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§ 1. Introduction

Let f(z,, - - -, z,) be a germ of an analytic function at the origin with
an isolated critical point at z=0 and f(0)=0. We assume that the
Newton boundary I'(f) is nondegenerate. Let V=f-%0) and let 3* be
a simplicial subdivision of the dual Newton diagram. Then there is a
resolution «: ¥— ¥V which is associated with 3*. For each strictly positive
vertex P of X* such that dimA(P)=1, there is a corresponding ex-
ceptional divisor E(P). The purpose of this paper is to study the above
resolution and to study the geometry of E(P) in the case that n=3 and
(@) =z¢+zr+z§*+z§ with P being the weight vector of f. In Section 2,
we will recall basic notations and the construction of the resolution of
V=f-%0). In Section 3, we will prove an isomorphism theorem about
the exceptional surface E(P) (Theorem (3.6)) which is one of the main
results of this paper. In Section 4, we give a necessary and sufficient con-
dition about a=(a,, a,, a,, a,) for E(P) to be a rational surface or a K3-
surface. (Theorem (4.1) and Theorem (4.2)). There are 14 cases for E(P)
to be a rational surface and 22 cases for E(P) to be a K3-surface up to
Theorem (3.6). In Section 5, we will give the proof of Theorem (4.1) and
Theorem (4.2).

§ 2. Preliminaries

Let f(z)=>_,4a,z> be the Taylor expansion of f. The Newton
polygon I',(f) is the convex hull of U{v-(R*)"*!; a,0} and the union
of its compact faces is denoted by I'(f) which is called the Newton
boundary of . Let N* be the set of the positive vectors of R**! which
are considered to be in the dual space of R"*! through the Euclidean
inner product. For each Pe N*, let d(P) be the minimal value of
{P(x); x e ' .(f)} and let A(P)={xe ' . (f); P(x)=d(P)}. Two vectors
P and Q in N* are said to be equivalent if and only if 4(P)=4(Q). The
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dual Newton diagram I'*(f) is the polyhedral decomposition of N* by
the above equivalence relation.

For given primitive integral vectors P,, - --, P, of N*, det(P,, - - -,
P,) is the greatest common divisor of all k X k minors of the n X k matrix
(P, - -, P,). (Each vector of N* is considered to be a column vector.)
The following lemma is a stronger version of Lemma (3.8) for k=2 of

[11].

Lemma (2.1). Let P, Q, R be the primitive integral vectors of N* such
that det(P, Q)=det(P, R)=1 and let c=det(P, Q, R). Assume that c>1.

(i) There exist unique integers k>0, ¢;, d, (i=1, - - -, k) and unique
primitive integral vectors T, - - -, T, in the triangle T(P, Q, R) such that
c=c > > >e=1, 0<d;<c¢;_, and T,=(R+¢,T,_,+d,P)/c,_, for
i=1, -, k. (T,=0).

(ii) Let T, ---, T, be as above. Then there exist unique integers
&, d, (i=1, - - -, k) such that c=E6,>¢,>--->¢,=1,0<d,<é,_, and

Tk—i+1:(Q+éz‘Tk—i+2+dAiP)/éi_1
Sfori=1, - k. (Ty,,=R).

Proof. The assertion (i) is immediate from Lemma (3.8) of [11].
Let us call T the first vertex of the triangle T(P, O, R) from Q to R. In
the proof of Lemma (3.8) of [11], we have proved that T is characterized
by the integral vector which can be written as T,=xR-}yQ-+zP for
non-negative rational numbers x, y, z such that O=wx, y, z<1 and
det(P, Q, R)==1. Now we prove the assertion (ii) by the induction on k.
If k=1, the assertion is obvious by (i). Assume that k>>1. Note that
det(P, R, T))=c,. Let T, be the first vertex of T(P, R, T;) from R to T,.
Then

Assertion (2.2). T, is the first vertex of T(P, R, Q) from R 1o Q.
Proof of Assertion (2.2). 'We can write
Ty=(T,+¢R+dP)Jc, for 0<é, d<c,.

Expressing 7, in P, Q and R, we get T,=xQ+yR-+zP where x=1/c,
y=(+cé)/cc, and z—_-(dl-{-cc?)/ccl. As ¢,>1 by the assumption, ¢, d<
¢;—1. Thus y<(ce,—c+1)/ee;<1 and z<(cc;—c+d)]ec;<1. By the
above remark, this implies the assertion, because det(P, R, T)=1 by the
definition.

Let T, ---, T, be the vertices of T (P, R, T,) from R to T, by (i).
By the induction’s hypothesis, we have t=k—1 and T, =T}, ---, T,=
T,... LetT, ..., T, be the vertices of T(P, R, Q) from R to Q by (i).
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By the assertion we have 7,=T, and T, I is the first vertex of T(P, Q, T))
from Q to 7,. Assume that 7,=7, and 7, is the first vertex of
T(P, Q, T). As T,,, and T,,, are the first vertices of (P, T, . T)) and
T(P, T., Q) respectively, we have, by Assertion (2.2), that 7,,,= 041 and
T, is the first vertex of T(P, Q, T,,,). Thus by the induction on i, T,=

for i=1, ,k—1 and T, is the first vertex of T(P, Q, T,_,). See the
following ﬁgure.

T

Q

As T, is the unique vertex of T(P, Q, T,) from Q to T,, we have T,=T,
and m=k. Thus the assertion (ii) is proved.

Definition (2.3). We call T,, ..., T, the canonical vertices of
T(P, Q, R) around P.

Let 3* be a simplicial subdivision of I'*(f). We briefly recall the
construction of the resolution = : ¥— ¥ which is associated with 3*. For
each n-simplex o=(P,, - - -, P,)=(p;;), we associate an affine space C7*!
with coordinate ¥,=(¥, o -+, V., ,) and a birational morphism r, : C7*!
—C"*' which is defined by =,(y,)=z where z=(z,, ---,z,) and z;,=
[13-0¥5%,. X is the union of C7** for ¢ which are glued along the images
of m,. The projection # : X—C"+! is defined by #|Cr*'=x,. Let ¥ be
the proper transform of ¥. Then the associated projection z : F—V is a
resolution of ¥ ([5], or § 4 of [11]). In C**', ¥ is defined by f,(y,)=
S@, () T30 y2E9, For a vertex P of 2* with dim4(P)=1, there is a
corresponding divisor E(P) which is defined as follows.

Let g=(P,, - - -, P,) be an n-simplex of 2'* such that P,=P.

EPYNC'={y,5¥,,0=/.(y,)=0}
={yv € C:La gA(P)(yo,la . '9ya,n)=0}9

where g,p) (Voo -+ s Vo) =F 1@ (YD T] y5b and Cr=C N (Y,,0=
0). In[11], we have shown that E(P) is a compact exceptional divisor if
and only if P is a strictly positive vertex and its birational class depends
only on the coefficients {a,} such that v € 4(P) and it does not depend on
the choice of X* (Corollary (5.4) of [11]).
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§3. An isomorphism theorem for E(P)

Let a,, - - -, a, be positive integers and let a=(a,, - - -, a). Let f,(2)
=z ...-z# In this section and the following sections, we study the
algebraic surfaces as the central exceptional divisors of the resolution of
V=f-%0) where f=f,. First we define positive integers d, r;, r;; and 4,
(0<i<jx3) as follows. Let d=g.c.d.(ay, ---,a,) and let r,=g.c.d.
{a;; js=i}/d. Then r,, - - -, r, are mutually coprime. Thus g, is divisible
by d ] ;.. 7; and we can write a,=4d,d [];,,r; for some positive integer
d;, for i=0, ---,3. Let r,;=g.c.d.(@,d,) where {i,}, k, [}={0, -- -, 3}
Note that g.c.d.(ry, i) =g.c.d.(r,y, r,,)=1 for mutually distinct 7, j, k, /
because g.c.d.{@;; j#i}=1 by the definition of 4,. Thus we can write

3.1 d,=d; [| ry and
i<k
k=i
(3.2) a;=da, [Tr; T] rp
J#i J<k
Fik#1

As gcd.(ay, -+, a)=d and g.c.dfa;;j=i}=dr;, we get by (3.2) that
g.c.d.(4;, r)=g.c.d.(d, r,)=1. We also have g.c.d.(d;, 4,)=g.c.d.(r;, r};)
=1 for i=£j, k because g.c.d.(@,, 4;)=r,, and g.c.d.(a;, a;, a;)=dr,. Thus
we obtain

Proposition (3.3). Let d, r,, ry, 4, (014, j<3) be as above.  Then

3.4 a;=dd; {1 r; 1] ri
ek

and each of the following pairs are mutually coprime: (ry, r;), (Fi Py
(@, 4)), (G, 12), (s, 113), (Figs Tiw) and (ryy, 1yy) where i, j, k and [ are mutually
distinct and r,;=r;, for brevity’s sake.

The above notations are used throughout this paper. Note that the
least common multiple of g, - - -, a, is d [[3.o (rd) [{ic; rey. Let P=
YP,, - - -, P,) be the primitive weight vector of f,. Then by the above
remark,

(3.5 Pi=r H.(rijdj)-
J#1i

Here we use the notation r;;=r;,.

Let 3* be a simplicial subdivision and let = : ¥—V be the associated
resolution. We call E(P) the central exceptional divisor for f,. Its bira-
tional class does not depend on 2*. We are going to prove the following
theorem.
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Theorem (3.6). Let a=(a,, ---,a,) and b=(b,, - - -, b,) be strictly
positive integral vectors. Assume that they have the same d, v, r,; which
are defined in Proposition (3.1). Then the central exceptional divisors for
f. and f, are birationally equivalent.

Proof. We write a=b if their central exceptional divisors are
birationally isomorphic. We first show that the assertion can be reduced
to the following case.

(3.7) b,=a, for i=0,1,2 and b,=saq,

where s is an integer which is coprime with each of r,, d, and r;; for i=
0, 1, 2. Assume that the assertion is true for a and b satisfying (3.7).
Let a’=(a, - - -, @;) where a;=a,;/d;. 'Then we have

a' =(a,, aj, a;, a)=(ay, ,, a5, a3)=(ay, as, Ay, a3)=(dy, Gy, Gy, dy).

Thus a=a’. Similarly we have b=~¥4’. By the assumption, @’ =¥’
Therefore a=b.
From now on, we assume (3.7). Let P='(p,, - - -, p,) be the weight

vector of f, which is defined by (3.4). Then the weight vector P(b) of f,
is *(spy, SP1» SP2, P5)- We will prove the theorem by showing that there
exist canonical simplicial subdivisions 2* and X} of I'*(f,) and I'*(f,)
and 3-simplexes ¢ and ¢’ respectively so that the corresponding affine
equations for E(P) and E(P (b)) with respect to ¢ and ¢’ coincide. We
first consider X¥. The dual Newton diagram [I'*(f,) has four other
vertices P,=(1,0,0,0), - - ., P,=(0, 0,0, 1) and P is situated at the “bary-
center” of the 3-simplex with vertices P,, - - -, P,. Note that

(3.8) det(P, P)=d;, (i=0, ---,3).

We take the canonical primitive sequence on PP,. (Ses (3.5) of [11] for
the definition.) Let P} be the first vertex on PP, from P. By (3.8) and
Lemma (3.3) of [11], we can write

(3.9 Pi=(P;+a,P)/d,
where «; is the unique integer such that 0<<«,<{d, and
(3.10) a;p;+1=0 modulo 4,.

We also assume that X% is canonical on T'(P, P}, P}) around P. Let T}
be the first vertex of T(P, Py, P}) from P.. Note that

(3.11) det(P, P}, PY)=det(P, P,, P,)/dyd, = ry.
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Thus we can write T3, by Lemma (2.1) as

(3.12) To=(Pi+BPi+TP)ry, 0=, 7<ry

Note that

(3.13) det(P, Pj, Ty, P3)=det(P, Py, Pi, P)[ry
=det(P, P,, P, P,)/dyd4,1s
=¥yl sl 13-

We subdivide the 3-dimensional simplex (P, P}, T;,, P3) by Lemma (3.8)
of [11] so that ¢=(P, P}, T%, R) is a 3-simplex of 2} where

(.14 R=(P§+5P$+ET%1+#P)/"3’03713

where 04, e, p<ryrysry;.  We consider the defining equation g, of E(P)
in C3. As g») [1yri=f(z(y,), where my=d(P), m=d(P;), my=
d(T}) and m,=d(R), we have

(3.15) 8V =Yinyia s+ yinys +yis+1
where

(3.16) uy=Pi(A,) —d(Py)=a,/dy=d 11yt 3 15T 3a5
(3.17) uy=T5(A) —d(Ty) = ay/d,ry=d ryrarar sl os,
(3.18) uy=R(A4,) —d(R)=ay/G;rr ooty =d 1l
(3.19) U= T5(Ap) —d(T5) = Buy/ras,

(3.20) U,=R(4,) —d(R) =, 1yt

and

(3.21) wi= R(A4;) —d(R) = (0u, 4 ev,)[ 1yt sl s5-

Here 4,=(a,, 0,0, 0), - - -, 4,=(0, 0, 0, a;). Now we consider X}. Recall
that the weight vector P(b) is ‘(sp,, Sp;, 5P, p,). We assume that X¥ is
canonical on P(b)P,, i=0, ---,3. The first vertex P}(b) of P(b)P, can
be written as

(3.22) Pi(b)=(P:+ ay(b)P(b))/d,

where 0<a,(b)<d; and =0, 1, 2 because det(P(b), P,)=d;, for i=0, 1, 2.
As p;=0 modulo 4, for is%=j and P(b)=sP—(s—1)p,P,, a,(b) is the
solution of
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(3.23) a(b)s=a; modulo &4; and 0< a,(b) < d;.

(The existence of the solution of (3.23) is derived from the assumption
that g.c.d.(s, d)=1for i=0, 1, 2.) Note that

(3.24) Pyb)—P}e Z{P, P,y and
(3.25) (PYb)),=0 modulo ryryryrs,

for i=0, 1 and 2 where Z{P, P,y is the Z-module generated by P and P,
and (Pi(b)), is the last coordinate of P¥(bh). We also assume that X¥ is
canonical] on T'(P(b), Pi(b), P%(b)) around P(b). Let T4 (b) and R(b) be
defined in the same way as for T;, and R and let ¢’ =(P(b), Pi(b), Ti.(b),
R (b)) be the desired 3-simplex. More precisely, we have

(3.26) Tu(B)=(Pi(B)+ B(B)P(B) +T(DYP (b)) rs
where 0= B(b), 7(b)<ry and
(27 RB)=(PiB)+3(B)Py(b)+e(B)To(b)+ tb)P (b)) rirostss
where 0=8(b), e(B), p(b) <ryFytss
Assertion (3.28). B(B)=p, 3(b)=5 and s(b)=c.

Proof of (3.28). Let 7/ be an integer such that 7’s=7 modulo r,,.
Then we have by (3.23) and (3.24) that

(Pi(®)+ BPUD) +T1"P(b)) — 1Ty € Z(P, P).

(Recall that P(b)—sP=(1—s)p,P,.) Then we can find an integer 7(b)
such that

Pi(b)+ BPyb)+T(BYP () —r2sTh
is contained in Z{P,, r P> and 0Z7(b)<r,. Let
(3.29) T5(b) = (Pi(b)+ BPy(b)+T(B)P(D))/rss

Then it is obvious that (T%(b)'); is an integer except i=3. However the
last coordinate is also an integer by (3.25). Thus by the uniqueness of
Ti.(b), we have that T4 (b)=Tw(b). Thus B(b)=ph. As we can write
T%(b)— T}, =xP,+mP for some integer m and a rational number x, the
integrality of T%(b) implies that x is an integer. Thus we get by (3.25),

(3.30) Tu(b)y—T e Z(P, P,y and
(3.31) (Ti(0)),=0 modulo  ryryry,



444 M. Oka

by (3.29) where (T3,(b)); is the last coordinate of T5,(b).

Now we consider (3.27). There is an integer g such that p/s=p
modulo r,ryr;, by the assumption in (3.7). The difference of Py(b)--
OPYB)+eTh(b)+ 1/ P(b) and ryreri,R is contained in Z{P, Py by (3.30)
and (3.24). By the assumption on s, we can find an integer u(b) such
that 0= p(b) <ryrysti; and

(3.32) refols(R(B) — R) € Z{ryrosrysP, Py
where R(b) is defined by
(3.33) R(bY =(Py(b)+0Py(b) +eT0x(b) + p(BYP)/rsk ost'ss.

By (3.32), (3.25) and (3.31), R(b) is an integral vector. Thus we get
R(bY = R(b) which implies that §(b)=4 and e(b)=e. This proves Asser-
tion (3.28).

We have seen in (3.15)—(3.21) that the defining equation of E(P(b))
with respect to ¢ is determined by d, r;, r;;, B, 6, and . By the same
argument and by Assertion (3.28), we conclude that the defining equation
g, of E(P(b)) with respect to ¢’ is equal to g, in (3.15). This completes
the proof.

Example (3.34). Let a=(a,, - - -,a,) and assume that g.c.d.(a;, a;,)=1
for i#j. Then E(P) is birationally isomorphic to P2

Example (3.35). Let a=(da,, - - -, da;) where {a,} are mutually co-
prime. Then E(P) is birationally isomorphic to the projective surface
{Xé¢+4 .-+ X¢=0}in P2

§ 4. The condition for E(P) to be a rational or a K3-surface

In this section, we will study the algebraic surface as the central
exceptional divisor of the resolution of the Brieskorn variety ¥V'=f'0) of
dimension three. More precisely, we will study the necessary and
sufficient condition for E(P) to be either a rational or a K3-surface.
Thus we may assume by Theorem (3.6) that 4,=1 for i=0, ---,3. The
notations are the same as in Section 3. We assume that 2'* is canonical on
the line segment PP,. As d,=1, we do not have any other vertex on PP;.
We also assume that 3* is canonical around P. Let T%; (k=1, -+, ;)
be the canonical vertices on T(P, P, P,) from P, around P. Note that
v;;=0 if and only if r,,=1 where {i,j, k, 1}={0, 1, 2, 3}. Let C(P)=
EP)NE(P) and C(Tt)=E(T¥)NE(P). Let H be the number of
{G,7); i<jand r;;>1}. For brevity’s sake, we denote X(E(P)) by %, the
affine equation g,(y,) by g(») and the canonical divisor K, by K. The
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following Theorem (4.1) and Theorem (4.2) are our main results of this
paper.

Theorem (4.1). E(P) is a rational surface if and only if a=(a,, - - -,
a,) is one of the following.

(I) H=O0.

(1) a=U,rrr) (ry=r). X=3 and K= —3C(P,) and E(P)=P".
gMN=y+yi+yi+1L

(2) a=2,2,2,2) (d=2). 1=4, K=-—-2C(P,), E(P)=P'X P* and
gM=yi+yi+y+1.

(3) a=(3,3,3,3)(d=3). 1=9, K=—C(P,) and g(y)=yi+ )i+
+1.  E(P) is isomorphic to the projective cubic surface {X3+
Ce - X3=0} in P,

(4) a=Q 4 4,4) (d=r=2). 1=10, K=—C(P,) and g(y)=1i+
»n+yi+1

(5) a=(2,3,6,6) (r,=3,r=2). 21=11, K=—C(P,) and g(y)=
Vi+y+r+1.

(1) H=1.

(6) a=(,r,rs,rs) where s>1. (ro=r, ryy==s). 1=4, K=

—(5+2)C(P)—2C(Ty) and g(y)=n+yi+yi’+1, E(P)=S,.
(7) a=(Q,2,2r,2r) wherer>1. (d=2, ry=r).

X=442r, K= —2C(P;)—C(T}) and g(y)=yi+yi+yi +1.
(8) a=(2,2,r,2ry where r>1. (ry=2, ry=r). X=6+r,

K= —3C(P)—2C(T3)—C(T%) and g(y)=yi+yi+yi+1.
(9) a=@,3,2,6) (r,=3,ry=2).

X=10, K= —2C(Py)—C(T3) and g()=)i+yi+ri+1.

dmn  H=2.

(10) a=(1, rt, rs, rst) where g.c.d.(s, t)=1 and 5, t > 1.
(ro=r, ry=s, ry="1).
X=3+vy+vi, K<0 and g(y)=y:+yi*+ 5"+ 1.

(11) a=(s, s, r,r) where s, t>1 and g.c.d.(s,r)=1. (rp=r, ryu=>s).
X=4+rs, K= —2C(P,)—C(T3)+(s—2)C(P,) and
g =¥y+r.+yi+1.

(12) a=(2,3,4,12) (=2, ry=2, rp=3). xX=12,
K= —2C(P)—C(Ty)—C(T}) and g(y)=1»i+)i+ys+ 1.

(IV) HZz=3.
(13) a=(3,2,5,30) (ryy=>5, ry,=3, rp=2).
X=14, K= —2C(P;)— C(T1)— C(T5) — C(T3)
and g(y)=yi+yi+yi+1.
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(14) a=(, rst, rqt, rqs) where s, t, q are mutually - coprime and
5, 5,g>1 (ry=r, Fy=gq, ry==5, r'y=1).
X=34vu+viu+vy and (V)= +150 +y50+ 1.

Theorem (4.2). E(P) is a K3-surface if and only if a={(a,, - -+, a;) is
one of the following.

(I) H=0.
(1) a=#44.4,4) (d=4). X=24, K=0 and g(y)=yi+yi+ys+1.
E(P) is isomorphic to the projective surface of degree 4 {X}+
-+ X3=0} in P
(2) a=(,6,6,6) (d=2,r,=3).
1=24, K=0 and g(y)=yi+)3+y5+1.

(1) H=1.

(3) a=(3,3,6,6) (d=3, ry=2).

1=24, K=0 and g(»)=yi+)i+y+1.
(4) a=(2,3,12,12) (ry=3,r,=2, ry=2).

1=24, K=0 and g(y)=)i+y:+y’+1.
(5) a=@2,4,8,8) (d=r,=ry=2).

1=24, K=0 and g(y)=yi+ys+)5+1.
(6) a=(5,5,2,10) (r,=5, ry=2).

1=24, K=0 and g(y)=1+13+yi+1.
(7)) a=(3,3,4,12) (r,=3, ry,=4).

2=24, K=0 and g(y)=)i+)i+ys+1.
(8) a=(3,3,5,15) (r,=3, ry=5).

X=25, K=C(Py) and g())=)}+yi+)i+ 1.
(9) a=4,4,3,12) (r,=4, ry=3).

1=25, K= C(Py) and g(y)=yi+y:+yi+1.

I H=2.
(10) a=(2,4,6,12) (d=ruy=2, ry=>3).
X=24, K=0 and g(y)=)i+»+yi+1.
(11) a=(2,3,8,24) (=2, ry=4, ru=3).
X=24, K=0 and g(y)=yi+yi+13+1.
(12) a=(2,5,4,20) (r,=2, ry=2, r3s=>5).
X=24, K=0 and g(y)=)i+yi+ys+1.
13y a=(2,7,4,28) (rn=ry=2, rpy=7).
X=26, K=2C(P)+C(T}) and g(y)=yi+yi+yi+1.
(14) a=(2,5,6,30) (r,=2, ry=3,r,="5). x=27,
K=3C(P)+2C(T3)+ C(T3) and g(»)=yi+yi+13+1.
15 a=(2,3,10,30) (r,=2, ryy=>5, rp=>3).
=25, K=C(P,) and g(y)=Yi+13+»"+ 1.
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16) a=(3,2,9,18) (r,=ru=3, rp,=2).
X1=24, K=0 and g(y)=)}+yi+ ¥+ 1.
(A7) a=@G,6,4,4) (ry=ry=2, ry=3).
X=24, K=0 and g(y)=yiyi+yi+yi+1.

(V) H=3.
(18) a=(3,2,7,42) (ru=7, ry=3, rpy=2).
X=24, K=0 and g(y)=)}+yi+yi+1.
(19) a=(3,2,11,66) (ry=11, rp,=3, rp=2). 1=27,
K=4C(P))+2C(T1)+- C(T) and g(»)=yi+yi+ '+ 1.
20) a=(2, 3,10, 15) (ry,=>5, re=3, ry,=2).
X=24, K=0 and g(y)=yiy;+yi+)i+1.
Q1) a=(2,3, 14,21) (ry,="7, roy=3, ry=2).
=25, K=C(P;) and g(y) =y1y;+yi+yi+ 1.
(22) a=(2,5,6,15) (ry=3, ry=>5, ry=2).
X=25, K=C(Py) and g(y)=yiy;+yi+)i+1.

We will prove Theorem (4.1) and Theorem (4.2) simultaneously.
Their proofs occupy the rest of this section as well as the following
section. We first prepare some basic lemmas.

Recall that the first vertex 775, from P; of T(P, P,, P;) can be written
by Lemma (2.1) as

(4.3) T3 =@+ BuPi+7,P)r;

where r¥=r,, and {;,/, k, I}={0, 1, 2, 3} and 0<8,;, 7,;<rf. Fix (i, )
such that r>1 and let

%
ri —m,— 1
Bus my—
1
My,

be the continuous fraction representation where m,>>1. Then by Theorem
(8.5) of [11], we have that

Lemma (4.4). (i) by=v,; and C(T})) is a disjoint union of dr,rry
copies of rational curves and C(T%)= —mdr,r;r;;.
(i) CPY=dr} [Tews (rafrH)— 2w Budrir (ritrh).
(iil) C(P,) is a rational curve if and only if
(1) there exists an integer k such that k=i and g.c.d.(a;, a;)
=1 for any j such that j+i, k or
(2) gc.dda;, a)=2 for any j, | such that j+! and j, | +#i.
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Note that

m,
The following is also due to Theorem (8.5) of [11].
Lemma (4.5). Let X(E(P)) be the Euler characteristic of E(P). Then
3 3 3
(4.6) YEP)=d*[] r} HrirdzﬂmZ(n H”uc)
=0  i<j i=0 © i=0 &

k#1

+d Z o+ Drrrs;.

i<J

We take o=(P, P,, Ty, R) as a fixed 3-simplex where

.7 T(1)1=(P1+.BP0+TP)/"23: 08, 17<ry
and
(4.8) R=(P,+0Py+eTo+ puP)rirory,

where 09, &, p<lryrgry; and T4, is assumed to be P, if ry,=1. (=p,
=T in (4.3)).

Let o be the meromorphic 2-form on E(P) such that ] E(P)N C2 is
dy, /- - Ady,/dg, and let

4.9) (@) =K=2, nC(P)+ ¥, n(TE)C(T).

Then by Theorem (9.9) of [11] and (4.7) and (4.8), we have
(4.10) m=ry—p—1=20, 0=n<ry,

4.11) Ry=Torpeli;—0—e—1, |[Hy|<ryrghy,

(4.12) ny=d ror ol ol oot o—{ Po+Pi(m+ 1) +po(my+ D} o, — 1.
We introduce meromorphic function ¢,; by

(4.13) 50¢f=7f*(25’9/2§?5)

where p;=p,/r,; and p;=p,/r,;. For a vertex Q="(q,, - - -, ¢;) of ¥, we
define |Q, Pl;;=q.p;—~q;p;. As we have seen in Section 8 of [11], we
have, (for fixed i and j)
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(4.14) (i) =n;C(P)+n,C(P;)+ k;]sn’(T,il)C(T,il)
where

4.15) W(T)=|T Plilry

and

(4.16) n;=p,lr; and nj=—p,/r;.

Note that n;=|P,, P|;;/r;; and nf=|P;, P|;/r;.

Recall that the geometric genus p, of E(P) is the dimension of the
vector space of the holomorphic 2-forms on E(P), The following lemma
plays an important role for the proof of Theorem (4.1) and Theorem
4.2).

Lemma (4.17). (i) Assume that (¢};w)3 has non-negative coefficients
on C(P,) for k=0, ---,3. Then ¢;w is a holomorphic 2-form.
(i) (w)=0 if the coefficients of C(P,) in (w) (k=0, - - -, 3) are zero.

Proof. Take any vertex T and express it as 75 =xP,+yP,+zP
where x, y, z are non-negative rational numbers. Note that 777 takes its
maximum d(7%) on A(P,)NA(P,)NA(P). Thus by Theorem (9.9) of
[11], we have
(4.18) n(Ti)=xn,+yn,+x+y—1.

On the other hand, we have by (4.15),

4.19) n'(T)=xny,+yn;.

Let A7 be the coefficient of c (T%) in (¢f,w). Then we have
hs=n(TE)+sn'(T)=x(n,+sn) +y (n,+snp) +x+py—1.

As x, y=0 and (x, »)(0, 0), it is easy to see that A7;>0. Assume that
n,+sn,=0 for k=0, ---,3. Then applying the above equality for T,
which is defined by (4.3), we obtain —1<{n(T},)<<1 which implies that
n(T:)=0 and x+y=1. Recall that '

lecnl___me’I,an_l'*_ymPl_{_ZmP

for 0<%, ¥m» 2n<<1 by Lemma (2.1). Thus by a similar argument as
above using an induction on m, we get n(T7)=0 for any T}, completing
the proof of the assertion (ii).

Let ¢ be defined by
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1 ifn,=>0
(4.20) { -

“ 2 if n,<o0.

This notation is also used in Section 5. We apply Lemma (4.17) for ¢;;
== (0, tO Obtain

Lemma (4.21). (i) Assume that n,—(t—1)p,/rys=0. Then ¢ii* @
is holomorphic and p = 1.

(ii) Assume that n,—1p,/r,,=0. Then ¢ii'ew and ¢l are holo-
morphic. In particular, p, = 2.

Proof. The assertion is immediate from Lemma (4.17), (4.9)-(4.11)
and from the following inequality: 1,>> — FoFyo#1s == — Py/Fys.

Recall that a minimal rational surface is either P? or S, (s=0, 2, 3,

--). 8, is characterized among {S,} (s=0, 2, 3, - - -) by the following

property: there is an irreducible curve E, in S, such that E2= —s (p. 519,
[4D.

Let M be a compact algebraic surface. The Castelnuovo-Enriques
criterion for the rationality (p. 536, [4]) implies

Lemma (4.22). Assume that q(M)=0 and that M has a meromorphic
2-form o such that —(w)>0. Then M is a rational surface.

Proof. The assertion —(w)>0 implies that the plurigenera P, (M)
=0 for s>>0. Thus M is a rational surface.

We say that M is a minimal K3-surface if #,(M)={0} and the
canonical line bundle X is trivial. We say that M is a K3-surface if M
has a birational morphism to a minimal K3-surface. In any case, p,=1
and X(M)=24.

Lemma (4.23). Let M be an algebraic surface with a holomorphic
2-form w. Let (0)=2%_,m;C; with C, being irreducible.

(i) Assume that CC M is an exceptional curve of the first kind.
Then C=C, for some k. Let M be the surface when C, is blown down.
Then w induces a holomorphic 2-form @ so that (@)=23,,, m,C; where C, is
the image of C; in M.

(i1) Assume that the virtual genus n(C)) is positive. Then M is not
a K3-surface. (z(C) is defined by 1+(KC-+C?%/2. See p. 471, [4]).

Proof. By a stronger version of the Castelnuovo-Enriques criterion
(p. 505, [4]), C is exceptional if and only if C?< 0 and C-K<0. If C+C;
for any i, C- K=0 which proves (i). Let C=C, be an exceptional divisor
of the first kind and let M= M/C,. Then the image curve C, satisfies the
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same condition as in (ii). Thus after possible blowing downs, C, can not
be eliminated in (w) by (i). This proves (ii).
For the calculation of p,, we have the Noether’s formula:

(4.24) 12(01—g+p)=K*+1.

§5. Proof of Theorem (4.1) and Theorem (4.2)

In this section, we assume that E(P) is either a rational or a K3-
surface. Thus

(5.1 Pe=1

We use the same notations as in Section 4. By Lemma (4.21), we must
have

(5.2 Ry — 1Py Fog =Ny — 1 FyF 11, <O,

On the other hand, we have by (4.10)-(4.12),

3
(5.3) P, —tp,fre) =d ﬂo r il;[j Y'ij—DPo—Dil2s— 2P2 D3/ V23— Ps-
Recall that H is the number of {(7, /); r,;,>1, i<j}. We also define J by
the number of {i; r,>1}.

The proof is divided into several cases by H. As the proof is so
long and boring, we first explain the outline of the proof and we will only
give the proof for H=0 and 1 in detail and leaves the other cases to the
reader. We first use (5.2) and (5.3) to pick up all the possible cases
which satisfies (5.2). They are finite and we call them the exceptional
cases. Then we use the results in Section 4 to study further details
about these exceptional cases.

I. H=0. (r;,,=1 for any i,j.)
Then a,=d [];.; r; and P="(r,, - - -, ;). We may assume that

(5.4 A P P
By (5.3), we have
(5.5) Fo(y— 1) = A roribory— rg—Fy—2r s —Ts.

Assume that r,>>1. As the right side of (5.5) is a monotone increasing
function of r,, - - -, r, and d under (5.4), we get by a rough estimation

ry(n,—tr) =2 (d=1, r,=2 for i=0, - - -, 3)
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which contradicts (5.2). Thus r,=1 and by (4.11) and (4.12), we get
n,=0,t=1 and

Ny— Fy=dryFto—Fy— 1 —2r,—1

={(r,—D(r;— 1)—2}—{—{(er— 1yrgry—2ry}.
By the above expression and (5.2), we must have r,=1. Thus we have
ny—1=(r,— 1) (r\— 1) —4+(d— Dryr, <0.

It is easy to see that this is the case if and only if
(I-) d=1,rn=1, ie. a=(,ry,r,r,) or

(1) d=1, r;=2,r,=3, ie. a=(2,3,6,6) or
(I-iil) d=2, ry=r,=1, 1ie. a=(2,2,2,2)of
(I-iv) d=2,r,=2,r=1, ie a=(2,4,4,4) or
(I-v) d=2,r,=3,r=1, ie a=(2,6,6,6)or
(I-vi) d=3,r,=1, ie. a=(3,3,3,3)or

(I-vil) d=4, r,=1, ie. a=4,4,4,4).

We study the above 7 cases in more detail.
Case (I-0). Assume that a=(1,r,r,r).

Then P=(r,1,1,1) and ¢=(P, P, P, P;) and K=—3C(P,)<0.
This implies that E(P) is a rational surface by Lemma (4.22). X(E(P))
=3 by Lemma (4.5). Therefore E(P) is isomorphic to P2 g(y)=
Vi+ys+yr+1 by (3.15). This corresponds to (1) of Theorem (4.1).

Case (I-ii)). Assume that a=(2, 3, 6, 6), (r,=3, r,=2).

Then P='(3,2,1,1), o=(P, P, P, P)), K=—C(P,) and %=11.
E(P) is rational by Lemma (4.22) and g(¥)=3i+35+35+1. This cor-
responds to (5) of Theorem (4.1).

Case (I-iii). Assume that a=(2, 2, 2, 2), (d=2).

Then P=%(1,1, 1, 1), 6=(P, P,, P,, P,), K=—2C(P,), X=4 and g(»)
=)432+3i4+1. As zm:V—V is the blowing up of ¥ at the origin,
E(P) is isomorphic to the projective surface {Xj+-.-+X3;=0} in P*
which is isomorphic to P*x P'=S,. This corresponds to (2) of Theorem
4.1).

Case (I-iv). a=(2,4,4,4), (d=2, r,=2).
Then P='(2,1,1,1), 0=(P, Py, P, P,), K=—C(P,), =10 and g(»)
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=)i+):+yi+1. This corresponds to (4) of Theorem (4.1).
Case (I-v). a=(2, 6, 6, 6), (d=2, r,=3).

Then P=°‘(33,1,1,1), o=(P, Py, P,, P;), K=0 and X=24. Thus
E(P) has a trivial canonical bundle and is a minimal K3-surface. The
affine equation g(»)=y»}+)y5+15+1. This corresponds to (2) of Theorem
4.2).

Case (I-vi). a=(3, 3,3, 3), (d=3).

Then P=%(1, 1,1, 1), 6=(P, P, P,, P,), K=—C(P,), =9 and g(y)
=)i+)i+35+1. E(P) is a rational surface which is isomorphic to the
projective cubic surface {X§+ ---+X3=0} in P°. This corresponds to
(3) of Theorem (4.1).

Case (I-vii). a=(4,4,4,4), (d=4).

Then P='(1,1,1,1), 6=(P, P, P,, P,), K=0, 1=24 and g(»)=
Vit yi+yi+1, This is a well known K3-surface. This corresponds to
(1) of Theorem (4.2).

II. H=1.
We assume that r,, =1 and r,;=1 for other i and j. P="(ryry, ¥y,
Iy Fy) In general. Thus o=(P, P, P,, R) and R=P, if r,=1.

(II-1) Assume that J=0, i.e. r,=1 for any i.
Then P=*(ry;, ro1» 1, 1), 6=(P, Py, P,, R,), and n,=0, n;=(d—2)ry;—2.
At t=1, we have by (5.2)

(d—2)ry—3<0.
This is the case if and only if

(1) d=1,1ie.a=(1,1, ry, ry) or
(i) d=2,i.e. a=(2,2, 2ry, 2ry) or
(I-iii) d=3, ry,=2,1.e. a=(3, 3, 6, 6).

We will study (II-i) later.
Case (II-ii). Let a=(2, 2, 2r, 2r) with r>1.

Then ry=r, P="(r, r, 1, 1) and 6= (P, P,, P, P,) and v,;=1. Namely
Ti,=(P,+P;+(r—1)P)/r. K= —2C(P))—C(T3). Thus E(P) is rational
by Lemma (4.22) and X=44-2r by Lemma (4.5). g(»)=yi+yi+yi"+1
by (3.15). The correspondence is (7) of Theorem (4.1).
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Case (IL-i). Let a=(3, 3, 6, 6).

Then ry=2, P=%2,2,1,1) and ¢=(P, P, P, P,) and y,,=1, i.c.
Th=(P,+P,+P)2. K=0 and 7=24. Thus E(P) is a minimal K3-
surface. g(»)=33+ 2+ 18+ 1. This corresponds to (3) of Theorem
4.2).

(I1-2) Assume that H=1 and J=1.
By a change of coordinates if necessary, we have two possibilities.

(@) r,>1 or (B) r,>1.

In any case, P="(ryy, For Is» 1) and o=(P, P, P,, P;). Thus n,=0
and n,=drryre— (ry+ Dre—r,— 1. We have from (5.2) that

(5.6) Hy— Fy=drgt oty — (Fo-+ 1) 1y —2r,— 1 <C0.
Case (I11-2-a). Assume that r,>>1 and r;=1 (i0).
Then

Hy—ry=droto— 1o+ 1)1y —3=ru{(d—1)r,—1}-3<0

if and only if
(II-iv) d=1, i.e. a=(1, ry, 1oty Fofy) OF
(I1-v) d=2 and ry=ry,=2, i.e.a=(2,4,8, 8).

Case (11-2-B). Assume that r,>>1 and r;, (i52).
Then we have by (5.6) that

Ny —ry=(ry—2)(roy;—2) +(d— 1) ryry;— 35

and n;—r,<0 if and only if

(II-vi) d=1 and r,=2, i.e. a=(2, 2, r, 2r,,)) where r, is odd’and r,,>1
or

(I-vii) d=1 and r,=2, i.e. a=(r, 1y, 2, 2r,) where r, is odd and r,>1
or

(Il-viii) d=1, r,=3, r,=4, i.e. a=(3, 3, 4, 12) or

(I-ix) d=1,r,=3, ry=35,ie a=(@3,3,5,15) or

(I1-x) d=1, r,=4, r,=3,ie.a=(4,4,3,12) or

(I1-xi)  d=1, r,=5, ry=3,i.e. a=(5,5, 3, 15).

(Note that g.c.d.(r,, r,)=1 by Proposition (3.3).)

Now we study further details about the above exceptional cases.

Case (114, iv). Assume that a=(1, r, rs, rs) where s> 1.
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Then ry=s, P=%rs,s,1,1),n,=0 and n,= —(s+2). wu=1. In
fact, Ty =(P,+P;+(s—1)P)/s and K= —(s+2)C(P,)—2C(T%). There-
fore E(P) is rational by Lemma (4.22) and X=4 by Lemma (4.5). C(P,)
=0 and C(Ty)'= —s by Lemma (4.4). We assert that £(P) is minimal.
In fact, for any irreducible curve C such that C£C(P,), C(T%), we have
C-K=0 or <—2 by the above expression of K. Thus by the genus
formula (p. 505, [6]), C cannot be an exceptional curve of the first kind.
By the classification of the minimal rational surface, E(P) is isomorphic
to S,. g(M=y+yi+y°+1.

This corresponds to (6) of Theorem (4.1).

Case (II-v). Assume that a=(2,4,8,8), (d=r,=r,;=2).

Then P='(4,2,1,1) and a=(P, Py, P, P,). vu=1, ie. TL=
(P,+P,+P)2. K=0and x=24. Thus E(P) is a minimal K3-surface.
g()=y1+yt4+ 154+ 1. E(P) corresponds to (5) Theorem (4.2).

Case (I1-vi). Assume that a=(2, 2, r, 2r) where r is an odd integer such
that r>1.

Then ry=r, P=%r,r2,1), o=(P, Py, P, P;), n,=0 and n,= —3.
Thus K< 0 and E(P) is rational by Lemma (4.22). . v,,=2. Namely T}
(Py+2P,+(r—1P)/r and Tg=(T3+Py)/2. K=-—-3C(P)—2C(Ty)—
C(T3) and x=6+r. gV =yi+yi+yi+1.

This corresponds to (8) of Theorem (4.1).

Case (II-vii). Assume that a=(r, r, 2, 2r) and r>1, odd.

Then ry=2, P=%2,2,r,1), 6=(P, P,, P, P,) and n,=0 and n,=
r—5. wv,=1. Namely T3 =(P,+ P,+ P)/2 and we have

K= (r—5>C<P3>+&‘2--5l C(T%).

Note that K*=(r—5)*/2 by Lemma (4.4) and X=r*—r+4, Ifr=3, a=
(3,3,2,6) and K= —2C(P,)—C(T3). Thus E(P) is a rational surface
which corresponds to (9) of Theorem (4.1). If r=5, a=(5, 5, 2, 10) and
K=0. This case corresponds to the K3-surface corresponding to (6) of
Theorem (4.2). Suppose that r>5. Then E(P) is. minimal by Lemma
(4.23) and p,=(r*—4r+11)/8—1=3. In any case, g(y)=yi+y;+yi+1.

Case (Il-viii). Let a=(3, 3, 4, 12), (ry,=4, r,=3).
Then P='(4,4,3,1), 6=(P, P,, P, P,) and K=0. p,,=3 as Ty=
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1
2—1/2
E(P) is a K3-surface corresponding to (7) of Theorem (4.2).

Case (Iix). Leta=(3,3,5,15), (r,=3, ry=>5).

Then P=4(5, 5,3, 1), e=(P, P,, P, P,) and n,=0,n,=1. p,=2, 1.
Tl—(P,4+3P,+4P)/5 and 5/3=2—1/3. 1=25 and K=C(P,). As
C(P,))=—1 and C(P,) is a rational curve by Lemma (4.4), we can blow
down C(P,) and let M= E(P)/C(P,;). Our two-form w induces a nowhere
vanishing two form on M. Thus M and E(P) are K3-surfaces. g(y)=
V+yi+3+1

The correspondence is (8) of Theorem (4.2).

(P;+3P,+3P)/4 and 4/3=2— and 1=24. g(y)=)1+)i+y+1.

Case (II-x). Leta=(4,4,3,12), (r;=4, r,;=3).

Then P=°(3,3,4,1), ¢=(P, P, P, P,), n,=0, n;=1 and p,=1.
(Ty=(P;+ P,+2P)/3.) K=C(P;) and X=25. As C(P,) is an exceptional
curve of the first kind by Lemma (4.4), we get a minimal K3-surface by
blowing down C(P,). g(¥)=yi+yi-+yi+1. This corresponds to (9) of
Theorem (4.2).

Case (I1-xi). Let a=(5,5, 3, 15), (r,=35, ry=3).

P=143,3,5,1), =(P, P, P, P,) and n,=3 and y,=—2. Namely
Th=(P,+2P,+2P)/3 and 3/2=2—1/2. K=3C(P)+2C(T%)+ C(T%).
x1=45, C(Py’= —3 and E(P) is minimal by Lemma (4.23) (p,=3). This
completes the case of H=1 and J=1.

(II-3) H=1and J=2, (r,>1).
We may assume that
5.7 ro=r, and r.=r.
There are three possibilties up to the ordering of {a;}: (&)r,>r,>1 or
(BYry, . >1 or (Nry>r > 1.
Case (II-3-a0). ry>r>1.

Then P=°‘(ryy, riFy, 1, 1), 0=(P, Py, P, P,), n,=0, ny=dryry—
(ry+r)ra—2. By (5.2), ny—1l=ry(dryr;—r,—r)—3<0 if and only if
(I-xil) d=1, ry=3, n=ry=2,1e. a=(2, 3, 12, 12).

Then P=%6,4,1,1), o=(P, P, P, P,), K=0, v,=1 and 1=24.
Thus E(P) is a minimal K 3-surface corresponding to (4) of Theorem (4.2).

gW=yi+y+y’+1.
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Case (1I-3-B) ry, 1, > 1.
Then P="(rys, ros Fos 1), 1,=0,
Hy— Fo=dr ¥ty — (ro+ Dry—2r,—1.

Thus n,—7, is a monotone increasing function for each d=1, r,, r,, r; > 1.
If d>1, we have

ny—p,=>2t—3.2-2°—1>0
which is a contradiction to (5.2). Thus d=1. If r,,=>3,
ny— 1,2 (3r,—2)(r,— 1) —6>0
as g.c.d. (ry, r)=1. Thusd=1and ry=2 and n,—r,=2(r,— ) (r,—1)—5.
‘This is negative if and only if (II-xiii)) d=1, r,=ry=2 and r,=3, i..
a=(3.6,4,12).
Then P='(4,2,3, 1), c=(P, Py, P,, P,), v,,=1 and X=34 and K=

2C(P)+C(TY). (TLy=(P,+P,+P)2) As C(P,) has a positive genus
by Lemma (4.4), E(P) is minimal and not a K3-surface.

Case (11-3-1), r,>r,>1.

Then a=(dr,r,, drors, drity, drir) and P="(ry, ry, ¥, 1;). By Lemma
4.4), C(P,) (I=2, 3) is not rational. By (5.3), we can estimate

oy — (t— 1) 1)) 2 dryryby; — 21y — gty — 1, 226,
(d=1,ry=2,r,=3, r;=>5).

Therefore by Lemma (4.21) and Lemma (4.23), p,=1 and E(P) is not a
K3-surface.

(II-4) H=1and J>3.

We may assume that r,>>r, and r,=>r,. By (5.3), we have
3
(5.3 ry(n,—try) =dry, Uo ri— (1) rg—2rrs—r,
Assume that r,=1. Then r,>1 for i=0, 1, 2. As the right side of (5.8)

is a monotone increasing function of each variable, by a rough estimation
we get that

Hy—tr,>16—8—4—1=3
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which is a contradiction to (5.2). Assume that »,>>1. Then only r; can
be 1 as J=3. By substituting r,=1 in (5.8), we get that r,(n,—r,)=>16
—6—8—2=0. This is a contradiction to (5.2). This completes the
proof of Theorem (4.1) and Theorem (4.2) in the case that H=1.

oL H=2.

There are two possibilities.
(II-A) ry, r,>1 and r,;=1 otherwise.
(II-B) 7y, ry3>1 and ry;=1 otherwise.

(Il1-A) H=2 and r,>1 and r,>1. The following are exceptional
cases.

(III-i) a=(1, rofo, FoFos, Folorlo2)-

1-i))  a=(2,4,6,12) (d=2, r,=3, ry=2).

(III-ii)  ry=2, i.e. a=(2, ry, 4, 4ry,) or

(III-iv)  ry=3, rp=>5,1.e.a=(2,5, 6, 30) or

(I-v)  ry=4, rp=3,1e. a=(2, 3, 8,24) or

(I-vi) ry=>5, rp=3, i.e. a=(2, 3, 10, 30).

(I-vii) r,=3,ry=3and r,=2, i.e. a=(3, 2, 9, 18).

(I1I-i) corresponds to (10) of Theorem (4.1). (III-ii) corresponds to
(10) of Theorem (4.2).

We study (ITI-iii). Assume that a=(2, r, 4, 4r) with r odd>1. The
case of r=3 corresponds to (12) of Theorem (4.1). The case of r=35
corresponds to (12) of Theorem (4.2). The case of r=7 corresponds to
(13) of Theorem (4.2). Assume that »==9. Then n,—4>0. As o and
o0 are holomorphic two-forms by Lemma (4.17), p,=>2.

(I1I-iv) corresponds to (14) of Theorem (4.2). (III-v) corresponds to
(11) of Theorem (4.2). (III-vi) corresponds to (15) of Theorem (4.2).
(III-vii) corresponds to (16) of Theorem (4.2).

Case (III-B). Assume that H=2 and ry, r,>1.

The possible exceptional cases are
(M0-viii) a=(ry, rsy, ro, Fo) (d=1,r,=1) or
(I-ix) d=1,r,;=ry=2,1.e. a=(ry, 21y, 4, 4) or
I-x) d=1,r=2,ry=3,r,=35,1e. a=(5, 10, 6, 6) or
(I-xi) d=1, ry=2, ry=4, ry,=3,1.e. a=(3, 6, 8, 8) or
(I-xii) d=1, ry=ry=3, r,=2,1.e. a=(2,6,9,9).
(I-xiii)) d=1, ry=2, ry;="5 ry=3, i.e. a=(3. 6, 10, 10).

(II-viii) corresponds to (11) of Theorem (4.1). (The rationality is
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immediate from the affine equation: g(y)=yi=y,+y,+y;2+1=0.)
(III-x), (TH-xi), (ITI-xii) and (III-Xiii) are cancelled as p, =2 by calculation.
For (III-ix), we have that p,=(r;,—1)/2. Thus the case of ry,=3 cor-
responds to (17) of Theorem (4.2).

av) H=3.

There are three possibilities.
(A) 1o, g g > 1.
(B) oy Pz Fpe> 1
(C) 1oy, Fogy Fis>1

Case (A) contains no exceptional case.
Case (IV-B). Assume that H=3 and r,,, r,,, ¥, > 1.

The exceptional cases are:
(AV-B-))  d=1, rp=2,r,=3, ry=>5, i.e. a=(3, 2, 5, 30) or
(IV-B-i) d=1,r,=2, ry=3, ry=7,1.e.a=(3,2,7,42) or
(AV-B-iii) d=1, rp=2, r,=3, ry=11, i.e. a=(3, 2, 11, 66).

The case (IV-B-i) corresponds to (13) of Theorem (4.1). The Case
(IV-B-ii) corresponds to (18) of Theorem (4.2). The case (IV-B-iii) cor-
responds to (19) of Theorem (4.2).

Case (IV-C). Assume that r,,, 4, ;> 1. This case contains the following
exceptional cases.

(IV-C-i) ro=3 and r;=2, i.e. a=(2, ry, 6, 3ry,) Or

(AV-C-ii)  ry=5, ry=2and r,=3, i.e. a=(2, 3, 10, 15) or

(AV-C-ii) ry=7, rp=3and r,=2, i.e. a=(2, 3, 14, 21).

(AV-C-iv)  ry=4, ry=3 and rp,=5, i.e. a=(3, 5, 12, 20) or

(AV-C-v) ry=4,ry,=3and r,=7, ie. a=(3, 5, 12, 28).

(IV-C-vi) ry=35, r,=3 and r,=4, i.e. a=(3, 4, 15, 20).

The Case (IV-C-i) with r,=5 corresponds to (22) of Theorem (4.2).
If r+£5, p,>1. The Case (IV-C-ii) corresponds to (20) of Theorem
(4.2). The Case (IV-C-iii) corresponds to (21) of Theorem (4.2). The
Cases (IV-C-iv, v, vi) are eliminated as p,>1.

If HZ>4, there is no exceptional cases. This completes th> proof of
Theorem (4.1) and Theorem (4.2).
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