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§ 1. Introduction 

Letf(zo, ... , zn) be a germ of an analytic function at the origin with 
an isolated critical point at z=o and f(O)=O. We assume that the 
Newton boundary ref) is nondegenerate. Let V=f-I(O) and let 2* be 
a simplicial subdivision of the dual Newton diagram. Then there is a 
resolution 7r: V -+ V which is associated with 2*. For each strictly positive 
vertex P of 2* such that dimL1(P)::2::1, there is a corresponding ex­
ceptional divisor E(P). The purpose of this paper is to study the above 
resolution and to study the geometry of E(P) in the case that n=3 and 
f(z)=Z~O+Z~1+Z~2+Z~3 with P being the weight vector off In Section 2, 
we will recall basic notations and the construction of the resolution of 
V=f-I(O). In Section 3, we will prove an isomorphism theorem about 
the exceptional surface E(P) (Theorem (3.6)) which is one of the main 
results of this paper. In Section 4, we give a necessary and sufficient con­
dition about a=(ao, aI, a2, a3) for E(P) to be a rational surface or a K3-
surface. (Theorem (4.1) and Theorem (4.2)). There are 14 cases for E(P) 
to be a rational surface and 22 cases for E(P) to be a K3-surface up to 
Theorem (3.6). In Section 5, we will give the proof of Theorem (4.1) and 
Theorem (4.2). 

§ 2. Preliminaries 

Let fez) = 2::. a.z· be the Taylor expansion of f The Newton 
polygon r+(f) is the convex hull of U{lJ+(R+)n+l; a.:;t=O} and the union 
of its compact faces is denoted by r(f) which is called the Newton 
boundary off Let N+ be the set of the positive vectors of Rn+1 which 
are considered to be in the dual space of Rn+1 through the Euclidean 
inner product. For each PEN+, let d(P) be the minimal value of 
{P(x); x E r+(f)} and let L1(P)={x E r+(f); P(x) = d(P)}. Two vectors 
P and Q in N+ are said to be equivalent if and only if L1(P)=L1(Q). The 
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dual Newton diagram T*(f) is the polyhedral decomposition of N+ by 
the above equivalence relation. 

For given primitive integral vectors PI' "', P k of N+, det(PI, "', 
P k) is the greatest common divisor of all k X k minors of the n X k matrix 
(PI' .. " P k ). (Each vector of N+ is cbnsidered to be a column vector.) 
The following lemma is a stronger version of Lemma (3.8) for k=2 of 
[11]. 

Lemma (2.1). Let P, Q, R be the primitive integral vectors of N+ such 
that det(P, Q)=det(P, R)= 1 and let c=det(P, Q, R). Assume that c> 1. 

( i) There exist unique integers k>O, ci, di (i= 1, .. " k) and unique 
primitive integral vectors TI, .. " Tk in the triangle T(P, Q, R) such that 
c=CO>cl>", >ck=l, O<di<ci_1 and Ti=(R+ciTi_l+diP)/ci_1 for 
i=I, "', k. (To=Q). 

(ii) Let TI, .. " Tk be as above. Then there exist unique integers 
Ci, di (i= 1, .. " k) such that c=CO>cl>· .. >ck = 1, O<di<Ci _ 1 and 

T k _ i+1 =(Q+ciTk_i+2+diP)/Ci_1 

for i= 1, .. " k. (Tk+1 =R). 

Proof The assertion (i) is immediate from Lemma (3.8) of [11]. 
Let us call TI the first vertex of the triangle T(P, Q, R) from Q to R. In 
the proof of Lemma (3.8) of [11], we have proved that TI is characterized 
by the integral vector which can be written as TI=xR+yQ+zP for 
non-negative rational numbers x, y, z such that O=x, y, z< I and 
det(P, Q, R)= 1. Now we prove the assertion (ii) by the induction on k. 
If k= 1, the assertion is obvious by (i). Assume that k> 1. Note that 
det(P, R, TI)=c l • Let 1'1 be the first vertex of T(P, R, TI) from R to TI. 
Then 

Assertion (2.2). 1'1 is the first vertex of T(P, R, Q) from R to Q. 

Proof of Assertion (2.2). We can write 

1'1= (TI + cR+dP)/cI for O<C, d<c1. 

Expressing Tl in P, Q and R, we get 1'I=xQ+yR+zP where x=I/c, 
y=(1+cc)/cc1 and z=(d1+cd)/ccl • As cl>I by the assumption, C, d< 
cl -1. Thus y«CC1-C+ I)/ccl < 1 and z«ccj-c+dl )/ccl <1. By the 
above remark, this implies the assertion, because det(P, R, 1'1)= 1 by the 
definition. 

Let 1'1' .. " 1't be the vertices of T(P, R, TI) from R to Tl by (i). 
By the induction's hypothesis, we have t=k-l and Tk=1'l> "', T2= 
1'k _ l • Let TI , "', Tm be the vertices of T(P, R, Q) from R to Q by (i). 
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By the assertion we have fl = 1'1 and Tl is the first vertex of T(P, Q, f l) 
from Q to fl' Assume that fi=1'i and Tl is the first vertex of 
T(P, Q, fi)' As f i +l and 1'i+l are the first vertices of T(P, fi' Tl) and 
T(P, fi' Q) respectively, we have, by Assertion (2.2), that fi + 1 = 1'i + 1 and 
Tl is the first vertex of T(P, Q, f i + l). Thus by the induction on i, fi=1'i 
for i= 1, .. " k-l and Tl is the first vertex of T(P, Q, f k _ l). See the 
following figure. 

p 

Q -.:::.;... ____________ ;;:::100.1\-1 

As Tl is the unique vertex of T(P, Q, T2) from Q to T 2, we have Tl=1'k 
and m = k. Thus the assertion (ii) is proved. 

Definition (2.3). We call Tj> "', Tk the canonical vertices of 
T(P, Q, R) around P. 

Let ~* be a simplicial subdivision of r*(f). We briefly recall the 
construction of the resolution 7C : V ---+ V which is associated with ~*. For 
each n-simplex a=(Po' "', Pn)=(Pij), we associate an affine space C:+ 1 

with coordinate Y. = (Y., 0' •• " Y" n) and a birational morphism 7C. : C:+ 1 

---+cn+l which is defined by 7C.(y.)=z where z=(zo, ""zn) and Zi= 
nj=oY~!~j' Xis the union of C:+ 1 for a which are glued along the images 
of 7C.. The projection it : x---+cn+l is defined by it I C:+ 1 =7C.. Let V be 
the proper transform of V. Then the associated projection 7C : V ---+ V is a 
resolution of V ([5], or § 4 of [11]). In C~+l, V is defined by J.(y.) = 
f(7Co(Y.»/n~=oY~;~'). For a vertex P of ~* with dim A (P);;;::: 1, there is a 
corresponding divisor E(P) which is defined as follows. 

Let a=(Po, .. " Pn) be an n-simplex of ~* such that Po=P. 

E(P) n C~+l={y.; Y.,o=!.(y.)=O} 

where gJ(P)(Y.,l' .. ·,Y.,n)=h(p)(7C.(y.»/n y~:~,') and C~=c~+ln(y.,o= 
0). In [11], we have shown that E(P) is a compact exceptional divisor if 
and only if P is a strictly positive vertex and its birational class depends 
only on the coefficients {a.} such that lJ E A(P) and it does not depend on 
the choice of ~* (Corollary (5.4) of [11]). 
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§ 3. An isomorphism theorem for E(P) 

Let ao, ... , as be positive integers and let a=(ao, ... , as). Let fa(z) 
=zgo+ ... +Z~3. In this section and the following sections, we study the 
algebraic surfaces as the central exceptional divisors of the resolution of 
V=f- 1(O) wheref=fa. First we define positive integers d, ri, rij and ai 
(O~i<j-:;;;'.3) as follows. Let d=g.c.d.(oo, ... , as) and let ri=g.c.d. 
{aj ; j=/=i}/d. Then ro, ... , r3 are mutually coprime. Thus ai is divisible 
by d IT Ni rj and we can write ai = iiid IT Ni rj for some positive integer 
iii' for i=O, .. ·,3. Let rij=g.c.d.(iik, iiz) where {i,j, k, 1}={O, ... , 3}. 
Note that g.c.d.(rij , r ik) = g.c.d.(r ij' r kz) = I for mutually distinct i, j, k, I 
because g.c.d.{iij ;j=/=i}= 1 by the definition of iij. Thus we can write 

(3.1) 

(3.2) 

ai=ai IT rjk and 
j<k 

j,k=#i 

As g.c.d.(ao' ... , as)=d and g.c.d.{aj;j=/=i}=dri, we get by (3.2) that 
g.c.d.(ai, ri)=g.c.d.(ai, ro)= 1. We also have g.c.d.(ai, aj)=g.c.d.(ri, rjk) 
= 1 for i=/=j, k because g.c.d.(iii' iij)=r kZ and g.c.d.(ai, aj' ak)=dr z. Thus 
we obtain 

Proposition (3.3). Let d, ri, rij, ai (O~i,j~3) be as above. Then 

(3.4) 

and each of the following pairs are mutually coprime: (ri' rj), (ri' rJk ), 
(ai' aj), (ai' ri), (ai' rij), (rij , rik) and (rij , rkz) where i, j, k and I are mutually 
distinct and rij=rjifor brevity's sake. 

The above notations are used throughout this paper. Note that the 
least common multiple of ao, ... , as is d IT ~~o (riai) IT i<j rij. Let P= 
'(Po, ... , Ps) be the primitive weight vector of fa. Then by the above 
remark, 

(3.5) Pi=ri IT (rijaJ. 
j=#i 

Here we use the notation rij = rji . 
Let 2* be a simplicial subdivision and let IT : V ~ V be the associated 

resolution. We call E(P) the central exceptional divisor for fa. Its bira­
tional class does not depend on 2*. We are going to prove the following 
theorem. 
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Theorem (3.6). Let a=(ao, ... , ag) and b=(bo, ... , bg) be strictly 
positive integral vectors. Assume that they have the same d, ri , rij which 
are defined in Proposition (3.1). Then the central exceptional divisors for 
fa and;;' are birationally equivalent. 

Proof We write a=b if their central exceptional divisors are 
birationally isomorphic. We first show that the assertion can be reduced 
to the following case. 

(3.7) 

where s is an integer which is coprime with each of rg, ai and ri3 for i= 
0, 1, 2. Assume that the assertion is true for a and b satisfying (3.7). 
Let a'=(a~, ... , a~) where a;=at!ai. Then we have 

Thus a=a'. Similarly we have b = b'. By the assumption, a' = b'. 
Therefore a=b. 

From now on, we assume (3.7). Let P= '(Po, ... , pg) be the weight 
vector of fa which is defined by (3.4). Then the weight vector P(b) of fb 
is t(spo, SP1' SP2' P3). We will prove the theorem by showing that there 
exist canonical simplicial subdivisions 1:: and 1:; of r*(fa) and r*(fb) 
and 3-simplexes a and a' respectively so that the corresponding affine 
equations for E(P) and E(P(b» with respect to a and a' coincide. We 
first consider 1::. The dual Newton diagram r*(fa) has four other 
vertices Po=(l, 0, 0, 0), ... , Pg=(O, 0, 0, 1) and P is situated at the "bary­
center" of the 3-simplex with vertices Po, ... , P3. Note that 

(3.8) det(P, Pi)=ai (i=0,···, 3). 

We take the canonical primitive sequence on PPi . (See (3.5) of [11] for 
the definition.) Let P~ be the first vertex on PPi from P. By (3.8) and 
Lemma (3.3) of [11], we can write 

(3.9) 

where ai is the unique integer such that O~ai<ai and 

(3.10) 

We also assume that 1:: is canonical on T(P, P~, P;) around P. Let T61 
be the first vertex of T(P, P6, Pi) from P6. Note that 

(3.11) 
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Thus we can write T~l by Lemma (2.1) as 

(3.12) 

Note that 

(3.13) det(P, P~, nl, PD=det(P, P~, P~, PD/r2S 

=det(P, Po, PH P2)/aAa2r2S 

We subdivide the 3-dimensional simplex (P, P~, T~l' PD by Lemma (3.8) 
of [11] so that a=(P, P~, nlo R) is a 3-simplex of 2: where 

(3.14) 

where o~o, e, p<rsroarls. We consider the defining equation gq of E(P) 
in C!. As giYq) nY~~=f(1rq(yq)), where mo=d(P), ml=d(P~), m2= 
d(nl) and ms=d(R), we have 

(3.15) 

where 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

and 

(3.21) 

UI =P~(Ao) -d(P~)=ao/ao=d rlr2rSrl2rlSr2S' 

U2= nl(AI)-d(T~J=al/alr2S=d rOr2rar02rOS' 

us=R(A2) -d(R)=a2/a2rSrosrl3=d rOrlrOI' 

VI = nl(Ao)-d(nl)= fiul/r2S' 

V2 = R(AI) - d(R) = eu2/rSrOSrlS 

Here Ao=(ao' 0, 0, 0), ... , As=(O, 0, 0, as). Now we consider 2:. Recall 
that the weight vector P(b) is t(spo, SPI' SP2' Ps). We assume that 2: is 
canonical on P(b)Pi' ;=0, .. ·,3. The first vertex P~(b) of P(b)Pi can 
be written as 

(3.22) 

where O<atCb)<ai and i=O, 1,2 because det(P(b), Pi)=ai for i=O, 1,2. 
As Pj=O modulo at for i=Fj and P(b)=sP-(s-l)psPs, aj(b) is the 
solution of 
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(3.23) 

(The existence of the solution of (3.23) is derived from the assumption 
that g.c.d.(s, 12i)= 1 for i=O, 1,2.) Note that 

(3.24) 

(3.25) 

P~(b)-P~ e Z<P, Ps> and 

(P~(b»s=O modulo rSrOSr13r2S 

for i=O, 1 and 2 where Z<P, Ps> is the Z-module generated by P and Ps 

and (P~(b»s is the last coordinate of P~(b). We also assume that 2: is 
canonicalJ on T(P(b), P~(b), P}(b» around P(b). Let TMb) and R(b) be 
defined in the same way as for nl and R and let q'=(P(b), P~(b), nl(b), 
R(b» be the desired 3-simplex. More precisely, we have 

(3.26) T~rCb)= (P~(b)+ [3(b)P~(b) + r(b)p(b»/r2S 

where 0< [3(b), r(b)<r2S and 

(3.27) R(b) = (P~(b)+o(b)P~(b) + e(b)nl(b) + p.(b)P(b»/rsrOSrlS 

where O<o(b), e(b), p.(b)<rSrOSrlS' 

Assertion (3.28). [3 (b) = [3, o(b)=o and e(b)=e. 

Proof of (3.28). Let r' be an integer such that r's=r modulo r 2S ' 

Then we have by (3.23) and (3.24) that 

(PKb)+[3p~(b)+r'p(b»-r2ST~1 e Z<P, Ps>. 

(Recall that P(b)-sP=(I-s)psPs.) Then we can find an integer reb) 
such that 

(3.29) T~rCbY =(P~(b)+ [3P~(b)+ r(b)p(b»/r2S' 

Then it is obvious that (TMbY)i is an integer except i=3. However the 
last coordinate is also an integer by (3.25). Thus by the uniqueness of 
TMb), we have that TMb)'=nl(b). Thus [3 (b) = [3. As we can write 
TMb)-T~l=xPS+mP for some integer m and a rational number x, the 
integrality of T~rCb) implies that x is an integer. Thus we get by (3.25), 

(3.30) 

(3.31) 

nrCb)- nl e Z<P, Ps> and 

(T~l(b»s=O modulo rSrOSrlS 
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by (3.29) where (TMb))g is the last coordinate of TMb). 
Now we consider (3.27). There is an integer fl.' such that fl.'s=fl. 

modulo 'g'Og'lg by the assumption in (3.7). The difference of P~(b)+ 
oP~(b)+eT~l(b)+f1.'P(b) and 'g'Og'lSR is contained in Z<P, Ps> by (3.30) 
and (3.24). By the assumption on s, we can find an integer fl.(b) such 
that O~fl.(b)<'S'OS'IS and 

(3.32) 

where R(b)' is defined by 

(3.33) R(b)' = (P~(b)+oP~(b) +enl(b) + fl.(b)P)/'s'os'ls· 

By (3.32), (3.25) and (3.31), R(b)' is an integral vector. Thus we get 
R(b)'=R(b) which implies that o(b)=o and e(b)=e. This proves Asser­
tion (3.28). 

We have seen in (3.15)-(3.21) that the defining equation of E(P(b)) 
with respect to q is determined by d, 'i' 'ii' {3, 0, and e. By the same 
argument and by Assertion (3.28), we conclude that the defining equation 
g., of E(P(b)) with respect to q' is equal to g. in (3.15). This completes 
the proof. 

Example (3.34). Let a=(ao, ••• , as) and assume that g.c.d.(ai' aj)= 1 
for i=l=j. Then E(P) is birationally isomorphic to P2. 

Example (3.35). Let a=(dao, ' •• , das) where {ail are mutually co­
prime. Then E(P) is birationally isomorphic to the projective surface 
{xg+ . .. +xt=O} in ps. 

§ 4. The condition for E(P) to be a rational or a K3-surface 

In this section, we will study the algebraic surface as the central 
exceptional divisor of the resolution of the Brieskorn variety V =1-1(0) of 
dimension three. More precisely, we will study the necessary and 
sufficient condition for E(P) to be either a rational or a K3-surface. 
Thus we may assume by Theorem (3.6) that at = 1 for i=O, .. ·,3. The 
notations are the same as in Section 3. We assume that 2* is canonical on 
the line segment PPi. As ai= 1, we do not have any other vertex on PPt • 

We also assume that 2* is canonical around P. Let n,(k= 1, .. " Vij) 
be the canonical vertices on T(P, Pi' Pj) from Pi around P. Note that 
Vij=O if and only if 'kl= 1 where {i,j, k, 1}={0, 1,2, 3}. Let C(Pt )= 
E(Pt) n E(P) and C(nj ) = E(nj ) n E(P). Let H be the number of 
{(i,j); i<j and 'ij> I}. For brevity's sake,we denote X(E(P» by X, the 
affine equation g.(y.) by g(y) and the canonical divisor Kp by K. The 
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following Theorem (4.1) and Theorem (4.2) are our main results of this 
paper. 

Theorem (4.1). E(P) is a rational surface if and only if a=(ao, "', 
as) is one of the following. 

(I) H=O. 
( 1) a=(I, r, r, r) (ro=r). X=3 and K= -3C(Ps) and E(P)~P2. 

g(Y)=YI+Y~+Y;+1. 
(2) a=(2, 2, 2, 2) (d=2). X=4, K= -2C(Pa), E(P)~PI Xp l and 

g(y)=y~+~+y:+1. 
(3) a=(3, 3, 3, 3) (d=3). X=9, K= -C(Pa) and g(Y)=Y~+>1+Ys 

+ 1. E(P) is isomorphic to the projective cubic surface {.11 + 
... +X1=0} in p a• 

(4) a=(2, 4, 4, 4) (d=ro=2). X= 10, K= -C(Ps) and g(y)=y~+ 
y~+yt+1. 

(5) a=(2,3,6,6)(ro=3,rl=2). X=Il, K=-C(Pa) and g(y)= 
y~+ y~+ yg+ 1. 

(II) H=1. 
(6) a=(I, r, rs, rs) where s> 1. (ro=r, rOI=s). X=4, K= 

-(s+2)C(Pa)-2C(na) and g(Y)=YI+Y;+Ys8+ 1, E(P)~S8' 
(7) a=(2, 2, 2r, 2r) where r>1. (d=2, rOI=r). 

X=4+2r, K= -2C(Pa)-C(ns) and g(y)=y~+y~+y~r + 1. 
(8) a=(2, 2, r, 2r) where r> 1. (r2=2, rOI==r). X=6+r, 

K= -3C(Pa)-2C(T:3)-C(T~s) and g(y)=~+y:+ys+ 1. 
(9) a=(3, 3, 2, 6) (r2=3, rOI=2). 

X= 10, K= -2C(Pa)-C(T~3) and g(y)=y~+>1+y:+ 1. 

(III) H=2. 
(10) a=(I, rt, rs, rst) where g.c.d.(s, t)= 1 and s, t> 1. 

(ro=r, rol=s, r02=t). 
X=3+lJ2S +lJI3, K<O and g(y)=YI+y;t+Ys8+ 1. 

(11) a=(s, s, r, r) where s, t> 1 and g.c.d.(s, r)= 1. (rol =r, r2a=S). 
X=4+rs, K= -2C(Ps)-C(Tis)+(s-2)C(P2) and 
g(y)= yfY2+ Yz+ y; + 1. 

(12) a=(2, 3, 4,12) (rl=2, rol =2, r02=3). X= 12, 
K= -2C(P3)-C(T~s)-C(T}s) and g(y)=y~+y~+y:+ 1. 

(IV) H>3. 
(13) a=(3, 2,5,30) (rol =5, rI2 =3, r02=2). 

X= 14, K= -2C(Ps)-C(T}s)-C(ns)-C(Tk) 
and g(y)=~+y:+Ya+ 1. 
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(14) a=(I, rst, rqt, rqs) where s, t, q are mutually' coprime and 
s, t, q>1. (ro=r, r01 =q, r02 =s, r03=t). 
X=3 + l.J12+ l.J13+ l.J23 and g(y)=Yl +y;sty~rs +y;q+ 1. 

Theorem (4.2). E(P) is a K3-surface if and only if a=(ao, .. " a3) is 
one of the following. 

(I) H=O. 
(1) a=(4,4,4,4) (d=4). X=24,K=Oandg(y)=yi+y~+y:+1. 

E(P) is isomorphic to the projective surface of degree 4 {Xci + 
... +Xi=O} in P 3. 

(2) a=(2, 6, 6, 6) (d=2, ro=3). 
X=24, K=O and g(Y)=Yi+y~+y~+1. 

(II) H=1. 
(3) a=(3, 3, 6, 6) (d=3, rOl=2). 

X=24, K=O and g(y)=yi+y~+y~+ 1. 
(4) a=(2, 3,12,12) (ro=3, r1=2, rOl=2). 

X=24, K=O and g(y)=yi+y~+y~2+1. 
(5) a=(2, 4, 8, 8) (d=ro=rol=2). 

X=24, K=O and g(y)=yi+y~+y~+ 1. 
(6) a=(5, 5,2,10) (r2=5, rOl=2). 

X=24, K=O and g(y)=J1+y~+y~+ 1. 
(7) a=(3, 3, 4,12) (r2=3, rOl=4). 

X=24, K=O and g(y)=yi+~+yi+ 1. 
(8) a=(3, 3, 5,15) (r2=3, rOl=5). 

X=25, K=C(P3) and g(y)=yi+y~+y~+ 1. 
(9) a=(4,4,3,12)(r2=4,r01 =3). 

X=25, K= C(P3) and g(y)=yi+yi+y~+ 1. 

(III) H=2. 
(10) a=(2, 4, 6,12) (d=r02 =2, rOl=3). 

X=24, K=O and g(y)=yi+y:+yg+l. 
(11) a=(2, 3, 8,24) (rl=2, r01 =4, r02=3). 

X=24, K=O and g(y)=yi+y~+y~+ 1. 
(12) a=(2, 5,4,20) (rl=2, r01 =2, r02=5). 

X=24, K=O and g(y)=yi+y:+yi+ 1. 
(13) a=(2, 7, 4, 28) (r1=r01 =2, r02=7). 

X=26, K=2C(P3)+C(Ti3) and g(y)=yi+y~+yi+ 1. 
(14) a=(2, 5, 6, 30) (rl=2, r01 =3, r02=5). X=27, 

K=3C(P3)+2C(T~3)+ C(Ti3) and g(y)=yi+ y~+ y~+ 1. 
(15) a=(2, 3,10,30) (rl=2, r01 =5, r02=3). 

X=25, K= C(P3) and g(y)=yi+~+y~o+ 1. 
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(16) a=(3, 2, 9,18) (r1=r01 =3, r02=2). 
X=24, K=O and g(Y)=Yi+Y~+Y:+ 1. 

(17) a=(3, 6,4,4) (ro=rol=2, r23=3). 
X=24, K=O and g(Y)=YiY;+y;+yi+ 1. 
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(IV) H~3. 

(18) a=(3, 2, 7,42) (rol=7, rI2 =3, r02=2). 
X=24, K=O and g(Y)=Yi+Y~+YI+ 1. 

(19) a=(3,2, 11,66) (rol=ll,rI2=3,r02=2). X=27, 
K=4C(P3)+2C(Ti3)+C(n3) and g(Y)=Yi+y;+y~l+ 1. 

(20) a=(2, 3,10,15) (r01 =5, r02 =3, rI3=2). 
X=24, K=O and g(Y)=Y~Y3+Y~+Y~+ 1. 

(21) a=(2, 3,14,21) (rol=7, r02 =3, r13=2). 
X=25, K=C(P3) and g(Y)=YiY3+Y~+YI+ 1. 

(22) a=(2, 5, 6,15) (r01 =3, r02 =5, rI3=2). 
X=25, K=C(P3) andg(Y)=YiY3+Y~+Y~+1. 

We will prove Theorem (4.1) and Theorem (4.2) simultaneously. 
Their proofs occupy the rest of this section as well as the following 
section. We first prepare some basic lemmas. 

Recall that the first vertex nj from Pi of T(P, Pi' Pj) can be written 
by Lemma (2.1) as 

(4.3) 

where rtf=rkZ and {i,j, k, I}={O, 1,2, 3} and O~{3ij, lij<rtf. Fix (i,j) 
such that rtf> 1 and let 

be the continuous fraction representation where m i > 1. Then by Theorem 
(8.5) of [11], we have that 

Lemma (4.4). (i) bij=J)ij and C(nj) is a disjoint union of d rirjrij 
copies of rational curves and C(T:jY= -mkdrirjrij. 

(ii) C(p i )2=dr; n toM (rit/r"!i)- L:t*i {3itdrirt(rit /r"!i). 
(iii) C(Pi) is a rational curve if and only if 

( 1) there exists an integer k such that k=l=i and g.c.d.(ak , aj) 
= 1 for any j such that j =1= i, k or 

( 2 ) g.c.d.(aj , az) = 2 for any j, I such that j =1=1 and j, I =l=i. 
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Note that 

r'!<· 
'J -m a-- biJ 

Pjt 

M.Oka 

1 

The following is also due to Theorem (8.5) of [11]. 

Lemma (4.5). Let X(E(P» be the Euler characteristic of E(P). Then 

(4.6) X(E(P»=dsl!o r; D/tj-dZl!o rt ta (ri Q rik) 
koFi 

We take a=(P, Po, T~l' R) as a fixed 3-simplex where 

(4.7) 

and 

(4.8) 

where 0<0, e, p<rsrosrls and T~l is assumed to be PI if r 2S = 1. (13=130:' 
r=fol in (4.3». 

Let w be the meromorphic 2-form on E(P) such that wi E(P) n C! is 
dYa,J\ .. . l\dYa,s/dga and let 

S 

(4.9) (w)=K= L: niC(Pi)+ L: n(nj)C(Tfj )· 
i=l i,j,k 

Then by Theorem (9.9) of[11] and (4.7) and (4.8), we have 

(4.10) nl=r2s -j3-1>0, O<nl<rzs, 

(4.11) n2=rsrosrls-o-e-1, Inzl<rsrosrls, 

(4.12) ns=d rOrlr2rOlrOZrI2-{PO+PI(nl + 1) +p2(n2 + l)}/ps-l. 

We introduce meromorphic function CPij by 

(4.13) CPij = rr:*(zfi / z~;) 

wherep;=pj/rij andp;=pt!rtj . For a vertex Q=t(qo, "', qs) of 2*, we 
define I Q, Pltj=q,pj-qjPt- As we have seen in Section 8 of [11], we 
have, (for fixed i and j) 



Brieskorn Singularities 449 

(4.14) (9'ij)=n;C(Pi )+n;qpj)+ I: n'(T~l)C(T~l) 
k,l,s 

where 

(4.15) 

and 

(4.16) 

Note that n;=IPi, Plij/rij and n~=IPj, Plij/ri}. 
Recall that the geometric genus P g of E(P) is the dimension of the 

vector space of the hoi om orphic 2-forms on E(P), The following lemma 
plays an important role for the proof of Theorem (4.1) and Theorem 
(4.2). 

Lemma (4.17). (i) Assume that (9'~jw)3 has non-negative coefficients 
on C(Pk)jor k=O, ···,3. Then 9'1jw is a holomorphic 2-form. 

(ii) (w)=O if the coefficients ojC(Pk ) in (w) (k=O, ···,3) are zero. 

Proof Take any vertex T"(J and express it as T"(J=xPk+ yPl +zP 
where x, y, z are non-negative rational numbers. Note that T"(J takes its 
maximum d(T"(J) on Li(P.) n Li(Pl) n Li(P). Thus by Theorem (9.9) of 
[11], we have 

(4.18) 

On the other hand, we have by (4.15), 

(4.19) n' (T"/J) = xn~ + yni. 

Let h"(J be the coefficient of qT"/J) in (9'1 jw). Then we have 

h"(J = n (T"/J) + sn'(T"/J) = x(nk + sn~) + y(n l + sni) + x+ y- 1. 

As x, y::2:0 and (x, y)*(O, 0), it is easy to see that h"(J>O. Assume that 
nk+sn~=O for k=O, ···,3. Then applying the above equality for nl 
which is defined by (4.3), we obtain -1 <n(nl)< 1 which implies that 
n(Tkl)=O and x+y= 1. Recall that 

for O;;;;Xm, Ym, Zm < 1 by Lemma (2.1). Thus by a similar argument as 
above using an induction on m, we get n(T"/J) =0 for any T"(J, completing 
the proof of the assertion (ii). 

Let t be defined by 
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(4.20) 

This notation is also used in Section 5. We apply Lemma (4.17) for 'Ii} 

= '123' to obtain 

Lemma (4.21). (i) Assume that n3-(t-l)p2/r23>0. Then cpi;l a> 

is holomorphic and pg> 1. 
(ii) Assume that n3-tP2/r23>0. Then cpi;la> and cpi3a> are holo­

morphic. In particular, pg>2. 

Proof The assertion is immediate from Lemma (4.17), (4.9)-(4.11) 
and from the following inequality: n2> -r3r03r13 = -P3/r28. 

Recall that a minimal rational surface is either p 2 or S. (s=O, 2, 3, 
... ). S. is characterized among {S.} (s=O, 2, 3, ... ) by the following 
property: there is an irreducible curve E. in S. such that E;= -s (p. 519, 
[4]). 

Let M be a compact algebraic surface. The Castelnuovo-Enriques 
criterion for the rationality (p. 536, [4]) implies 

Lemma (4.22). Assume that q(M)=O and that M has a meromorphic 
2-form a> such that -(0))>0. Then M is a rational surface. 

Proof The assertion -(0))>0 implies that the plurigenera P.(M) 
=0 for s>O. Thus M is a rational surface. 

We say that M is a minimal K3-surface if 1L"1(M)={O} and the 
canonical line bundle K is trivial. We say that M is a K3-surface if M 
has a birational morphism to a minimal K3-surface. In any case, Pg= 1 
and X(M»24. 

Lemma (4.23). Let M be an algebraic surface with a holomorphic 
2-form a>. Let (a» = l:i=o mjCj with Ci being irreducible. 

(i) Assume that CcM is an exceptional curve of the first kind. 
Then C= Ck for some k. Let M be the surface when Ck is blown down. 
Then a> induces a holomorphic 2-form iii so that (iii)=l:i*k m/'Ji where Ci is 
the image of Ct in M. 

(ii) Assume that the virtual genus 1L"(C,) is positive. Then M is not 
a K3-surface. (1L"(C) is defined by 1+(KC+C2)/2. See p. 471, [4]). 

Proof Bya stronger version of the Castelnuovo-Enriques criterion 
(p. 505, [4]), C is exceptional if and only if C2<0 and C·K<O. IfC*Ci 

for any i, C· K~ 0 which proves (i). Let C = C k be an exceptional divisor 
of the first kind and let M = M/ C k. Then the image curve C. satisfies the 
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same condition as in (ii). Thus after possible blowing downs, C" can not 
be eliminated in (m) by (i). This proves (ii). 

For the calculation of Pg , we have the Noether's formula: 

(4.24) 12(1-q+pg )=K2+X. 

§ 5. Proof of Theorem (4.1) and Theorem (4.2) 

In this section, we assume that E(P) is either a rational or a K3-
surface. Thus 

(5.1) 

We use the same notations as in Section 4. By Lemma (4.21), we must 
have 

(5.2) 

On the other hand, we have by (4.10)-(4.12), 

3 

(5.3) ps(ns-tp2/r2S)?d n ri TI rij-PO-Plr2S-2p2PS/r2S-PS. 
i=O i<j 

Recall that H is the number of {(i,j); rij> 1, i<j}. We also define J by 
the number of {i; r i > I}. 

The proof is divided into several cases by H. As the proof is so 
long and boring, we first explain the outline of the proof and we will only 
give the proof for H = 0 and 1 in detail and leaves the other cases to the 
reader. We first use (5.2) and (5.3) to pick up all the possible cases 
which satisfies (5.2). They are finite and we call them the exceptional 
cases. Then we use the results in Section 4 to study further details 
about these exceptional cases. 
I. H=O. (rij = 1 for any i,j.) 

Then a;=d TINi rj and p=t(ro' .. " rs). We may assume that 

(5.4) 

By (5.3), we have 

(5.5) 

Assume that r 3> 1. As the right side of (5.5) is a monotone increasing 
function of ro, ... , rs and d under (5.4), we get by a rough estimation 
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which contradicts (5.2). Thus ra= 1 and by (4.11) and (4.12), we get 
n2=O, t= 1 and 

na-r2=drorlr2-rO-rl-2r2-1 

={(rO-I)(rl-I)-2}+{(dr2-I)rOrl-2r2}· 

By the above expression and (5.2), we must have r 2= 1. Thus we have 

It is easy to see that this is the case if and only if 
(I-i) d= 1, rl= 1, i.e. a=(I, ro, ro, ro) or 
(I-ii) d= 1, rl=2, ro=3, i.e. a=(2, 3, 6, 6) or 
(I-iii) d=2, ro=rl=l, i.e. a=(2,2,2,2) of 
(I-iv) d=2, ro=2, rl= 1, i.e. a=(2, 4, 4, 4) or 
(I-v) d=2, ro=3, rl= 1, i.e. a=(2, 6,6,6) or 
(I-vi) d=3, ro= 1, i.e. a=(3, 3, 3, 3) or 
(I-vii) d=4, ro= I, i.e. a=(4, 4, 4, 4). 

We study the above 7 cases in more detail. 

Case (I-i). Assume that a=(1, r, r, r). 

Then p=t(r, 1, I, I) and a=(P, Po, PI' P2) and K= -3C(Pa)<O. 
This implies that E(P) is a rational surface by Lemma (4.22). X (E(P» 
=3 by Lemma (4.5). Therefore E(P) is isomorphic to P2. g(y)= 
YI+y;+y~+1 by (3.15). This corresponds to (1) of Theorem (4.1). 

Case (I-ii). Assume that a=(2, 3, 6,6), Cro=3, rl=2). 

Then P=t(3,2, 1,1), a=(P,PO'Plo P2), K=-C(Pa) and X=II. 
E(P) is rational by Lemma (4.22) and g(y)=y~+J1+y:+1. This cor­
responds to (5) of Theorem (4.1). 

Case (I-iii). Assume that a=(2, 2, 2,2), (d=2). 

Then P=t(l, 1, 1, 1), a=(P, Po, PI' P2), K= -2C(Pa), X=4 and g(y) 
= y~ + y~ + y: + 1. As IT: V ---+ V is the blowing up of V at the origin, 
E(P) is isomorphic to the projective surface {xg+ ... +X:=O} in pa 
which is isomorphic to P I X P I ~ So. This corresponds to (2) of Theorem 
(4.1). 

Case (I-iv). 0=(2,4,4,4), (d=2, ro=2). 

Then P=t(2, I, 1, 1), a=(P'PO,PI,P2),K=-C(Pa), X=lO andg(y) 
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=y~+yi+y:+1. This corresponds to (4) of Theorem (4.1). 

Case (I-v). a=(2, 6, 6, 6), (d=2, ro=3). 

Then P=t(3, 1, 1, 1), a=(P, Po, PI' P2), K=O and X=24. Thus 
E(P) has a trivial canonical bundle and is a minimal K3-surface. The 
affine equation g(y) = yi + y~ + y~ + 1. This corresponds to (2) of Theorem 
(4.2). 

Case (I-vi). a=(3, 3, 3, 3), (d=3). 

Then p=t(1, 1, 1, 1), a=(P, Po, PI' P2), K= - C(P3), X=9 and g(y) 
= yi + y~ + y~ + 1. E(P) is a rational surface which is isomorphic to the 
projective cubic surface {X~+ . .. +X~=O} in P 3. This corresponds to 
(3) of Theorem (4.1). 

Case (I-vii). a=(4, 4, 4, 4), (d=4). 

Then P=t(l, 1, 1, 1), a=(P, Po, P" P2), K=O, X=24 and g(y)= 
yt+ yi+ y:+ 1. This is a well known K3-surface. This corresponds to 
(1) of Theorem (4.2). 

II. H=1. 
We assume that rol *1 and rij= 1 for other i and j. p=t(roro" rlro" 

r2 , r3) in general. Thus a=(P, Po, P" R) and R=P2 if r3= 1. 

(11-1) Assume that J=O, i.e. ri= 1 for any i. 
Then p=t(rol , rol , 1, 1), a=(P, Po, P" R 2), and n2=O,n3=(d-2)rol-l. 

At t= 1, we have by (5.2) 

This is the case if and only if 

(II-i) d= 1, i.e. a=(1, 1, rOI' rol) or 
(II-ii) d=2, i.e. a=(2, 2, 2rol ' 2rol) or 
(II-iii) d= 3, r OI = 2, i.e. a= (3, 3, 6, 6). 

We will study (II-i) later. 

Case (II-ii). Let a=(2, 2, 2r, 2r) with r> 1. 

Then rol=r, p=t(r, r, 1, 1) and a=(P, Po, PI' P2) and 1)23= 1. Namely 
T~3=(P2+P3+(r-l)P)/r. K= -2C(P3)- C(n3). Thus E(P) is rational 
by Lemma (4.22) and X=4+2r by Lemma (4.5). g(y)=y~+y;+y~r + 1 
by (3.15). The correspondence is (7) of Theorem (4.1). 
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Case (II-iii). Let a=(3, 3, 6, 6). 

Then r01 =2, P=t(2, 2,1,1) and a=(P, Po, PI' P2) and )./2s=l, i.e. 
Tis = (P2+Ps+P)/2. K=O and X=24. Thus E(P) is a minimal K3-
surface. g(y) = J1 + y~ + y~ + 1. This corresponds to (3) of Theorem 
(4.2). 

(11-2) Assume that H = 1 and J = 1. 
By a change of coordinates if necessary, we have two possibilities. 

In any case, p=t(rOrOl' r01 ' r2, 1) and a=(P, Po, P lo PJ. Thus n2=0 
and nS=drOr2rOl-(ro+l)rOl-r2-1. We have from (5.2) that 

(5.6) 

Case (II-2-a). Assume that ro> I and r,= I (i =i= 0). 

Then 

nS-r2=drOrOl-(rO+ l)rol-3=rOl{(d-l)ro-I}-3<0 

if and only if 
(II-iv) d= 1, i.e. a=(I, ro, rOrOl' rOr01) or 
(II-v) d=2 and ro=rol=2, i.e. a=(2, 4,8,8). 

Case (II-2-fi). Assume that r2> I and r, (i=i=2). 
Then we have by (5.6) that 

and nS-r2<0 if and only if 
(II-vi) d= 1 and r2=2, i.e. a=(2, 2, r01 ' 2r01 ) where r01 is odd:and r01 > 1 

or 
(II-vii) d= 1 and r01 =2, i.e. a=(r2, r2, 2, 2r2) where r2 is odd and r2> I 

or 
(II-viii) d= 1, r2=3, r01 =4, i.e. a=(3, 3,4,12) or 
(II-ix) d=l, r2=3, r01 =5, i.e. a=(3, 3, 5,15) or 
(II-x) d= 1, r2=4, r01 =3, i.e. a=(4, 4, 3,12) or 
(II-xi) d=l, r2=5, r01 =3, i.e. a=(5, 5, 3,15). 
(Note that g.c.d.(r2, r 01) = 1 by Proposition (3.3).) 

Now we study further details about the above exceptional cases. 

Case (II-i, iv). Assume that a=(I, r, rs, rs) where s> 1. 
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Then r01 =s, P=t(rs,s, 1, 1), n2 =0 and n3=-(s+2). ).123=1. In 
fact, T~3=(P2+P3+(s-1)P)/s and K= -(s+2)C(P3)-2C(T~3)' There­
fore E(P) is rational by Lemma (4.22) and X=4 by Lemma (4.5). C(P3)2 
=0 and C(n3)2= -s by Lemma (4.4). We assert that E(P) is minimal. 
In fact, for any irreducible curve C such that C *- C(P3), C(T~3)' we have 
C·K=O or ~ -2 by the above expression of K. Thus by the genus 
formula (p. 505, [6]), C cannot be an exceptional curve of the first kind. 
By the classification of the minimal rational surface, E(P) is isomorphic 
to Ss. g(Y)=Yl+Y;+Y;'+l. 

This corresponds to (6) of Theorem (4.1). 

Case (II-v). Assume that a=(2, 4, 8, 8), (d=rO=rOl=2). 

Then P='(4, 2,1,1) and a=(P, Po, PI' P2). ).123= 1, i.e. T~3= 
(P2+P3+P)/2. K=O and X=24. Thus E(P) is a minimal K3-surface. 
g(Y)=Yi+Y~+Y~+1. E(P) corresponds to (5) Theorem (4.2). 

Case (II-vi). Assume that a=(2, 2, r, 2r) where r is an odd integer such 
that r> 1. 

Then r01 =r, p=t(r, r, 2,1), a=(P, Po, PI' P2), n2=0 and n3= -3. 
Thus K<O and E(P) is rational by Lemma (4.22). ).123=2. Namely T~3 
(P3+2P2+(r-1)P)/r and T~3=(T~3+P3)/2. K= -3C(P3)-2C(T~3)­
C(n3) and X=6+r. g(Y)=Yi+Y~+Y;+l. 

This corresponds to (8) of Theorem (4.1). 

Case (II-vii). Assume that a= (r, r, 2, 2r) and r> 1, odd. 

Then r01 =2, P=t(2, 2, r, 1), a=(P, Po, PI> P2) and n2=0 and n3= 
r-5. ).123= 1. Namely T~3=(P3+P2+P)/2 and we have 

Note that K 2=(r-5Y/2 by Lemma (4.4) and X=r2-r+4, If r=3, a= 
(3, 3, 2, 6) and K = - 2C(P3) - C(T~3)' Thus E(P) is a rational surface 
which corresponds to (9) of Theorem (4.1). If r=5, a=(5, 5, 2,10) and 
K = O. This case corresponds to the K3-surface corresponding to (6) of 
Theorem (4.2). Suppose that r>5. Then E(P) is minimal by Lemma 
(4.23) andpg =(r2 -4r+ 11)/8-1 ~3. In any case, g(Y)=yI +Y; +Y;+ 1. 

Case (II-viii). Let a=(3, 3, 4,12), (rol=4, r2=3). 
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1 
(P3+3P2+3P)/4 and 4/3=2--- and X=24. g(y)=y~+y~+yi+1. 

2-1/2 
E(P) is a K3-surface corresponding to (7) of Theorem (4.2). 

Case (II-ix). Let a=(3, 3, 5,15), (r2=3, rOI=5). 

Then P=t(5, 5, 3,1), a=(P, Po, PI' P2) and n2=0, n3=1. ).)23=2, i.e. 
n3=(P3+3P2+4P)/5 and 5/3=2-1/3. X=25 and K=C(P3). As 
C(P3)2= -1 and C(P3) is a rational curve by Lemma (4.4), we can blow 
down C(P3) and let M =E(P)/C(P3). Our two-form (j) induces a nowhere 
vanishing two form on M. Thus M and E(P) are K3-surfaces. g(y)= 
yi+ y~+ y~+ 1. 

The correspondence is (8) of Theorem (4.2). 

Case (II-x). Let a=(4, 4, 3,12), (r3=4, 1"01=3). 

Then P= t(3, 3,4, 1), a=(P, Po, PI' P2), n2=0, n3= 1 and ).)23= 1. 
(n3=(P3+P2+2P)/3.) K=C(P3) and X=25. As C(P3) is an exceptional 
curve of the first kind by Lemma (4.4), we get a minimal K3-surface by 
blowing down C(P3). g(y)=yi+ y~+ y~+ 1. This corresponds to (9) of 
Theorem (4.2). 

Case (II-xi). Let a=(5, 5, 3,15), (r2=5,1"01=3). 

P=t(3,3,5,1), a=(P, PO, PI' P2) and n3=3 and ).)23=2. Namely 
n3=(P3+2P2+2P)/3 and 3/2=2-1/2. K= 3C(P3) + 2C(T;3) + C(T~3). 
X=45, C(P3)2= -3 and E(P) is minimal by Lemma (4.23) (p g =3). This 
completes the case of H= 1 and J= 1. 

(11-3) H=landJ=2, (rOI > 1). 

We may assume that 

(5.7) 

There are three possibilties up to the ordering of {ail: (a)l"o>rl> 1 or 
(p)ro, r2> 1 or (r)r2>r3> 1. 

Case (II-3-a). ro>rl> 1. 

Then P= t(I"OrOH rlrol, 1, 1), a= (P, Po, PI' P2), n2= 0, n3= drol"ll"ol­
(ro+ TI)rOl -2. By (5.2), n3-1 = roldI"01"1-ro-I"I)-3 <0 if and only if 
(II-xii) d= 1,1"0=3, I"I=rol=2, i.e. a=(2, 3,12,12). 

Then P=t(6,4, 1, 1), a=(P,PO'PI,P2), K=O, ).)23=1 and X=24. 
Thus E(P) is a minimal K3-surface corresponding to (4) of Theorem (4.2). 
g(y) = yi+ y~+ y~2+ 1. 
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Case (II-3-,B) ro, r2> 1. 

Thus n3 - r2 is a monotone increasing function for each d~ 1, ro, r2, r01 > 1. 
If d> 1, we have 

which is a contradiction to (5.2). Thus d= 1. If rOl~3, 

as g.c.d. (ro' r2)= 1. Thus d= 1 and ro1 =2 and n3-r2=2(ro-1)(r2-1)-5. 
This is negative if and only if (II-xiii) d= 1, ro=rol=2 and r2=3, i.e. 
a=(3. 6,4, 12). 

Then P=t(4, 2, 3,1), a=(P, Po, PH P2), ).123= 1 and X=34 and K= 
2C(P3) + C(n3). (n3=(p2+P3+P)/2.) A~ C(P3) has a positive genus 
by Lemma (4.4), E(P) is minimal and not a K3-surface. 

Case (II-3-r), r2>r3> 1. 

Then a=(dr2r3, dr2r3, dr3r01' dr2r01) and P= t(rOl' rOj ' r2, r3). By Lemma 
(4.4), C(Pi) (/=2, 3) is not rational. By (5.3), we can estimate 

r3(n3-(t-l)r2)~dr2r3rol-2rol-r2r3-r3~6, 

(d= 1, r01 =2, r2=3, r3=5). 

Therefore by Lemma (4.21) and Lemma (4.23), Pg~ 1 and E(P) is not a 
K3-surface. 

(11-4) H= 1 and J~3. 

We may assume that rO"?:rl and r2~r3. By (5.3), we have 

3 

(5.8) r3(n3-tr2)~drOI n ri-(rO+rl)rOI-2r2r3-r3. 
i=O 

Assume that r3= 1. Then ri> 1 for i=O, 1,2. As the right side of (5.8) 
is a monotone increasing function of each variable, by a rough estimation 
we get that 

n3-tr2> 16-8-4-1 =3 
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which is a contradiction to (5.2). Assume that r3> 1. Then only r1 can 
be 1 as J~3. By substituting r1= 1 in (5.8), we get that r3(ns-r2»16 
-6-8-2=0. This is a contradiction to (5.2). This completes the 
proof of Theorem (4.1) and Theorem (4.2) in the case that H = 1. 

m. H=2. 

There are two possibilities. 
(III-A) rol , r02> 1 and r£j= 1 otherwise. 
(III-B) rOlo r 23> 1 and r iJ = 1 otherwise. 

em-A) H=2 and rol> 1 and r02> 1. The following are exceptional 
cases. 
(III-i) 
(III-ii) 
(III-iii) 
(Ill-iv) 
(III-v) 
(III-vi) 
(III-vii) 

a= (1, rOr02' rOrOl' rOrOlr02)· 
a=(2, 4, 6,12) (d=2, rol=3, r02=2). 
rol=2, i.e. a=(2, r02' 4, 4r02) or 
rol=3, r02 =5, i.e. a=(2, 5, 6,30) or 
r01 =4, r02=3, i.e. a =(2, 3, 8,24) or 
r01 =5, r02=3, i.e. a=(2, 3,10,30). 
rl=3, r01 =3 and r02 =2, i.e. a=(3, 2, 9,18). 

(III-i) corresponds to (10) of Theorem (4.1). (Ill-ii) corresponds to 
(10) of Theorem (4.2). 

We study (III-iii). Assume that a=(2, r, 4, 4r) with r odd> 1. The 
case of r=3 corresponds to (12) of Theorem (4.1). The case of r=5 
corresponds to (12) of Theorem (4.2). The case of r = 7 corresponds to 
(13) of Theorem (4.2). Assume that r>9. Then n3-4>0. As (/) and 
CPu(/) are holomorphic two-forms by Lemma (4.17), pg >2. 

(III-iv) corresponds to (14) of Theorem (4.2). (III-v) corresponds to 
(11) of Theorem (4.2). (III-vi) corresponds to (15) of Theorem (4.2). 
(III -vii) corresponds to (16) of Theorem (4.2). 

Case (III-B). Assume that H=2 and rOI> r23> 1. 

The possible exceptional cases are 
(III-viii) a=(r23, r23 , rOI> r01) (d= 1, ri= 1) or 
(Ill-ix) d=l, ro=rol=2, i.e. a=(r23, 2r23, 4, 4) or 
(III-x) d=l, ro=2, rol =3, r23 =5, i.e. a=(5, 10,6,6) or 
(III-xi) d=l, ro=2, r01 =4, r23 =3, i.e. a=(3, 6, 8, 8) or 
(III-xii) d=l, ro=r01 =3, r23 =2, i.e. a=(2, 6, 9, 9). 
(III-xiii) d= 1, ro=2, rol =5 r23 =3, i.e. a=(3. 6,10,10). 

(III-viii) corresponds to (11) of Theorem (4.1). (The rationality is 
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immediate from the affine equation: g(y) = y;23Y2 + Y2 + y;01 + 1 = 0.) 
(III-x), (III-xi), (III-xii) and (III-Xiii) are cancelled as P g>2 by calculation. 
For (III-ix), we have that pg =(r23 -1)/2. Thus the case of r23 =3 cor­
responds to (17) of Theorem (4.2). 

(IV) H=3. 

There are three possibilities. 
(A) rol , r02' r03> 1. 
(B) rOI' r12, r02> 1. 
(C) rOI' r02' r13 > 1. 

Case (A) contains no exceptional case. 

Case (IV-B). Assume that H=3 and rol , r12 , r02> 1. 

The exceptional cases are: 
(IV-B-i) d=l, r02 =2, rI2 =3, r01 =5, i.e. a=(3, 2,5,30) or 
(IV-B-ii) d=l, r02 =2, rI2 =3, rol =7, i.e. a=(3, 2, 7, 42) or 
(IV-B-iii) d=l, r02 =2, rI2 =3, r ol =l1, i.e. a=(3, 2,11,66). 

The case (IV-B-i) corresponds to (13) of Theorem (4.1). The Case 
(IV-B-ii) corresponds to (18) of Theorem (4.2). The case (IV-B-iii) cor­
responds to (19) of Theorem (4.2). 

Case (IV-C). Assume that rOI' r02' r13> 1. This case contains the following 
exceptional cases. 
(IV-C-i) rol =3 and rI3 =2, i.e. a=(2, r02' 6, 3r02) or 
(IV-C-ii) rol =5, r13 =2 and r02 =3, i.e. a=(2, 3,10,15) or 
(IV-C-iii) '01=7, r02 =3 and r I3 =2, i.e. a=(2, 3, 14,21). 
(IV-C-iv) rol =4, r13 =3 and r02 =5, i.e. a=(3, 5,12,20) or 
(IV-C-v) rol =4, '13=3 and '02=7, i.e. a=(3, 5,12,28). 
(IV-C-vi) rol =5, r13 =3 and r02 =4, i.e. a=(3, 4,15,20). 

The Case (IV -C-i) with r02 = 5 corresponds to (22) of Theorem (4.2). 
If r02 =1=5, p g > 1. The Case (lV-C-ii) corresponds to (20) of Theorem 
(4.2). The Case (IV-C-iii) corresponds to (21) of Theorem (4.2). The 
Cases (IV-C-iv, v, vi) are eliminated aspg >1. 

If H~4, there is no exceptional cases. This completes th~ proof of 
Theorem (4.1) and Theorem (4.2). 
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