
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variety W with Picard number p(W)=p(M)—1 and dim W<2. Moreover,
any general fiber F of f is of one of the following types:

b0) If dim W=0, then (F, Ly)=(M, L) is isomorphic to either (P?,
0())) with j=2 or 3, (P*, 0(2)), a hyperquadric in P* with L= 0,(2), or a del
Pezzo variety.

bl) If Wis a curve, then (F, Ly) is either (P?, 0(2)) or a hyperquadric
in P™ with Ly = 0z(1).

b2) IfdimW=2, then (F, L;)~(P"?, 0(1)).

Theorem 3'. Let things be as in Theorem 3 and suppose in addition
that M is non-singular. Then:

In the above case (), (E, Lz)~=(P", 0(1)) and f is the contraction of
E to a smooth point.

In case bl) and if (F, L)~ (P?, 0(2)), then every fiber of f is (P%, 0(2)).

In case b2), W is smooth and f makes (M, L) a scroll over W.

Theorem 4. Suppose that M is non-singular, n=4 and K+ (n—2)L is
nef. Then K+ (n—3)L is nef except in the following cases:

(a) There is a birational morphism f: M— W onto a normal projective
variety W with Picard number p(W)=p(M)—1. Moreover, X={x¢e W|
dim f-*(x) >0} is at most of dimension one and E=f"(X) is a prime divisor
on M. The type of E is classified further as follows:

al) dim X=1 and (E,, L,)=(P""%, 0(1)) for any smooth point x on
X, where E, is the fiber of E—X over x and L, is the restriction of L to E..
In this case the restriction of O4[E] to E, is O(—1).

a2) X is a point and E is isomorphic to a (possibly singular) hyper-
quadric in P™. In this case Ly;=0z(1) and O[Elz=0z(—1).

a3) Xis a point and (E, Lz)~(P? 0(2)). In this case O[E]z;=0(—1).

a4) X is a point, (E, Ly)~(P"*, 0(1)) and O[E]z=0(—2).

(b) There is a morphism f: M— W onto a normal projective variety W
with diim W<3 and p(W)=p(M)—1 such that any general fiber F of f is
connected. Moreover, the type of the polarized manifold (F, Ly) is classified
as follows:

b0) If dimW=0, then (F, Ly)=(M, L) is isomorphic to either (P®,
o)), (Ps, 0(2)), (P, 0(j)) with j=3 or 4, a hyperquadric in P® with L=
0(2), a hyperquadric in P* with L=0(2) or 0(3), (M, 2A) for some del Pezzo
4-fold (M, A), or a Mukai manifold (this means K=((2—n)L).

bl) Ifdim W=1, then (F, L) is isomorphic to either (P? 0(j)) with
j=2 or 3, (P, 0(2)), a hyperquadric in P* with L=0(2), or a del Pezzo
manifold.

b2) If dim W=2, then (F, L) is isomorphic to either (P%, 0(2)) or a
hyperquadric in P"~* with L= (0(1).

b3) If dim W=3, then (F, Ly)=(P""%, O(1)).
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§2. Proofs

(2:1) Let zn: M’—M be a desingularization of M and let o’ (resp. K’)
be the canonical sheaf (resp. bundle) of M’. Then n,0'=w since M has
only rational singularities. Hence, by [GR], [K1] and [V], we have
(M, K4+ A)=h(M’, K’ +7*A)=0 for any i >0 and any nef line bundle
A on M with A*>0.

(2.2) Using the natural homomorphism z*r,0’—w’, we infer that
K'=z*K+E for some effective divisor £ on M’. Hence M has only
canonical singularities. Now we apply the theory in [K2] (Cone Theorem
and Contraction Theorem, see also [KMM]) to obtain:

Key Lemma. If K-+tL is not nef for t >0, there exist a curve R in M
and a morphism f: M—W onto a normal pro;ecttve variety W such that

1) every fiber of f is connected,

2) acurve Cin M is numerically proportional to R (this means C ~mR
for some m>0, where ~denotes the numerical equivalence) if and only if
f(C) is a point,

3) BePic(M) comes from Pic(W) if and only if BR=0,

4) BePic(M) is relatively ample with respect to f if and only if BR>0,

5) (K+tL)R<0.

Such a morphism f will be called the contraction of the extremal ray
spanned by R. Note that p(W)=p(M)—1 by the condition 3).

(2.3) Lemma. Let things be as in (2.2) and suppose in addition that f
is birational. Let x be a point on W and let X be a subscheme of M with
dim X>0 such that Supp(X)C f~'(x). Then HY(X, O x(K+ B))=0 for any
g=dim f~'(x) and any B e Pic(M) with BR=0.

Proof (due to the idea in [M2]). Clearly it suffices to consider the
case g=dim f~'(x)=dim X. Take a very ample line bundle H on W and
let 4 be the linear subsystem of |H| consisting of members containing x.
Take general members D, - - -, D,_, of f*4 and let V,=dD,N - - - NdD,.
Then codim V;,=j. Moreover, we take a sufficiently large d such that X is
a subscheme of V,_,. Setting V,=M, we claim H?(V,, K+ B+sH)=0
for any p>0, j=0, s>0.

When j=0, the assertion follows from (2.1) because of the properties
3) and 4) in (2.2). So suppose j>0. Since dimV;=n~—j, the defining
equations of D,’s form a regular sequence at every point of ¥;,. Hence we
have an exact sequence 0—0y,_(—dH)—0,,_,—0,—0. This gives an
exact sequence H?(V,_,, K+B+sH)— H*(V,;, K+ B+sH)— H**'(V,_,
K+ B+(s—d)H). So we easily finish the proof of the claim by induction
on j.
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Now we use 0—SA—0y,_,—0z—0, where £ is the ideal of the sub-
scheme X in V,_,. Since dim(Supp(#))<gq, we infer 19X, K+ B+sH)
<hY(V,_4 K+B+sH)=0 for s3>0 from the above claim. On the other
hand Hy=0 since f(X) is a point. So H%X, K+ B)=0.

(2.4) Lemma. Let f, x be as in (2.3) and let X be an irreducible
component of f~(x) such that dim X=dimf~'(x)=¢>0. Letg: Y—X be
a desingularization of X. Then H(Y, g*(K+ B))=0 for any B e Pic(M)
with BR=>0.

Proof. Let & be the cokernel of the natural homomorphism @;—
g8+0y. Since Supp(¥) is the set of points at which X is not normal, its
dimension is <g. So A%(X, g,0y(K+ B))<h?(X, K+ B)=0 by (2.3). Next
we use the Leray spectral sequence with E%/= H%X, R'g,0,(K+ B)) con-
verging to H+/(Y, K+ B). In order to prove the lemma, it is enough to
show E}i=0if i+j=gq,j>0.

Now, since x e Supp(Rg,0y) implies dim g7 (x)=J, we infer

dim (Supp(R’g0y)) =dim E—j<g—},

where E is the exceptional divisor of g. This 1mp11es E}I=0 for j=q—
i>0.

(2.5) Lemma. Letfbe asin (2.3) (in particular birational) dnd sup-
pose that r=dim f~'(x) >0 for some point x on W. Then (K+rA)R>0
for any ample line bundle A on M.

Proof. We will derive a contradiction assuming (K4+r4)R<0. We
may assume that there is X as in (2.4) such that dim X=dim(f~!(x))=r
for x=f(X). Let g: Y—X be as above. By the property 4) in (2.2), we
infer that —(K-+sA4) is ample on X for s<r. So HY, K+4sA)=0 for
i<r, s<r. Combining this with (2.4), we obtain X(Y, K4s4)=0 for
0<s<r. This implies X(Y, K+s4)=0 because 2(Y, K-+sA4) is a poly-
nomial in s of degree <r. This is impossible by the Riemann-Roch
theorem because A% >0.

(2.6) Proof of Theorem 1. Suppose that K+nL is not nef. Take R
and f as in (2.2) such that (K4+#nL)R<<0. By (2.5), f is not birational.
Any general fiber F of f has only rational Gorenstein singularities, and its
canonical bundle is the restriction of K. So H*(F, K+sL)=0 for any
s>0,i>0.

On the other hand, —(K+nL) is ample on F by the property 4) in
(2.2). Hence X(F, K+sL)=0for 1<s<n. If dim F<n, this would imply
X(F, K+sL)=0, which is absurd. Thus we conclude dim F=n, M=F
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and W is a point.

Moreover we may set X(M, K-+sL)=c(s—1)(s—2)- - -(s—n) for some
constant ¢. On the other hand, by the Riemann-Roch theorem, we have
(M, K+sLy=ds"/n!+ks"'/(n— 1)+ 0O(s*~*) for d=L" and k=KL""/2.
Hence d=c(n!)=—KL"'/(n+1). So(K+(n+1)L)L"~'=0 while »1°(M, K
+m+DL)=x(M, K+n+1)L)y=c(n')y=d>0. Therefore K+ (n+1)L=0
since L is ample. Moreover d=1. Now we have A"(M, L)=h"(M, K+
m+2)L)=x(M, K+ (n+2)Ly=n-+1. So 4(M, L)=0. This implies (M, L)
~(P", 0(1)). Thus we complete the proof.

(2.7) Proof of Theorem 2. Assume that K-+(n—1)L is not nef.
Take R and f as in (2.2) such that (K+(n—1)L)R<<0. Then f is not
birational by (2.5).

Suppose that dim W >0. Since any general fiber F of f has only
rational Gorenstein singularities, Theorem 1 applies to (F, Ly). Thus we
obtain dim W=1, (F, Ly)~(P"~!, @(1)). Now, for every fiber Z of f, we
have L""'Z=L*~'F=1 since W is smooth. So Z is irreducible and reduced
because L is ample. Moreover we have 4(Z, L;)=0 by the lower-semi-
continuity of the 4-genus since f'is flat. So (Z, L)~ (P"!, ¢(1)). Thus
we are in Case c).

Suppose that dim W=0. Then every curve in M is numerically pro-
portional to R, hence every line bundle on M is numerically proportional
to L.

If L=aA numerically for some a>1 and A4 e Pic(M), then K-+
(n—1aAd is not nef. So (n—1)a<<n by Theorem 1. This is possible only
when n=a=2. Moreover (M, 4)~(P%?, ¢(1)). Thus we are in Case b).

If the above is not the case, any line bundle on M is numerically an
integral multiple of L. Since K-4nL is nef while K+ (n— 1)L is not so, we
have K= —nL numerically. Moreover, by the property 3) in (2.2), we
have K4-nL=0 in Pic(M). Using (2.1) and the Serre duality, we obtain
0=h"(M, sLY=h"(M, K+n-+s)L)y=h""(M, —(s+n)L) for i>0, s> —n.
So X(M, sL)=0for —n<s<0and | =X(M, Oy)=(—1)"2(M, —nL). From
this we obtain X(M, sL)=(s+1)---(s+n—1)(2s+n)/n!. So L*=2 and
M, D)=X(M, L)=n+2. Hence 4(M,L)=0 and M is a (possibly
singular) hyperquadric in P*** with L=0,(1). Thus we are in Case a).

(2.8)  Proof of Corollary 1. The “if”” part is well-known. So it suffices
to show 4(M, L)=0 assuming g(M, L)<0. Since (K+(n—DL)L*'=
2g(M, L)—2<<0, K+ (n—1)L is not nef. In Case a) or b) of Theorem 2,
we have 4(M, L)y=0. So we may assume (M, L) is a scroll over a smooth
curve C. Then (M, L)~ (P,(&), 0(1)) for some vector bundle & on C. Hence
K= —nL4f*(K,4det&). So2g(M, L)—2=(f*(K,-+det&)—L)L"'=
deg(K,+deg &) —c(€)=deg K,. Thus the genus of C is g(M, L) and C
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is a rational curve. One easily sees 4(M, L)=0 for rational scrolls. Thus
we complete the proof.

(2.9) Proof of Corollary 2. The “if” part is easy and well-known.
We will prove the “only if”” part. If K+ (n—1)L is not nef, we argue as
in (2.8) to conclude that we are in Case b). If K+ (r—1)L is nef, we have
D e [m(K+(n—1)L)| for some m>0. Since L"'D=m(2g(M, L)—2)=0,
we infer D=0 because L is ample. So there is a cyclic étale covering
g : M—M such that g¥(K+(n—1)L)=0. By (2.1) we have 1(M, 0,)=1
and similarly 2(M, 0z)=1. Hence g must be an isomorphism. Thus
K+ (m—1)L=0 in Pic(M) and we are in Case a).

(2.10) Proof of Theorem 3. Assume that K+ (n—2)L is not nef and
let £, R be as in (2.2) such that (K+(n—2)L)R<0.

If w=dim W<n, let F be a general fiber of /. By Theorem 1, K+
(n—w-+1)L is nef on F. So w<2. Moreover, if w=2, we have (F, L)
~(P""%, (1)) and b2) is the case.

If w=1, — K} is numerically proportional to L. If (F, L) is a scroll
over a curve, then we get Ky,=(1—n)L; by restricting to fibers ~P"~2,
This implies that (F, Ly) is a hyperquadric. If (F, L) is not a scroll, we
apply Theorem 2 to show that bl) is valid.

If w=0, every line bundle on M is numerically a multiple of L. By
Theorem 1, (K+(n+1)4A)R=0 for any ample 4. So the number 4R is
bounded below. Let us take an ample line bundle 4 such that AR attains
the minimum. Then, numerically, K~kA and L ~IA4 for some integers
k, l. By assumption we have k+(n—1)/=0 and k+(n—2)/<0. More-
over k= —n—1 by Theorem 1. From these inequalities we infer /=1 and
k=1—nunless (n, —k, 1)=(3,4,2), (3,4, 3), (3,3,2) or (4,5,2). Using
preceding results we easily see that we are in Case b0).

If w=n, f is birational and we apply (2.5) to infer that dim f~'(x)=
n—1 for some x e W. If (K4 (n—1)L)R>0, then we can find 4 ¢ Pic(M)
such that LR=mAR for some integer m>1. This is impossible by (2.5).
Hence (K+(n—1)L)R=0. So K+(n—1)L comes from Pic(M) by the
property 3) in (2.2). Thus we are in Case a).

(2.11) Proof of Theorem 3’.

Case a): Take a prime divisor E as in Theorem 3, a). Taking hyper-
plane sections successively and applying the index theorem for surfaces,
we infer that EC<<0 for some curve C in E. So ER<0. Hence EZ<0
for every curve Z such that f(Z) is a point. This implies ZC E. Thus, f
contracts E to a point, but nothing else.

Now, using the exact sequence 0—0,[— FE]—0,—0;—0, we infer
HYE, K+sL)=0 for any i >0, s=>0 similarly as in (2.3) because H%(M, K+
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SL+tH)=H'M, K+sL+tH—E)=0 for t>0. Now, since K+(n—1)L
=0 in Pic(M), we infer X(E, sL)=0 for 1—n<s<0 and X(E, 0)=1.
Since this is a polynomial in s of degree n—1, we infer that X(E, sL)=
(s+1)- - -(s4n~—1)/(n—1)1. This implies L"'E=1 by the Riemann-Roch
Theorem. Now we have h%(E, L)=X(E, LY=r and hence 4(E, L)=0. So
(E, L)~(P""*, 0(1)). By the adjunction formula we obtain [E];=@(—1).
So f(E) is a smooth point on W.

In Case bl) and (F, L,)~(P? 0(2)), set A=K-2L. Then, for every
fiber X of f, we have A*’X=A’F=1. Similar as in (2.7; case c¢), we infer
that f makes (M, A) a scroll over W. So (X, Ly)=(P? 0(2)).

In Case b2), similarly as above, we have (X, L)~ (P"%, ¢(1)) for the
fiber over any smooth point of W. Moreover, dim Z=n--2 for every fiber
Z of f. Indeed, if f(D) is a point for some effective divisor D on M, we
would have DR<0 similarly as in Case a). So DC<0 for any curve C
such that f(C) is a point, which is clearly absurd. Thus we reduce the
problem to the following:

(2.12) Lemma. Let f: M—S be a surjective morphism from a
manifold M onto a normal projective variety S. Let L be an ample line
bundle on M and suppose that (F, Ly)~(P7, O(1)) for every general fiber F
of f. Suppose further that dim Z=r for every fiber Z of f. Then S is
non-singular and f makes (M, L) a scroll over S.

Proof. Let B be the singular locus of S. Then f is flat over S—B
and makes (M, L) a scroll there. So we will derive a contradiction as-
suming B=~ . Cutting by hyperplane sections on S if necessary, we reduce
the problem to the case dim B=0.

Take a point x on B. Note that, for any irreducible component X,
of f~!(x), we have dim X,;=r by assumption. Set d,=L"X, for each i.

Take a large integer a such that aL is very ample and let D,, ---, D,
be general members of |¢L|. Then N=D,N--.-ND, is non-singular.
Moreover, applying Bertini’s theorem to the restriction of |aL| to each X,
we infer that NN X, is a non-singular subscheme consisting of a’d; points.

Now, take a small enough neighborhood (with respect to the metric
topology) U of x such that any connected component U, of f~(U)NN
meets f~*(x) at only one point. This is possible because fy,: N—S is proper
and finite over x. Let f; be the restriction of f to U,. We may assume
that f; is a finite morphism of degree m,. . Then deg(fy)=>_m,=> ,a"d,,
because the number of U}’s are equal to (NN f'(x))=>.ad,. On the
other hand, we have F~P~ and D, e |0(a)| for any general fiber F of f.
So deg(fy)=a". Combining them we obtain > ;d,=1 and m,=1 for every
A. In particular f;: U~ U is bimeromorphic. So, by the analytic version
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of Zariski’s Main Theorem, f; is an isomorphism. Since U, N is smooth,
U must be non-singular, contradicting x € B.

(2.13) In order to prove Theorem 4, we need the folloWing:

Lemma. Let things be as in (2.2) and suppose that M is non-singular.
Let X={x e W|dimf~'(x)>0} and E=f"'(X). Then there is a curve C in
E such that f(C) is a point and that KC=n—1—2dim E.

This is just a reformulated version of [Io; (0.4)].

(2.14) Owutline of the proof of Theorem 4. First we apply the Key
Lemma (2.2) and consider f: M—W. If fis not birational, similarly as
in (2.10), we can show that (b) is the case. So, let us assume that f is
birational.

Take X and F as in (2.13). If dim E<n—1, then KC =3 —n for some
curve C with f(C) being a point. Since LC>1, we have (K-+(n—3)L)C
=0, contradicting the property 5)in (2.2). Thus we conclude dim E=n—1.

Similarly as in (2.11; a), we infer E,Z< 0 for some component E; of
E and a curve Z in E; such that f(Z) is a point. Then E;R<<0. So E,
contains every curve which is mapped to a point. This implies E,=E.
Hence E is a prime divisor.

By the method in (2.5), we conclude that dlm =>n—2 for every
x € X, where E, is the fiber of E—»X. Hence dimX< 1 '

When dim X=1, take a general hyperplane section H of W and let
x be a point on XN H. Then E, is the divisor E(N f~(H) on the manifold
f~'(H). Similarly as in Case (a) in (2.11), we infer that (E,, L,)~(P""%,
0(1)) and O[E];,=0O(—1). Since E—X is flat and the fiber is irreducible
and reduced over every smooth point x of X, this is a scroll over the
smooth part of X. Thus we are in case al).

When dim X=0, take an ample line bundle 4 on M such that 4R
attains the minimum. Then we may set LR=jAR and KR=kAR for some
integers j, k. From k+4+(n—2)j=0, k+({»n—3)j<0 and k+n—1=0 we
infer j=1 and k=2—n unless (n, k, j)=(4, —3, 2).

In the latter case we infer (E, Az)=~(P? 0(1)) similarly as in (2.11; a).
So (E, L) is of the type a3).

In case j=1and k=2—n, we may assume A=L. We set ER=—eLR
for some positive integer e. Since K+ (n—2)L=0 in Pic(E) as before, the
dualizing sheaf wy is (2—n—e)L;. Moreover, similarly as in (2.11; case a),
we have HY(E, K-++sL)=0 for any i>0, s=0. This implies X(E, sL)=0
for 2—n<s<0. Moreover h'(E, —sL)=h""'""YE, wgz[sL])=0 if i<n—1
and s=e. Hence X(E, —sL)=0 for e<s<n—2-e. Since X(E, sL) has
at most (n—1) zeros, [2—n, 0) U(2—n—e, —e] contains at most (n—1)
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integers. Hence e <2,
If e=2, we infer (E, Lz)~(P""!, @(1)) similarly as in (2.6). Thus a4)
is the case. If e=1, similarly as in (2.7), we infer that a2) is the case.

§3. Comments

(3.1) Our Theorem 3’ can be viewed as a polarized version of the
following classical:

Theorem. The canonical bundle of a smooth projective surface S is nef
except in the following cases:

a) There exists a curve E such that E~P" and E*= —1.

b0) S~P2

bl) S is isomorphic to a P'-bundle over a smooth curve.

(3.2) Our Theorem 4 can be viewed as a polarized version of Mori’s
theory in [M1], [M2].
(3.3) For general t >0, we have the following:

Proposition. Let L be a line bundle on a manifold M with dimM=n
such that L is nef and big (so L">0). Then x(K+tL, M)<n-+1—tor =n.

Proof. By virtue of [li], there is a birational morphism n: M'—M
together with a surjective morphism @ : M’— W such that dim W= (K +1L),
that every general fiber F of @ is connected and that #(K+tL, F)=0.
For the canonical bundle K’ of M’ we have H(M’, m(K’+trx*L))~
H(M’, mz*(K+tL)) for any m=0. So x(K’+1tL, F)=0. Moreover, L,
is nef and big if Fis general. Hence it suffices to show the following:

(3.4) Lemma. Let L be a line bundle on a manifold F with dim F=f
such that L is nef and big. Then x(K’'+4tL, F)=0 for t>f. So k(K-+tL)

=fift=f+2.

Proof. If e(K+(f+1L)<0, then A(K+1tL)=0 for 1<t <f+1.
Using Kawamata-Viehweg’s vanishing theorem, we infer X(K+-tL)=0 for
1<t=f+1. Hence X(K+tL)=0 because this is a polynomial in # of
degree <f. This contradicts L/ >0 by the Riemann-Roch theorem.

(3.5) Remark. In Case a) of Theorem 3, E is not necessarily a
Cartier divisor. A simple example can be constructed as follows.

Take a manifold X whose canonical bundle is sufficiently ample. Let
X, be the blow-up of X at a point and let E, be the exceptional divisor on
it. Let X, be the blow-up of X, at a point p on E,. Let E, be the ex-
ceptional divisor over p and let E{ be the proper transform of E,. This is
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isomorphic to the blow-up of E,~ P! at p and is a P'-bundle over P2,
The restriction of the normal bundle of E] to each fiber ~ P! is 0(—2). -
Let g: X,—M be the contraction of E; along this direction. So, g(E})=~
P"~? and M has a hypersurface singularity of the type x*= yz at any point
on g(E]). Let 4 be the pull-back of an ample line bundle on X. Then
SA—E,—E,=sA— E{—2E, is the pull-back of an ample line bundle L on
M for s>0. One easily sees that E=g(FE,) is the obstruction for K+
(n—2)L to be nef, and we are in Case a) of Theorem 3. E is not a Cartier
divisor although so is 2E.

(3.6) Sommese obtained similar results assuming Bs|L|=@. How-
ever, his assumption on the singularity of M is weaker than ours.

(3.7 If M is a smooth threefold, as [BP] pointed out, our results
follow from Mori’s theory [M1], [M2].

(3.8) Theorems 3 and 3’ will be useful in the study of polarized mani-
folds with g (M, L)=2. See [BP] and a forthcoming paper of the author.
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