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The Versality Theorem for RL-Morphisms of 
Foliation Unfoldings 

Tatsuo Suwa 

In [7],we proved a versality theorem for unfoldings of codim 1 folia­
tion germs, which generalizes the versality theorem with respect to right 
morphisms in the unfolding theory of function germs. The purpose of 
this paper is to prove a similar theorem with respect to RL-morphisms. 
These morphisms generalize right-left morphisms in the function case and 
play an important role in the determinacy problem of foliation germs (see 
[11]). We also note that the definition naturally involves integrating 
factors of the given foliation germ (see Definitions (1.1) and (1.2) and (1.3) 
Remark). 

In Section I, we recall terminologies and describe the set of RL­
isomorphism classes of first order unfoldings of a foliation germ. We 
prove, in Section 2, the versality theorem «2.1) Theorem), which says that 
an infinitesimally RL-versal unfolding of a codim I foliation germ F is 
RL-versal. Let;F be an infinitesimally RL-versal unfolding of F and let 
;F' be an arbitrarily given unfolding of F. The proof consists of, as in 
[7], (I) construction of an RL-morphism from ;F' to ;F as a formal power 
series in the parameters of ;F' and (II) proof of the existence of a conver­
gent solution. Basically the infinitesimal RL-versality is sufficient for (I), 
although the procedure is rather involved. For (II), we need some side 
condition « *) in (2.1) Theorem, see also (2.2) Remark), which is satisfied 
in most cases. We compare the series obtained in (I) with convergent 
series similar to the one used in Kodaira-Spencer [6]. For this, we use 
the privileged neighborhood theorem of Malgrange [3] as well as the 
unfolding theory of integrating factors developed in the appendix of 
this paper. In Section 3, we explain how our theorem is related to the 
versality theorem for unfoldings of function germs with respect to right­
left morphisms (cf. Wassermann [13]). We consider the "meromorphic" 
case in Section 4. Namely, for a foliation F generated by a germ w of the 
form w=gdf-fdg, where f and g are holomorphic function germs, we 
determine the set of integrating factors «4.1) Lemma) and apply (2.1) 
Theorem to obtain an RL-universal unfolding of F explicitly «4.6) 

Received January 18, 1985. 



600 T. Suwa 

Theorem). In the appendix we deal with the unfolding (extension) prob­
lem of integrating factors. Although the extendability of integrating 
factors is proved in Cerveau-Moussu [2] (see also [1]) by a different 
approach, here we employed the power series method, since detailed esti­
mates are needed for the proof of (2.1) Theorem. 

§ 1. Preliminaries 

Let @n denote the ring of germs of holomorphic functions at the 
origin 0 in en = {(XI' ... , xn)} and let Qn and en denote, respectively, the 
@n-modules of germs of holomorphic I-forms and of holomorphic vector 
fields at 0 in en. A co dim 1 foliation germ at 0 in en is a rank 1 free 
sub-@n-module F=(m) of Q n with a generator m satisfying the integrability 
condition dm/\m=O. The germ at 0 of the analytic set {xl m(x)=O} is 
denoted by S(m) or S(F) and is called the singular set of F. We always 
assume that codimS(F);:::::2 (cf. [7] 1, [9] (5.1) Lemma, [10] (1.1) Lemma). 

An unfolding of F=(m) is a codim 1 foliation germ §' =(w) at 0 in 
en X em, for some m, with a generator w such that t*w =m, where t 
denotes the embedding of en={x} into en x em = {(x, t)} given by t(x)= 
(x, 0). We call em the parameter space of §'. We recall the following 
([11] (2.1) Definition, see also [10] (1.2) Definition, [9] (2.5) Definition). 

(1.1) Definition. Let §' =(w) and §" =(0) be two unfoldings of F 
with parameter spaces em and e l ={(SI' ... , Sl)}, respectively. 
(I) A morphism from §" to §' is a triple «([J, t, u) such that 

(a) ([J and tare holomorphic map germs making the diagram 

commutative, where the vertical maps are the projections. u IS 

a unit in @n+l. 

(b) ([J(x, 0) = (x, 0) and u(x, 0)= 1. 
(c) uO=([J*w. 

(II) An RL-morphism from §" to §' is a quadruple «([J, t, u, a), where 
([J, t and u are germs satisfying (a) and (b) in (I) and a=(a1, ••• , aJ 
is a germ in @~+l. Instead of (c), we require 
(c)' uO=([J*w+ I:i~l akdsk. 

Morphisms and RL-morphisms turn out to generalize (strict) right 
morphisms and right-left morphisms, respectively, in the unfolding theory 
offunction germs ([10] (3.11) Remark, [12]). 
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A first order unfolding of F=(w) is a rank 1 free sub-<9n +l -module 
~(I) =(w) of On+1 with a generator w such thate*w=w , where e denotes 
the embedding of Cn={x} into Cn XC={(x, t)} given by e(x) = (x, 0), and 
that dw!\w=O mod t 2, tdt (integrable to the first order). If we write 

w=w+w(l)t+hdt 

with W(I) in On and h in <9 n' then the first order integrability is equivalent 
to 

and 

hdw+(W(I)-dh)!\w=O. 

It is not difficult to show that the second equation above implies the first. 
Also, h is determined uniquely by ~(I) ([9] (4.9) Lemma, [11] 2). Hence 
if we set 

J(w)={h E <9n Ihdw=r;!\w for some r; in On}, 

then each first order unfolding of F=(w) determines an element in J(w) 
and vice versa. We also set 

and 

J(w)={h E <9nlh=(X, w> for some Xin en}, 

K(w)={a E <9n I adw=da!\w} 

O(w)={O E On I 0 !\w=dh!\w-hdw for some h in <9n}, 

where (, > denotes the natural pairing of a vector field and a I-form. Note 
that J(w) and J(w) are ideals in <9n, K(w) is a sub-C-vector space of J(w) 
and O(w) is a sub-C-vector space of On. It is shown that J(w)cJ(w) ([11J 
(2.8) Corollary). 

(1.2) Definition. Let ~(I) = (w) and ~'(I) = (0) be two first order 
unfoldings of F=(w). 
( I) ~(I) and ~'(1) are isomorphic (cf. [9] (4.10) Definition) if there is a 

pair (tP, u) such that 
(a) tP is a germ of biholomorphic map making the diagram 

(CnXC, o)~(cnXC, 0) 

~/ 
(C,O) 
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c.ommutative, where the .other maps are the pr.ojecti.ons. u is a 
unit in @n+l' 

(b) (f)(x, 0)= (x, 0) and u(x, 0)= 1. 
(c) uO:=(f)*w m.od t 2, tdt. 

(II) ,<F(l) and ,<F'(l) are RL-is.om.orphic if there is a triple «(f), u, a), where 
(f) and u are germs satisfying (a) and (b) in (I) and a is a germ in 
@n+l' Instead.of (c), we require 
(c)' uO:=(f)*w+adt m.od t 2, tdt. 

(1.3) Remark. In (II) .of the ab.ove, we may assume that a is in @n' 

M.ore.over, the first .order integrability .of (f)*w and (f)*w+adt implies that 
a is in K(w). 

(1.4) Proposition. (I) The set of isomorphism classes of first order 
unfoldings of F=(w) is naturally identified with J(w)jJ(w). 
(II) The set of RL-isomorphism classes of first order unfoldings of F = (w) 

is naturally identified with J(w)jJ(w)+K(w). 

Proof (I) is pr.oved in [9] § 6 (see als.o [7] 1). 
(II) Let ,<F(l) =(w) and ,<F'(l) =(0) be tw.o first .order unf.oldings .of F. 

We write 

and 

m.od t 2, tdt, 

with W(l) and 0(1) in Qn and hand e in @n' Supp.ose ,<F(1) and ,<F'(l) are 
RL-is.om.orphic and let «(f), u, a) be as in (1.2) Definiti.on (II). We assume 
that a is in K(w) «1.3) Remark). By (a) in (1.2) (I), we may write (f)(x, t) 
=(1)(x, t), t) f.or s.ome h.ol.om.orphic map germ 1>: (C n X C, O)-+(Cn , 0). 
By (b), we may als.o write 

1>(x, t):=x+1>(1)(x)t and u(x, t)= 1 + U(l)(x)t m.od t 2• 

with 1>(1) in @~ and U(l) in @n. Then we have 

m.od t 2, tdt, 

where Lxw den.otes the Lie derivative .of w with respect t.o the vect.or field 
X = .L:~~l 1>i1)(ajaxi ). Thus, from (1.2) (II) (c)', we get 

e=h+ <X, w) +a, 

which sh.ows that hand e determine the same element in J(w)jJ(w)+K(w). 
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Conversely, suppose e=h+(X, m)+a for some X=L.f_l~i(a/axi) in 
en and a in K(m). Then by [11] (2.6) Lemma, there exists v in <Pn such 
that 

(j(I) + Vm =m(l) + Lxm. 

Hence if we set 

(b(x, t)=(ifJ(x, t), t), 

and 

u(x, t)= 1 +v(x)t, 

then «(b, u, a) gives an RL-isomorphism between ff(l) and ff/(l). 

(1.5) Remark. Recall that for any ideal I in <Pn , we have an iso­
morphism of vector spaces 

where Lim)={Lxm!Xe I·en} ([11] (2.11) Proposition). Hence the set of 
RL-isomorphism classes of first order unfoldings of F=(m) is also given 
by Q(m)/L~n(m)+<Pnm. 

§ 2. The versality theorem 

Let F=(m) be a codim 1 foliation germ at Oin C n and let ff =(w) be 
an unfolding of F with parameter space Cm={(tl, ... , tm)}. We write 

m. m 

w=m+ L. m~lJ)tj+ L. hjdtj+terms of order>2 in t, 
j~l j~l 

with m(lt) in Q n and hj in <Pn , 1 <j<m. We say that ff is infinitesimally 
RL-versal if the classes [ha, ... , [hml span the C-vector space I(m)/J(m)+ 
K(m), or equivalently, [m(II)], ... , [m(lm )] span Q(m)/L~n(m)+<Pnm «1.5) Re-
mark). Also, we say that ff is RL-versal if for any unfolding ff' of F, 
there is an RL-morphism from ff' to ff. 

In this section, we prove the following 

(2.1) Theorem. Let F=(m) be a codim 1 foliation germ at 0 in cn 
with 

(*) dim K(m) < +00. 
Then any infinitesimally RL-versal unfolding of F is RL-versal. 
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(2.2) Remark. Let /F be an infinitesimally RL-versal unfolding of 
F and let /F' be an arbitrarily given unfolding of F. The theorem is 
proved by first constructing an RL-morphism from /F' to /F as a formal 
power series in the parameters of /F' and then showing the existence of a 
convergent solution. The condition ( * ) above is used in the convergence 
part. Thus if we do not impose ( * ), it is shown that any infinitesimally 
RL-versal unfolding of F is "formally" RL-versal. Actually, in what fol­
lows, we prove a stronger statement: Let F=(w) be a codim 1 foliation 
germ with 

(**) dim K(w)! fl(w) n K(w) < + 00 for some natural number I. 

Then, if /F is an infinitesimally RL-versal unfolding of F, for any unfold­
ing /F' of F whose parameter space has dimension < I, there is an RL­
morphism from /F' to /F. In the above, K(w)! denotes the direct sum of 
1 copies of the C-vector space K(w). It is identified with a subspace of the 
direct sum l(w)! in a natural manner. We also identify l(w) with a sub­
space of l(w)! by the "diagonal"embedding h-+(h, ... , h). 

We note that (*) is satisfied in most cases. 

Proof of(2.1) Theorem. Let /F =(w) be an infinitesimally RL-versal 
unfolding of F and let cm={(tl> ... , tm)} be the parameter space of /F. 
We write 

n _ m _ 

w= L..f.(x, t)dx.+ L.. h/x, t)dtj 
i=l j=l 

with it and hj in (i}n+m. If we set W t = L..~=dt(x, t)dxt, then the integra­
bility condition dw!\w=O is equivalent to the following four identities; 

(2.3) 

(2.4) l<j<m, 

(2.5) hj(~ Wt -dxhk) - hk(~Wt -dxhj ) -hjkwt =0, atk at j 

l<j, k~m, 

and 

(2.6) l<i,j, k<m, 

where dx denotes the exterior derivation with respect to x=(XI> ... , x n), 
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(a/afj)W t = L:i=l (ajt!afj)(X, f)dxt and hjk=aii)afk-aiik/afj. Also, we set 
h(X) = jlx, 0), I <i <n, hlx)=iilx, 0) and W(IJ) = L:i=l (ajdofj)(X, O)dxt, 
I ~j <m. Then the condition that the unfolding:F of F is infinitesimally 
RL-versal is given by 

(2.7) the classes [hI]' ... , [hm] span J(w)/J(w)+K(w), 

or equivalently 

(2.8) the classes [we!')], ••• , [w(1m)] span Q(w)/L~n(w)+(J}nw. 

Let :F' = (8) be an arbitrarily given unfolding of F. Letting e Z = 
{(SI' ... , s,)} be the parameter space of :F' , we write 

with gt and ek in (J}n+Z' and set 8.= L:i=lgi(X, s)dxt • If we let ek(x)= 
ek(x, 0), the integrability of 8 implies that 

(2.9) the germs el , ••• , ez are in J(w). 

We shall prove the existence of an RL-morphism (<b, t, u, a) from 
:F' to :F «1.1) Definition). Note that by the condition (a) in (1.1), <b 
must be of the form <b(x, s)=(ifJ(x, s), t(s» for some holomorphic map 
germ ifJ: (en X e z, o)~(cn, 0) and the condition <b(x, 0) = (x, 0) is equiva­
lent to ifJ(x, O)=x and t(O)=O. 

Part I. First we show the existence of (<b, ,y, u, a) as formal power 
series in s. 

We express ifJ,,y, u and a as power series in s=(SI> ... , SI); 

u(x, s)= L: u(') (x)s' and a(x, s)= L: a(')(x)s' 
1.1;;'0 1.1;;,0 

with ifJ(') in (J)~, c(') in e, u(') in (J) nand a(') in (J)~. In the above 1.1 denotes 
an l-tuple'(I.II' . ··,1.11) of non-negative integers, 11.11=1.11 + ... +1.11 and S'= 
S~'· . ·s!' as usual. In general, for a series q= L:I.I;;'O q(')s' in s with 
q(.) E (J)~ for some r, we set 



606 T. Suwa 

1 

«(])iP)*w=e(p)+ L: E(p)kdsk, 
k~l 

where 

(2.10) e(p)= tJM)iP, tiP)dxrp~P 
i=l 

and 

(2.11) 

The quadruple «(]), t, u, a) is an RL-morphism from :F' to :F if and only 
if we have 

(2.12) 

where 0 in ( ) denotes the I-tuple (0, .. " 0), and we have the congruences 

(2.13)p uiP(), == e(p) 
P 

for p>O, and the congruences 

(2. 14)p uiP-1ek == E(p)k+ a lP-\ 
p-l 

for p>l, where ==P denotes the equality mods', 1).II=p+1. We also look 
for auxiliary germs aU"u) = (ail,p), .. " a/,'p)) in (9~ such that 

ai/'O) E K(w), l:;'k<l, O<IAI:;'p-l, 

(2.16)p if I AI=q:;'p-l, 

is a (p-q)-th order unfolding of akl,O) subject to «(])ip)*w (see (A.l) Defini­
tion) and 

(2.17)p 

for all p~ 1. 

a Cv ) = L: a CI, p), 

..i+,u=1J 
O:;'I).II:;'p-l, 

We set rpCO) (x) = X, CCO) = 0 and UCO)(x) = 1 hereafter. 

(2.18) Proposition. There exist rpc.) and Cc.) for ).I with 1).11:;' 1, IP), a(O) 
and a Co, p) for f1 with I f1 i:;, 1 such that (2.13)0' (2.14)1' (2.15)1' (2.l6)1 and 
(2.17)1 hold. 
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Proof Since ifP)(x) = x and c(O) = 0, we have 8(0) = w. Also, since 
80 = wand u(O) = 1, we have (2.13)0' The congruence (2.14)1 is equivalent to 

l-:;;'k<l, 

where 1. denotes the I-tuple with 1 in the k-th component and ° in the 
others. By (2.7) and (2.9), there exist ckj in C, Xk= L:~~l t;ki(ajaXi) in 8 n 

and 13k in K(w) such that 

m 

ek = L:ckjhj +<Xk ,w)+f3k' 
j~1 

Thus if we set 9llk )=t;ki, CYk)=Ckj and aic°)=f3k' (2.14)1 is satisfied. Let 
akO,O) = akO) and let L:Tpl ~O alc°'p) sP be the first order unfolding of alc°'O) sub­
ject to «/jll)*W (see (A.2) Theorem). Then we have (2.15)1' (2.16)1 and 
(2.17)1' 

(2.19) Proposition. For any 9(') and c(,) for lJ with IlJl-:;;,p, u(,) and 
a(') for lJ with IlJl-:;;'p-l and a(l,p) for }., f1 with I}.+ f11<p, 1}.I<p-l, satis­
fying (2. 13)p_l, (2.14)p, (2.15)p, (2.16)p and (2.17)p, there exist 9(') and C(,) 

for lJ with IlJl= p+ 1, u(,) and a(') for lJ with IlJl= p and a(l,p) for }., f1 with 
I AI= p, 1f11=0 or I}.+ f11= p+ 1, 1f11 *0, satisfying (2.13)p, (2.14)p+l' 
(2.15)p+l' (2.16)p+l 'and (2.17)p+l' 

Proof Given 9('), c(,), u('J, a(') and a(l, p) as in the assumption above. 
Then we have (/jIP, U IP - 1 and alP-I. Hence we also have 8(p) and E(P)k 
(see (2.10), (2.11». 

First we show that we have the congruence 

(2.20) a1P - 1 dx 8(p) == da1P - 1 A8(p). 
p-l 

In fact, we compute 

p-I 
= L: L: (alc" p)dx8(p)-dalc" p) A8(p»s' 

)1I1=01+.u=JJ 

p-I p-q-I 
= L: L: ( L: (ale" p)dx8(p)-dale"p) A8(p»Sp)Sl. 

q~O III ~q Ipl ~O 

By (2.16)p (cf. (A.11)p_q_l), 

p-q-I 
L: (a!c" p)dx8(p)-da!c" p) A8(p»sp == O. 

Ipi ~O p-q-l 

Hence we get (2.20). 
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Second, (2.13)p reads 

[u]pw+UIP-l0. = 8(p). 
P 

Since codim S(w»2, to prove the existence of [u]p= r:1,I=P u(,)s' satisfying 
the above, it suffices to show that 

(2.21) [8(p)- u1p -1 O,]p I\w = o. 

From the integrability of (l])lp)*w and UIP - 10, we get (cf. (2.4» 

(2.22)p 

and 

(2.23)p_l (uIP-lek)diuIP-l0.)+ (a:k (UIP-l0.)-diuIP-lek») 1\ (uIP- 10s)=0. 

Substracting (2.23)p_, from (2.22)p and using (2.13)p_l and 8(p-1)== p_1 
8(p), we get 

(E(P)k-uIP-lek)dx8(p) 

+(~(8(P)-uIP-l0.)-dx(E(P)k-UIP-lek»)1\8(P) == o. 
aSk p-l 

Then by (2. 14)p and (2.20), we have 

~(8(p)-UIP-l0.)1\8(p) == o. 
aSk p-l 

Hence by (2.13)p_I, 

~[8(p)-uIP-IO.]pI\W=0, 
aSk 

Therefore we get (2.21). 
Third, (2.14)p+I reads 

(2.24) uIPek==E(p)k+a1P-l+ t a[s<5ap+l ·ft 
P i=1 aSk 

+ f: a[VJ]p+I .hj+[ak]p. 
j=1 aSk 

We look for [s<5i]P+I = I:1.I=P+l s<5~')s', [Vj]P+I = I:1,I=P+l c(·)s' and [aJp= 
I:1,I=pai:')S' satisfying (2.24). From the integrability of uIPO, we get 
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(2.23)p. Subtracting (2.22)p from (2.23)p and using (2. 13)p, we have 

(uIPek-E(p)k)d/(J(P)+(~(uIP(}8-8(P»-d:luIPek-E(p)k»)/\8(p)=O. 
aSk P 

Then, by (2.l3)p and (2.14)p, we get 

(2.25) [u iP ek-E(p)k]pdw + (a~k [uIP(}.-8(p)]P+l-d.,,[uIPek-E(p)k]P )/\w 

+ [alP- 1d",8(p)]p - [dxalP- 1 /\ 8(p)]p = O. 

Now we compute 

(2.26) [akP- 1dx8(p)-dxakP-1 /\8(p)]p 

= [~o H~' (aj/,p)dx8(p)-da';."p) /\8(p»s't 

= I! L: [P~l (a';.',p)d",8(p)-da';/-'p) /\8(p»sP]p_ qS" 
q~O Ill~q Ipl~O 

On the other hand, by (2.16)p (cf. (A.ll)p_q), 

Hence 

[PI:;-l (a';."p)dx8(p)-daic"p) /\8(p»sp] 
Ipl~O p-q 

= - L: (a';."p)dw-daic"p) /\w)sp. 
Ipl~p-q 

Substituting this in (2.26), we obtain 

[a1P- 1d",8(p) - dxalP- 1 /\ 8(p )]p 

Hence if we set 

from (2.25), we get 

= - L: L: (aic"P)dw-da';."P) /\w)s'. 
l'l~p Hp~, 

Ipl>O 

Ok= L: L: aic"p)s', 
l'l~p Hp~, 

Ipl>O 

(2.27) [uIPek-E(p)k-Ok]pdw 

+ (~[uIPO. -8(p )]P+l-dX[uIPek-E(p )k-Ok]P) /\w=O. 
aSk 
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This shows that the coefficients of [u ipo.-e(p)]p+l are all in {J(OJ). Hence 
we may write 

m 

[u ipo.-e(p)]p+l= L; (L; C. j OJ(l j ) + Lx.OJ +g.OJ)s· 
I.I-p+l i-I 

for some c.} in C, X. in en and g. in (1)n' Substituting this in (2.27), we 
see that 

(2.28) [uIPek-E(p)k-Ok]P 

=~( L; (i; c.jhj+<X., OJ»S.) + L; f3lkSl 
aSk 1.I=p+l j=1 Ill-p 

for some !3lk in K(OJ). Writing X.=L;f_d.i(a/aXi), we set ¢i·)=~"i and 
cj·)=c.j for IJ with 11J1=p+l and air:,O)=!31k for A with IAI=p. We also 
set ai;') = L;l+I'-.ak"I') for IJ with IIJI= p. Then [¢tlP+l = L;I.I-P+l¢i·)s·, [tj]P+l 
= L;I.I-P+l cj·)s· and [ak]p= L;I.I=P ai;')s·=ok+ L;llL=P ak1,O)s" satisfy (2.24). 
We also have (2.15)p+l and (2.17)p+l' 

Finally, for A with IAI=q~p, we let L;f;i~~1 f31~)SI' be the (p-q+ I)-st 
order unfolding of !3lk=aj.l,O) subject to (q'jIP+l)*W. Then, by (A.2) Theo­
rem, !31~)=akl,l') if IA+,uI<p. We set aj.",p)=f31~) for A,,u with IA+,uI= 
p+ I, 1,uI:;t:O. Then we have (2.l6)p+l' 

Part n. Now we prove the existence of convergent solutions. For 
an n-tuple P=(Pl"", Pn) of positive real numbers, we set P(p)= 
{x E cn Ilxil<Pi, 1 <i<n}. For a germJin (1)m we writ~f(x)= L;lal~Oaaxa, 
where a= (al> .. " an) is an n-tuple of non-negative integers, x a =xf'· .. x~n 
and lal=a1+···+an, and set IJlp=L;lal~olaalpa. IfJ=(J;, ···JT) is 
a germ in (1)~ for some r, we set IJlp= L;i=II/;lp' The (1)n-modules {Jn and 
en are both naturally identified with (1)~. 

We fix a basis [r1], "', [rN ] of the C-vector space K(OJ)ljJ(OJ)nK(OJ) 
(r i E K(OJ)lc(1)~). Also we choose open neighborhoods U, V and Wof 
the origins in cn, cm and C l , respectively, so that the germs OJ, r1, •• " r N 

have representatives on U and the germs wand 0 have representatives on 
Ux V and Ux W, respectively. Thus the germs/;, I<i~n, hj, I~j<m, 
and ek , I<k<l, have representatives on U. 

Consider the (1)n-homomorphisms 

A(X) = <X, OJ> 

and 

,u(g)=gOJ. 

Then by Malgrange [3] TheoIt!me (1.1), there exists P such that P(p)c U 
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and that the homomorphisms A and p have fissions simultaneously adapted 
to p, i.e., we have 

(2.29) Lemma. There exist P = (PI> ... , Pn), Pi> 0, and a positive 
constant K such that P(p)c U and that 
(a) every germ e in J(w)( = 1m A) can be written as e= <X, w) for X in en 

with 

I Xlap:::;:KI elap 1 fior -<a<l, 2 - -

(b) every germ r; in (9nw(=lmp) can be written asr;=gwfor gin (9n with 

1 fior -<a<1. . 2 - -

We choose P with the properties in (2.29) Lemma and fix it once for 
all. We also set 

Ko=max{lflp, Ihlp, lelp, Irilp, l<i<N}, 

wheref=U;, .. ·,fn), h=(hl> ... , hm ) and e=(e l , ••• , e/). 
Let q= L: q(')s' be a series with q(') in (9~ for some r and let L: a(')s' 

be a series with a(') positive real numbers. We say that L: a(')s' dominates 
q in pep) and write 

in P(p) 

if Iq(') Ip<a(') for all).l. Consider the series (cf. [6] p. 291, [5] p. 50. Note 
that ours is modified so that it fits to our purpose) 

where c is a positive constant to be determined later. We let A'(s) be the 
series obtained from A(s) by differentiation with respect to the variable 
Sl+··· +s/; 

As in [6] (19) or [5] Lemma 3.6, we can prove that 

(2.30) A(sy ~(_l_)r-IA(S) 
C I / 2 

for r> 1. 
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From this we get 

(2.31) 
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A'(s)A(s)<{_l_ A'(s). 
2CI/ 2 

Similarly we can show that 

(2.32) ( 1/2)7.1 
A'(s)' <{ T A'(s) for r> 1. 

We set At(s) = c· i/4 A(s), 1 ~ i < 4, and prove that there exist ¢' t, U 

and a satisfying (2.12), (2. I3)p and (2. 14)p for all p such that, if we choose 
c sufficiently large, then the following estimates hold for all p>O; 

(2. 33)p 

(2.34)p ¢~P-Xi<{(l-a)A(-S-), l<i<n, 
I-a 

(2.35)p tjP<{(1-a)A(-S-), l~j~m, 
I-a 

and 

(2. 36)p a1P <{A'( 1 ~a ), 1 <k<l, in P(ap) for ~ <a< 1. 

We write rt =(/3w·· ·,/3u), l<i~N, with /3ik in K(w) and denote by 
fiik(P) the p-th order unfolding of /3ik subject to «(]jIP)*w «A.2) Theorem). 
This time we look for auxiliary elements a(·) = (ai·) , ... , a~n in eN for all 
v with Iv I >1 such that 

(2.37)p if we define a(l,p) =(al t ,.), ... , a?'p») in (l)~ for l,p. with jl+ p.j<p, 
jlj<p-l by 

then (2.15)p, (2.16)p and (2.17)p are satisfied 
and that we have the estimate 

(2. 38)p l<i<N, 

for all p>1. 
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Let v=(v" .. " vz) be an I-tuple of non-negative integers and set L(v) 
={kll-::;'k-::;'I, vk:f:O}. Also, let lev) be the cardinality of L(v) and define 

n:(»: K(wY~K(wY(» 

by n:(»(f31, .. " f3z) = ( .. " 13k, ... ), k E L(v). This induces a linear map 

K(W)I/J(W) n K(w)~K(w)I(»/J(w) n K(w), 

which we also denote by n:(». Note that [n:(»(r1)] , .. " [n:(»(r N)] span the 
vector space K(w)I(»jJ(w)nK(w). 

(2.39) Lemma. There exists a constant Kl such that for any I-tuple 1.I 

and for any a in I(w)+K(w)lf» we have 

m N 

a= 2: cjhJ + <X, w) + 2: ain:(»(r i ) j=1 i=1 

for X in en and consta~ts cj' l-::;'j -::;'m, and ai' 1 <i< N, with 

Proof First we show the existence of a constant K' such that for any 
I-tuple IJ and for any a in J(w)+K(W)I(>>, there exist constants a" .. " aN 
such that [a] = 2:i"=1 ai[n:(»(ri)] in J(w) + K(W)I(» jJ(w)-:::::.K(W)I(» /J(w) n K(w) 
and that 

I ad -::;, K'I a Ip/2' 

This is done by modifying the arguments in [6] Lemma 1 (see also [7] (3.18) 
Lemma). Thus for an I-tuple IJ and a in J(w)+K(W)I(>>, we set 

N 

lea) = inf {max I ai II [a] = 2: ai[it(»(ri)]} 
i=l 

and show the existence of a constant K' such that for any a:f:O, 

Suppose that this is false. Then for any natural number p, there exist an 
I-tuple v(p) and an element a(p) in J(w)+K(W)I(>(P» such that l(a(p» = 1 
and la(p)lp/2<1/p. For any I-tuple v, L(v) is a subset of the finite set 
{l, .. " I}. Hence L(v) are the same for infinitely many p. Thus we may 
assume that a(p) are all in J(w) + K(W)lf for some I' <I. We denote the pro­
jection K(W)I---+K(wY' by it. By definition of l(a(p», there exist constants 
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ai(p), I<i:;'N, such that [a(p)]=2::f=lai(p)[n(7i)] and that lai(p)1<2. 
Since, for each i, the sequence {ai(p)} is bounded, replacing {a(p)} by a 
suitable subsequence, if necessary, we may assume that ai=limp~= atCp) 
exists. Since 2::f=1 ai [n(7 i)] = [0], if we set a; = ai(p) - ai, we have, for a 
sufficiently large p, 

N 

2:: aan(7i)] = [a(p)] 
i=l 

and !a(I<~. 
2 

This contradicts with l(a(p)) = 1. 
Next, noting that we have the natural isomorphisms 

I(w) + K(W)1(» /J(w) + K(W)l(» -:::=.I(w)/I(w) n (J(w)+K(w)l(») 

-:::=.I(w)/J(w)+K(w), 

it is shown by similar arguments as above that there exists a constant Ki 
such that for any I-tuple].l and a in I(w)+K(w)l(>l, there exist constants cj ' 

I:;'j:;'m, such that [a] = 2::1=1 cj[hj ] in I(w)+K(w)Z(»/J(w)+K(w)Z(» and 
that 

Then, since a- 2::1=1 cjhj is in J(w)+K(W)l(>l, by the above, there exist 
constants ai' I:;' i < N, such that [a- 2::1=1 C/lj ] = 2::f=1 ai[n(»(ri)] in J(w) + 
K(W)l(v)/J(w) and that 

m 

lai l:;'K'la-2:: Cj hj !P/2. 
j=l 

Noting that 

we have the estimate for ai. 
Finally, using (2.29) Lemma (a), we have the estimate for X. 
The following is proved similarly as in [7] p. 42. 

(2.40) Lemma. (a) We have 

( s ) 2·· 1 ,( s ) A -. -, ~--.. -. A .'~-
I-a C I-a I-a 

(b) If, for a series 2::o-(»S", 

1 fior-<a< 1. 2-
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'" q(»s>4;._l_A(_S_) in P(ap) [tor -.!...<a<b<l, 
L.J b-a I-b 2 -

then 

.. L: a(»s>4;.~_l_AI(_S_) in P(ap) for -.!...<a<1. 
C I-a I-a 2 

The following two propositions will finish the proof of the theorem. 

(2.41) Proposition. Ifwe choose c in the series A(s) sufficiently large, 
then there exist ifJ(» , c(» and a(» for ).I with 1).11::;;1, u(O) and a(O) such that 

(2.13)0' (2.14)1' (2.33)0' (2.34)1> (2.35)1' (2.36)0' (2.37)1 and (2.38)1 hold. 

Proof We recall the proof of (2.18) Proposition. Thus if we set 
ifJ(O)(x}=x, c(O) =0 and u(O) = 1, then we have (2.13)0. Also, since 

32A~(_s_)= 1 + terms of order> 1 in s, 
I-a 

we have (2.33)0. Next, since ek is in l(w), which is identified with l(w)+ 
K(W)!(lk), (2.39) Lemma asserts the existence of X k in en and constants ckj 
and aki such that 

and that 

m N 
ek= L: ckjhj+<Xk, w)+ L: aki)'t'(I')(ri) 

j=1 1=1 

1 for -<a<1. 2- -

Note that this shows that IXkl p is bounded. Writing X k= L:~=leki(a/aXi)' 
we set ifJ?')=eki' cY')=ckj and ai1·)=aki . We also define a(O,p) for f.l with 
1f.l1<1 by the identity in (2.37)1 and set a(O)=a(O,O). Then, since )'t'(l')(r;)= 
fiik' we have (2.14)1 as well as (2.37)1. Now, since IXklp and la(O)lp are 
bounded and 

(l-a)A -- =-(SI+··· +sl+terms of order >2 in s) ( s ) CI / 2 

I-a 32 , 

and 

AI(_S_) = C
1
/
2 (1 + terms of order > 1 in s), 

I-o:-a 32 

we have the estimates (2.34)1' (2.35)1> (2.36)1 and (2.38)1> if c is sufficiently 
large. 
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(2.42) Proposition. If we choose c sufficiently large, then for any ,p(.), 
c(·) and a(·) for).l with \).I\<p, uM and a(·) for ).I with \).I\<p-l satisfying 
(2.13)p_b (2.14)p, (2.33)p_I' (2. 34)p, (2. 35)p, (2.36)p_l, (2.37)p and (2.38)p, 
there exist ,p(.), c(·) and aM for ).I with \).1\= p+ 1, u(·) and a(·) for ).I with 
\).I\=p satisfying (2. 13)p, (2. 14)p+I' (2. 33)p, (2.34)p+b (2.35)p+H (2. 36)p, 
(2.37)p+1 and (2.38)p+I' 

Proof Given ,p(.), c(·), a(·), u(·) and a(·) as in the assumption above. 
Then we have ij)IP, U IP - 1 and alp-I as well as a(A,p) for A, t-t with \A+ t-t\:::::;P, 
\t-tl*O. Hence we also have 8(p) and E(P)k (see (2.10), (2.11»). As is 
shown in (2.19) Proposition (see (2.21), we have 

[8(p)- U IP - 18.]p!\w=O. 

In order to estimate 8(p), we consider the power series expansion of 
!t(x+y, t) in (y, t)=(Yb .. ',Yn, tl>"', tm). Note that, since!t(x, t) is 
holomorphic in Ux V, the coefficient functions (in x) of the power series 
(in (y, t») are holomorphic in an open set containing pep). Hence by 
taking suitable constants bo and co, we may assume that 

in pep), 

where Ao(Y, t) is the series given by 

As in [7] (3.14), we have 

(2.43) 

for some constant K2• On the other hand, using [3] Lemma (2.4), we 
have, from (2.34)p, 

in P(ap), 

for some constant Cl" Using 

1 2<a<b<1. 

A( l~a)A( l~b)~A( 1~br~)/2A( l~b)' 
and I-b<1-a<lJ2, we get 
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Thus by (2.40) Lemma, we get 

(2.44) 

Now, we may assume that 

8s-w~A(-S-) 
I-a 

in P(ap), 

Hence, using (2.33)p_l and (2.31), we get 

1 -<a<1. 2-

617 

Hence, by (2.29) Lemma (b), for each)) with I)) I = p, there exists UC') such 
that 

[U]pW+ Ulp-10s=6l(p), [U]p= L: UC,) (x)s", 
p lvl =p 

and that 

for some constants K3 and K4 • Therefore, if c is sufficiently large, we have 
the estimate (2.33)p as well as the congruence (2.13)p-

Next, we set 

Ok= L: L: a~l,p)s", 
I~I =p l+p=)) 

Ipl>O 

and estimate Uk. First, from (2.11), we have 
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[E(P)k]P 

= [ t (JlrjJIP, tiP) - heX)) arjJ1P + i; (hj(rjJIP, tiP) -hlx)) atyp ] . 
t=1 aSk J=1 aSk P 

Using the estimate (2.43) and a similar one for h}, we get, from (2. 34)p, 
(2.35)p, (2.31) and I-as 1/2, 

(2.45) [E(P)k]P 1: (n+m)K2(I _a)A(_S _) AI(_S_) 
I-a I-a 

1: (n+m)K2 AI(_S_) 
4el/2 I-a 

in P(ap), ~sa< 1. 

Second, since we may assume that 

we get 

Third, we have 

By (2.44) and (2.45), we may apply CA.2) Theorem to get 

~ik(P)1:Ko+A~( I~a). 

On the other hand, from (2.38)p, we have 

I: (Ak+ I)a;Hlklsl1:Ai(_s_). 
Ill=O I-a 

Hence we get 

Ok1:NAi(-S-)A~(-S _)= N AI(_S_)21:~AI(_S_). 
I-a I-a e I-a 2e l I-a 

Therefore, we have 
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(2.46) 

for some constants K5 and Ka. 
Now we take IJ with Ivl=p+ 1 and set 

a (v) - (... 1. a(V-Ik) ... ) 
- , k' , 

Vk 
k E L(v). 

Then we have shown in (2.19) Proposition (see (2.28)) that a(v) is in I(w)+ 
K(w)!(v). Hence by (2.39) Lemma, there exist X in en and constants cj ' 

l-::;'j-::;'m, and ai' l<i<N, such that 

and that 

m N 
a(v) = L: cjhj+<X, w)+ L: ai11:(v)(7i), i.e., 

j=1 i=1 

ak"-lk )= lJk(tf cjhj+<X, w)+ ti aifiik) 

1 for -<a<1. 2 - -

Writing X=L:~=lua/aXi)' we set piv)=~i' cj")=cj and aiv)=ai. Thus 
we have <JjIP+!=(pIP+\ ""IP+!). Also, for A with IAI=p, we set aj/'O)= 
(Ak + 1) L:f':1 a?+lk ) fiik' Furthermore, for 1.1 with 11.1 I = p, we set ak") = 
L:Hp=va~"p) and, for A, fl with IA+fll=p+l, Ifll>O, let ai."p) be defined 
by using the identity.in (2.37)p+!' Then we have (2.l4)p+! as well as 
(2.37)p+!' On the other hand, from (2.46), we have 

L: a(V)sv~J( ~~+ Ka)(l_a)A(~S_) 
Ivl=p+! C/ C I-a 

=l( K5 + Ka)(1_a)A!(_S_) 
C!/4 c3t' 1 - a 

in P(ap), ~ <a< 1. 

Hence if C is sufficiently large, we have the estimates (2.34)p+1> (2.35)p+! 
and (2.38)p+!' Finally, we have 

1 
in P(ap), "2<a< 1. 
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Hence if c is sufficiently large, we have the estimate (2.36)p. 

§ 3. The case CI.l=df 

Suppose w=dffor somefin @n with f(O) =0 and codimS(df):22. 
Then I(w)=@n and J(w)=(af) (the ideal generated by af/axl, ... ,af;axn). 
The assumption codim S(df):22 implies that f is not a power, where a 
germ h in @n is said to be a power if h=h[{', m> 1, for some non-unit ho 
in @n' Hence by the factorization theorem in [4] p. 472, we have K(w)= 
f*@I={pofJpE @l}' 

If a germ] in @n+m is an unfolding off, then ,% = (d]) is an unfold­
ing of F = (df) with parameter space em and conversely, any unfolding of 
F=(df) has a generator of the form d] with] an unfolding off ([7] p. 47). 
We have seen that the unfolding theory for F=(df) with respect to mor­
phisms is equivalent to that for fwith respect to (strict) right-morphisms 
([10] (3.11) Remark.) It is shown in [12] that the unfolding theory for 
F=(df) with respect to RL-morphisms is equivalent to that for fwith 
respect to right-left morphisms ([13] Definition 3.2). 

For an unfolding] off with parameter space em={(tl' .. " tm)}, we 
set hlx) = (a]/ax j) (x, 0), l~j~m. We say that] is infinitesimally right­
left versal if the classes [hi]' .. " [hm] span the vector space @n/(af)+ f*@I' 
Thus] is an infinitesimally right-left versal unfolding of f if and only if 
,% = (d]) is an infinitesimally RL-versal unfolding of F=(df). Iff admits 
an infinitesimally right-left versal unfolding, then @n/(af)+ f*@1 is finite 
dimensional. Hence by [13] Corollary 2.17, @n/(af) is finite dimensional. 
Thus K(w)/J(w) n K(w)-::::.J(w)+K(w)/J(w), w=df, is also finite dimen­
sional. Therefore, by (2.l) Theorem (see (2.2) Remark) we obtain the 
following result, which is a special case of [13] Theorem 3.22. 

(3.1) Proposition. Let f be a germ in @n withf(O) = 0 and codimS(df) 
:2 2. If] is an infinitesimally right-left versal unfolding of f, then for any 
one parameter unfolding g off, there is a right-left morphism from g to j. 

(3.2) Remark. Suppose @n/(af)+ f*@1 is finite dimensional and let 
[hll, .. " [hml be one of its basis. Then] = f + L:j~1 hjtj is an infinitesi­
mally right-left versal unfolding off 

§4. The case CI.l=gdf-fdg 

Let w be a germ of holomorphic I-form at 0 in en of the form 

w=gdf-fdg 

for somef and g in @n withf(O)=g(O)=O and codim S(w)';:::2. Note that 
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the last assumption implies that f and g are relatively prime and neither 
one is a power. The ideal J(w) coincides with the ideal (J, g) generated by 
fand g ([10] (2.1) Lemma). We have J(w) = (gaf-fag) (the ideal generated 
by g(af/aXi)-f(ag/aXi)' l<i<n.) 

(4.1) Lemma. The C-vector space K(w) is three dimensional and we 
may take f2, fg and g2 as its basis. 

Proof. If df Adg =0, then by the factorization theorem in [4] p. 472, 
we may write g=p(f) for some p in (!II· Hence w=(g-fp'(f))df. This 
contradicts the assumption codimS(w»2, since g-fp'(f) is not a unit in 
(!In. Thus we have df Adg=l=O. 

Now, if /3 is a germ in K(w), we have /3dw=d/3Aw. Hence as is 
shown in the proof of [10] (2.1) Lemma, there exist germs p and t in (!In 

such that 

From these, we get 

(4.2) dpAdf +dtAdg=O 

and 

(4.3) fdp+gdt=pdf +tdg. 

Thus we have 

pdw=2dpAw and 1fpdw=2dtAw. 

Again, using the arguments in the proof of [10] (2.1) Lemma, we may write 

and 

for some PI> Pz, tl and t2 in (!In· From these, we get 

(4.4) 

and 

(4.5) f dtl+gdt2=0. 

On the other hand, the identity (4.2) shows that 

P2=tl· 
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We set e=(/J2-(/J2(O) (='Ih-tl(O)) and claim that e=O. Suppose e*O. 
Since d</>l/\de=O, if e is not a power, by the factorization theorem in [4], 
we have </>1 =p(e) for some pin C!\. Hence from (4.4), we get 

p'(e)f+g=O. 

This contradicts the assumption codim S(w»2. If e is a power, we may 
write e=e:J" with m> 1 and eo not a power. Since d</>l/\deo=dt2/\ 
deo=O, again by the factorization theorem, we may write </>I=p(eo) and t2 
=q(eo) for some p and q in (!JI. From (4.4) and (4.5), we have 

p'(eo)f +me:J"-lg =0 

and 

Hence we see that eo is divisible by fg. We write eo=fkglr; with k>l, 
l> 1 and r; not divisible by f or g. If we denote by d the order of the 
power series p'(eo) of ~o, then we must have kd + 1 =k(m-l) and ld = 
l(m-l)+ 1. Hence 

k(m-d -1)= 1 and I(m-d -1)= -1, 

which is a contradiction, since k, I, m and d are integers with k> 1 and 
l~ 1. Therefore, ~=O and </>2 and tl reduce to constants. By (4.4) and 
(4.5), </>1 and t2 must also be constants, which shows that f3 is a linear 
combination of f2,fg and g2. Conversely, it is not difficult to see that the 
linear combinations of these germs are all in K(w). Q.E.D. 

Thus in this case, the condition (*) in (2.1) Theorem is always satisfied. 
If we denote by [f2, fg, g2]C the C-vector subspace of (!In generated by f2, 
fg and g2, from (2.1) Theorem and (4.1) Lemma, we obtain the following 

(4.6) Theorem. Let F=(w) be a germ of codim 1 foliation at ° in en 
generated by a germ w of the form w=gdf - fdg for some f and g in (!In with 
f(O)=g(O)=O and codim S(w)~2. If the dimension of the C-vector space 

is finite, then F admits an RL-versal unfolding. In fact, if [ulg- vtl],· .. , 
[umg-vmfJ (Uj, Vj E (!In) is a C-basis a/the above vector space, then the un­
folding:F =(w) of F with parameter space cm={(tl, ... , tm)} generated by 

w=gdj-jdg, 

where j and g are germs in (!In+m given by 
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is RL-versal. 

(4.7) Remark. We could say that the unfolding ~ in the above is 
an RL-universal unfolding of F (cf. [10] (2.4) Theorem). 

(4.8) Example. Let f=x-y and g=xy on C 2 ={(x,y)}. Then 
w=gdf-fdg=y2dx-x2dy. We have I(w)=(x-y,xy), J(w)=(r,y2) and 
K(w)=[(x-y)2, (x-y)xy, X2y2]C. We have (!MI(w)=C2 and we may take 
[1] and [x] as its basis and <llzjJ(w)+K(w)=C3 and we may take [I], [x] 
and [x- y] as its basis. Hence from the exact sequence 

O~I(w)/J(w)+K(w)~(!)2/J(w)+K(w)~(!)2/I(w)~O, 

we see that I(w)/J(w)+K(w)=C and we may take [x- y]=[O.g-( -l)f] 
as its basis. Therefore, by (4.6) Theorem, if we setj=f=x-y and g= 
g-t=xy-t, then the unfolding ~=(w) with parameter space C={t} 
generated by 

w=gdj -jdg=(y2_t)dx-(x2-t)dy+(x-y)dt 

is an RL-universal unfolding of F=(w). 
We note that I(w)/J(w)=C2 and we may take [x-y]=[O·g-(-l)f] 

and [xy]=[1·g-0-f] as its basis. Hence if we set j'=f+t2=x-y+t2 
and g' = g ~ t 1 = xy- t I, then the unfolding ~' = (w') with parameter space 
C2 == {( t 1> t 2)} generated by 

w'=g'dl'-l'dg' 

=(y2_ t2y- tl)dx-(x2+ t2X- tl)dy+(x- y+ t2)dtl + (xy- tl)dt2 

is a universal unfolding of F=(w) (see [10] (2.4) Theorem and [8] (5.11) 
Example). 

Appendix. Unfoldings of integrating factors 

We recall that K(w) denotes the C-vector space of integrating factors 
of a germ of integrable I-form w at the origin 0 in cn; 

Let A denote the graded algebra EB~!tQ~+1 (Q~+l=(!)n+l) of germs of 
holomorphic forms at 0 in cn X C 1= {(x, s)} and for a non-negative integer 
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p, let Ap denote the ideal in A generated by s' and ds' for all I-tuples !.i= 

(!.iI' ... , !.i l ) of non-negative integers with !!.i!:;?:p. For (J and T in A, we 
write 

if (J-T is in Ap + I ' 

If f is a germ in (!) n' a germ lin (!) n + l is said to be an unfolding off, 
or to unfold f, if lex, 0) = f(x). 

(A.I) Definition. Let F=(w) be a codim 1 foliation germ at 0 in 
C n and let f3 be a germ in K(w). Also, let ff =(w) be an unfolding of F 
with parameter space C l. A p-th order unfolding of f3 subject to ff is a 
germ ~ in (!)n+l such that ~ is an unfolding of f3 and that 

~dw=#/\w. 
p 

In this appendix we prove the following theorem. Here we use the 
dominant series in Section 2. We also use the notations there. 

(A.2) Theorem. Let F=(w) be a codim 1 foliation germ at 0 in cn. 
If f3 is a germ in K(w), then for any unfolding ff =(w) of F (with parameter 
space C l ={s}) and for any non-negative integer p, there is a p-th order un­
folding ~ (p) of f3 subject to ff. If we write 

and set wIP=wlP+I::i~lii1P-ldsk' wlP=I::~~JlPdxi' then the germ~(p) is 
determined by wlp uniquely modulo Ap + I ' 

Moreover, if we choose the constant c in the series A(s) sufficiently 
large, then the estimates 

and 

1 
in P(ap), 2<a< I, 

imply the estimate 

in P(ap), ~::;;,a< I, 
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for all p;2:.1, where h=(hl' ... , ht), h(x)=h(x, 0) and L is a constant. 

(A.6) Remark. In the above, we choose open neighborhoods U and 
W of the origins in C n and C Z, respectively, so that the germs wand 13 
have representatives on U and the germ eli has a representative on U X w. 
Then we choose an n-tuple p = (PI' ... , Pn) of positive numbers so that 
P(p)c U and that p has the properties in (2.29) Lemma. 

(A. 7) Remark. The dominant series above are chosen so that the 
theorem can be directly applied to the proof of (2.1) Theorem. We could 
use, forinstance, the following series instead ([6] p. 291, [5] p. 50, [7], [11]); 

A*(s)=_b_ ~ ~(Sl+· .. +sz)P. 
16c p:2;1 p2 

In this case, we can prove that if we choose band c sufficiently large, then 
the estimates 

and 

hIP-I-h~A*(_S _) 
I-a 

imply the estimate 

1 
in P(ap), 2"<a< 1, 

in P(ap), ~sa< 1, 

for all p> 1, where e is any positive number and A:(s)=c<A*(s). 
For more applications of the theorem, see [11] (4.31) Lemma. 

(A.8) Corollary (Cerveau-Moussu [2]). Let F=(w) be a codim 1 
foliation germ at 0 in en. If 13 is a germ in K(w), for any unfolding !IF = (eli) 
of F, there exists a unique germ P in K(eli) that unfolds 13. 

Proof of (A.2) Theorem. Let !IF = (eli) be an unfolding of F with 
parameter space Cz = {(Sl' ... , sz)}. To prove the first half of the theorem, 
it suffices to show that there exists a formal power series 

in s satisfying 
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(A. 9) 1'(0)=1' 

and 

(A.lO)p p!Pdw=.dp!P Aw in A, 
P 

for p>O, and that [p]p is uniquely determined by p!P-I and w!p for p> 1. 
The congruence (A.lO)p is equivalent to 

p!Pd"w,=.d"p!P Aw" 
P 

(A. 12)p ap!p w. = ,Q!P-I(~w,-dJik)+likd~,Q!P-I, a t' a ~ ~t' Sk p-I Sk 

and 
a,Q!p-1 Ii t' = ,Q!p-2 h k - t' jk, 

aSj p-2 
l<j, k<l, 

where hjk=(alijjask)-(alikjasj)' We set 1'(0) = I' so that (A.9) and (A.ll)o 
are satisfied. We think of (A. 12)0, (A.13)o and (A.13)1 as void conditions. 

(A. 14) Proposition. If we have 1'(.), for lJ with ilJi:::;:p, satisfying 
(A.l1)p, (A. 12)p and (A. 13)p, then, for each lJ with ilJi=p+ 1, there exists 
unique 1'(.) satisfying (A. l1)p+h (A.12)p+I and (A. 13)p + !,jor p>O. 

Proof. Given 1""), ilJi:::;:p, as in the assumption above. First we show 
that (A. 13)p+I is satisfied. If we set 

N ap!p N ap!p -I 
cjk=hj---hk---p!P hjk , 

aSk aSj 

for our purpose, it suffices to show that 

since Cjk does not have terms of order less than p-l by (A. 13)p. Using 
(A.12)p, we have . 

which is zero by the integrability of w (cf. (2.5)). 
Second, by (A. 12)p, (A.12)p+! is equivalent to 

(A.I5) l<k<l, 



Versality Theorem for RL-Morphisms 627 

where 

To prove the existence of L8]p+1 = L:i.i =p+l {3(.) s· satisfying (A. IS), it suffices 
to show that 

(A. 16) [C'k]P!\ (J)= 0, I-s,k-s,l, 

and 

(A. I?) a[C'J]p _ a[C'k]P I<j, k-s,l. a.s:-----as;-' 
Since C'k does not have terms of order less than p, if !"k!\(J).=pO, then we 
have (A.16). But this easily follows from (A:ll)p and the integrability of 
w (cf. (2.4». Also, we have (A. I?) if 

(A.18) C'Jk _ 0, 
p-l 

where 

Now, using (A.13)p+I' we get 

Then, by (A.I2)p and (A. 13)p+1> we have 

{3iPC'Jk = 0. 
p-l 

Since C'Jk does not have terms of order less than p-l, this implies that 
{3CJk=P- 1 0. Since the theorem is trivial in the case {3=0, we may assume 
that {3=1=O. Hence we get (A.I8). Note that [{3]P+1 is determined uniquely 
by {3iP and wip + l • 

Third, we prove that (A.ll)p+1 is satisfied. If we set 

for our purpose, it suffices to show that 

(A. 19) 
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Using the identity obtained by taking dx of (A.12)p+l' we have 

Denoting the right hand side of the above by 1: k' we get, using (A. 11 )p and 
(A.12)p+l' 

which is zero by (A.12)p+l. By (A.ll)p, r; does not have terms of order 
less than p+ 1. Hence 1:k does not have terms of order less than p. Thus 
we have 131: k ==- pO. Again, we may assume that 13 *0. Therefore, we have 
(A.19). 

Now we prove the second half of the theorem. For our purpose, it 
suffices to show that if we choose c sufficiently large, then the estimates 
(A.3)p and (AA)p imply the estimate 

in P(ap), 

for all p;:::: 1. 

1 
-<a<l, 2-

The following two propositions will finish the proof of the theorem. 

(A.21) Proposition. If we choose c sufficiently large, then we have 
(A.20\. 

Proof From (A.I5), we have 

p(lk)W= p(W(1k) -dhk)+hkd p. 

Since the germs on the right hand side have representatives on U (see (A.6) 
Remark), I p(1k) Ip is bounded by (2.29) Lemma (b). On the other hand, we 
have 

A'( s ) 1 (1 C3/4 SI+··· +Sl f d 2·) 3 -- =- --+--------+termso or er> IllS. 
I-a 32 C1/4 4 I-a -

Hence, if c is sufficiently large, we have (A.20)1. 

(A.22) Proposition. If we choose c sufficiently large, then the esti­
mates (A.3)p+1' (AA)p+1 and (A.20)p imply (A.20)p+ dor p> 1. 

Proof We recall that [p]P+1 is determined from (A.15). Setting 
Lo = max {Iwl p, Ihlp, Idhlp, Iplp, Idplp}, we estimate [;;k. 
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First, we have, from (A.3)P+l and (A.20)p, 

By (2.32), we have 

AI(_S_)AII( __ S ) ~ ~1/2 AII(_s ). 
I-a I-a 4 I-a 

Hence we get 

[~IP~_(j)S] ~L(~+_l )_l_A~/(_S_) 
aSk p C 1/ 4 4C 1/ 2 I-a I-a 

in P(ap), ~::=;;:a< 1. 

Second, using [3] Lemma (2.4), we have, from (A.4)P+l and (A.20)p, 

[~IPd)ik]P~(Lo+A~(---S ))(Lo + nLC1_A~(_S_)) 
I-a b-a I-b 

in P(ap), ~ <a<b< 1, 

for some constant C1• Noting that p>I and AI(s/I-a)~A'(s/I-b), we 
get, using (2.32), 

[~IPd)lk]p~LoA~(_S _)+nClL(Locl/4+~)_1_A~(_S _). 
I-a 2 b-a I-b 

As in [7] p. 42 we can prove that 

(A.23) A1(. __ S ) ~ ~ _1_ AII(_S_) 
I-a c I-a I-a 

and that 

(A.24) if, for a series ~ a(»s>, 

~ a(»s> ~ _1_ AI(_S_) 
b-a I-b 

in P(ap) for ~ ::=;;:a<b< 1, 

then 

~ a(»s> ~ ~ _1_ AII(_S_) 
C I-a I-a 

1 
in P(ap) for 2"<a<l. 
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Thus we have 

Third, we have 

[ af3IP (J).] = [af3IP ((J)~P-{J))] 
aSk P aSk P 

~_1_ A~/(_S_)LA~(_S_) 
I-a I-a I-a 

L 1 AI/( S ) 
~ 4C 1/ 2 I-a 3 I-a 

in P(ap), 

Fourth, we have 

Since p > 1, we get, using (2.32), 

1 -<a<1. 2-

[hkdxf3IP]p~LoLc1/4A~(_s-) + llC1(Lo+ L)_l_A~(_S_). 
I-a 2 b-a I-b 

Then, by (A.23) and (A.24), we have 

From the above, we get 

[f'] # ( L1 + L2 + Lg + L4 ) 1 AI/( S ) 
':>k P~ ~ ~ -sji - -1-- 3 -1-- . 

c c c c -a -a 

Hence by (2.29) Lemma (b), we get 

Therefore, if c is sufficiently large, we have the estimate (A.20)P+1' 
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