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Euler Characteristics and Swan Conductors 

Spencer J. Bloch 

The purpose of this note is to describe some recent work on Euler 
characteristics in degenerating families of curves, with particular emphasis 
on mixed characteristic degenerations. Let S=Spec (A) be the spectrum 
of a complete discrete valuation ring with algebraically closed residue field. 
Write s (resp. 'Tj, resp. 'ij) for the closed (resp. get;leric, resp. geometric 
generic) point of S. Letf: X~S be flat and proper with fibre dimension 
1. We assume X is regular and the generic fibre Xv~'Tj is smooth. For 
z either s or 'ij, let 

X(X.) = 1:: (-1)' dim H~tCX., Q/), 

the etale Euler characteristic of the corresponding fibre. We ask for a 
formula calculating X(X.)-X(X'1). 

In characteristic zero (A=C[[t]]) the result is understood (cf. [2] ex. 
14.1.5); dt gives a section of the sheaf tdhc of Kahler differentials, to which 
one can associate a localized chern class Z(s J) e CHoCX.). (I will follow 
the notation in Fulton's book op. cit. except that I prefer to denote the 
Chow group of dim. n cycles by CHn.) One gets in this case for X a de­
generating family of varieties of any dimension, deg Z(s J) = ( -1 )dlmX(X(X.) 
-X(X,,)). Note that one can (and we will) think of (-l)dlmx Z(sJ) as a 
local contribution to the cycle-theoretic self-intersection of the diagonal. 

(1) 

We will be most interested in the mixed characteristic and pure 
characteristic p analogues of this result. There are two problems with (1) 
in these cases. First, in mixed characteristic, our construction of Z(s J) 
doesn't make sense. (What is td1:;c?) Second, even in the pure char. p 
case, the formula is wrong! It is clear, however, from the global 
Grothendieck-Ogg-Shafarevich formula [6] that the appropriate correction 
factor is the Swan conductor (cf. [8] as well as the discussion below) 
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sw(XjS) = dim Homga1 (swS , H*(Xq)). 

(Notation like Hom (A, H*(X~)) or tral H*(X~) are used as shorthand for 
the familiar alternating sums.) In the pure char. p case, the local formula 
for a family of curves reads 

(2) (Llx·Llx)s= -sw (XjS)+X(X.)-X(X~). 

In the remainder of this note I will outline a proof of (2) in the mixed 
characteristic case. 

This work was in large measure inspired by the work of K. Kato and 
S. Saito, and I profited enormously from conversations with them both in 
Tokyo and in Sendai at the conference. L. Illusie showed me how to use 
the Lefschetz trace formula to prove (2) in equal characteristic p. Finally, 
the book of Fulton [2] contains a wealth of ideas and techniques, based on 
his work and that of MacPherson, which can profitably be applied to the 
study of cycles on arithmetic varieties. 

The class (Llx· Llx). 

In the mixed characteristic case, there is no nice sheaf of absolute 
differentials, but we can work with [J~/S. When XjS has fibre dimension 
d-I, we should think of (Llx· Llx). as a localization of (-I)dcd([J~/s). Let 
X be a noetherian scheme of finite type over a regular scheme, and let 
zcx be a closed subscheme of pure codimension r. Let E* be a finite 
complex of coherent, locally-free {!}x-modules. If the homology of E* is 
supported on Z, one can define (op. cit. chap. 18, and ex. 18.1.3) localized 
chern classes c~,lE*) which induce cap product maps n: CHix)~ 
CH*(Z), lowering dimension by i. In fact, these arguments give some­
what more. Suppose F is a coherent sheaf of finite homological dimension 
on X such that Fix _ z locally free of some rank m. Then localized chern 
classes c~iF) can be defined for all i>m+ 1. 

We can apply this to [Jhs where dim X =m+ 1. (Exercise: show X 
regular implies [J~/S has homological dimension < 1.) Define 

We will abuse notation and write (Llx· Llx). also for the degree of this cycle, 
an integer. 

One non-classical property of this intersection number is its depend­
ence on the choice of base. For example, suppose one has X ~ T ~S with 
Tj S a finite, totally ramified extension of discrete valuation rings. Then 
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where aT/S is the discriminant (so ords (dT/s)=swT/s(1)+deg (T/S)-l). 

The Swan conductor 

Let T ---+S be a finite, totally ramified extension of discrete valuation 
rings, with T=Spec (A'). Assume the extension of quotient fields K'IK is 
galois with group G, and let nEA' be a uniformizing parameter. Define 
j: G-{e}---+Z by 

j(o)=ordAq(n)-n). 

This is independent of the choice of n. The Swan conductor is the central 
function defined on G by 

swT/S(q) = 1-j(q), q=l=e; sWT/sCe) = - 2: swT/S(q) . 
• *e 

Note swT / S is supported on the wild ramification subgroup [WcG. It is 
a non-trivial theorem that sWT/S is the character of a representation. 

In our geometric situation, the action of the wild ramification sub­
group of Gal (K! K) on H*(Xfj) factors through a finite quotient [1]. Thus, 
for T sufficiently "large" 

sw(XIS)=\ G\-l {2:(l-j(q». tr q\H*(Xfj)+swT/S(e) .H*(Xfj)} 

is well defined. 

The plan 

We assume henceforth that XIS has fibre dimension 1. Let TIS be 
sufficiently large so Xx sThas a stable regular model V; i.e. the fibre Vt is 
reduced with normal crossings [9]. One knows that the galois representa­
tion of XI K' on H*(X,) is tame. The rational map V ---+ X is not necessarily 
everywhere defined, but after a succession of blowings up of closed points, 
we get a scheme W---+ V fitting into a diagram 

(3) 

/'W~X 

V I 
~ 1 

T~S. 

Unfortunately, it is not true in general that the special fibre Wt is reduced, 
but we can suppose Wt • red is a union of smooth components with normal 
crossings. 
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Step 1. Formula (2) holds for VITo 
This is easy. There is no Swan term, and (L1 y ·L1Y )t is the number of 

double points in the special fibre. A standard geometric argument shows 
this is equal to X(Vt)-X(V~). 

Step 2. Formula (2) holds for WIT. 
This amounts to showing if Y=BL(x/X) for x E X, then (L1y ·L1y)s= 

(L1x. L1x)s + 1. 

A digression 

Before continuing with step 3, we need to discuss Fulton intersection 
theory in this context. Consider a cartesian diagram 

with A proper over Xx sX and dim A =2. Assume An L1 is set-theoreti­
cally supported over the closed point s E S. Fulton defines Segre classes 

s*(A n L1/A) E CH* (A n L1). 

Since Q~/S has finite homological dimension, we can mimic his approach 
and define 

(As before, we use the same notation for the degree of this cycle.) Using 
properties of Segre classes (op. cit. Lemma 4.2) one checks that if A has 
irreducible components Ai appearing with multiplicity m i , then (L1x· A) = 
.L: mi(L1x· Ai). 

We will be particularly interested in two cases: 
(a) A =T., where a is an automorphism of X lifting a non-trivial auto­
morphism a of S. 
(b) A=EXE' where E, E'CXs are components of the special fibre. 

In case (b), (L1·EXE')=(E.E'h is the usual intersection number. In 
case (a), define fix (a)=T. n L1x , and write fix (a)=D UR where DcXis a 
Cartier divisor and R is the O-dimensional residual scheme. (If x and y 
are local coordinates at a point, then fix (a): a(x)-x=a(y)-y=O. Dis 
defined locally by F, the g.c.d. of these equations, and R: (a(x) -x)/F= 
(a(y)-y)/F=O.) We have (op. cit. 9.2.2) 

(4) 
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The plan (cont.) 

Step 3. With notation as in (3), let 0' be an automorphism of V lifting 
a non-trivial automorphism 0' of T over S. Then 

( 5) (Jv · T.)=(j(O')-I). tr O'IH*(V~)+tr O'IH*(Vt). 

The main idea in proving this is to note that if YC Vt is a smooth 
curve appearing in fix (0') with multiplicity i, O<i<j(O'), then by means of 
the action of 0'-1 on @(I+l)Y' one can define a non-zero derivation D.,y: 
@y-+@y( -iY). Studying the zeroes of D.,y gives the key relation between 
X(y), (Y. y), and [R] necessary to identify the right hand sides of (4) and 
(5). 

Step 4. The same as step 3, with V replaced by W. 
Step 5. The scheme Wx x W has pure dimension 2 and is a local 

complete intersection. As a cycle on WXsW, [WXXW]=L;'EOT.+R, 
where R is a sum with suitable multiplicities' of components EXE' with 
E, E' C W collapsing to the same point of X. Then 

where X(Wt)G denotes the alternating sum of the dimensions of the G-fixed 
part of the cohomology of Wt. 

This is proved by first replacing W with the normal scheme WIG. 
The question is thus replaced by a birational one, which is shown to depend 
only on the graph of exceptional curves for WIG over X. This means the 
question can be studied with X replaced by PJ, where standard topological 
techniques suffice. The essential simplification which makes this possible 
is the fact that the (locally complicated) normal scheme WIG admits a 
regular and birational map to the (locally simple) regular scheme X. 

Step 6. Putting it all together-the projection formula. 
We refer again to diagram (3). It is natural to think 

[WX W]=(hXh)*Jx . 
x 

Since (h X h)*Jw = 1 GI· J x, one might expect a projection formula 

IGI·(Jx·Jx).=(Jw ·[WX W]).=(J w ·Jw).+ L; (Jw ·T.)+(Jw ·R). 
x q*e 

Let us check that such a formula is what we need. Substituting from the 
previous steps, we get 

(Jx · Jx)s=IGI-l{X(Wt)-X(X~)-(sw T/s(1)+1 GI-1)X(X~) 

+ L; (j(0')-1) tr 0'1 H*(X~)+ L; tr O'IH*(Wt) 
q*e q~e 
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+ 1 G IX(X.) -I G IX( Wt)G} 

= -SW(X/S)-X(X~)+X(X.). 

The proof of the projection formula is by a careful analysis of the 
structure of the normal cone of Llw in Wx x W. The details of this analysis 
will appear in the proceedings of the 1985 AMS summer institute in al­
gebraic geometry, to be published by the AMS. 
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