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Regular Holonomic D-modules and Distributions
on Complex Manifolds

Masaki Kashiwara

§0. Introduction

Let (X, 0y) be a complex manifold and 2, the sheaf of differential
operators on X. The de Rham functor 9%, =R Hom, (Ox, %) gives an
equivalence of the category RH(Z,) of regular holonomic Z;-modules
and the category Perv(Cy) of perverse sheaves of C-vector spaces on X

To a perverse sheaf F* on X we can associate its complex conjugate
F°. Then it is easily checked that F" is also perverse. We shall discuss
here how to construct the corresponding functor ¢: RH(2)—RH(25)
given by DRy (M) = DR (M°).

The solution to this problem is given as follows. Let X be the
complex conjugate of X and .# the complex conjugate of .# (See §1).
Denoting by @by, the sheaf of distribution on the underlying real manifold
Xg of X, #° is given by

9—043”7(93’ ® @AXR’ '/—Z)
ox

where n=dim X and 2% denotes the sheaf of the highest degree differential
forms on X.
I would like to thank D. Barlet for helpful conversation.

§ 1. The complex conjugate

Let X be the complex conjugate of a complex manifold X. Hence
(X, 0y) is isomorphic to (X, @) as an R-ringed space but the isomorphism
—: 0y—0y is C-anti-linear, i.e. af=af for ae C and f ¢ 0.

Let 2, and P denote the sheaves of differential operators on X
and X, respectively. Then they are isomorphic as a sheaf of R-rings.
This isomorphism is also denoted by —. Through this isomorphism, we
can associate the 2y module .Z to a @y-module .#. We call it the
complex conjugate of .#. The Py-module .# is isomorphic to .# as a
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sheaf on X and if we denote this isomorphism by —: .#->.#Z then we
have pu=pu for pe 9, and u e .#. By this terminology, we have 0,=
Ox and @A’: Dx.

We can see easily that

(1.1) DRAT) = DR A M)

in the derived category of complexes of sheaves of C-vector spaces on X.

§ 2. Distribution solutions

Let us denote by X the underlying real analytic manifold of a com-
plex manifold X. Then, by the diagonal map Xp=—>X X X, we can regard
XXX as the complexification of X, Hence we have 9y, =%, xlxp
Ay g=0xyxlzp Let Dby, denote the sheaf of distributions on X in
Schwartz’s sense. Then Zby , is a D -module, and, in particular, this is
endowed with the structure of a left (25, 95)-bi-module.

Let us denote by Mod (2;) the category of left Zy-modules, and by
D(9D,) its derived category. We denote by D2.(2;) the full subcategory
of D(Z;) consisting of bounded complexes with regular holonomic
cohomology groups. We denote by RH(Z,) the category of regular
holonomic 9 x-modules.

Theorem 1. (i) Cx(x)=RHomg, (%, Dby,) is the functor from
def

DL(Dy) into D% (D5)°. Here o denotes the opposite category.
(ii) Cy is an equivalence of categories and Cy o Cy=id.
(i) DRzo Cy=Foly, where

yo[X(*)—:RJfomgX(*, @X)ER%OWIC(@%X(*), Cy).

The statement (iii) is easily derived from Dolbeaut’s lemma for
distributions

2.1) DR Dby )= 0.

The property (ii) follows from (1), (iii) and the solution to Riemann-
Hilbert problem (K], [M]) for regular holonomic modules. In fact, in
order to see (ii), it is enough to check

DR(Cy o CX(‘//{)) = -9%2((-//{)
The left-hand-side is isomorphic to

Folz(Cx(M))=R Hom DR(Cx(M)), Cx) =R H ome(FLolx(M), Cx)
=DRA(M).
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The proof of the assertion (i) is given in Sections 4-5.

Remark 2.1.  Similarly we have 23 ®, ; Co(A)= R omg (M, Bxp).
Here 2% denotes the sheaf of differential operators of infinite order on X
([K-K]) and Zy, denotes the sheaf of hyperfunctions on X,. In fact,
since By, =Rl y (Ox,x)2n], n=dim X, we have

R%omgx(./ﬂ, .%XR)[ZH] = RFXR(R%OWLQX(.//{, @Xxf))[2n].

By Proposition 1.4.3 [K-K], we have R om, (M, Ox,z)=F ol (R0,
where & denotes the external tensor product. Hence Proposition 1.4.2
[K-K] implies
RT3 ((RH om( DR (M), C) D Ux)[2n]
=RA oA DR (M), Og)=RH omc,(Fol5(Cx(M)), Or)
=% ® CX(-/// )
2x

Here the last identity follows from Theorem 1.4.9 [K-K].

Theorem 2. (i) For any regular holonomic @ y-module H, we have
Extly (M, Dby )=0 for j+#0

and Cx(M)=H omgy (M, Dby ) is a regular holonomic D y-module.

(ii) DRz Cy=Foly.

(iii) Cy gives an equivalence of the categories RH(2y) and RH(2¢)°.
Here RH(2y) denotes the category of regular holonomic 9 y-modules.

Proof. By Theorem 1, if .# is a regular holonomic 24-module,
then Cy(M)=RHom, (M, Dby,) belongs to D} (Dz). In order to see
HY{(Cy(M))=0 for j+0, it is necessary and sufficient to show that
DR(Cx(M)=Folx(M) is perverse on X. Since the set of analytic
subsets of X is equal to that of X, the perversity on X is equivalent to the
perversity on X. Hence the perversity of 2%(Cyx(A4)) on X follows
from the perversity of Foly(#) on X. The other statements follow
immediately from (i) and the preceding theorem. Q.ED.

Together with (1.1), we have
Corollary 3. The functor c:
.///H%omgx(,]*, Dy )=Tovix (05K My Dby )
ox

is an automorphism of RH(Dy), which satisfies DR (M )=DR(M).
Here n=dim X and = denotes the dual system.
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§ 3. Applications

Proposition 4. Let u be a distribution on Xz. Then the following
conditions are equivalent.

() Dyu is a regular holonomic D x-module.

(3) Dxu is a regular holonomic 2 g-module.

(b) Any point of X has a neighborhood U and a coherent left (Dx|y)-
ideal ¢ such that Fu=0 on U and that (Dx|y)|.# is regular holonomic
(we say shortly that u solves locally a regular holonomic system on X).

(b) u solves locally a regular holonomic system on X.

Proof. The implication (a)=>(b), (@)=>(b) is evident. Hence it is
sufficient to show (b)=(2). Let # =9,/ ¢ be a regular holonomic Zx-
module with fu=0. Then u gives the D -linear homomorphism ¢: A +—
Dby, and hence ¢ is a section of Cy(M)=Homg (M, Dby ). Since Dgu
is isomorphic to the sub-Pz-module of Cy(.#) generated by ¢, Zzuis a
regular holonomic Zy-module. Q.E.D.

Remark 3.1. The conditions (a)~(b) for u are also equivalent to
the conditions (a) ~ (b) for the complex conjugate & of u.

Proposition 5. Let # be a regular holonomic 2 y-module and ¢ a
section of Cx(M). Then the following conditions are equivalent.

(i) ¢ is an injective sheaf homomorphism from M to Dby .

(ii) ¢ generates Cy(M) as Dg-module.

Proof. Set N'=DzpC Cy(M4). Applying the functor Cy to the

exact sequence 0—.A" i) +(A), we obtain the exact sequence 0<«-Cg(A")

<ﬁ—.//{ . The homomorphism f is given by p(): A" 3 Po—P(p(u)) € Dby,

forue M, Pe 95. Hence Ker f=Ker (p: M —Dby,). The equivalence
of Cx implies: ¢ is injective & is injective Se is surjective. Q.E.D.

Remark 3.2. If u satisfies (a) ~(b) of Proposition 4, then Cy(2yu)
=9yeu. In particular, any distribution v which satisfies Pv=0 for any
P e 9, with Pu=0, can be written locally in the form Qu with Q € D5.

Remark 3.3. The subsheaf of @b, , consisting of distributions satis-
fying (a) ~(b) of Proposition 4 is not a Dxp-module. In fact, €%, nor
1/(14-zz), does not satisfy any holomorphic linear differential equation on
C; that is, D¢ > Pr>Pe” € Dby, is injective.

Corollary 6. Any regular holonomic 9@ y-module is locally embedded
into Dby .
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In fact, for a regular holonomic Z;-module .#, Cx(#) is locally
generated by one section ([B]).

Example 34. (1) X=C, u=(z+2)". Then Qyu=2,/9,6"*"! and
Du= Dz Dz0"*".

2) X=C,u=1/z. Then Dyu=D,/P4(z0-+1) and Dyu= D/ Dy75.
Remark that du=n="'6(Re z)6(Im z).

Remark 3.5. We conjecture that Theorem 2 is still true for arbitrary
holonomic & y-modules.

Example (D. Barlet). When X=C, A4 = 24/2,4(z%3,+1), let us take
u=e"*"%_ Since u is a bounded function outside the origin, u can be
considered as a distribution on X. Then, we have

Homg (M, QAXR)EQXu=QX/93(2285~ 1).

The vanishing &xty (M, Dby,)=0 follows from the solvability of the
constant-coefficient differential operator —4,41(=2%,+1, t=1/z) on
the space of tempered distributions on C,.

§4. Proof of Theorem 1

We shall prove Theorem 1 (i) by reducing it to a simple case (Lemma
7) by using Hironaka’s desingularization theorem ([H]).

Lemma 7. Let X=C", f=x,---x, (I<n) and let # be a regular
holonomic right 9 y-module such that M4 , = and that the characteristic
variety of M is contained in the zero section outside f~'(0). Here x,
denotes the localization by f. Then we have F on5*(M, QAXR)zO for j#£n
and To2x(M, Dby ) is a regular holonomic 9 g-module.

Proof. The assertion being closed under extension of 2, -modules,
we may assume from the beginning that

4 n
MZQX/ZI(XJGJ-—ZJ)@X—;“ ZL L .@Xaj
. j= F=i+

with 2; e C\{—1, =2, ---}. We have A RL Dbyp=~M Q%L (Dbxp);
Hence this is isomorphic to the Koszul complex

@4.1) (%XR)J,T(%XR);_). o (Dh (Db ) —0
1

1L b

P,
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x;0,—4; (!
where sz{ 0= (=D

0; (j>1).

The map ¢: u—|x{- - -x}fu gives an isomorphism of (Zby.), and ¢
transforms (4.1) to the Koszul complex

4.2) (QAXR)f“—Ql—)(gl?XR)?—" . '_)(QIJXR)f'——)()
Qn
xjaj G=h
where =
| o {aj G>0).

By Dolbeaut’s lemma, its homology group is concentrated at the degree n
and the n-th homology group is isomorphic to (0y);. Here we used the
following

(4.3) (Db )y =(Dhx )7

Hence Tou3*(M, Dby ) =0 for j#=n and T oii*(M, Dby ) is isomor-
phic to (0); with the structure of Zg-module by

(44) 3]- o u=)_c‘]1."5j7€j“1fu=(3j—RJX}’)M.
Hence this is a regular holonomic Zg-module. Q.E.D.

Lemma 8. Let Y be a smooth submanifold of a complex manifold X,
H a normally crossing hypersurface of Y and M4 a regular holonomic 2 -
module satisfying

4.5) Supp A4 C Y,
(4.6) Hluy(MY=0 for any |,

4.7 ChA4CTiXUnrn'H, where Ch denotes the characteristic variety
and r is the projection from T*X to X. Then T o2*(M, Dby ») 15 a regular
holonomic D x-module for any j.

Proof. There exists a regular holonomic 9,-module 4" such that
M=N Ry, Dre__»x. We can easily show the following

Lemma 9. J09%(Dye 4, QIJXR)=Ofor
Jj#EecodimY and =Dy oy Q Dby, forj=codim Y.
oy

By this lemma, we have, denoting ¢=codim Y,
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ToZH (M, Dhy )= Dy oy @ TSN, Dy ).
2R

On the other hand, Lemma 7 implies the regular holonomicity of
T 5" (N, Dby ) and the lemma follows. Q.E.D.

§5. End of Proof of Theorem 1

We shall show the following statement (5.1) by the induction of
dim Supp A ;

(5.1) M QL, Dby € Di(Dy) for any bounded complex M of right Dy-
modules with regular holonomic cohomology groups.

Here S=Supp .4 is, by definition, the union of Supp #/(.%).

There exists a nowhere dense closed analytic subset S, of S which
satisfies the following two conditions.

(5.2) S, contains the singular locus of S.
(5.3) Ch#I(M)CTEXUrY(Sy).

The question being local, we may assume further
5.4 So=SNg%0) forag¢el(X;0).

Let us consider a distinguished triangle 4#—.#,—A" —Tin/{ . Since
Supp /TSy, N R, Dby, belongs to Di(PDy) by the hypothesis of
induction. Hence in order to see # R, Dby, € Dy(Dy), it is enough to
show A, Rz, Dby, € Di(Pyx). Hence, replacing .# with .#,, we may
assume further
(5.5 M=,

Now, by Hironaka’s desingularization theorem ([H]), there exists a
smooth manifold X’ a projective morphism f: X’—X and a non-singular
submanifold S’ of X” which satisfy the following properties:

(5.6) f gives an isomorphism from X"\ f~%(S,) onto X\S, and f(S")=S.
(5.7 S;=S8"NJf"S,) is normally crossing hypersurface of S’.

Set ¢’=¢of, and
5.9) M=f'M Q@ Dy x-

JSlax
Since (2. x:),=(2x/),.» We have
(5.9) MZMQ (D) =M.
oy .
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Lemma 8 implies .4’ QL Db 1y € D2%.(2x). Therefore its integration

9y,
L L
RE(25.50 @ (@ Fhy))
2%, X

also belongs to D(25) (Theorem 6.2.1 [K-K]).
On the other hand, we have

L L L
‘/%, gg' QAX}EZ.//Z § (gxr)y,l §<> géxk
L L L
=l & (Do) =(Dx)y & (M D by ).
and * * *
L
Dy x ® (@Z’)¢'=(9X')¢'-

Dy

Here we used (2by,), =(2b Xk)'?" Hence, we obtain

Xk

Ry (250 @ (' Bbsy))

2%, Ty
L L
=R ® @bs), )= @ RE( Dby,
Since Rf, (@b xi)e) =(Dbx ), we finally conclude

MR (D)= M B Dby, € DL(D).

Xp

This shows (5.1) and completes the proof of Theorem 1.
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