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Introduction to the L2-Cohomology of Arithmetic 
Quotients of Bounded Symmetric Domains 

w. Casselman 

Let 

G=the group of real points on a semi-simple group G defined over Q 
r=a neat arithmetic subgroup of G (see b~ginning of § 3) 
K = a maximal compact subgroup of G 
x=the symmetric space G/K, assigned a G-invariant Riemannian metric 

and assumed to possess a G-invariant complex structure. 

It has been conjectured [29] that the V-cohomology of the quotient 
V = r\x is naturally isomorphic to the middle intersection cohomology 
[22] of the compactification V* of V constructed by Satake [26] in certain 
cases and by Baily and Borel [2] in general. I recall that V* is a projective, 
normal, but in general highly singular algebraic variety. This conjecture 
was verified by Zucker himself [29] for a few cases where G has rational 
rank one, by Borel for all remaining groups of rational rank one (an an­
nouncement appears in [4]), and by Zucker [30] for a few cases of rational 
rank two. Very recently Borel and I working together have concluded the 
proof for all rational rank two groups (an announcement [6] will appear 
soon). 

On the one hand, the proof that Borel and I have concocted seems even 
to us extraordinarily complicated. On the other, large parts of it carry 
through for groups of arbitrary rational rank and it certainly looks plausi­
ble (to me, at least) that an extension of our techniques will eventually 
work in general. What I propose to do in this paper, therefore, is to ex­
plain bits and pieces of what we have done in a relatively informal way. 
Actually the paper may be divided into two relatively independent parts: 
the first two sections form a general introduction to V-cohomology, and 
the last three deal more particularly with Zucker's conjecture. There is 
much overlap in the first two sections with [15], but I have made more 
precise the connection between the obvious duality of V-cohomology and 
a corresponding, more technical, duality of associated complexes of sheaves. 
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The point of the general treatment in these sections is that although much 
of what Borel and I have done looks at first very special to the particular 
case we are looking at, I think that when posed in the proper terminology 
many of the results-but of course few of the proofs-will hold for a larger 
class of manifolds with negligible boundary. 

My talk in the conference at Tsukuba also included some (foolish) 
speculation on the analogous conjecture made in [15] for arbitrary singular 
projective varieties. If M* is such a variety, embedded say in pn(c), let 
M be the subset of its non-singular points, assigned the metric induced 
from a U(n)-invariant metric on pn(c). Unless M=M*, this metric will 
be incomplete, and at first sight one might expect analysis on M to have an 
entirely different flavour from that on the complete Riemannian manifolds 
occurring in Zucker's conjecture. Nonetheless, one of the assertions im­
plicit in the conjecture of [15]-that the V-cohomology of M and the 
middle intersection cohomology of M*coincide-is that although questions 
involving Laplacian operators may be very difficult, at least M is likely 
to have a negligible boundary, and consequently much of the discussion 
in Sections 1 and 2 is relevant. I had hoped to include in this paper some­
thing more detailed along these lines-something less naive than what I 
said at the conference-including a conjecture relating D-modules and the 
domain of the Laplacian, but this proved too difficult for me. 

I would like to take this opportunity to thank especially one of the 
organizers of the Tsukuba conference, Tatsuo Suwa, for his generous 
hospitality both at the conference and at his home university in Sapporo. 
I would also like to thank the National Science and Engineering Research 
Council of Canada, the Max Planck Institut fUr Mathematik, and the Institut 
des Hautes Etudes Scientifiques for financial support during the time I have 
been working on this material. 

§ 1. Analysis and cohomology on Riemannian manifolds 

Let M be any oriented Riemannian manifold. On the space of C­
valued differential forms one has the norm 

(1.1) 

Let 
Q;(M, C): = the Hilbert space of square integrable differential forms 

onM. 
Associate to the de Rham differential two unbounded operators on 

this Hilbert space. I shall write the first as d.'l with domain 

Dom (dM):={C= forms won Mlw, dw are square-integrable} 
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and the second as deoM with domain the space of all c= forms on M with 
compact support. When confusion is unlikely, the subscript M will be left 
out. Because d possesses a formal adjoint 0, the graph closures of both of 
these are also well-defined unbounded operators d and de on Q;(M, C). 
One can define similarly closed operators a and ae• It was apparently first 
proven by Gaffney (see [18] and [19]) that: 

1.1. Proposition. For any Riemannian manifold M, the pairs 0/ oper­
ators d and ae on the one hand and de and a on the other are adjoint pairs 
in the technical sense. 

The Appendix to [13] also contains a proof of this. I recommend here 
and elsewhere Chapter VII of l25] for a readable summary of the theory of 
unbounded operators on Hilbert spaces. 

In general, the operators d and de will be quite different. This can be 
seen most simply when M = (0, 1) with metric dx2 : the domain of de in 
D(O, 1) consists of absolutely continuous functions / with /(0)=/(1)=0, 
while the domain of d consists of the restrictions to (0, 1) of functions ab­
solutely continuous on all of R. If d and de are the same, then Gaffney 
says that M has negligible boundary. This is not quite accurate terminology, 
as will be seen in a moment. 

Let Lie be the Laplacian differential operator with domain the space 
of all c= forms of compact support. Of course this operator is formally 
self-adjoint, that is to say symmetric on its domain. Its closure will always 
be well-defined, but even when M has negligible boundary in Gaffney's 
sense this closure may not be self-adjoint. (Cheeger in 114] points out that 
the double covering of C ramified at ° and assigned the metric induced 
from the standard metric on C offers an example of this as well as other 
interesting phenomena.) 

Define an unbounded operator Lie by specifying its domain to be the 
space of all those forms w in Q;(M, C) such that ow, dw, dow, adw are all 
square-integrable, and on this domain define Liew to be just (do + ad)w. 

In general, this operator will not be symmetric. However: 

1.2. Proposition. When M has negligible boundary, Lie is self-adjoint. 

This is a result of [21] (see also [18]). 

1.3. Proposition. If M is complete, then 

(a) M has negligible boundary; 

(b) The closure 0/ Lie is the same as Lie. 

Part (a) is due to Gaffney [20], and (b) seems to be at least implicit 
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in his work, although it has been rediscovered many times independently. 
(See [16] for a more thorough result and references.) 

The domain of a and ae are both complexes. Define two kinds of 
V-cohomology: 

H;2)(M, C): = cohomology of Dom (a) 

H;2),e(M, C): = cohomology of Dom (aJ. 

Cheeger in the Appendix of [13] shows: 

1.4. Proposition. The inclusion of Dom (d) in Dom (a) induces an 
isomorphism of cohomology. 

That is to say, this inclusion is a quasi-isomorphism. This result implies 
among other things that when M is compact the V-cohomology and the 
ordinary cohomology agree. Incidentally, the V-cohomology is often de­
fined to be the cohomology of the complex Dom (d), but this is a definition 
almost impossible to work with directly. 

1.5. Proposition. If either H;2)(M, C) or H;2),e(M, C) is finite di­
mensional, then so is the other, and the two are canonically dual in comple­
mentary dimensions. 

Proof If T is any closable operator on a Hilbert space H, then it is 
always true that 

(1.2) H = Ran(T)EBKer (T*). 

If T is a closed operator, then its domain is a Hilbert space with norm 
IlxW+IIT(x)W. Furthermore, it is an exercise to see that if T has closed 
range then so does T*. Therefore by the Closed Graph Theorem 
[27: Theorem 17.1], if the cohomology of the complex Dom (a)-for ex­
ample-is finite-dimensional the ranges of (a) a and (b) 8e are closed. Then 
(1.2) with T=a together with 1.1 imply 

(l.3a) 

(l.3b) 

H = Ran (a)EB Ker (8 e) 

H=Ker (a)EBRan (8 e) 

One deduces Proposition 1.5 by applying the map * o 
Recall that if K is a complex, then the dual complex L' is defined as 

the sum of graded modules 
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with the transpose differential, and recall also that the shifted complex 
K[l]" is defined by 

with the differential shifted in sign by (-l)!. In accord with these con­
ventions, another way to formulate 1.5 is this: 

1.6. Corollary. When H(2lM, C) or H(2),e(M, C) is finite-dimen­
sional, integration of the exterior product induces a quasi-isomorphism 

Dom (d)~ Home (Dom (de), C)[ - n] 

where n=dim(M). 

1.7. Corollary. If M has negligible boundary and H(2lM, C) is finite­
dimensional, then"H(2)(M, C) satisfies Poincare duality. 

Assume for the rest of this section that M has negligible boundary 
and finite-dimensional V-cohomology. From (1.3a) we deduce the direct­
sum decomposition 

0.4) n;(M, C)= Ran (d)EBS;?'(M, C)EBRan (8), 

where ~~(M, C) is Ker (LtG), the space of harmonic forms. This implies 
that H(2)(M, C) and ~'(M, C), are isomorphic. One consequence of this 
is that if M is a Kahler manifold then the decomposition of forms into 
(p, q )-type induces a corresponding decomposition of the V-cohomology 
groups. Another consequence is more technical. Define a Sobolev form 
to be a form 0) such that all the forms DO), where D is any product of d 
and 0, are square-integrable. Define 

n;,oo(M, C): = the space of all Sobolev forms on M. 

It is a reflexive Frechet space with the semi-norms IIDO)II2 ; When M 
has negligible boundary, this space can also be characterized as the inter­
section of the domains of all powers of LtG' By Sobolev's Lemma, any 
Sobolev form must be at least locally smooth. Under the assumption that 
M has negligible boundary, define also the space of Sobolev currents: 

Cr(M, C): = strong dual of nr,oo(M, C). 

This becomes a complex according to the rule 

<dF,f) = <F, of) 
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for F a current, f a Sobolev form. Thus the inclusion of Dom (J) in C; is 
compatible with differentials. In other words, we have inclusions of com­
plexes 

(l.5) 

1.8. Proposition. If M has negligible boundary and finite-dimensional 
V-cohomology, these inclusions are quasi-isomorphisms. 

This is because under the given hypothesis Q;,,,,(M, C) possesses a 
decomposition analogous to (1.4). This result is suggestive rather than 
useful, because in practice one proves this result directly by a regularization 
procedure, and then applies it in order to deduce the finite-dimensionality 
of H(2)(M, C). 

It will appear in the next section that even if one's ultimate interest is a 
manifold M which is complete, one is forced to consider the L 2-cohomology 
of subsets of M-the intersections of M with neighborhoods of points in a 
compactification of M-which are not complete. 

I have so far discussed only V-cohomology with trivial coefficients, 
but everything done so far applies with slight modification to V-cohomology 
with coefficients in any locally constant system E which may not be trivial 
and where one is given a Hermitian metric on the fibres. I shall write 
dM,E etc. for the corresponding objects. The most significant modification 
is that the duality of l.5 is between V-cohomology with coefficients in E 
and "compactly supported" V-cohomology with coefficients in the dual 
system E*. 

§ 2. V-cohomo)ogy and sheaves 

If M is embedded as a dense open subset of a compact Hausdorff 
space M, I shall call M a compactijication of M. The conditions of square­
integrability on forms on M may then be interpreted as conditions local on 
M. For example, we may define presheaves Dom (J) and Q;,,,, on M by 
assigning Dom(JunM) or Q;,,,,(Un M, C) to an open set U in M. Let 

22':=220117. (J) 

and Q;,,,,,IOC be the corresponding sheaves. These are both complexes. The 
cohomology of the stalks of 22' at a point x is called the local V-cohomo­
logy at x, while that of the stalks of Q;,,,,,IOC I shall call the local V, "'-cohomo­
logy. Proposition 1.4 implies that on M itself (a) the second sheaf is just 
the de Rham complex and (b) the inclusion of the second in the first is a 
quasi-isomorphism. 
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2.1. Lemma. The sheaf ~. is fine if for every x in M and open 
neighborhood U of x there exists a function f with support in U such that (a) 
f is identically 1 near x and (b) both f and df are bounded on un M. 

In practice, when this is true it is simple to verify. 

Assume from now on in this section that M is a compactijication of M, 
that M has negligible boundary, and that ~. is fine. 

Recall that if $&" is any sheaf and U is an open set of M, then 
TlU, $&") is the space of sections of $&" with support in a compact subset 
of U. If $&" =~. (resp. 0;,00,100) then Tc(U, $&") may also be described as 
the set of Ct) in Dom(Juny) (resp. O;,oo(Un M, C» with support in a com­
pact subset of U. 

Given U open in M, define the restriction dr, u n y of du n y by specifying 
its domain to be the subspace of Ct) in Dom(duny) such that the support of 
Ct) is compact in U. 

2.2. Lemma. For any open set U in M, the operators (Jr,uny and 
(Jc,uny are the same. 

Proof Because dc~dr and(Jc is the same as 0*, it suffices to show 
that dr~d*, or that «({J, 0+) = (d({J, +) for any ({J E Dom(dr) and + E 

Dom(o) (I am dropping the subscript un M here). Since~' is fine, one 
can find + in Dom(8y ) agreeing with + on supp«({J). If one defines (f) to 
be ({J inside U and 0 outside it, then (f) is also in Dom«(Jy). Since M has 
negligible boundary, 

(2.1) 

«({J, 0+) = «(f), 01J!) 

= (d(f), 1J!). 

= (d({J, +). 

The dual of the sheaf complex ~. is the presheaf complex 

o 

where the grading is the conventional one specified earlier. Since~' is 
fine this is in fact a sheaf. Integration of the exterior product gives a 
(graded) homomorphism of complexes 

(2.2) 

where n=dimR(M). 
The global duality of Proposition 1. 7 has the following local version: 
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2.3. Proposition. Continue to assume that M is a compactijication of 
M, that M has negligible boundary, and that the sheaf fi)om(d) is fine, If 
every point ofM has a basis of neighborhoods U with the property that 
H;2l un M, C) is finite-dimensional, then the sheaf complex fi)' = fi)om (d) is 
self-dual, in the sense that the canonical map (2.2) is a quasi-isomorphism, 

Proof For any U open in M the space rc(U, fi)') is contained in 
Dom(dr,UnM) and if Win turn is relatively compact in Uthen Dom(dr,WnM) 
is contained in r c( u, fi)'). Hence the sheaf associated to the presheaf 
L~=Homc(Dom(dr.unM)' C) i& identical with .P'=Homc(rc(~·),C). 
The canonical map from D~=Dom(d) into L~[ -n] is a quasi-isomorphism 
by 2.2 and 1.5, Proposition 2,3 follows since cohomology commutes with 
direct limits, 0 

There does not seem to be any criterion as simple as 2,1 for deciding 
when .0;,00,100 is fine. Assume for the rest of this section that it is, For 
every open set U in M let .o;,oo,rCU, C) be the closure in .o;,oo(M, C) of the 
subspace of its elements with support relatively compact in U, and define 
the Epace of tempered Sobolev currents on Uto be the strong dual C;(U, C) 
of this closure, Define <i&'; to be the sheaf of Sobolev currents associated to 
this presheaf, For any open U in M, r(u, <i&';) may also be characterized 
as the strong dual of the space rc(.o;,oo,iOO)' which possesses naturally the 
structure of an LF space, The sections of <i&'; over all of M are the same as 
the Sobolev currents on M defined before, and the tempered Sobolev cur­
rents on an open U are those Sobolev currents on U obtained by restriction 
from M. 

2.4. Proposition. Let U be open in M. If the cohomology of either 
of the complexes .o;,oo.r<U, C) or C;(U, C) is finite-dimensional, then so is 
that of the other, and the two are dual in complementary dimensions, 

This follows from 

2.5. Lemma. Let A' be a complex of Frichet spaces and D' the 
topological dual complex, 

(a) If Hm(A') and HW+ I(A') are both finite-dimensional, so is H-m(D'); 
(b) If H-m(D') and H-m+I(D') are both finite-dimensional, so is 

Hm(A'), 

In either case, H-m(D') is canonically isomorphic to the dual of Hm(A'). 

Proof It follows easily from the Closed Graph Theorem [27: Theorem 
17.1] that iff is a continuous map of Frechet spaces with finite cokernel, 
then its image is closed. Therefore if Hm+ I(A') is finite-dimensional, the 
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subspace Bm+ I of coboundaries in Am+ I is closed. The short exact sequence 

then gives by duality that the image of D-m-' in D-m is closed, and that 
the quotient of D-m by this image may be identified with the dual of the 
cycles zm in Am. If Hm is finite-dimensional as well, then Bm is closed in 
Am, and the exact sequence 

gives by duality part (a) and half the last assertion. 
Suppose now that H-m+'(D·) is finite-dimensional. Let C be the 

closure in Am of the coboundaries Bm. Since Bm is dense in C, the map 
C*-+D-m+' dual to the differential from Am-I to C is an injection. Its 
image is the subspace of coboundaries in D-m+'. Let F be a finite­
dimensional complement in the subspace of cocyles, t the injection of F 
into D-m+'. Then the map 

(d* t) C*tfJF mol, ) D-m+ I 

is an injection onto the subspace of cocycles, hence in particular has closed 
image. Now this injection is the dual of (dm_" t*) from Am-I to CtfJF* 
The latter space is a Frechet space, so by the criterion [27: Theorem 37.2} 
the latter map is surjective. In particular dm- l maps Am-I onto C, and 
C=Bm. In summary: Hm+'(D·) finite-dimensional implies that the image 
of dm_, is closed. But if H-m(D") is also finite-dimensional, the image of 
dm is also closed, and consequently so is that of d!. The rest is ele­
mentary" D 

In practice it often happens that in accord with the global result 1.8 
the inclusions of the sheaf complexes n;, 00, loc in !»" and of this in turn in 1&'; 
are quasi-isomorphisms, but this seems to require some kind of regulariza­
tion argument, and in particular does not seem to follow from the ele­
mentary arguments leading to 1.8 itself. Such regularization arguments 
are often preliminary to showing local finite-dimensionality. 

These local notions also extend to an arbitrary locally constant 
Hermitian coefficient system E" In the rest of this paper I will be con­
cerned with the problem of proving that in certain cases the sheaf !»om (a E) 
on M is equivalent in a technical sense to the middle perversity intersection 
complex f1&'"(E) on M" The idea of the proof is, very roughly speaking, 
similar to that of the usual de Rham theorem, which asserts that the 
ordinary cohomology of any manifold is given in a natural way by 'its de 
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Rham complex. In particular, what is required here is to prove that the 
sheaf !»om«(JE) satisfies certain axioms which, as explained for example in 
[7: V.9] or [22:6.1], characterize f~"(E). 

Assume that M is a complex algebraic variety given a Whitney strati­
fication M = U Mi with M, a Zariski-open subvariety of the set of 'non­
singular points on M, equal to the complement of the proper strata. Let 
E be any locally constant coefficient system on M. 

2.6. Proposition. Let f£" and f£'~ be complexes of fine sheaves on 
M. Then they are equivalent (in the derived category of C-sheaves on M) to 
f~'(E) and f~'(E*) respectively if: 

(a) They are non-trivial only in non-negative degrees; 
(b) On M, f£" is a resolution of E.and f£'~ of E*; 
(c) The local cohomology groups of f£" and f£'~ are locally constant 

on each stratum M i ; 

(d) f£" and f£'~ are dual to each other in the sense explained above; 
(e) For x E M i , the local cohomology groups of each at x are trivial 

in degrees 2:codimdMJ 

These axioms are all to be verified locally on M. Fineness gurantees 
that cohomology agrees with hypercohomology, and is usually straight­
forward. Properties (a) and (b) will be a matter of definition, (c) will 
require some geometrical knowledge which one would expect to come 
without too much trouble. The difficult point is to describe the cohomology 
of the complex of sections of f£" over neighborhoods of points of M: in 
particular, if a basis of neighborhoods can be found for which this is 
finite-dimensional, then (d) will follow by 2,3 (or, rather, the modification 
necessary to deal with non-trivial coefficient systems). 

§ 3. The local geometry of Baily-Borel-Satake compactifications 

I now use the notation of the introduction. The main reference for 
this section is [1: III.2-4, 6.1]. See also [2] for fine points. 

I adopt the convention that if H is a rational subgroup of G then 
r(H) is the intersection r n H, and that if R is a quotient of H then r(R) 
is the image of T(H) in R. Similarly for K(H), K(R). The assumption 
that r is neat means that if P is a Q-rational parabolic subgroup of G with 
unipotent radical N then the image of rep) in PIN has no torsion. 

For convenience I shall assume from now on that the algebraic group 
G is almost Q-simple. The symmetric space 1: may be embedded as a 
bounded domain in complex affine space. The rational boundary compo­
nents 1: p of 1: are subsets of the boundary of this domain, parametrized 
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by the parabolic subgroups P of G which are maximal among the proper 
and Q-rational ones. They are themselves bounded symmetric domains. 
The action of G on l: extends continuously to its boundary, and the para­
bolicsubgroup P is the stabilizer of l: p. Conversely, l: p is the set of points 
on the boundary fixed by all elements of the unipotent radical N p of P. 

There exists a canonical P-covariant fibration 1frp: l:-+l:p. For any 
y E l:p let T(y) be tpl(y), which I call the slice of l: transverse to y. There 
exists in the center of Np a rational, self-adjoint, homogeneous cone Cp sta­
ble under the adjoint action of P and another almost canonical P-covariant 
map CPP: l:-+Cp. The group N p acts trivially on both l:p and Cp , and the 
two projections tp and CPP allow one to identify the quotient l:/Np with 
the quotient l:p X Cpo Thus the slice T(y) is Np-stable, and its quotient 
by N p is isomorphic to C p. 

Let Mp=P/Np be the Levi component of P, and let Gp be the kernel 
of the adjoint action of Mp on the centre of N p, which is also Ker(Mp -+ 
Aut (Cp ». It is a Q-rational group, since the centre of N p is Q-rational. 
The group G p is isogenous to the product of Aut l: p and a compact 
factor. It possesses in the kernel of the canonical action of M p on l: p 

a unique complement Lp which is also Q-rational. The group Lp is iso­
genous to Aut(Cp) and hence Cp may be identified with the quotient 
Lp/K(Lp). (Several slight contortions are necessary because it is not always 
true that the kernel of P-+Aut(l:p), which is called the centralizer of l:p, 
is rational.) If Zp is the inverse image of Lp with respect to the canonical 
homomorphism P-+Mp, then it is also Q-rational and for any yin l:p the 
slice T(y) may be identified with Zp/K(Zp). Borel and I tentatively call 
Zp the rational centralizer of l:p and L p, for reasons which will appear 
later on, its link group. Neither name is perfect, but the group Zp does at 
least agree with the whole of the centralizer up to a compact factor. 

Example. Let G= Sp(2n, Q). Then l: is the Siegel space 6 n made 
up of n X n symmetric matrices Z =X + iY with coefficients in C such that 
Y is positive definite. An element 

(~ ~) 
of G acts by taking Z to (AZ+B)(CZ+D)-l. Let P be the parabolic sub­
group of elements of G with C = O. The corresponding boundary compo­
nent is a point, which may be described as the limit of it Y, for any Y, as 
t>O goes to infinity. The unipotent radical of P is the subgroup of ele­
ments'with A=D=I, hence isomorphic to the additive group of symmetric 
real n X n matrices. The Levi factor M p is isomorphic to GLn(R). The 
cone C p is the subset of all positive definite matrices and CPP just takes Z 
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to Y. For other boundary components N p will no longer be abelian, the 
group Mp will be the product GLm(R)XSp(2n-2m, R)(~LpXGp) and 
C p will be the cone of positive definite m X m matrices. 

Let x* be the union of X and all the xp • The group r acts discretely 
on x*, and V* is the quotient r\x*. It is the disjoint union of varieties 
of the form vp=r(Gp)\xp. These subvarieties are non-singular since r 
is neat and are the connected components of a Whitney stratification of 
the singular algebraic variety V*. I define the depth (niveau in [6]) of a 
component Vp to be the maximal length m of a chain components V = Vo' 
VI' "', Vm = Vp such that each Vi + 1 is contained in the closure of Vi' 
This is the same as the rational rank of Lp. 

There exists in [1: p. 266] a relatively elegant description of the local 
geometry of V*. Define a rational core of the cone C p to be any open, 
r(P)-stable, subset of C p which is commensurable with the convex hull of 
the intersection of C with a r(P)-stable lattice in the centre of N p. 

(Around p. 120 of [1] several rather different-looking rational cores are 
described.) Now choose a point y in xp. Let Y be a neighborhood of 
yin x p small enough to embed in r(Gp)\xp. Let (£ be a rational core in 
C p, and define 

(3.1 a) 

(3.1b) 

x(Y): =r(Zp)\tpl(Y), 

x(Y, (£):=x(Y)n<ppl«(£). 

3.1. Proposition. For (£ sufficiently small the quotient x( Y, (£) embeds 
into V, and as (£ and Y get smaller we obtain the intersections with V of a 
neighborhood basis of y in V*. 

If x is a point of X then according to [9: 1.1.9] there exists a unique 
subgroup Gp,x of P mapping isomorphically onto Gp and stable under the 
Cartan involution of G corresponding to x. The Gp,x-orbit of x projects 
bijectively onto xp , and I will call it a horizontal section of x (over xp ). 

(This construction was suggested by the definition of the geodesic action 
in [9].) These horizontal sections form a P-invariant partition of X. They 
are everywhere transverse to what I called above the transverse slices of x 
and hence give rise at each point of x to a direct sum decomposition of 
the tangent space into horizontal and transverse components. One may 
thus, for example, define transverse differential forms at any point of x to 
be those which have no horizontal components. 

Using these horizontal sections, one can see that if T(y, (£) is the 
intersection of T(y) and <ppl«(£), then the set x(Y, (£) is canonically isomor­
phic with a product: 

(3.2) 
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The set ~pl(Y) n ",,"pl(~) is stable under N p as well as r(Zp). 
Consequently the set x( Y,~) can be represented as fibre bundle with 
fibre r(Np)\Np and base YX(r(Lp)\~). The transverse component 
r(Zp)\T(y,~) is a fibre bundle with the same fibre and base r(Lp)\~. 
The core ~ may be chosen convex, and if this is done the intersection with 
V of the topological link of yin V* transverse to Vp may also be expressed 
as a fibre bundle with the same fibre (which I therefore· call the unipotem 
link fibre) but with base the quotient of the boundary of ~ by r(Lp). 

Let Ap be the topologically connected component of the (group of 
R-rational points on the) maximal Q~split torus in the centre of Mp. Since 
P is maximal, it is one-dimensional. If p p is the square-root of the modulus 
character of P: p~ldet (Adn(p))ll/2, then Pp is an isomorphism of Ap with 
RPos. Here and elsewhere small gothic letters denote complexified Lie alge­
bras. The group Ap is contained in Lp and acts on Cp by scalar multipli­
cation. Let Aj;::;::ppl[l, 00). I shall call a core contractible if it is stable 
under multiplication by scalars> 1, or equivalently under Aj;. 

Since G=PK, the symmetric space x can be identified with P/K(P), 
and therefore the sets x(Y) and x(Y,~) may be identified with open subsets 
",,"pl(Y) and ",,"pl(Y) n ~pl(~) respectively in r(Zp)\p/K(P). As above, there 
exists a unique copy of Ap in P stable under the Cartan involution corre­
sponding to the choice of K. It commutes with K(P), and therefore this 
copy of Ap acts on the right on r(Zp)\p/K(P), giving rise to a one-para­
meter group of quasi-isometries in the neighborhood of a point y in x p, 

preserving the transverse slices. (This is essentially the geodesic action of 
[9 :3].) 

Recall that the cone Cp can be identified with Lp/K(Lp). Define a 
core in Lp to be the inverse image of a core in Cp, and define a core in Zp 
to be the inverse image in Zp of one in Lp=Zp/Np. More precisely, to 
the core ~ in Cp associate the cores ~(Lp) and ~(Zp). Then the trans­
verse component of the set x(Y,~) may be identified with r(Zp)\~(Zp)/ 
K(Zp). 

§ 4. Global and local L2-cohomology of V* 

Let E be any smooth representation of G, and also (an abuse of lan­
guage) the corresponding locally constant coefficient system on V. Explicitly, 
if pr r: x~ V is the canonical projection, then to an open subset U of V is 
associated the space oflocally constant, r-covariant functions from prrl(U) 
to E. The de Rham complex of this coefficient system similarly associates 
to U the space of r-invariant, C~ forms on prrl(U) with values in E-i.e. 
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Let g = f + .0 be the orthogonal decomposition of g with respect to the 
Killing form. Assume E to be finite-dimensional, and choose for it a 
Euclidean metric with respect to which the representation of K is unitary 
and that of exp (.0) is by self-adjoint operators. The conje::.:ture of Zucker 
mentioned in the Introduction amounts to: 

4.1. Conjecture. The sheaf ~O»l (dE) is equivalent in the derived 
category of sheaves on V* to Y,??"(E). 

This may be understood as a purely local statement. Borel and I have 
proven: 

4.2. Theorem. This conjecture is true on the union of the strata Vp 

of depth ~ two. 

In effect, we show that the axioms 2.6 are satisfied. It is perhaps 
unfortunate that we use representation theory of Lie algebras in the proof, 
but as compensation we are able to describe in some detail what the local 
V-cohomology looks like. As I have mentioned in the Introduction, 
several special cases of this result have been proven also by Zucker, among 
them those where G=Sp(2n, Q) and several where G=SU(p,q). His 
techniques are rather different from ours, and seem to exploit phenomena 
which do not occur in general. 

I shall give first a rough idea of how representation theory comes in 
by telling what role it plays in describing the global V-cohomology. 

Let pr K: T\ G--? V = T\I be the canonical projection (depending on the 
identification G/ K = I). Let for the moment F be any (g, K)-module. In 
particular it is a representation of K, so associated to it is a fibre bundle 
over V with fibre F. If U is any open set in V, the space of smooth sec­
tions of this bundle over U may be identified with the space of all smooth, 
K-covariant functions from pri/(U) to F. More generally, the map Q)--? 

pr~(Q) induces an isomorphism between the space of smooth differential 
forms on U with values in F and that of all smooth forms r; on pri/(U) 
such that (a) r; is right K-invariant, and (b) " J r;=O for all " e t An easy 
transformation identifies this in turn with the graded spa::.:e 

(4.1) HomK (A·(g/f), Coo(pri/( U), F». 

The space COO(prj(1(U), F) is via the right regular representation a 
module over (g, K), and the space (4.1) is that underlying its Koszul com­
p~ex. The Koszul differential on this complex-that defining its relative 
Lie algebra cohomology-corresponds to a connection on the fibre bundle 
associated to F. If the representation of (g, K) comes from a smooth 
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representation of G itself, then this connection is the same as the one 
constructed at the beginning of this section. (The book [10) is a general 
reference for the cohomology of (g, K)-modules, and Chapter VII is par­
ticularly relevant here.) 

Take F to be the finite-dimensional representation E. Square-inte­
grable differential forms on U with values in E similarly lift to forms 1) on 
prj{l(U) satisfying in addition to conditions (a) and (b) above the third 
condition (c) 1) is square-integrable. The space of all such forms may also 
be expressed as 

HomK (A'(g/f), V (prj{1(U»0E). 

For any open set Win r\G, let V,=(W) be the space of all C= func­
tionsf: W-+C such that all derivatives Rxf(X E U(g), the universal en­
veloping algebra of g) are square-integrable. It is a (g, K)-module. Those 
forms on U which lift to elements of 

(4.2) 

are clearly Sobolev forms on U, although I do not see that the converse 
holds, except for the case U = V, when a result of Nelson [23) gives: 

4.3. Proposition. Lifting forms from V to r\ G induces an isomorphism 
between the cohomology of the complex of Sobolev forms on V with values 
in E and the relative Lie algebra cohomology 

Nelson's theorem also implies that at least the sheaves on V* corre­
sponding to Sobolev forms and the presheaf (4.2) are the same (this requires 
the result of [29) mentioned at the beginning of § 5). 

Incidentally, the Laplacian LIE corresponds in this lifting to the Casimir 
element in the centre Z(g) of the universal enveloping algebra of g. 

In view of these translations from space cohomology to (g, K)­
cohomology, the regularization theorem of [3) implies directly: 

.4.4. Proposition. The global V-cohomology of V is the same as that 
of the complex of Sobolev forms on V. 

In [5) we give a second proof, using Langlands' spectral decomposition 
for V(F\G). This spectral decomposition expresses V(r\G) as a sum of 
discrete and continuous components, where each continuous component is 
itself a summand of a representation induced from a parabolic subgroup 
of G. Because of 4.4, we were able in [5) to apply this decomposition and 
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the techniques of relative Lie algebra cohomology, particularly Shapiro's 
Lemma, to deduce: 

4.5. Theorem. The V-cohomology of V with coefficients in E is 
finite-dimensional. 

Notice that these results are in accord with Proposition 1.8. It follows 
from the remarks just before this proposition that the L 2-cohomology of V 
may also be identified with the square-integrable forms annihilated by LIE' 

Since, as we explain in [5], the V-cohomology of arithmetic quotients 
of symmetric spaces without invariant complex structures may not be 
finite-dimensional, this may be considered weak evidence in favor of 
Zucker's conjecture. 

Fix for the rest of this section and the next as well (a) a maximal, 
proper, Q-rational parabolic subgroup P, (b) a point y in a boundary 
component xp , (c) a small contractible neighborhood Y of y in x p and 
(d) a small contractible rational core~. I shall suppress subscripts refer­
ring to P whenever possible. 

Recall that the set x(Y,~) may be considered as a subset of 
r(Z)\PjK(P). Let 

~(Y, ~):=inverse image of x(Y,~) in P. 

Thus ~(Y,~) is stable under left multiplication by r(Z) and N and under 
right multiplication by K(P). We want to relate forms on x(Y,~) to 
forms on r(Z)W(Y, ~), but there is a technicality to deal with first. The 
forms on x(Y, ~) are square-integrable with respect to the measure induced 
by a left-invariant measure on PjK(P), but when we lift to r(Z)W(Y, ~ 
we want, for important technical reasons, to refer to the right-invariant 
measure, which is not the same since the group P is not unimodular (as G 
is). Explicitly, we have the integral formula 

which implies thatf(p) is square-integrable with respect to dIP if and only 
if f(p)p-I(p) is square-integrable with respect to drp. Writing !(p)= 
(f(p)p-I(p»p(p) we see that the Z-representation L~eft is isomorphic to the 
tensor product L;ight@C(P). 

For any subset U of r(Z)\p let 

V(U):=functions on U square-integrable with respect to drP 

V'~(U):={!e C~(U)IRx!e V(U) for all X e U(g)}. 
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Lifting forms to 113( Y, C£) we then see that the L 2-cohomology of 
x( Y, C£) may be identified with the cohomology of the complex of elements 
F of the graded space 

(4.3) HomK(p) (A'(lJjf(P»), V(r(Z)\ll3(Y, C£»)®C(p)®E) 

such that dF again lies in this space. The set 113(Y, C£) is not stable under 
right multiplication by elements of P, but if p is close to the identity then 
the right translate of 113(Y, C£) by p will be contained in some other 
113(Y*, C£*). In view of this, a homotopy argument and another application 
of the results of [3] prove: 

4.6. Lemma. The V-cohomology of x(Y, C£) with coefficients in E 
may be identified with the relative Lie algebra cohomology 

H'(lJ, K(P), V,oo(r(Z)W(Y, C£»®C(p)®E). 

In other words, in the terminology of Section 2 the sheaves !?)om (J E) 
and Q;,oo,IOcCE) are quasi-isomorphic. 

As I have mentioned already, the sets x(Y, C£) possess a fibration with 
fibre r(N)\N. A classical result of van Est [17] and Nomizu [24] implies 
that the cohomology of each fibre may be identified with the cohomology 
of the complex of N-constant forms on it. A similar argument implies here 
that the inclusion of the spaces of N-constants in the spaces V,OO(r(Z)\ 
113(Y, C£» induces quasi-isomorphisms. If 9JC(Y, C£) is the quotient of 
113(Y, C£) by the left action of N, then N-invariant functions ofll3(Y, C£) may 
be identified with ones on 9JC(Y, C£). Hence: 

4.7. Lemma. The V-cohomology of x(Y, C£) with coefficients in E 
may be naturally identified with the relative Lie algebra cohomology 

(4,5) H'(lJ, K(P), V,oo(r(L)\9JC(Y, C£»®C(p)®E). 

The set x(Y, C£) is the quotient r(Z)\SO-I(C£) n t- 1(Y). Hence it makes 
sense to define the N-constant forms on x(Y, C£) to be the space of r(Z)­
invariant, N-invariant forms on SO-I(C£) n t-I(Y). Lemma 4.7 can be 
phrased without using the terminology of Lie algebra cohomology: roughly 
speaking, the V-cohomology of x( Y, C£) is that of the complex of its N­
constant Sobolev forms. 

The group Z is normal in P with quotient isogenous to Gp • The 
Hochschild-Serre spectral sequence corresponding to (P, Z) has as E2-term 

HP(gp, K(G p ), Hq(o, K(Z), V,OO(r(L)\9JC(Y, C£»®C(p)®E). 

Since Y is contractible and x(Y, C£) has the product structure (3.2) this 
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turns out to be null for p>O, and we obtain: 

4.8. Lemma. The L2-cohomology of x( Y, (;S) with coefficients in E 
may be identified with the relative Lie algebra cohomology 

(4.6a) H'(a, K(Z), V,OO(T(L)\(;S(L))®C(p)®E). 

Define 

L;,oo(r(L)\(;s(L)) :={fe V,oo(T(L)\(;s(L)) I Supp(f) 

is contained in some t(;S with t> I} 

2(U) : = topological dual of L;,oo(r(L)\(;s(L)). 

The space V,oo(U) embeds canonically into 2(U). Another regular­
ization argument shows: 

4.9. Proposition. The inclusion of V, 00 (r(L)\(;s(L)) in 2(r(L)\(;s(L)) 
induces an isomorphism of the cohomology (4.6a) with 

(4.6b) H'(S, K(Z), 2(r(L)\(;S(L))®C(p)®E). 

If this is finite-dimensional, then so is 

(4.7) 

and the two are canonically dual in complementary dimensions. 

The space L;,oo(r(L)\(;s(L)) is only an LF space, but nonetheless the 
last part turns out to be in essence a consequence of 2.4. 

In some sense, everything up to this point is elementary if highly 
technical. The previous several results can be summarized without refer­
ence to Lie algebra cohomology: note first that the Lie algebra gp acts 
canonically from the left on the space of N-constant forms on x(Y, (;S). 
Writing a little loosely, what the transformations (4.3)-(4.6) accomplish is 
the identification of the V-cohomology of X(Y, (;S) with the cohomology 
of the complex of Sobolev forms (or currents) on x(Y, (;S) which are N­
constant, gp-constant, and transverse, 

The group N is normal in Z. The Hochschild-Serre spectral sequence 
for this pair and the cohomology (4,6) has Ez-term 

(4.8) W(fp , K(Lp), 2(r(L)\(;s(L))®C(p)®H'(np, E). 

Borelh~s proven: 
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4.10. Proposition. The differential d2 is null, and this spectral sequence 
collapses. 

One consequence of our formulae (or, more intuitively, the remarks 
just after 4.9) is that the local V-cohomology is locally constant on each 
stratum Vp • More precisely, it is clear that the local V-cohomology (4.6) 
is canonically a module over Gp , giving rise to a locally constant coefficient 
system on Vp just as E gave rise to one on V itself. 

§ 5. Sketch of the argument 

Recall that I have fixed P. 
It is proven in [29] that the sheaves 'lfiom(aE ) and Q2,oo,loc(E)-and 

implicitly ~2(E) as well-are fine. In view of this together with 2.6 and 
4.9, in order to prove Theorem 4.2 it will suffice to show that for any 
contractible core ,CE the relative Lie algebra cohomology groups 

(5.1) H'(a, K(Z), fE(r(L)\CE(L))®C(p)®E) 

are finite-dimensional and vanish in dimensions :2:codimceVp) when the 
depth of Vp is ::=;:two. 

The foundation on which Borel and I construct the proof of this is a 
kind of Hodge theorem for local V-cohomology. Let 

d(r(L)\L):=the space of automorphic forms on r(L)\L 

d 2(r(L)\CE(L)):=the subspace of automorphic forms whose restrictions 
to the subset r(L)\CE(L) are square-integrable. 

I recall that an automorphic form on r(L)\L is a function F which is 
(a) of moderate growth and (b) contained in a finite-dimensional subspace 
stable under K(L) and Z(r), where Z(O is the centre of the universal en­
veloping algebra of L(Refer to [8] for equivalent characterizations.) The 
space d 2(T(L)\CE(L)) turns out to be independent of the choice of core CE. 

5.1. Conjecture. When CE is contractible, then the inclusion of 
d 2(T(L)\CE(L)) in fE(r(L)\CE(L)) induces an isomorphism of the cohomology 
(4.6) with 

(5.2) H'(a, K(Z), dz(T(L)\CE(L))®C(p)®E). 

There are ways to make this look more like a Hodge theorem. Let 

ml,E :=Annz(!)(H.(n, E*)®C(P-l)) 

d 2,E(T(L)\CE(L)):={F E d 2(T(L)\CE(L)) [ml,E kF=O for some k}. 
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Note that H.(n, E*) is the dual of H'(n, E). 

5.2. Lemma. The inclusion of d'2,E(r(L)\IE(L)) in d'2(r(L)\IE(L)) 
induces an isomorphism of 

(5.3) H'(D, K(Z), d'2,E(F(L)\IE(L))®C(p)®E) 

with the cohomology (5.2). 

Proof Apply Hochschild-Serre to obtain a spectral sequence con­
verging to (5.2) with E2-term 

(5.4) H'(f, K(L), d'2(F(L)\IE(L))®C(p)®H'(n, E)). 

On the one hand, the space d'2(r(L)\IE(L)) is an algebraic sum of its 
primary constituents with respect to the maximal ideals of Z(O, and on the 
other Wigner's Lemma [10: 1.4.1] implies that all constituents other than 
those associated to the maximal ideals containing mI,E contribute nothing 
to the cohomology (5.4). 0 

There is still another formulation, relatively free from the language of 
representation theory. Recall that leY, IE) is an open subset of leY). 
Let mE be the annihilator in Z(g) of E*. Then 5.1 amounts to the assertion 
that V-cohomology of l( Y, IE) may be identified with the cohomology of 
the complex of forms w on leY) satisfying (a) w is square-integrable when 
restricted to leY, IE); (b) w has moderate growth on ley); (c) w is annihi­
lated by some power of mE; (d) w is N-constant, gp-constant, and trans­
verse. 

Note that the Laplacian LIE comes from the Casimir element in Z(g), 
so that (c) includes among other things the condition that w be annihilated 
by a power of the Laplacian. As explained in [12], this is the best one 
can expect from a Hodge theory when the Laplacian has a continuous 
spectrum, as it does here on locally V forms. 

5.3. Theorem. The conjecture above is true when depth (Vp)::;;;2. 

As far as I can see, proving Conjecture 5.1 is the main obstacle to 
proving Conjecture 4.1 unconditionally, although I do not know how to 
finish the proof even if 5.1 were known. Conjecture 5.1 in turn seems to 
depend mainly on some likely but unproven results in the theory of residual 
Eisenstein series for L. When the depth of Vp is two, the proof of 5.3 as 
well as the argument needed afterwards to deduce Zucker's conjecture are 
already both very complicated. What I propose to do in the rest of the 
paper is to discuss rather sketchily only a few aspects of the proof, 
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exhibiting a little more detail only in the relatively simple case when Vp 

has depth one. Incidentally, it follows immediately from Conjecture 5.1, 
whenever proven, that the corresponding local V-cohomology is finite­
dimensional. This is not too surprising, as in the proof of 5.3 we use at 
some point a Lemma we also used in {5] to prove global finite-dimension­
ality. 

Conjecture 5.1 is analogous to a similar conjecture, due to Borel, that 
the ordinary cohomology of an arithmetic quotient r\x is the same as the 
cohomology of the complex of differential forms on F\x which are at the 
same time automorphic forms. This earlier conjecture has been proven in 
a number of special cases (see, for example, {12]) by means of a theorem 
analogous to the classical result of Paley-Wiener which characterizes func­
tions on R with compact support by means of properties of their additive 
Fourier transforms. There is a general principle involved: just for one 
moment let G be an arbitrary Lie group with maximal compact subgroup 
K. The basic idea is that if U is a topological (g, K)-module and u* its 
dual, then in order to show that the (g, K)-cohomology of U* is the same 
as that of its subspace of Z(g)-finite elements, one should try to prove 
some sort of analogue or Paley-Wiener for U itself. That idea works here, 
but the process is not so direct. In view of 4.9, the space for which one 
would at first try to prove a Paley-Wiener theorem is L;,=(rCL)\r£(L)). If 
the depth of Vp is one, it turns out that such a theorem is not only simple, 
but even another classical result of Paley-Wiener, who also characterized 
functions in V(O, 00) by their (additive) Fourier transforms. But when 
the depth of V p is more than one, this space is in some sense not amenable 
to such treatment: to be more precise, if a function in the space 
L;,=cr(L)\r£(L)) is decomposed into its cuspidal and Eisenstein components, 
following Langlands' prescription, then these components themselves may 
not have support on r£(L). Therefore this space must be replaced by the 
larger space of functions in V·=(r(L)\L) which are required to vanish 
rapidly, along with all their U([)-derivatives, in the direction away from 
the component Vp • This amounts to considering on x(Y) the Sobolev 
forms which are similarly rapidly decreasing. This replacement of func­
tions concentrated on cores by those sati&fying global conditions on r(L)\L 
seems natural when one reflects that, after all, automorphic forms are 
themselves rather global in nature. 

When depth (Vp ) > 2, making this definition precise involves introduc­
ing compactifications of the reductive symmetric space C and of its quotient 
r(L)\ c. (The closure of the open cone C and the union of C and its 
rational boundary cones fl : II.3] in this closure make up part of this com­
pactification.) When depth(Vp )= I, this step is very simple, amounting 
to the compactification of the multiplicative group RPOS by adding points 
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at 0 and 00, but in general these· compactifications have apparently not 
been constructed explicitly in the literature. In the depth one case, the 
space occurring is modelled on 

L;~(RPOS):={F e D'~(RPOS)IF is the restriction to (0, 00) of a C~ 

function on (0, 00) with all derivatives vanishing at O} 

If one specializes the arguments for depth < two to depth one, then 
this is the space which must be characterized by Fourier (i.e. Mellin) trans­
forms. This characterization is an interesting exercise. The rest of the 
proof of 5.1 in the depth one case is presented, in essential details, in [11]. 

In the rest of the paper I want to give a very rough idea of the. tran­
sition from Theorem 5.3 to Theorem 4.2. I begin by looking at the simplest 
case, that of G=SL2(Q), T=SL2(Z). Then N~R, L is (up to ±I) the 
same as A, and T(L) is {±l}. Hence the automorphic forms on T(L)\L 
=A are the linear combinations of functions x'logtlxl, with seC, k in N: 

d(A) = L: C(s)0Eog 

where Eog is the module of all polynomials in log I x I and the sum is over 
seC. The ones in d 2(A+) are those for which Re(s)<O. Since xd/dx is 
surjective on the A-module Eog, it is a-acyclic, and it is simple to deduce 
that the cohomology HP(a, d 2(A+)0C(p)0HQ(n, E» is null unless 
p=q=O, which is the simplestversion of Zucker's conjecture. 

In general the space d 2(T(L)\C£(L» will contain the (I, K(L»-stable 
subspace . 

d 2,disc(T(L)\C£(L»:=automorphic forms on T(L)\L which are 

square-integrable on T(L)\P-t(l, 00). 

Note that p-t(l, 00) will include T(L)\C£(L) if C£ is small enough. (Recall 
that d 2(T(L)\C£(L» does not depend on C£.) This subrepresentation has a 
relatively simple structure. The space of square-integrable automorphic 
forms on T(L)A\L (essentially the discrete spectrum of a Casimir element 
of Z(r) will be a direct sum L:O' of irreducible unitary representations q, 

each occurring with finite multiplicity. Furthermore L~(L/A) XA. Hence 
the space d 2,diSC(T(L)\C£(L» can be expressed as the direct sum 

L: q0C(s)0Eog 

where the sum is over all these q and SEC with Re(s)<O. 

5.4. Theorem. The (3, K(Z»-cohomology of the space d 2,diSC(T(L)\ 
C£(L» is null in dimensions >codimc(Vp). 
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This is true without any assumption on the depth of Vp • The proof 
begins with the spectral sequence (4.8), combined with the remarks just 
made: the cohomology is the direct sum over all the representations a, 
seC with Re(s)<O, and integers p, q of 

Let!' be any irreducible L-constituent of C(p)®Hq(n, E); applying 
the Hochschild-Serre spectral sequence for the pair (L, A) and the acyclicity 
of Eog, we see that 

Since Re(s)< 0 the!' for which this expression is not trivial must 
have the property that their restrictions to A + are > 1. Since A is split 
over Rand!' is essentially algebraic, it must also be true that the s which 
contribute are real. The representation a must be unitary, in particular 
equivalent to its own conjugate dual, and this implies [10: II.6.12] the 
same must be true of!'. (This is an elementary consequence of Wigner's 
Lemma [10: 1.4.1] but absolutely basic to much of what Borel and I do.) 
A relatively elementary geometrical argument [11 :2.6] implies that q must 
be < 1/2 dim(n). When G has real rank one the group L/A is compact 
and the component Vp is just a point, and this fact alone proves not only 
5.4 but also Zucker's conjecture. But in general L/A will not be compact, 
and in order to finish the proof one needs a rather delicate argument in­
volving the theorems of [28] which describe completely those unitary 
representations a which might possibly contribute to cohomology. Until 
recently this was done in a case-by-case analysis which in fact excluded 
some exceptional groups. But now Borel has found a proof which, although 
complicated, deals with all cases more or less at once. 

When L has rational rank one, the space d 2,diSC(r(L)\f£(L» is all of 
d 2(r(L)\f£(L», so that 5.4 implies Zucker's conjecture immediately in this 
case. When L has rational rank two, the cohomology of the quotient of 
the second by the first is part of the local L 2-cohomology of the given strata 
of depth two as embedded in the closures of the strata of depth one meet­
ing it, with coefficients in the local V-cohomology of these strata as 
embedded in V*. The situation here is similar to what happens in describing 
the ordinary cohomology of arithmetic groups of semi-simple Q-rank one, 
as partially explained in [12]. In particular, the extra cohomology is con­
tributed by Eisenstein series. In this case, therefore, Zucker's conje:;ture 
is proven by Theorem 5.4 and induction on depth. One interesting feature 
is that in order to prove the conjecture even for trivial coefficients it is 
necessary to know it for non-trivial coefficients on the strata of lower depth. 
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The last step in the proof was suggested by a formula due to J. Arthur 
(unpublished) for the trace of Hecke operators on the V-cohomology of 
T\G. The structure of the local V-cohomology one obtains seems to fit 
in nicely with what one expects to be useful for applying Zucker's conjecture 
to find the Hasse-Weil zeta function of V* aEsociated to its intersection 
cohomology, when V is a Shimura variety. 
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