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On the Singular Subspace of a Complex-Analytic Variety 

Herwig Hauser 

§ 1. Introduction 

Theme of this paper is the following question: 

"How does a germ of a complex-analytic variety relate to its singular 
subspace?" 

The main point herein is to consider the singular locus of a variety not 
just as a set but provided with a suitable analytic structure. It thus be­
comes an in general non reduced subvariety of the initial variety, the 
singular subspace. There are several choices of analytic structures. We 
shall specify them in a moment. For each of those one can look at the 
information it contains about the variety one started with. It turns out 
that certain of them offer a precise insight into the local geometry of the 
variety around the singularity. We shall describe a number of related 
results and formulate some open questions. 

The presentation avoids technical details and concentrates on the in­
tuitive approach to the problem. Thus the article should be rather under­
stood as a conceptual overview on the situation than a detailed discussion. 
For the latter, we refer the reader to [G-H]. 

§ 2. The singular subspace of a hypersurface singularity 

Let (X, 0) denote the germ of a hypersurface in (en, 0) defined by the 
analytic equation f(x) = O. If (X, 0) is reduced, the set L of singular points 
of (X, 0) is given by the vanishing of all first order partial derivatives 
aJ, "', anf of f. Denote by j(f)=(aJ, "', anf)C{!}n the jacobian 
ideal off There are essentially four different ways to make L into an 
analytic variety: 

( I ) L(X, 0) the reduced analytic variety of local ring {!} L(X,O) = {!} n/'; j(f). 

( 2 ) M(X,O) the variety whose local ring is the Milnor algebra {!} H(X, 0) = 
(!}n/j(f)· 
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(3) Sing(X, 0) defined by (!)sing(X,O)=(!)n!(f)+j(f). 

(4) Sing*(X, 0) defined by (!)Sing*(X,o) = (!)n/(f)+m·j(f), mC(!)n the 
maximal ideal. 

Further possibilities are indicated in [G-H]. With this notation we have 
the following inclusions: 

M(X,O) C L(X, 0) C(X, 0) 
U 

Sing(X, O)cSing*(X, 0) C (X, 0) 

All four varieties have the same underlying set which equals the set L of 
singular points of (X, 0) if (X, 0) is reduced. Analytically, they are quite 
different: 

The first, L(X, 0), contains very little information about the variety 
itself, so we can disregard it relative to the questions we shall consider. 
The other three, on the contrary, provide interesting information on the 
behaviour of the variety nearby its singular locus. Note that if f is quasi­
homogeneous, f E j(f) and M(X,O) and Sing(X,O) coincide. If not, 
M(X, 0) depends on the choice off The isomorphism classes of Sing(X, 0) 
and Sing*(X,O) are analytic invariants of the variety; the local ring 
(!) n/(f) +j(f) of the first is the base space of the semi-universal deforma­
tion of (X, 0) (cf. [Ha 1] for the non isolated case), whereas the second 
(!) n/(f) + m -j(f) can be interpreted as the normal space to the orbit of f 
in (!)n under the action of the group K=(!); x Aut(Cn, 0) inducing analytic 
isomorphism on the level of defining functions. Let S(X,O) denote one 
of the last three singular subspaces of (X, 0). Then we can pose the fol­
lowing problems: 

( 1 ) Does SeX, 0) determine (X,O), i.e., does SeX, O):::::S(Y, 0) imply 
(X, O):::::(Y, 0) for any hypersurfaces (X, 0) and (Y, 0) in (C n, 0)7 

( 2) In the cases where (1) admits an affirmative answer, is there an in­
trinsic description of (X, 0) in terms of SeX, O)? 

( 3 ) Characterize the classes of varieties in (Cn, 0) which can occur as 
the singular subspace SeX, 0) of a hypersurface. 

( 4 ) Formulate and answer the analogous questions for the non hyper­
surface case. 

In this paper we shall describe answers to question (1) and (4). Question 
(2) consists in reconstructing the ideal (f) from the knowledge of the ideals 
j(f), (f) + j(f) or (f)+m- j(f). This can be done algorithmically by 
solving a system of linear equations in the unknown coefficients of the 
expansion off However, this is not what one would like to consider as 
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a valuable reconstruction of the variety (X, 0). At the moment we don't 
know of any satisfying answer to question (2) and to the probably much 
harder third one. Therefore we shall restrict ourselves to questions (1) and 
(4): 

N. Shoshitaishvili [Sh] and M. Benson [Be 2] showed independently 
that isolated hypersurface singularities which are defined by a quasihomo­
geneous (resp. homogeneous) equation are determined by their singular 
subspace Sing(X, O)=M(X, 0). Then J. Mather and S.S.-T. Yau [M-Y 2] 
proved that Sing(X, 0) as well as Sing*(X, 0) always determine the analytic 
type of an isolated hypersurface singularity. Benson constructed in his 
proof the required isomorphism more or less explicitly, whereas the other 
authors used that isolated singularities are finitely determined thus reduc­
ing the problem to finite dimensional jet-spaces. Once this is done, 
Mather's results [M] of the action of a Lie group on manifolds allow to 
prove the assertion. Note that the statement is false over the reals or a 
field of characteristic p>O, and for the space M(X,O) in the non 
quasihomogeneous case. However there are similar results by J. Scherk 
[Sch] and S.S.-T. Yau [Y2] for M(X, 0) provided one considers mM(X, 0) = 
mnfj(J) with the additional structure of a C{t}/(tn)-algebra. 

In [G-H], T. Gaffney and H. Hauser extended the results on Sing(X,O) 
and Sing*(X,O) to the case of a non isolated singularity. The answer 
obtained was somewhat surprising: Sing*(X,O) always determines the 
analytic type of (X, 0), but this is not true for Sing(X, 0), even though the 
difference between these two singular subspaces is just the finite dimen­
sional C-algebra (f)+ j(f)/(J)+m -j(f). Here is the counter-example: 
Take an element h of mn which does not belong to its jacobian ideal, 
h ~ j(h). Define a family of functions !t E m2n +h t E C, by !t(x, y, z)= 
h(x)+(i+t+z).h(y) and let (Xt' 0)c(C2n+l, 0) be the corresponding 
family of varieties. Then Sing(Xt, 0) = Sing(Xo, 0) but (Xt' O)*(Xo, 0) for 
t E C close to 0 (cf. also the example in [Te 1] p. 271). Note that the ex­
ample of a family of four lines through 0 with varying crossratio does not 
work, as the analytic type of Sing(X, x) varies along the singular locus. 
One might visualize the phenomena of the counter-example as follows: 
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This leads to the following 

Definition. A variety (X, 0) is said to have isolated singularity type 
(I.S.T.) at 0, if Sing(X, x) * Sing(X, 0) for all x E X close to O. 

We then have the 

Theorem. (cf. [G-R]). Let (X, 0) and (Y, 0) be two hypersurfaces in 
(en,O). Then (X, O):::::(Y, 0) if and only if Sing*(X, O):::::Sing*(Y, 0) for 
arbitrary (X, 0) and (Y, 0) and (X, O):::::(Y, 0) if and only if Sing(X, 0)::::: 
Sing(Y, 0) for (X, 0) and (Y, 0) of isolated singularity type. 

Examples of I.S.T. (1) Isolated singularities. 
( 2 ) The Whitney umbrella, the product of two cusps, or more 

generally, varieties whose singular subspace Sing(X,O) has an isolated 
singularity at O. 

( 3) Hypersurfaces given by homogeneous equations. It is an open 
question whether all quasihomogeneous singularities are I.S.T. Problem: 
Describe all singularities which are not of isolated singularity type. 

Outline of proof If Sing(X, 0)::::: Singe Y, 0), a change of coordinates 
in (en, 0) allows us to assume Sing(X, O)=Sing(Y,O). Define a deforma­
tion (Xt' 0) from (X, 0) to (Y, 0) via ft = (1- t). f + t . g, tEe, for equations 
fand g of (X, 0) and (Y, 0). It can be shown that Sing(Xt, 0) = Sing(Xo, 0) 
for all tEe except a finite number. Let Tee be the complement of 
those. Then T is connected (this fails over R or char p >0) and therefore 
the assertion will follow if we show the triviality of the local family 
«Xt' O)tE(T,to) for any point to in T. Using a standard result of deforma­
tion theory, the triviality of this family is equivalent to saying that aJt E 

(ft)+m.·j(ft), the membership depending analytically on t. This holds in 
our case if we start off with Sing*(X, 0), thus proving the first part of the 
theorem. For Sing(X,O), the constancy of Sing(Xt, 0) only implies that 
Gtft E (ft)+.i(ft), which allows thetj:ivializingisomorphism ifJt to remove 
the origin, thus proving (Xto,O):::::(Xt, ifJt(O» instead of (Xto , O):::::(Xt' 0). 
Now, if (X, 0) and (Y, 0) are supposed to be of isolated singularity type, 
it follows that the fibers (Xt' 0) are of isolated singularity type too. Using 
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that (Xto' 0) :::::(Xt' \MO» implies Sing(Xt, O):::::Sing(Xt> «ptCO» for all t E (T, to) 
and that «ptCO)-+O for t-+to one can then show that «Pt must fix the origin, 
«Pt(O) =0, and therefore (Xto' 0) :::::(Xt> 0) for all to E T and t E (T, to), whence 
the assertion. 

Remark. The basis of the proof is to construct the right deformation 
(Xt' 0) joining (X, 0) and (Y, 0). Choosing an arbitrary trivial deforma­
tion (Zt' 0) joining Sing(X, 0) and Sing(Y, 0) is not sufficient, as one has to 
find a family of varieties (Xt' 0) such that Sing(Xt, 0) = (Zt' 0) and joining 
(X, 0) and (Y, 0). This problem is a very special case of question (2) of 
the beginning of this section. 

§ 3. The non hypersurface case 

There is a certain ambiguity on what should be thought of as the 
singular subspace of a variety (X, 0) in (Cn,O) defined by p functions 
It, ... ,fp. Set-theoretically, it is given for reduced (X, 0) as the set of 
points where the jacobian matrix af = (aih) of the vectorf = (It, ... ,fp) E 

@~ does not have maximal rank k. One possibility therefore is the analytic 
structure Z(X, 0) defined by the ideal of @n which is generated by the h's 
and all k X k-minors of af, say I + Jk(f). We have the following result of 
A. Dimca: 

Theorem ([D 1]). The analytic type of any zero-dimensional or homo­
geneous complete intersection (X, 0) is determined by its singular subspace 
Z(X, 0). 

The proof consists in constructing explicitly the isomorphism between 
two varieties (X, 0) and (Y, 0) with Z(X, O):::::Z(Y, 0). One might wonder 
whether the proof of the theorem of the last section could not be used to 
prove the above result in more generality. The serious problem one en­
counters is to prove for the constructed deformation (Xt' 0) that Z(Xt' 0) 
is a trivial family (cf. the proof of the analogous statement for functions 
and A-equivalence, [Ha 2]). However, one can prove a local version: 

Theorem. Let «Xt' O)tE (T,O» be an analytic family of arbitrary varie­
ties in (Cn , 0) and Z*(Xt, 0) be defined by the ideal It+m·Jk(ft) (with the 
obvious notation). Then the family «Xt' O)tE(T,O» is trivial if and only if 
(Z*(Xt' O)tE(T,O» is trivial. 

We would like to mention also a related result of K. Wirthmiiller 
[Wi] saying that any complete intersection with isolated singularity is deter­
mined up to analytic isomorphism by the discriminant of its semi-universal 
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deformation (cf. also [GaD. One has to exclude the hypersurface case, 
where a slightly different characterization holds. 

There is a second possibility of defining the singular subspace of an 
arbitrary variety. For this purpose we shall introduce the concept of a 
generalized analytic variety: 

§ 4. The category G of generalized analytic varieties 

We propose an extension of the category of germs of analytic varieties 
to germs of varieties whose analytic structure is given by an analytic mod­
ule instead of a local ring. As a justification we mention that many 
analytic sets are defined by rank conditions on some matrices (e.g. singular 
or critical loci, direct images) and usually provided with the analytic 
structure of the corresponding Fitting ideal. We shall take instead the 
module generated by the rows (or columns) of the matrix, thus preserving 
more information by an object easier to work with. The concept we sug­
gest here is a slightly modified version of the outline given in lG-H]. We 
hope to provide soon a detailed description and study of generalized 
analytic varieties. Here we shall just present the basic definitions, which 
will enable us to formulate the extension of the theorem of the second 
section. 

Definition. Set A=(Dn' For a finitely generated A-module M we 
define the core M of M as the A-module M for which there exists a free 
A-module L of maximal dimension such that M is isomorphic to M(f;L. 
The ring A being local, the core M of M is well defined, i.e. unique up to 
A-isomorphism ([Sw], Prop. 11.7.). We say M is bare, if it equals its 
score, say, has no free factors. 

A basic analytic module is the equivalence class of a finitely 
generated A-module, where two modules are equivalent if their cores are 
isomorphic as A-modules. Any basic analytic module can be represented 
by a bare module. This will be done tacitely in the sequel. 

Let M = Ml X ... X Ms be a cartesian product of basic analytic 

modules with presentations APi~Ami-rMi-rO. We may assume Mi 
bare andpi=p, mi=m for all i. We say M is retracted, if no Fi can be 
written 

for somej=Fi and homomorphisms P: Am-rAm and Q: AP-rAP. Roughly 
speaking, M is retracted if for all i and j no M j is a quotient module of 
Mi' A cartesian product N = Nl X ... X Nt of basic analytic modules 
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is a retraction of M, if N is retracted and for presentations AP~Am~ 
Nj~O (Nj bare) there exist homomorphisms 

Pi' R j : Am----+Am and Qi' Sj: AP----+AP (all i andj) 

such that 

We call N the retraction of M. 
An analytic module is the equivalence class of a cartesian product 

M = Ml X ... X Ms of basic analytic modules, where M - M' if their 
retractions coincide. It is thus the equivalence class of a couple consisting 
of a module M and a product decomposition of it. 

In particular we have: 

Am/I ~Am XAm/IXI :::::(Am/J)2, 

AmXAm/IXJ~Am/I 

AmXAm/IXJ -I-Am/I+J 

if JeI, 

in general, 

A morphism f: M ~ M' of analytic modules is the equivalence class of an 
A-linear map J: M ~M' of A-modules representing M and M'. Note 
that this passage to the equivalence class of a map is not functorial W.r.t. 
composition. 

Definition. A basic generalized analytic variety is a couple (X, 0) = 
«X, 0), (9x,o) where (9x,o is a basic analytic module over (9n and (X, 0)= 
«Xk' O)kEN) is a collection of subsets of (en, 0) defined by 

m-k+l 

(Xk' O)={x E (en, 0), rkF(x):=;:m-k}={x E (en, 0), 1\ F(x)=O} 

for some presentation F of a representative M = (9;;:/I of (9x,o: 

The sets (Xk' 0) do not depend on the choice of the presentation F and the 
representative M of (9x,o' We have the filtration: 

A generalized analytic variety is a finite interse~tion of simple ones, 
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more precisely, a couple (X, 0) = «X, 0), i!Jx,o) where i!Jx,o = i!JxCI),OX ••• X 

i!Jxcs),O is an analytic module over i!Jno (X(i),O) basic, and (X,O) the 
collection of all possible intersections of the underlying sets of the (X(i), 0). 

A morphism h: (X, O)---+(Y, 0) of generalized analytic varieties is a 
composed map h = LoifJ* : i!Jy.o---+i!J x,o where ifJ: (Cn, 0)---+( C n, 0) is an analytic 
map-germ and L: ifJ*(i!JY,o)---+i!Jx,o a homomorphism of analytic modules. 
Note that if L is injective, h induces well defined maps on the collection 
of underlying sets. 

A generalized analytic variety (Y, 0) is a subvariety of (X, 0), if for 
suitable choices of representatives, i!Jy,o is a quotient module of i!Jx,o' 

We now come back to the notion of the singular subspace of a clas­
sical analytic variety: 

Definition. Let (X, O)c(Cn , 0) be an analytic variety defined by p 
functions};, .. . ,fp in i!Jn and let i!Jx,o=i!Jn/I. Let f =(};, ... ,fp) e i!J~ 
denote the vector of components.f: and j (f) C i!J~ the submodule generated 
by its partial derivatives ad, .. " ani e i!J~. We define Sing (X, 0) (resp. 
Sing* (X, 0» as the generalized analytic variety of analytic module 
i!JsingcX,O) =i!J~/I· i!J~+j(f) (resp. i!Jsing*cx,o) =i!J~/I· i!J~+m )(f). Then we have 

Sing (X, O)cSing* (X, O)c(X, 0). 

Theorem. ([G-RD. Let (X, 0) and (Y, 0) be (classical) analytic varie­
ties in (Cn, 0). Then (X, O)~(Y, 0) if and only ifSing* (X, O)~Sing* (Y, 0) 
in general and (X, O)~(Y, 0) if and only if Sing (X, O)~Sing(Y, 0) for (X, 0) 
and (Y, 0) of isolated singularity type. 

The proof is a straightforward extension of the corresponding result 
for hypersurfaces. 

Certainly we could have just considered modules and omitted the 
construction of generalized analytic varieties. We want to conclude by a 
simple example visualizing aside of the above theorem that generalized 
analytic varieties can be a useful tool in the study of singularities: 

Example. Let (X, O)c(C" 0) be the hypersurface of equation x2y_ 
Z2W =0, i.e., the variety whose hyperplane sections with y=const:;i=O and 
w=const*O are Whitney umbrellas. Then Sing (X, 0) is defined by the 
ideal (r, xy, Z2, zw)Ci!J. and we can consider the generalized analytic 
variety (Z, 0) = Sing (Sing (X, 0», the singular subspace of the singular 
subspace of (X, 0). As the collection of underlying sets we obtain: 

(Z3' O)=(C" 0) (Z2' 0)= yw-plane (Zb 0) = (y-axis) U (w-axis) 

(Zo'O)=O, 



Singll-iar Subspace 133 

filtration which induces the Whitney stratification of (X, 0). Note that, 
by the theorem, (Z,O) determines Sing (X, 0) and hence (X, 0). 

[Be 1] 

[Be 2] 

[Di 1] 

[Di 2] 

[Ga] 

[G-H] 

[Gr] 

[Ha 1] 

[Ha 2] 

[M] 
[Ma 1] 

[Ma 2] 

[M-Y 1] 

[M-Y 2] 

[Ri] 

[Sa] 

[Sch] 

[Sh] 

[Sw] 

[Te 1] 
[Te 2] 

[Vol 

[Wi] 

Bibliography 

M. Benson, Analytic equivalence of isolated hypersurface singularities 
defined by homogeneous polynomials, Thesis, Harvard University 
(1981). 

--, Analytic equivalence of isolated hypersurface singularities defined 
by homogeneous polynomials, Proc. Symp. Pure Math., Amer. Math. 
Soc., 40 (1983). 

A. Dimca, Are the isolated singularities of complete intersections de­
termined by their singular subspaces?, preprint No. 48 (1983), Increst, 
Bucarest. 

--, Function germs defined on isolated hypersurface singularities, to 
appear in Compositio Math. 

T. Gaffney, Properties of finitely determined germs, Thesis, Brandeis 
University (1975). 

T. Gaffney, H. Hauser, Characterizing singularities of varieties and mapp­
ings, to appear in Invent. Math. 

G. M. Greuel, Die Zahl der Spitzen und die Jacobi-Algebra einer iso­
lierten HyperfUichensingularitat, Manuscripta Math., 21 (1977). 

H. Hauser, La construction de la deformation semi-universelle d'un 
germe de variete analytique complexe, Ann. Ecole Norm. Sup. Paris, 
4" serie, t. 18 (1985). 

--, Characterizing complex-analytic functions, Proc. Int. Conf. on 
Alg. Geometry, La Rabida (1984), to appear. 

J. Mather, Stability of Coo-mappings III, Publ. IHES, 35 (1968). 
B. Martin, A generalized Mather-Yau equivalence, preprint No. 60 

(1983), Humboldt Universitat Berlin. 
--, Singularitaten sind bestimmt durch ihre infinitesimalen Familien, 

preprint No. 75 (1984), Humboldt Universitat Berlin. 
I. Mather, S. S.-T. Yau, Criterion for biholomorphic equivalence of 

isolated hypersurface singularities, Proc. Nat. Acad. Sci. U.S.A., 78 
(1981). 

--, Classification of isolated hyper surface singularities by their moduli­
algebra, Invent. Math., 69 (1982). 

J. Risler, Sur l'ideal jacobien d'une courbe plane, Bull. Soc. Math. 
France, 79 (1971). 

K. Saito, Quasihomogene isolierte Singularitaten, Invent. Math., 14 
(1971). 

J. Scherk, A propos d'un theoreme de Mather et Yau, C. R. Acad. Sci. 
France, 296 (1983). 

N. Shoshitaishvili, Functions with isomorphic Jacobian ideals, Func­
tional Anal. Appl., 10 (1976). 

R. G. Swan, Algebraic K-theory, Lecture Note in Math., Springer­
Verlag, 76 (1968). 

B. Teissier, Varietes Polaires I, Invent. Math., 40 (1977). 
--, The hunting of invariants in the geometry of discriminants, Proc. 

Real and Complex Singularities, Oslo (1976). 
H. D. Vohmann, Einige Eigenschaften der kritischen Menge und der 

Diskriminante verseller Deformationen vollstandiger Durchschniltte 
mit isolierter Singularitat, Bonner mathematische Schriften, 70 (1974). 

K. Wirthmiiller, Singularities determined by their discriminant, Math. 
Ann., 252 (1980). 



134 

[Y 1] 

[Y 2] 

H. Hauser 

S. S.-T. Yau, Milnor algebras and equivalence relations among holo­
morphic functions, Bull. Amer. Math. Soc., 9 (1983). 

--, Criterions for right-left equivalence and right equivalence of 
holomorphic functions with isolated critical points, preprint (1983). 

Institut fur Mathematik 
Universitiit Innsbruck 
6020, Austria 




