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The Versality Theorem for RL-Morphisms of
Foliation Unfoldings

Tatsuo Suwa

In {7], we proved a versality theorem for unfoldings of codim 1 folia-
tion germs, which generalizes the versality theorem with respect to right
morphisms in the unfolding theory of function germs. The purpose of
this paper is to prove a similar theorem with respect to RL-morphisms.
These morphisms generalize right-left morphisms in the function case and
play an important role in the determinacy problem of foliation germs (see
[11]). We also note that the definition naturally involves integrating
factors of the given foliation germ (see Definitions (1.1) and (1.2) and (1.3)
Remark). '

In Section 1, we recall terminologies and describe the set of RL-
isomorphism classes -of first order unfoldings of a foliation germ. We
prove, in Section 2, the versality theorem ((2.1) Theorem), which says that
an infinitesimally RL-versal unfolding of a codim 1 foliation germ F is
RL-versal. Let & be an infinitesimally RL-versal unfolding of F and let
Z' be an arbitrarily given unfolding of F. The proof consists of, as in
[71, (D) construction of an RL-morphism from &%’ to & as a formal power
series in the parameters of %’ and (II) proof of the existence of a conver-
gent solution. Basically the infinitesimal RL-versality is sufficient for (I),
although the procedure is rather involved. For (II), we need some side
condition (( *) in (2.1) Theorem, see also (2.2) Remark), which is satisfied
in most cases. We compare the series obtained in (I) with convergent
series similar to the one used in Kodaira-Spencer [6]. For this, we use
the privileged neighborhood theorem of Malgrange [3] as well as the
unfolding theory of integrating factors developed in the appendix of
this paper. In Section 3, we explain how our theorem is related to the
versality theorem for unfoldings of function germs with respect to right-
left morphisms (cf. Wassermann [13]). We consider the “meromorphic”
case in Section 4. Namely, for a foliation F generated by a germ o of the
form w=gdf—fdg, where f and g are holomorphic function germs, we
determine the set of integrating factors ((4.1) Lemma) and apply (2.1)
Theorem to obtain an RL-universal unfolding of- F -explicitly ((4.6)
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Theorem). In the appendix we deal with the unfolding (extension) prob-
lem of integrating factors. Although the extendability of integrating
factors is proved in Cerveau-Moussu [2] (see also [1]) by a different
approach, here we employed the power series method, since detailed esti-
mates are needed for the proof of (2.1) Theorem.

§1. Preliminaries

Let ¢, denote the ring of germs of holomorphic functions at the
origin 0 in C"={(x,, - - -, x,)} and let 2, and @, denote, respectively, the
0,-modules of germs of holomorphic 1-forms and of holomorphic vector
fields at 0 in C". A codim 1 foliation germ at 0 in C” is a rank 1 free
sub-0,-module F=(w) of 2, with a generator w satisfying the integrability
condition doAw=0. The germ at 0 of the analytic set {x|w(x)=0} is
denoted by S(w) or S(F) and is called the singular set of F. We always
assume that codim S(F)>2 (cf. [7] 1, [9] (5.1) Lemma, [10] (1.1) Lemma).

An unfolding of F=(w) is a codim 1 foliation germ & =(&) at 0 in
C"xC™, for some m, with a generator & such that (*&®=w, where ¢
denotes the embedding of C"={x} into C* X C™={(x, 1)} given by ¢(x)=
(x, 0). We call C™ the parameter space of #. We recall the following
([11] (2.1) Definition, see also [10] (1.2) Definition, [9] (2.5) Definition).

(1.1) Definition. Let # =(@) and F’'=(6) be two unfoldings of F
with parameter spaces C™ and C'={(s,, - - -, 5,)}, respectively.
(I) A morphism from F’ to & is a triple (@, , u) such that

(a) @ and + are holomorphic map germs making the diagram

(C*xC4 0)-2>(C*x C™, 0)

.0 L5 (0
commutative, where the vertical maps are the projections. u is
aunitin 0,,,.
(b) @(x, 0)=(x, 0) and u(x, 0)=1.
(c) ub=090%a.

(II) An RL-morphism from #' to % is a quadruple (@, , u, ), where
@, 4y and u are germs satisfying (a) and (b) in (I) and e =(ex;, - - -, a;)
is a germ in @..,. Instead of (c), we require
©) ub=0*e+>._; ads,.

Morphisms and RL-morphisms turn out to generalize (strict) right
morphisms and right-left morphisms, respectively, in the unfolding theory

of function germs ([10] (3.11) Remark, [12]).
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A first order unfolding of F=(w) is a rank 1 free sub-0,,,-module
FU=(a) of 2,,, with a generator @ such that *@==w , where ¢ denotes
the embedding of C"={x} into C* X C ={(x, )} given by «(x)=(x, 0), and
that do A\ @=0 mod ¢3, tdt (integrable to the first order). If we write

o=w+oVt-+hdt mod 72, tdt

with o™ in 2, and & in @,, then the first order integrability is equivalent
to

doNo® +do® Aw=0
and
hdw -+ (0 —dh) Nw=0.

It is not difficult to show that the second equation above implies the first.
Also, # is determined uniquely by #® ([9] (4.9) Lemma, [11] 2). Hence
if we set

I(w)=1{he 0,|hdo=n/\w for some 5 in 2,},

then each first order unfolding of F=(w) determines an element in I(w)
and vice versa. We also set

J(@)={he 0,|h=(X, w)y for some X in 6,},
K)={ae0,|ado=da/\w}

and
Nw)={6¢e 2,|0 \No=dh/\o—hde for some hin 0,},

where {, > denotes the natural pairing of a vector field and a 1-form. Note
that I(w) and J(w) are .ideals in @,, K(w) is a sub-C-vector space of I(w)
and Q(w) is a sub-C-vector space of 2,. It is shown that J(w)C I(w) ([11]
(2.8) Corollary).

(1.2) Definition. Let F Y =(®) and F’'@=(f) be two first order
unfoldings of F=(w).
(I) F®and #’® are isomorphic (cf. [9] (4.10) Definition) if there is a
pair (@, u) such that
(a) @ is a germ of biholomorphic map making the diagram

(€"xC 0-2>(C"xC, 0)

e

(e4Y)
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commutative, where the other maps are the projections. u is a
unit in @, ,.

b)) O(x, 0)=(x, 0) and u(x, 0)=1..

(c) ud=0*@ mod % tdt.

(D £ and F'® are RL-isomorphic if there is a triple (@, u, a), where
@ and u are germs satisfying (a) and (b) in (I) and « is a germ in
0,... Instead of (c), we require
(Y ubf=0*p-+adt mod 1%, tdt.

(1.3) Remark. In (II) of the above, we may assume that « is in @,.
Moreover, the first order integrability of @*@ and @*@-+adt implies that
a is in K(w).

(1.4) Proposition. (I} The set of isomorphism classes of first order
unfoldings of F=(w) is naturally identified with I(w)/J(w).
(IT)  The set of RL-isomorphism classes of first order unfoldings of F= ()
is naturally identified with I{(w)/J(w) -+ K(w).

Proof. (1) is proved in [9] § 6 (see also [7] 1).
(II) Let FV=(@) and F'“=(f) be two first order unfoldings of F.
We write

d=w+ot+hdt
and
O=w-+0"ttedt mod t%, tdt,

with 0 and 6V in 2, and / and e in ¢,. Suppose F and F'® are
RL-isomorphic and let (@, u, &) be as in (1.2) Definition (I[). We assume
that « is in K(w) ((1.3) Remark). By (a) in (1.2) (I), we may write @(x, t)
=(¢(x, 1), t) for some holomorphic map germ ¢: (C" X C, 0)—(C", 0).
By (b), we may also write

\ olx, D=x+¢D(x)t and  ulx, £)=1+uP(x)r mod z%
with ¢ in 07 and ¥® in @,. Then we have
P*d=w+ (00 + Lyw) +(h+{X, 0))dt  mod 1 tdt,

where Lyw denotes the Lie derivative of » with respect to the vector field
X=377, ¢(@fox;). Thus, from (1.2) (ID) (c)/, we get

e=h+<{X, w)+a,

which shows that /# and e determine the same element in I{w)/J(0)+ K(»).
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Conversely, suppose e=h+- (X, w) +a for some X=37_,£,(3/5x,) in
0, and @ in K(w). Then by [11] (2.6) Lemma, there exists v in @, such
that

60 +vo=0®+Lo.
Hence if we set
O(x, )=(d(x, 1), 1),  ¢(x, )=x+&(x)

and
u(x, t)=1+4v(x)t,

then (@, u, a) gives an RL-isomorphism between F© and ZF’®.

(1.5) Remark. Recall that for any ideal I in @,, we have an iso-
morphism of vector spaces

I(@)/I- J () + K(0) =~ 2(@)/ L)+ 0,0,

where L w)={Lyw|X e I-0,} ([11] (2.11) Proposition). Hence the set of
RL-isomorphism classes of first order unfoldings of F-(w) is also given
by 2(w)/L,,(0)+ 0, 0.

§2. The versality theorem

Let F=(w) be a codim 1 foliation germ at 0.in C" and let & = (&) be
an unfolding of F with parameter space C™={(t,, - - -, t,,)}. We write

d=w-+ fj 0¥t 4+ 37 hydt,+terms of order>2 in ¢,
j=1 Jj=1

with 0 in 2, and &, in 0,, 1<j<m. We say that F is infinitesimally
RL-versal if the classes [4)], - - -, [#,] span the C-vector space I(w)/J(w)-+
K(w), or equivalently, [w®?], - - -, [@"™] span 2(w)/L, (0)+0,» ((1.5) Re-
mark). Also, we say that % is RL-versal if for any unfolding %’ of F,
there is an RL-morphism from &’ to &.

In this section, we prove the following

(2.1) Theorem. Let F=(w) be a codim 1 foliation germ at 0 in C™
with

*) dim K (o)< + co.

Then any infinitesimally RL-versal unfolding of F is RL-versal.
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(2.2) Remark. Let & be an infinitesimally RL-versal unfolding of
F and let &’ be an arbitrarily given unfolding of F. The theorem is
proved by first constructing an RL-morphism from %’ to &# as a formal
power series in the parameters of %’ and then showing the existence of a
convergent solution. The condition ( *) above is used in the convergence
part. Thus if we do not impose ( *), it is shown that any infinitesimally
RL-versal unfolding of F is “formally” RL-versal. Actually, in what fol-
lows, we prove a stronger statement: Let F=(w) be a codim 1 foliation
germ with

(**) dim K(0)'/J(w) N K(w)<+4 oo for some natural number /.

Then, if &% is an infinitesimally RL-versal unfolding of F, for any unfold-
ing &’ of F whose parameter space has dimension </, there is an RL-
morphism from #’ to &#. In the above, K(w)’ denotes the direct sum of
I copies of the C-vector space K(w). It is identified with a subspace of the
direct sum I(w)’ in a natural manner. We also identify I(w) with a sub-
space of I(w)' by the “diagonal” embedding A—>(h, - - -, h).

We note that (*) is satisfied in most cases.

Proof of (2.1) Theorem. Let & =(@) be an infinitesimally RL-versal
unfolding of F and let C™={(#, - - -, t,)} be the parameter space of %.
We write

o= 3 Fie, Dot 3 x, 1t
i= j=

with f; and /; in 0, ,,.. If we set w,= 3.7, fi(x, t)dx;, then the integra-
bility condition d& A @=0 is equivalent to the following four identities;

2.3) dw, \Nw,=0,
(24) };jdxwt"i_(—a?—wt“—dz};j)/\wt:O’ IS‘] Sma
J

2.5) (2w, —d i\ —h O w,—d, i, ) =y, =0

* J atk t 'tk k atj 17 'ty JEYt— Y
1<), k<m,
and
(2-6) Eihjk‘i'ﬁjhm"f‘ﬁkhu:(), 1<, j, k<m,

where d, denotes the exterior derivation with respect to x=(x,, - - -, x,.),
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©/ot)o,= r, (@f /0t (x, t)dx, and hy,=0oh,/ot,—oh,/dt,. Also, we set
fi(x)=Ffix, 0) 1<i<n, h(x)=/hyx, 0) and % =377, (3f./ot,)(x, 0)dx,,
1<j<m. Then the condition that the unfolding & of F is infinitesimally
RL-versal is given by

2.7 the classes [A], - - -, [A,,] span I(0)/J(w) + K(w),
or equivalently
(2.8) the classes [w™], - - -, [@"™] span Q(w)/L, (0)+ 0,0.

Let #’=(6) be an arbitrarily given unfolding of F. Letting C'=
{(sy, - - -, 5,)} be the parameter space of F’, we write

n l
= ;zgi(x’ s)dx; + ;gk(x» 5)ds,

with g, and &, in 0,,,, and set 4,=> 7, g,(x, s)dx;. If we let e (x)=
é,(x, 0), the integrability of § implies that

2.9) the germs e, - - -, ¢, are in I{w).

We shall prove the existence of an RL-morphism (@, v, u, &) from
F' to & ((1.1) Definition). Note that by the condition (a) in (1.1), @
must be of the form @(x, s)=(g(x, ), ¥(s)) for some holomorphic map
germ ¢: (C" X C?, 0)—(C™, 0) and the condition @(x, 0)=(x, 0) is equiva-
lent to ¢(x, 0)=x and ¥(0)=0.

Part I. First we show the existence of (@, v, u, «) as formal power
series in .
We express ¢, 1, u and « as power series in s =(s, - -+, 5,);

&(x, )= 2 ¢™s”, W)= 3 s,

1v1=20 v} =0
u(x, )= Y, u”(x)s* and alx,s)= 3, a®(x)s*
120 15720
with ¢® in O, ¢* in C, 4™ in @, and «® in ¢}. In the above v denotes
an [tuple (v, - - -, v,) of non-negative integers, |v|=y,+ -+ +v, and s*=
s3.. .5y as usual. In general, for a series G—ZMZO a(”)s” in s with
o™ e O for some r, we set

lol=0"s", [l,= X [l and o= 37 [ol

l»f=0
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for p=0. If we set @'?=(g'?, 4'?), we have

@*)*0=6(p)+ 3 E(phds.

where

(2.10) O(p)= i} fi@', v'*)d Bl

and

Q) Eek= 35767 B 4 Sy 2L

The quadruple (@, , u, ) is an RL-morphism from Z#’ to & if and only
if we have

(2.12) $O(x)=x, ¢®=0 and u(x)=1,
where 0 in () denotes the /-tuple (0, - - -, 0), and we have the congruences
(2.13), u'?g, = 6(p)

p

for p>0, and the congruences

(214)17 u[p—lék = E(p)lc'*_“}cp_la lgkgl,
p-1

for p>1, where =, denotes the equality mod s*, |[vy|=p+1. We also look
for auxiliary germs a®# =(a{*#, - - ., af**) in @, such that

2.15), ag® e K(w), 1<k<l, 0<[2|<p—1,
(2.16), if|Al=g<p—1, 5 a@ns
lel=0

is a (p—g)-th order unfolding of a{»® subject to (9'?)*@ (see (A.1) Defini-
tion) and

2.17), a= 3 a®e, 0<vi<p—1,
Atp=v
for all p>1.
We set ¢(x)=x, ¢®=0 and u®(x)=1 hereafter.

(2.18) Proposition. There exist 3* and c® for v with |v|<1, u®, a®
and a®® for p with |p|<1 such that (2.13),, (2.14),, (2.15),, (2.16), and
(2.17), hold.
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Proof. Since ¢®(x)=x and ¢® =0, we have @(0)=w. Also, since
0y=w and u® =1, we have (2.13),. The congruence (2.14), is equivalent to

n

o= 3 Sk S e fa®,  1<k<],

i=1 i=1
where 1, denotes the /-tuple with 1 in the k-th component and O in the
others. By (2.7) and (2.9), there exist ¢,; in C, X;,= > *_, &,.(0/ox;) in O,
and B, in K(w) such that

= Zlckjhj+<Xk7 w>+18k
i= .

Thus if we set ¢{'”=¢&,,, c{”=c,; and a”=p,, (2.14), is satisfied. Let
a¥=a? and let 3}, _, af” s* be the first order unfolding of a{™” sub-
ject to (@')*@ (see (A.2) Theorem). Then we have (2.15),, (2.16); and
(2.17),.

(2.19) Proposition. For any ¢* and ¢ for v with |v|<p, u® and
a® for y with |v|<p—1 and a*# for A, p with |2+ p|<p, || p—1, satis-
fying (213),_,, (2.14),, (2.15),, (2.16), and (2.17),, there exist ¢* and ¢
Sor v with |v|=p+1, u® and a® for v with |v|=p and a** for 2, u with
A=p. |u|=0 or |24ul=p+1, |pl#0, satisfying (2.13),, (2.14),.,,
(2.15),.1, (2.16),., and (2.17),,,.

Proof. Given ¢®, ¢®, u®, a® and «*# as in the assumption above.
Then we have @'7, u'?~! and «'?~!. Hence we also have O(p) and E(p),
(see (2.10), (2.11)).

First we show that we have the congruence

(2.20) a?'d.0(p) = da-* AO(p).
p-1

In fact, we compute

a ' d,0(p)—da;?' \O(p)
-1

= 5 5 (@Pd0(p)—dair NO(p)s”

=0 a+p=»

= ZO ]; (I’I_Zq:—l(a;cl’.") dw@(p)_da;cl,y)/\@(p))sﬂ)sz.
a= =q

#l=0

<

3
|

By (2.16), (cf. (A.11),_,-),

—g-1
pi (a$? dO(p)—da NO(p)s* = 0.
. p—qg-1

lul=0

Hence we get (2.20).
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Second, (2.13), reads
[ul,o+u'?"10, = O(p).
p

Since codim S(w)>2, to prove the existence of [u], =3, ., u®s* satisfying
the above, it suffices to show that

2.21) [O(p)—u'*~'8,], Nw=0.
From the integrability of (@'?)*@ and u'?'4, we get (cf. (2.4))

02),  EOP+ (2 60)—dEr)) A6(=0
and
@23),., (u“’“é,,)d,(u'?“ﬁs)—!-(ais’c(u“"‘ﬁs)—d,(u“’“é,c)>/\(u“’“0s)=0.
Substracting (2.23),_, from (2.22), and using (2.13),_; and O(p—1)=,_,
O(p), we get

(E(p).—u'*""€,)d.0(p)

(5—(@@) u?=16,) — d(E(p), —u'*- 'ek>)A@(p> =0,

Then by (2.14), and (2.20), we have

JA\O(p) = 0.
0s;, p-1

Hence by (2.13),_,,

a—k“[@(P) u'?- las]p/\w 0, 1<k<l

Therefore we get (2.21).
Third, (2.14),., reads

(224) u're _._E(p) _|_a,!11 1+ Z a[?;z]pﬂ f

i ]Z g[ig;]p—“-hj—[-[ak]p.

We look for [§],.1=21=ps1 875" [Wrilper=2001p ¢®s* and [a,],=
D-ps® satisfying (2.24). From the integrability of u'?4, we get
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(2.23),. Subtracting (2.22), from (2.23), and using (2.13),, we have

%, — E(p))d, @(p)+( o (78, ~6(p) — ("2, E(mk))A@(p)f

Then, by (2.13), and (2.14),, we get

609

0.

2.25) [u'pak—E(p)k],,dw(ai»[umas—@@)lw—dzluwék—E(p)kl,,)Aw

+ [P~ d.6(p)], ~[d.als > NO(p)], =

Now we compute

(2.26) a~'d,0(p)—d.al?* ANO(p)],

p-1

=[Z 5 (ard,6(p) — dag ﬂ)A@(p»w]p

191=0 A+ p=v
Z=0 ti=q L 1al=
On the other hand, by (2.16), (cf. (A.11),_,),

SH (@1 0(p) — daow NO(p))s* = 0.
lul=0

p—q

Hence

[/ @rd.60)—da N6
P-q

fel=0

=— 3 (a¥Pde—dai Aw)s*.

tel=p—q

Substituting this in (2.26), we obtain

lap~'d,0(p) —d.cl? ' NO(P)],
=— > 2 (aPdo—dal” N\w)s.

Iv]=p i+ p=y
le]>0
Hence if we set

b= X3 afns,

l=p irp=»
lui>0

from (2.25), we get
@27 [u'?e,— E(p),—d.)do

+(i[uwas—@(pnw—dx[umérE(p)Mk]p)Aw=0-
0s,
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This shows that the coefficients of [1'?6,—O(p)],., are all in Q(w). Hence
we may write

[ulpes_—@(p)]p+1= | IZ 1 (Zlcvjw(lj)—*—LX,,w—Jf_guw)sv
vi=p+ Jj= - .

for some ¢,; in C, X, in @, and g, in ¢,. Substituting this in (2.27), we

see that

(2~28) [”Ipék"E(p)k*‘ak]p

=2 3 (Bemt o))+ 3 pus

05, \I»/=p+1 177=p
for some 8,, in K(w). Writing X,=> 7, £,,8/0x,), we set ¢{’=¢,, and
e =c,; for v with |v|=p+1 and a>”=g,, for 2 with |1|=p. We also
set oz‘”)——zpr,,:,ozk’ ") forvw1th]u1——p Then [@.]p1=2 1 1s1=p+188% [Vl
=2 =pr1 €87 and [ ], =2, o, 5" =0 +Zu| _p atUs? satisfy (2.24).
We also have (2.15),,, and (2.17),,.,,.

Finally, for 2 with |A|=¢g<p, we let > I 25! Biwds* be the (p—q+1)-st
order unfolding of B, =al*” subject to (@'**")*@. Then, by (A.2) Theo-
rem, B =a® if ]Z+y]<p We set af ”>—ﬁ<”) for 2, 4 with |24 p|=
p+1,|¢#]==0. Then we have (2.16),,,.

Part II. Now we prove the existence of convergent solutions. For

an n-tuple p=(p;, - --, p,) of positive real numbers, we set P(p)=
{x e C*|lx,|<p;, 1<i<n}. Fora germ fin @,, we write f(x) =1} . 20.X%
where a=(a,, - - -, @,) is an n-tuple of non-negative integers, x*=x%. . . xz»

and |a|=a;+ - - - +a,, and set | f|,=> . s0lalp® I =, -, 1) is
a germ in @}, for some r, we set | f|,=>7.,|f:|,- The ¢,-modules 2, and
0, are both naturally identified with @7.

We fix a basis [1}], - - -, [Fv] of the C-vector space K(w)'/J(w) N K(w)
(7, e K(w)'C¢%). Also we choose open neighborhoods U, ¥ and W of
the origins in C", C™ and C", respectively, so that the germs w,7,, - -+, 7
have representatives on U and the germs @ and & have representatives on
UxVand UX W, respectively. Thus the germs f;, 1 <i<n, h;, 1 <j<m,
and e,, 1 <k</, have representatives on U.

Consider the @,-homomorphisms

i 0,—>0,, AX)=L{X, o)
and

pi Oy, p(g)=go.
Then by Malgrange [3] Théoréme (1.1), there exists p such that P(p)C U
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and that the homomorphisms 1 and # have fissions simultaneously adapted
to p, i.e., we have

(2.29) Lemma. There exist p={py, « - -, p,), p:>>0, and a positive
constant K such that P(p)C U and that
(a) every germ e in J(w)(=1Im A) can be written as e={X, w) for X in 0,
with

!X!apgKlelap Jor é—ﬁagl,
(b) every germ y in 0, 0(=1Im p) can be written as n=gw forg in @, with
1
|glap£Kl7]]ap ) Sor 'E‘éaél-
We choose p with the properties in (2.29) Lemma and fix it once for
all. We also set
KO:maxﬂflp’ Ihipr [e]ps |7i|ps ISiSN}a

Wheref=(f;: o "f;z)a hz(hla S hm) and 6’:(81, T el)'

Let o= > 06™s* be a series with ¢ in @} for some r and let > a®s”
be a series with ¢® positive real numbers. We say that > a®s” dominates
o in P(p) and write

3PS a®s? in P(p)

if |¢®),<a® for all ». Consider the series (cf. [6] p. 291, [5] p. 50. Note
that ours is modified so that it fits to our purpose)

! 2. ‘c;(sl’jf‘""‘l‘sl)p,

A __ =
)= 3507 2

where c is a positive constant to be determined later. We let A’(s) be the
series obtained from A(s) by differentiation with respect to the variable

Sit e A8

) L cr! e »
A'(s)= 3207 1{; ) (4 - - F5)

As in [6] (19) or [5] Lemma 3.6, we can prove that

(2.30) A(s)f<(i)’_1A(s) for r>1.

C]/Z
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From this we get
2.31) A()A(s) < L A(s).

2c*
Similarly we can show that

c1/2 r=1
(2.32) A’(s)T<<<T) A(s)  forr>1.
We set A, (s)=c"**A(s), 1<i<4, and prove that there exist ¢, ¥, u

and « satisfying (2.12), (2.13), and (2.14), for all p such that, if we choose
¢ sufficiently large, then the following estimates hold for all p>0;

2.33), uw<<32A;<ls )

(2.34), ¢?—xi<<(l—a)A(1s ) 1<i<n,
—a

239), vpt—ad(S), 1<j<m,
—a

and

(2.36), a,‘f’<<A'(l_S~>, I<k<I, inP(ap) for _;_ga< 1.
—a
We write 7,=(B., - - -, ), 1 <i< N, with §;, in K(w) and denote by
£:(p) the p-th order unfolding of 8, subject to (@'*)*® ((A.2) Theorem).
This time we look for auxiliary elements a® =(a{, - - -, a®’) in C¥ for all
v with |p|>1 such that

(2.37), if we define a®# =(a{**, - - -, a*#) in 0! for A, p with |2+ p|< p,
12|<p—1by

N . -
(+1) 2 @l 05u(p) = 35 afise,
=1 p-q lz|=0

then (2.15),, (2.16), and (2.17), are satisfied
and that we have the estimate

2.39), ™ a§”>s”<<(1——a)A1<ls ) 1<i<N,
|

v|= —da

for all p>1.
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Let y=(y,, - - -, v,) be an [-tuple of non-negative integers and set L(v)
={k|1<k<l, v,#0}. Also, let /(v) be the cardinality of L(v) and define

7 : K(0)'—>K(w)'®
by z¢(8y, - -+, B)=(---, Bw - - -), ke L(v). This induces a linear map
K(w)'[J(0) N K(@)—>K(0)'®/J(0) N K(v),

which we also denote by z®. Note that [z ()], - - -, [z (7y)] span the
vector space K(w)'®/J(w) N K(w).

(2.39) Lemma. There exists a constant K, such that for any I-tuple v
and for any ¢ in I(0)+ K(w)'"™ we have

m N
a= 2 ¢;h;+LX, o)+ Z=:1 a7,

Jj=1

Sfor X in O, and constants c;, | <j<m, and a;, 1 <i<N, with

;| <KLy |X|ey<Kiloley and |a)|<K|a)s, for %_<_ag L.

Proof. First we show the existence of a constant K’ such that for any
I-tuple v and for any ¢ in J(w)+ K(w)'", there exist constants a,, - - -, ay
such that [¢]=>"",; a,[z¥(7))] in J(0)+ K(w)'* /] ()~ K(0)'* [ (») N K(®)
and that

|a;|<K'|a],

This is done by modifying the arguments in [6] Lemma 1 (see also [7] (3.18)
Lemma). Thus for an /tuple v and ¢ in J(w)+ K(w)'®, we set

N

«(o)=inf {max|a,||[c]= 2 a; [z )]}

i=1
and show the existence of a constant K’ such that for any ¢ 0,
t(a)<K'|a],s-

Suppose that this is false. Then for any natural number p, there exist an
I-tuple v(p) and an element ¢(p) in J(w)+ K(w)'“® such that ¢(e(p))=1
and (a(p)|,»<l/p. For any I-tuple v, L(v) is a subset of the finite set
{1, ---,1}. Hence L(v) are the same for infinitely many p. Thus we may
assume that ¢(p) are allin J(w)+ K(w)" for some I’<<I. We denote the pro-
jection K(w)'—K(w)" by 7. By definition of «(a(p)), there exist constants
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a(p), 1<i<N, such ‘that [o(p)]=2 L, alp)[=(7))] and that a,(p)}<2
Since, for each i, the sequence {a,(p)} is bounded, replacing {s(p)} by a
suitable subsequence, if necessary, we may assume that a,=lim, ., a,(p)
exists. Since >, a,[x(7,)]=[0], if we set a;=a,(p)—a,, we have, for a
sufficiently large p,

N

2 @) =lo(p)] and 1a§l<%.

This contradicts with «(g(p))=1.
Next, noting that we have the natural isomorphisms

1(@)+ K@) |7 (@) + K(@)'® = I(@)/I(@) N (J (@) + K @)"®)
= 1()/J (@) + K(w),

it is shown by similar arguments as above that there exists a constant K;
such that for any /-tuple v and ¢ in I(w)+ K(w)'*, there exist constants c;,
1<j<m, such that [¢]=>"7, ¢;[h,] in I(0)+ K(0)'®/J(w)+ K(w)** and
that

le)|< Kol

Then, since ¢— Z;’;lcjh} is in J(w)-i—K(w)“”, by the above, there exist
constants a;, 1 <<i< N, such that [c— 37, ¢,h]=>"1, a,[z® ()] in J(w)+
K(w)'/J(w) and that

la, | <K' |o— 2 ¢;hyl, e

Noting that
|

o= Sem (14 D)oL=+ Kol
2 7=

i J=

we have the estimate for q,.
Finally, using (2.29) Lemma (a), we have the estimate for X.
The following is proved similarly as in [7] p. 42.

(2.40) Lemma. (a) We have

A(+2 ><<_ La(2) o <a<i,

l—a c 1——a l—a

(b) If; for aseries 3 o%s”,
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>le¥s L 1 A( il ) in P(ap) for —1—ga<b<l,
b—a 1—-b 2

then

’Zo(”)s"<<—8£—LA’( s ) in P(ap) for Loa<
¢ l—a 1 2

The following two propositions will finish the proof of the theorem.

(2.41) Proposition. If we choose c in the series A(s) sufficiently large,
then there exist ¢, c¢® and a® for v with |v|<1, u® and o such that
(2.13),, (2.14),, (2.33),, (2.34),, (2.35),, (2.36),, (2.37), and (2.38), hold.

Proof. We recall the proof of (2.18) Proposition. Thus if we set
dO(x)=x, ¢ =0 and u® =1, then we have (2.13),. Also, since

32A;( I s ): 14-terms of order>1 in s,

—a
we have (2.33),. Next, since e, is in J(w), which is identified with I(w)+
K(w)'%», (2.39) Lemma asserts the existence of X, in @, and constants ¢,
and a,,; such that '

m N
€= Z‘i Ceshy+ X )+ Z:1 a, B (1)

j= i=

and that .
Xl <Kleo,  for %gagl.

Note that this shows that | X,|, is bounded. Writing X, => 7, £,.(9/0x.),
we set ¢ =&, ¢ =c,; and a{'’® =a,,. We also define «®# for p with
|¢]< 1 by the identity in (2.37), and set «® =a®®. Then, since 7 (7'))=

Biw» we have (2.14), as well as (2.37),. Now, since |X,|, and |a®]|, are
bounded and

1/2
(l—a)A(_1 ul >=—c~/—(s1+ -+ -5, +terms of order >2 in s)
—a ,

and

s cl/Z .
A’( 2 ) =§2—(1 +terms of order >1 in s),

we have the estimates (2.34),, (2.35),, (2.36), and (2.38),, if ¢ is sufficiently
large.
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(2.42) Proposition. If we choose c sufficiently large, then for any ¢,
c® and a® for v with |v|<p, u® and a® for v with |v|<p—1 satisfying
(2.13),_1, (2.14),, (2.33),_,, (2.34),, (2.35),, (2.36),_,, (2.37), and (2.38),,
there exist ¢, ¢ and a® for v with |vj=p-+1, u® and a“ for v with
|vl=p satisfying (2.13),, (2.14),,;, (2.33),, (2.34),.,, (2.35),.1, (2.36),
(2.37),,, and (2.38),.,.

Proof. Given ¢®, ¢, a®, u® and «® as in the assumption above.
Then we have @'2, '*~! and «'?~* as well as a*® for 2, p with |21+ u|< p,
|#)5£0. Hence we also have O(p) and E(p), (see (2.10), (2.11)). As is
shown in (2.19) Proposition (see (2.21)), we have

[0(p)—u'*~14,}, A =0.

In order to estimate @(p), we consider the power series expansion of
Flx+y, ) in (0, )=y -+ > Vur b, - - -» ). Note that, since fi(x, t) is
holomorphic in UX V, the coefficient functions (in x) of the power series
(in (», t)) are holomorphic in an open set containing P(p). Hence by
taking suitable constants b, and ¢,, we may assume that

ety 0-f<-a(-2 . L) in PG,

where A,(y, t) is the series given by
b
Ay, )==2 3 A4yttt 1)
Cy P21
As in [7] (3.14), we have

(2.43) Fie?, 7 —f() < K1 —a)A( ‘Vﬁ)

1—a

for some constant K,. On the other hand, using [3] Lemma (2.4), we
have, from (2.34),,

oplP o(1—b) ( s ) . 1
—t g1 A P — .
0x; <+ b—a 1—b in P(ap), 2 <a<b<l

J

for some constant ¢,. Using

AT G5l <o)
l1—a 1—b <« 1-5 <<c‘/2 1—b

and 1 —H<1—a<1/2, we get
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[ 7609 2%7]

0x;

1—-a>+( T */Z)bCIaA< 1-3_17)}'

Thus by (2.40) Lemma, we get

<n(l —a){K2A<

(2.44) [i: 747, vi7) ¢ ] <2K2+c8eclK,, I dec,K, )A’( ls

P o2 —a
=n( 2K,+ 8ec, K, 4 4ec,K, a5
c'? c N1—a/
Now, we may assume that
0s—w<<A( s ) in Plap), ~<a<l.
l—a 2

Hence, using (2.33),_, and (2.31), we get

[ulp—las]p—:[u“"l(ﬂs—w)]p<<32A;< I ia )A< 1 ia >

16 ,( =
<<-c:/_2A2<l—a)'

Hence, by (2.29) Lemma (b), for each v with |v|=p, there exists u® such
that

[Wotu?'0,=6(p),  [ul,= >, u()s"

vl=p

and that

< (Sx ()

for some constants K; and K,. Therefore, if c is sufficiently large, we have
the estimate (2.33), as well as the congruence (2.13),.

Next, we set
o'k:ulpék—'E(p)k_ak’ 0p= Z al(cz”‘)sva
lvi=p 2+p=v
[#1>0

and estimate g,. First, from (2.11), we have
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=[G vr—rn Bt 5 g, vin—n)

Using the estimate (2.43) and a similar one for /,, we get, from (2.34),,
(2.35),, (2.31) and 1—a<1/2,

245  [E(@,<a+mK(l —“)A( e )A,( . a)

< (nmz)Kﬁ AI( lia) in Plap), +<a<l.

Second, since we may assume that

ek<<K0+A( ),
l—a

[u[pgk]p<<32Aé( ls_a>{K°+A( 1s—a)}

<<(32K0+16) ( s )
1—a

we get

Third, we have

N
b= 20 l? 23 R+ Da ™ B D)5~
]

By (2.44) and (2.45), we may apply (A.2) Theorem to get

Bulp) < Kok i),

On the other hand, from (2.38),, we have

p—1 Ky
S (et 1)a§“1")s‘<<A{( 1 )
—a

127=0

Hence we get

nenel 2 )l 7)Y ()
v < 1<l—a N1—a c l1—a <<2(:‘/2 1—a

Therefore, we have
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(2.46) [o4], <<<I§Z+ ) (1s—a>

for some constants K; and K.
Now we take v with |v|=p+1 and set

a<”)=<' e la;i”‘l’”, x ->, ke L(y).
Vi

Then we have shown in (2.19) Proposition (see (2.28)) that ¢ is in I(w)+

K(w)*®. Hence by (2.39) Lemma, there exist X in @, and constants ¢;,

1<j<m, and a,, 1 <i<N, such that

m N
o= > c;h;+ (X, 0>+ Z az(ry), le.,
= 7

o "°)=vk< Z cih+ <X, o)+ Z‘ a, ﬁm)
and that

X |/ la|<KiJo®],,  for %gag.

Writing X=3>77_, £(0/0x,), we set ¢’ =&, ¢{P=¢, and a’=a,. Thus
we have @'P*'=(g¢'?*!, '?*Y). Also, for 1 with |2|=p, we set a{""=
(Ae+1D 2, a8, Furthermore, for v with |v|=p, we set al)=
D=y 0 and, for 2, p with {A4p|=p+1, |¢|>0, let af* be defined
by using the identity in (2.37),,,. Then we have (2.14),,, as well as
(2.37),,,- On the other hand, from (2.46), we have

3 eor (S B a—aa( )

=l<c”4 3/4)(1_61)14 (

Hence if ¢ is sufficiently large, we have the estimates (2.34),,,, (2.35),,,
and (2.38),,,;. Finally, we have

) in Pap), —<a<l.
1—a

2. a¥s= 31 ) aitst= 21 3] Z(ik Daf2[3.(p)],s*

lvl=p Ivl=p 2+ pu=v lvi=p A+p=v i=

ana( Nk a(2)

< <K0+ )A’( s ) in Pap), —<a<l.

174 i 1—a
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Hence if ¢ is sufficiently large, we have the estimate (2.36),.

§3. The case w=df

Suppose w=df for some f in ¢, with f(0)=0 and codim S(df)>2.
Then I(0)=0, and J(w)=(3f) (the ideal generated by af/ox,, - - -,0f/0x,,).
The assumption codim S(df)>2 implies that f is not a power, where a
germ h in @, is said to be a power if A=A}, m>1, for some non-unit %,
in @,. Hence by the factorization theorem in [4] p. 472, we have K(w)=
f¥0,={pof|p e O} 3

If a germ f in @, ,,, is an unfolding of f, then # =(df) is an unfold-
ing of F =(df) with parameter space C™ and conversely, any unfolding of
F=(df) has a generator of the form df with f an unfolding of f ([7] p. 47).
We have seen that the unfolding theory for F=(df) with respect to mor-
phisms is equivalent to that for f with respect to (strict) right-morphisms
([10] (3.11) Remark.) It is shown in [12] that the unfolding theory for
F=(df) with respect to RL-morphisms is equivalent to that for f with
respect to right-left morphisms ([13] Definition 3.2).

For an unfolding f of f with parameter space C™={(t,, - - -, t,,)}, We
set h,(x)=(0f/ox,)(x,0), 1<j<m. We say that f is infinitesimally right-
left versal if the classes [A,], - - -, [A,.] span the vector space @,/(@f)+ f*0,.
Thus £ is an infinitesimally right-left versal unfolding of f if and only if
ZF =(df) is an infinitesimally RL-versal unfolding of F=(df). If f admits
an infinitesimally right-left versal unfolding, then @,/(6f)+f*0, is finite
dimensional. Hence by [13] Corollary 2.17, @,/(3f) is finite dimensional.
Thus K(w)/J(w) N K(w)=~=J(0)+ K(0)/J (@), o=df, is also finite dimen-
sional. Therefore, by (2.1) Theorem (see (2.2) Remark) we obtain the
following result, which is a special case of [13] Theorem 3.22.

(3.1) Proposition. Let fbe a germ in 0, with {(0)=0 and codim S(df)
>2. If f is an infinitesimally right-left versal unfolding of f, then for any
one parameter unfolding g of f, there is a right-left morphism from g to f.

(3.2) Remark. Suppose 0,/(0f)+f*0, is finite dimensional and let
[h], ---,[#,] be one of its basis. Then f=f+ > ", A, is an infinitesi-
mally right-left versal unfolding of f.
84. The case w=gdf— fdg
Let w be a germ of holomorphic 1-form at 0 in C* of the form
w=gdf — fdg
for some fand g in 0, with f(0)=g(0)=0 and codim S(w)>>2. Note that
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the last assumption implies that f and g are relatively prime and neither
one is a power. The ideal I(w) coincides with the ideal (f, g) generated by
fand g ([10} (2.1) Lemma). We have J(w)={(gof—f0g) (the ideal generated
by g(8f/ox,)— f(9g/ox,), 1<i<n.)

(4.1) Lemma. The C-vector space K(w) is three dimensional and we
may take f*, fg and g* as its basis.

Proof. 1If df A\dg =0, then by the factorization theorem in [4] p. 472,
we may write g = p(f) for some p in ¢,. Hence w=(g—fp'(/))df. This
contradicts the assumption codim S(w)>2, since g—fp’(f) is not a unit in
¢,. Thus we have df \dg=+0.

Now, if gis a germ in K(w), we have fdo=dB A\ w. Hence as is
shown in the proof of [10] (2.1) Lemma, there exist germs ¢ and +» in @,
such that

d8=gdf +pdg and 28=¢f+vg.

From these, we get

(4.2) dg Ndf +dy Ndg =0
and
.3) fd g+ gdvr=gdf +dg.

Thus we have
ddo=2d¢ N\No and ydo=2dyNw.

Again, using the arguments in the proof of [10] (2.1) Lemma, we may write
2dp=gdf + A8, 20=¢.f+¢.8

and
2dyp=Andf +rdg,  2p=vnf+ g

for some ¢,, ¢, ¥, and 4, in @,. From these, we get

(4.4) fd¢,+gdg,=0
and
4.5 S, +-gdr,=0.

On the other hand, the identity (4.2) shows that
Po=";-
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We set &=¢,—¢:(0) (=+,—¥(0)) and claim that £=0. Suppose £=0.
Since d¢, ANdE=0, if & is not a power, by the factorization theorem in [4],
we have ¢,=p(&) for some p in @¢,. Hence from (4.4), we get

'@ f+g=0.

This contradicts the assumption codim S(w)>2. If ¢ is a power, we may
write £=¢£* with m>1 and & not a power. Since d¢, Nd&=dr./\
d&,=0, again by the factorization theorem, we may write ¢, = p(&,) and o
=q(&,) for some p and g in ¢,. From (4.4) and (4.5), we have

P(E)f+méEpig=

and
mé&p ' f+q'(&)g =0.

Hence we see that &, is divisible by fg. We write &=f*g'y with k>1,
I>1 and 5 not divisible by f or g. If we denote by d the order of the
power series p’(&,) of &, then we must have kd +1=k(m—1) and Id =
I(m—1)+1. Hence

km—d—1)=1 and I(m—d—1)=—

which is a contradiction, since k, /, m and d are integers with k>1 and
I>1. Therefore, £=0 and ¢, and +, reduce to constants. By (4.4) and
(4.5), ¢, and +, must also be constants, which shows that j is a linear
combination of 2, fg and g® Conversely, it is not difficult to see that the
linear combinations of these germs are all in K(w). Q.E.D.

Thus in this case, the condition (*) in (2.1) Theorem is always satisfied.
If we denote by [f? fg, g%]c the C-vector subspace of @), generated by /7,
fg and g% from (2.1) Theorem and (4.1) Lemma, we obtain the following

(4.6) Theorem. Let F=(w) be a germ of codim 1 foliation at 0 in C™
generated by a germ w of the form w=gdf — fdg for some f and g in 0, with
f(0)=g(0)=0 and codim S(w)>2. If the dimension of the C-vector space

(fs &)/(gdf—fag)+1f* g, g%le

is finite, then F admits an RL-versal unfolding. In fact, if [u,g—v,f],- - -,
[ung—vnfl(uy;, v, € 0,) is a C-basis of the above vector space, then the un-
folding F =(a@) of F with parameter space C™={(t,, - - -+, t,,)} generated by

o=gdf —fdz,

where f and § are germs in 0, .., given by
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f=rf+ 2 ut, and g=g+ 'Zlvjtj
=
is RL-versal.

(4.7) Remark. We could say that the unfolding % in the above is
an RL-universal unfolding of F (cf. [10] (2.4) Theorem).

(4.8) Example. Let f=x—y and g=xy on C*={(x,»)}. Then
w=gdf — fdg=y*dx—x*dy. We have I{(w)=(x—y, xy), J(w)=(x? »*) and
K(w)=[(x—y)’, (x—p)xy, x*»*]c. We have 0,/I(w)=C* and we may take
[1] and [x] as its basis and 0,/J(w)+ K(w)=C® and we may take [1}, [x]
and [x—y] as its basis. Hence from the exact sequence

0——>I(w)/J () + K(0)—>0,/J (0)+ K (0)—> O,/ I(w)—>0,

we see that I(w)/J(w)+ K(w)=C and we may take [x—y]=[0-g —(—1)f]
as its basis. Therefore, by (4.6) Theorem, if we set f=f=x—y and §=
g—t=xy—t, then the unfolding % =(@) with parameter space C={t}
generated by

d=gdf —fdg=(3"—1)dx—(x*— t)dy+(x— y)dt

is an RL-universal unfolding of F=(w).

We note that /(w)/J(w)=C* and we may take [x—y]=[0-g —(—1)f]
and [xy]=[1-g—0-f] as its basis. Hence if we set f/'=f+t,=x—y+1,
and g¢’'=g—t,=xy—t,, then the unfolding %’ =(&’) with parameter space
C*={(t,, t,)} generated by

d/zg’df’——f'dg’

=P —t,y—t)dx— (X t,x—t)dy+ (x — y+ 1,)dt, + (xy— t,)dt,

is a universal unfolding of F=(w) (see [10] (2.4) Theorem and [8] (5.11)
Example).

Appendix. Unfoldings of integrating factors

We recall that K(w) denotes the C-vector space of integrating factors
of a germ of integrable 1-form w at the origin 0 in C";

K(w)={8¢0,|pdo=dp N\ w}.

Let A denote the graded algebra &7+ 027,, (£2°,,=0,.,) of germs of
holomorphic forms at 0 in C” X C*={(x, s)} and for a non-negative integer
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p, let A, denote the ideal in A generated by s* and ds* for all Ituples v=
(vi» - - -, v,) of non-negative integers with {v|>p. For ¢ and r in 4, we
write

ifo—risin 4,,,. 3
If fis a germ in @, a germ f in @, ., is said to be an unfolding of f,
or to unfold £, if f(x, 0)=f(x).

(A.1) Definition. Let F=(w) be a codim 1 foliation germ at 0 in
C™ and let 8 be a germ in K(w). Also, let # =(@) be an unfolding of F
with parameter space C'. A p-th order unfolding of 3 subject to & isa
germ f in @, ., such that 7 is an unfolding of 8 and that

fdo=diNa.
»

In this appendix we prove the following theorem. Here we use the
dominant series in Section 2. We also use the notations there.

(A.2) Theorem. Let F=(w) be a codim 1 foliation germ at 0 in C".
If B is a germ in K(w), then for any unfolding & = (&) of F (with parameter
space C*={s}) and for any non-negative integer p, there is a p-th order un-
folding §(p) of B subject to F. If we write

n ~ l o
o= ;fz(x, s)dx,+ k; (%, 8)ds,

and set &P =w!l?+ > hiP\ds,, o\?=3"7, fi?dx,, then the germ [(p) is
determined by &'* uniquely modulo 4,,,,.

Moreover, if we choose the constant c in the series A(s) sufficiently
large, then the estimates

(A3), w;p—w<<LA;(_.S )
l—a
and
(A4, E'p—l—/z<<LA;(ls ) in P(ap), %_<_a<l,
—da

imply the estimate

> ‘in P(ap), —;‘—ga<l,

(A5), 5(p)'”—ﬁ<<A§( .
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for all p>1, where h=(h,, - - -, h,), h(x)="h(x, 0) and L is a constant.

(A.6) Remark. In the above, we choose open neighborhoods U and
W of the origins in C* and C’, respectively, so that the germs o and g
have representatives on U and the germ & has a representative on U X W.
Then we choose an n-tuple p=(o;, - - -, p,) of positive numbers so that
P(p)C U and that p has the properties in (2.29) Lemma.

(A.7) Remark. The dominant series above are chosen so that the

theorem can be directly applied to the proof of (2.1) Theorem. We could
use, for instance, the following series instead ([6] p. 291, [5] p. 50, [7], [L1]);

¥4
A= 3 ok s

In this case, we can prove that if we choose b and ¢ sufficiently large, then
the estimates

wip—w<<A*< ad >

l—a

and

~ . 1

APt p A*(fig) in Plap), —<a<l,

< 2 (ap) 5 <

imply the estimate

oyr—pear( ) in PGap). S <a<l,

—a

for all p>1, where ¢ is any positive number and A¥*(s)=c*4*(s).
For more applications of the theorem, see [11] (4.31) Lemma.

(A.8) Corollary (Cerveau-Moussu [2]). Let F=(w) be a codim 1
Sfoliation germ at 0 in C*. If B is a germ in K(w), for any unfolding F = (&)
of F, there exists a unique germ [ in K(®) that unfolds .

Proof of (A.2) Theorem. Let F =(®) be an unfolding of F with
parameter space C'={(s,, - - -, 5,)}. To prove the first half of the theorem,
it suffices to show that there exists a formal power series

f= 2 p¥xs*,  p¥e0,
[PT

in s satisfying
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(A.9) BO=p

and

(A.10), prda=dp'’* Ao in 4,
p

for p>0, and that [8], is uniquely determined by g'?~! and &'? for p>1.
The congruence (A.10), is equivalent to

(A.1D), p*d.0,=d.f7 Ao,
b
(A12), B msEﬁ'p“’(—a-ws——dﬁk>+I§kdxﬁ‘p‘1, 1<k<],
08, »-1 as,
and
~ Aplp-1 . Aplp-t
(A13), FOBT 0BT g 1< k<,

05y ds; -2

where h,, = (9h,/3s,) — (0h,)ds;). We set 8O =p so that (A.9) and (A.11),
are satisfied. We think of (A.12),, (A.13), and (A.13), as void conditions.

(A.14) Proposition. If we have B, for v with |v|<p, satisfying
(A.11),, (A.12), and (A.13),, then, for each v with |v|=p-+1, there exists
unique B satisfying (A.11),,,, (A.12),., and (A.13),,,, for p>0.

Proof. Given 8%, |v|<p, as in the assumption above. First we show
that (A.13),,, is satisfied. If we set

aﬁlp —-—};k a‘BIP -——‘B“""]hjk,

=h,
= s, s

for our purpose, it suffices to show that
g0, = 0,
-1

since ¢;, does not have terms of order less than p—1 by (A.13),. Using
(A.12),, we have

EjxWs = ‘B]pﬂl{ﬁj(“a. W — dz};k> - Ek('i (2 - dx};f) - hjlcms}a
p-1 08y as;
which is zero by the integrability of & (cf. (2.5)).
Second, by (A.12),, (A.12),,, is equivalent to

(A.15) %a)Z[Ck]

2 , 1<k<l,
S
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where
Ck=/3“°<—§— )+h A, B — 87 @,.
08 A

To prove the existence of [8],.,=2,,/-p.1 §*s* satisfying (A.15), it suffices
to show that

(A.16) [Cd, Aw=0, 1<k<l,

and

(A.17) Ay, _ s 1 k<t
sy, os; - -

Since ¢, does not have terms of order less than p, if 7,Aw,=,0, then we
have (A.16). But this easily follows from (A.11), and the integrability of
@ (cf. 2.4)). Also, we have (A.17) if

(A.18) Cirn=0,
p-1
where
Co= 0o O
s, 0s,

Now, using (A.13),.,,, we get

_gj — 0p” (-—a) —d hj) 98" <——ws dxl;k)—{—hj,cdxﬁ“’.

p-1 35, \0s; 0s; \0s;

Then, by (A.12), and (A.13),,,, we have
B¢ = 0.
p-1

Since {;;, does not have terms of order less than p—1, this implies that
Blix=,-10. Since the theorem is trivial in the case =0, we may assume
that 3=0. Hence we get (A.18). Note that [#], ., is determmed uniquely

by p'” and &'?*%.
Third, we prove that (A.11),,, is satisfied. If we set

77=‘81p+ ldzws_d1ﬁ1p+l/\wsa
for our purpose, it suffices to show that

(A.19) 9 ,=0, 1<k<l
08, 1
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Using the identity obtained by taking d, of (A.12),,,, we have

1o, oy (Jl —dﬁ)d »
I T P Pt )

Denoting the right hand side of the above by z,, we get, using (A.11), and
(A'lz)p+b

pirr, = {ﬁlr( w—dh) aﬁ'p ws}/\dﬁ“’

which is zero by (A.12),,,. By (A.11),, 5 does not have terms of order
less than p+1. Hence 7, does not have terms of order less than p. Thus
we have fr,=,0. Again, we may assume that 33~0. Therefore, we have
(A.19).

Now we prove the second half of the theorem. For our purpose, it
suffices to show that if we choose ¢ sufficiently large, then the estimates
(A.3), and (A.4), imply the estimate

: gy S i 1 <t
a2,  proped( L) in Pl L<a<l,

for all p>1.
The following two propositions will finish the proof of the theorem.

(A.21) Proposition. If we choose c sufficiently large, then we have
(A.20),.

Proof. From (A.15), we have
B o= B0 —dh,)+ h,d .

Since the germs on the right hand side have representatives on U (see (A.6)
Remark), | 3'#|, is bounded by (2.29) Lemma (b). On the other hand, we
have

3/4
A;( l-s—a> 312 ( }/4 + 04/ %ﬂ—l—terms of order >2 in s).

Hence, if ¢ is sufficiently large, we have (A.20),.

(A.22) Proposition. [f we choose c sufficiently large, then the esti-
mates (A.3),.1, (A.4),,, and (A.20), imply (A.20),,, for p>1.

Proof. We recall that [8],,, is determined from (A.15). Setting
Ly=max {|w|,, | k|, |dhl,,|Bl,» |d B}, we estimate {,.
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First, we have, from (A.3),,, and (A.20),,

|7 g o=l o e 2)) iy ()
S, S, l—a l—a 1—a

By (2.32), we have

1 (Z a << —a

o] <t St )it #(s)
w0 L 4
[ﬁ 25, 1, € ‘/4+4cl/2 1—a *\1—q

in P(ap), %§a<l.

Second, using [3] Lemma (2.4), we have, from (A.4),,, and (A.20),,

im0+ 3254 55)

in P(ap), %_<_a<b<l,

for some constant ¢;. Noting that p>1 and A'(s/1—a)K A'(s/1—b), we

get, using (2.32),
1 1 ( s )
14 A5 ).
)+"C‘ ( o 2) b—a “\1—b
As in [7] p. 42 we can prove that

(A.23) A’( s ><<.. 1 A”(ls )

l—a ¢ l—a —

[87d,h,], < LoA ( =

and that
(A.24) if, for a series 3 o®s*,

STovsre L A/<J4) in P(ap) for ~<a<b<l,
b—a 1—b 2

then

Zo<”)s"<<£ 1 A”(-S—~> in P(ap) for i£a<l.
¢ l—a 1 2
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Thus we have

[B',szﬁ,t]p«(i“"ec‘;‘f"L +

4L0+2nec1L) 1 A”( s )
1 ? '

c l—a

Third, we have

el =15 e,
<o)
1

« L 1 A;'( s ) in Pap), L<a<l.

4c'% 1—a l—a 2

Fourth, we have

| [I;kdzﬁlp]p<<<L0+LA;< l—S—a))(L + n—qa A,< 1——b>).

Since p>1, we get, using (2.32),

[ﬁkdz‘s Jp <Ly LetAg ( 1—a>+ ncl(L + ) b—l—a Ag( lib>'

Then, by (A.23) and (A.24), we have

Uind.p¥], <<(4LL+ 2nec,(2L0+1;l> lia A;’( 1-S-a)’

3/4 c

From the above, we get

L L L s
[Ck]p<<( e 1/2+Tﬂ+7“) As( )

l—a l—a

Hence by (2.29) Lemma (b), we get

L
[[g]p+1<<K( 1/14+ 1/22+ 3/4+ ) (—‘ : >'

l—a

Therefore, if ¢ is sufficiently large, we have the estimate (A.20),,,,.
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