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Gauss Sums and Generalized Theta Series

Toshiaki Suzuki

Let K be a totally imaginary number field containing the »n-th roots
of unity. Following Kubota theory [3], we define generalized theta series
for K as residues of metaplectic Eisenstein series. The Fourier coefficients
of this Eisenstein series are Dirichlet series whose coefficients are n-th
Gauss sums. Our problem is to evaluate the coefficients of generalized
theta series, i.e., the residues of the above Dirichlet series. This problem
is deeply connected with the distribution of Gauss sums. In case of n=3,
for K=Q(v'— 3), it is completely solved ([5]). In [6], we obtained some
informations in case of n=4 for K=Q(/). In this paper, we shall apply
the method of [6] to the case of odd prime / such that the cyclotomic
number field Q(§), {=¢***/*, has class number 1 (i.e. /=3, 5, 7, 11, 13, 17,
19).

We consider a family of Dirichlet series of the following type:

204072
4

¥ =3 (5 )a(@ N <)
where p e 9¥—{0} (9*: the inverse ideal of the different of X), 1=1-—¢,
(c) runs over all the integral ideals of K such that ¢=1 (2¢*h%), (—) is
the I-th power residue symbol and g((c), x) is a Gauss sum (See Section 1).
Then, (s, #) is holomorphically continued to the region Re (s)>1 except
possibly a simple pole at s=(+1)/l. We put () =Res,_ ., ¥(s, 1)
We see that (z) (1 € 9¥—{0}) are coeflicients of the theta series for K.
Our results are stated as follows:

(1) (m'p)=+(p) for any integer m,

(2) if (m, p2)=1, then (m'~'y)=0,

(3) if mis a prime such that m=1(2¢*2/%), (m, p)=1, then

1(z+1')/z'

pmt === (2N g (o, Nyt

fort=0,1,2, - - -, (—3)/2 (g..:((m), p) is also a Gauss sum, see Section 6).
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S. J. Patterson informed the author that he obtained similar results
and announced them without proof in his paper: On the distribution of
general Gauss sums, Recent Progress in analytic number theory, vol. 2,
Academic Press, 1981. His method depends on the representation theory
but essentially on the same ideas of ours (for details see Kazhdan and
Patterson’s Metaplectic forms I, to appear).

§ 1. Cyclotomic fields and the reciprocity law

_ Let ! denote a rational prime number such that 5</<19. Put

{=¢"" ¢ C, and consider the cyclotomic field K=0()CC; K is an
algebraic number fields with a unique factorization, of degree /—1. Let
9 be the ring of integers in K, i.e., 9=Z[¢]. Put A=1-—¢; 2 is the prime
divisor of /in K. Let U be the group of all units in K; U is generated by
—{ and the so-called circular units. Let D denote the set of all integral
divisors in K; we identify D with a set of representatives of ¢//U (& =9
—{0}), which will be specified later. We take a primitive root g of I
The Galois group of the extension K/Q is generated by s which is defined
by {*={%. For the sake of brevity, we put /*=(/—1)/2 and 2% =20+972,

Lemma 1. We put
ekzeés—l)(s—g?)(s—g*)---(s—gk—ﬁ)(s—gk+2)---<s-gl-8) (k=2, 4,6, -, [__3)

where

o= ((11_—%)((11—— cc)) )

" Then, ¢, (k=2, 4, - - -, 1—23) satisfy
ek51+bkzk (2k+1)’ ei_ngl (zzn)

where b, (k=2, 4, - - -, 1—3) are rational integers prime to . Furthermore,
if e is a unit satisfying e=1 (), then there exist rational integers t, (k=0, 2,
4, ..., 1—3) such that

e={lelzelt. - elig? (AHY).

Proof. For the first part, see Hilfssatz 29 of [2]. We prove the second
assertion. Choose ¢, such that e{~? is real. There exist rational integers
r prime to / and ), t}, - - -, t]_, such that (e£=¢)" =glhefi- - -£li7% (see the
proof of Satz 154 of [2]). Since (£~ **)=1 (4'*"), the second assertion fol-
lows.

We take
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771=C3 771_1=1+l, 77l=1._zl,

7e=(1 _lk)—g"(s-1)(8~g)(s—g“>'--(s—g"-'>(s-g’ﬂ“)'--(s—g’ﬂ)
(k=3,5,.--,1-2),
n=elt (k=2,4,---,1-3)

where b}, is a rational integer such that b,b;=—1 (I) (k=2,4, ---,1-3).
By Lemma 1, 7, (k=1,2,3, - - -, ) satisfy

Pe=1—2F (A¥*Y), 7 =1 ('Y,
Let (—) be the /-th power residue symbol for K. If a=p=1 (1),

-1
(e =(5)
(L.1) ©)(E .
where (7’) is the norm residue symbol for K. If

aEvix(a)ﬂéz(a) .. ,7]?(&) (114-1), ‘anil(ﬂ)”éﬁ(ﬁ) . .;ﬁt(ﬁ) (ll+1),

then

(1.2) (‘B—’la_)zc-zi;}ktk(“)tl—k(ﬁ)’

(1.3) <i)=cu<a>+2,ﬁ;§(<—1>k/k!>Bktz_k(a>,
«

where B, is the so-called Bernoulli number (see [1]). Especially, if a=
B=1(2%), then

(5=

For N e D, we define

U, =the group of units congruent to 1 modulo N in K,
Dy=a set of representatives of 3'/Uy, :
U(N)=[U: Uy],
A(N)=a set of invertible residues of & (mod N) which are inequi-
valent to each other under multiplication of any unit of 9,
@(N)=the cardinal number of 4(N)=®(N)/U(N)
(®(N): Euler function on K).

Lemma 2. Let 5, be a unit satisfying n,=g (%), then a complete set
of representatives of U/U,, is given by
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(1'5) {773077?77;27724' : 'Wi’l/; 0§t0§1—2, Oétkgl—l (k= 13 2’ 45 6: ] l,)}

where
I—1 .
—_— I=1@),
5 if Q)
I'=
-3

Proof. This follows from Lemma 1.
Now, by Lemma 2, we can choose 4(2*) once for all as follows;

(L) AGH={gogts- - -7it; 0<t<I—1 (k=3,5, - -, ")}
where
I—3 .
——= ifl=1@),
5 “)

l// —
f—'z;l— if 1=3(4).
For the above fixed 4(1*) we can choose the set D of representatives for
/U (once for all) satisfying that if ¥ € D, (7, 2)=1, then 7=r, (1*) for
ry € AQQ®). '

Lemma 3. Let7 e D, then v=1 (A*) if and only if

(Tie)—_—l fol’allee Ul*'

Proof. This lemma follows from Lemma 1, (1.2) and (1.6).

For a given prime divisor m (s£2), we see that U(A*)|U(4*m). We
can assume that every element of A(A*m) is a residue of some element of
D.

We consider the product C** of /* copies of C an R-algebra. For
Z2=(2y, Zy, * ++, Zx) € CV, we put e(z)=exp ai > i, (z,+2,)). Then e(z)
is a character of the additive group of C**. The cyclotomic field K/Q is
considered a Q-subalgebra of C** by the map

c—>(c, ¢t ¢ -, " N e CY (ceK).

Then, e(c)=exp (2zi Trg,o(c)) for c e K. Considering 9 a lattice in C,
let 9* be the dual lattice of - in C** with respect to e( ).
Now we define Gauss sums as follows. For ce D, c=1 (1%), and

(e 9% (u5£0), we put
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6 é
&) sen=3 (2)e(24)
dmod ¢ [ C
where 4 runs through a set of invertible residues (mod ¢). By Lemma 3,
g(c, ) is well-defined and satisfies g(c, ) =g(c, y) for e € U,.. We define
the Dirichlet series (s, p) for p e 9*-{0}, which is our object to investi-
gate:
(1.8) Vs m= 3,

=1(2%)
ceD

(i:—) g(c, ))N(e)~*

where N(c)=Ng,o(c) and s e C. It is easily seen that:

(1.9 Vs, ep)=(s, ) for every e € U,
(1.10) (s, 2= (s, 1.
§2. I'(N)

For z=(zy, 2, -+ -,2,:) € C¥, we put 2=(2,,%,, » - -, Z;»). We con-
. . z —v
sider matrices of the form u=(v z’) where ze C¥, v=(V;, Uy, + - -, Uss)

e (RY)Y. Then, the space of all matrices of this form is identified with
the product H* of [* copies of the upper half space H. For we C¥, we

put W=(’g ?_V) Then, SL(C*)=SL(C)X - - - X SL(C) acts on H by

Q.1 o(u)=(du+b)@Eu+d)*

where ¢= (g Z) e SL{C™), a, b, c,de C*. The action is transitive and

the stabilizer of a point is isomorphic to SUL(C) X - - - X SULC).
For 0=(6;, s, « + -, 0) € GL(C™=GL(C) X - - - X GL,(C) (o, €
GL(C), k=1, 2, - - -, I*), we put

det s=(det g,, det g, - - -, det g,4),
(det 0)=(£(det 0,)'2, - - -, +(det a,)"%).

Then, GL(C™)=GL{C)X - - - X GL,(C) acts on H" by

2.2 o(u) = ((det o)~*"0)(u), ue H*
where ¢ € GL,(C") and (det 6)**¢ ¢ SL(C™).
For z=(zy, 25 - -+, zix) € C¥, put || z]|=T] i1 |2.). We write v(u)=||v]|

for u=(z _lf) e H*. Then, for a=<a b
z cd

z ) ¢ GL(C") such that ||det o]|

=1,
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(2.3) v(ou)=j(o, u)"'v(w)
where j(g, u)=|det (Gu+d)|.

We can consider GL,(-9) a discontinuous subgroup of GL,(C'). Then
GL(9) acts on H' discontinuously, and has a fundamental domain
whose volume with respect to the invariant measure of H'* is finite. Let

N denote either 2* or 2*m once for all where m is a prime divisor (#2)
of 9. We put

©.4) (V)= {a ¢ GL(9); oa—((l) (1’) mod N}.

For the sake of brevity, we put (b/a)=1 for a=1,2, ---,I—1 (A*)
and b=0 (a). We put )

@.5) x@:):(%) for a=(‘c‘ Z) e I'(N).

Comma 4.zt (% ), (4 ) eoro w(2 £ %)eran
and ad— pr = 1 (2%*), then ‘

(GG D)-(ais) s

Furthermore,

(9 D) () vamrarmren

if a=a=0 %),

if c=1,2,-.-,1—1@%),

=( i )_l(_c—) if c=p=0 (1%).

aa+Be aa

Proof. By the definition of X and the reciprocity law ((1.1), (1.2),

(1.3),
(o) () (i)

=< aa—({x—ﬁc >_1< (o;i-—l—-lggc )
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- ( oca:(—ﬁc )—1( aa—T—‘Bc )

Ifa=1,2,-.-,1—1 (%), then a''=1 (%), (a/(ea + pc))' ' = (Bc/a)' !
and so (ee/(aa+ fc))=(Bc/a). If a=a=0 (2*), then aa+ fc=fc (2**') and
so (a/(aa+ Bc))=(e/Bc). Now the lemma follows.

From Lemma 4, we have
Proposition 1. X is a character on I'(N).

The set of all cusps of GL,(9) is identified with KU {co} on which
GL,(9) acts transitively. Two cusps k=a/7, £’ =a’/1’ are I'(N)-equivalent
if and only if there is a unit ¢ € U such that

(?)Ee(?j) mod N.
For a cusp &, let I',={¢ e I'(N); ox=«} and put
(é (1)) if k= oo,
0,= (? _g)> lf ICZO,
(f;‘ g) € SL9) if r=afr 0.

Then, we have

(2.6) £=0,(c0),

Q.7 r.— {(8 b ): en e Uy, be NS},
2

2.8) » I'.=0cl 07"

If the character X is trivial on I',, then & is said to be an essential
cusp of I'(N). This notion depends only on the I'(2*)-equivalence class
of k. So the set of all essential cusps of I'(A*m) is equal to that of
I'(2*). It is easily seen that0,1,2, ---,/—1 and oo are essential cusps
of I'(A¥). Put P(1¥)={0, 1,2, ---,I—1, co}.

Proposition 2. P(2%) is a complete set of I'(A*)-inequivalent essential
cusps.

Proof. Using Lemma 4, we see that k=«/7" is an essential cusp if
and only if



370 T. Suzuki

-1
@) (i) et ras)
ade,—7 Pe,—Tab ade,—71Be,—Tah
for all ¢;, ¢, € U,y and b € 2¥9.  First, let k=a/r be an essential cusp such

that 1]a. Then a=0 (2*). For, if 2* |« and 2**'}a (K<I1*), and if we
take e, &, b such that e;=1, g,=1, 1 —7ab=1+2' (A'*), then

(wnmitazian) Canriomras)~G5a) ()
ade,— 7 Be,—Tah be;— 1 Be,—Tah 1—7ab 1—7ab

A )
= 1.
()

Now we may assume that 7 e D and a,,=<7cf g) where ad=0 (2**'), =
—771(A'*Y). Then, & (ade;,—7Pe,—Tab)=1 (2**!) and

ade,— 7 Pe,—Tab ofe,— ¥ Bes—Tab &5 (be,— 7 Pe,—Tab)
=<52_151>=<525f19 7)
7 FEA

So, by Lemma 3, we have r=1 (1*). This means «/7 is I'(2*)-equivalent
to 0.

Similarly we have: if k=a/r is an essential cusp such that 2|7, then
£ is I'(A*)-equivalent to oo.

Next, let k=a/F be an essential cusp such that (o, )=, )=1. We
may assume that ¥ € D, o, =(?0f ‘2) where 6=0 (A'*), f=—7""' (A**).
Then, ade,— 7 Pe,—Tab=e,—Tab (A**") and

(aoarioros) Canzrparan)
ade;—TPe,—Tab ade,— T fe,—Tarb

=(52——7’ab, a )_1<_51)—1( &—Tab, T >(_5L>
2 a y 7
:( 1—7wesb, o )"( eert —TaeTh, ?’)
2 2 '

Taking b=0, we get =1 (4*) from Lemma 3. Taking ¢, =¢,=1 (1*), we
have a'~'=1(%), e, a=1,2, - -, [—1 (A*). So k=a/7 is ['(A*)-equiv-
alenttooneof 1,2, .-, [—1.

We classify all the essential cusps of ['(4*) into three types and
choose ¢, once for all in the following way:
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_ _[(x B
type k=aff o‘,-—(T 5)

A-type a=0(01%), r=101% ad=0(2'*Y)

B-type a=1,2, -, 1-1@%, r=10(2% =0

C-type a=1@%), 7=00%) Br=0@*H

In case of N=21%m, we classify them into nine types; an essential
cusp « is said to be of (4, )-type (resp. of (B, )-type, of (C, )-type) if &
is of A-type (resp. of B-type, of C-type) in the above sense; ( , 4A)-type,
( , B)-type and ( , C)-type are defined in the following table:

type k=afl
( ,A)-type a=0(m)
( , B)-type (o, m)=(1, m)=1
( , O)-type r=0(m)

In particular, if k=q/7 is of (4, 4)-type, then =0 (*m) and =1 (2*).

§ 3. Eisenstein series and theta series

The greater part of this section is taken from [3] and [4]. See for
details [3] and [4].

Let {,, £, £2, - - -} be the set of essential cusps for I'(2*). For the
sake of brevity, we put o,,=g;, I',,=1",(i=0,1,2, --.) and k,=o0,

= <(1) (1)> For each cusp «;, the Eisenstein series

G Eus, TN)= 2. Uou(oi'ew) (ueH",seC)

T vas
is defined; it is absolutely convergent for Re(s)>2. If we take ox,
(¢ € I'(N)) instead of «;, then E,(u, s, I'(N)) changes to Z(¢)E,(u, s, I'(N)).

As a function of u, E,(u, s, I'(N)) is an eigenfunction of all Laplacians of
H*™ and satisfies

3.2)  E(ou,s, '(N))=X(0)E(u, s, ['(N)) for every o e I'(N).

We consider the Fourier expansion of E; (i, s, I'(N)) at every cusp.
Let
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(3.3) K(w, S)ZJCZ*](((I) (1)>, (i _i_»_se(—wz)dV(z)
weC¥,s5e()

where dV(z) is the Euclidian measure of C*; then we have
(3.4) K(w, 5)=Qn)"* |w|* 'I'(s)" "k, _ (4zw)

where K,_,(w) is a product of the modified Bessel function K,_,; K,_,(w)
=14 Koo wi) (w=(wy, sy -+, w) € C*). Denote by V(N) the
volume of C'/N9 with respect to dV(z). For any two cusps &;, &, let
M, (N) be a set of pairs (c, d) € Dy X9 such that o'i<j ;)0']‘,1 e I'(N)
and, for a fixed ¢, d runs through a set of residues mod Nc¢ prime to c.
For (c, d) e M,(N), we define

3.5) 74,06, d):)'(<ai<: ;)0;1).
Then we have
Proposition 3. Eo;, u, 5, I'(N)) has a Fourier expansion of the form

Ei(Gﬂ/l, S, F(N)):5Z-jv(u)s _l_\pi]_(s’ T(N))vuy=*
+/‘§*"!’ij(s, u, (N ))Yv(uy*~*K(uv/N, s)e(pz/N)

°

(3.6)

with

1 if&; is I'(N)-equivalent to k.,
0= .
0 otherwise,

oo, Ta=(-ZL) V) 5 26 NG,

S— (c,d) € My5(N)

Vals, s TO)=VA) 5 T, d)e(ZE N (o).

o) ER 1)
Here Vr,,(s, ['(N)) does not depend on the choice of ¢, such that ¢ (c0)=k,.
Proof. See [3].
Definition 1. TFor 2 ¢ 9% —{0}, we put
Vs, s TIN)=puls, 1, T(N));
we call it the p-th coefficient of E(u, s, I'(N)).
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Definition 2. For an essential cusp «;, V,,(s, I'(N)) is said to be the
singular value of E,(u, s, ['(N)) at ;.

As we see later, V,,(s, ['(N))’s are expressed by the Dedekind zeta
function of K. So we get the fact that (s, I'(N))’s are holomorphic in
the region Re (s)>1 except possibly a simple pole at s=(+1)/I. More-
over we have

Proposition 4.  E,(u, s, '(N)) and (s, n, I'(N)) are holomorphically
continued to the region Re(s)>1 except possibly a simple pole at s=
I+ D)/l

Proof.  See [3] and [4].

Remark. It is well known that E,(u, s, I'(N))’s are meromorphically
continued to the whole plane C and satisfy functional equations. But we
do not use this fact.

Let E(u, s, I'(N)) be a linear combination >, ¢,E;(u, s, I'(N)) (¢; € C)
of Eisenstein series.

Definition 1. We define the p-th coefficient of E(u, s, I'(N)) by
NIP(S, /1’ F(N)):; Ci‘l/'i(sa /'5: F(N))'

Definition 2’. We define the singular value of E(u, s, I'(N)) at an
essential cusp x; by

1}7(S, K, F(N))=Zi: Ci‘pij(sa I'(N)).

By Proposition 3, we can take the residue 8(u, I'(N)) of E(u, s, I'(N))
at s=([+1)/l; we call it a theta series for I'(N). The theta series
&(u, I'(N)) is a square-integrable automorphic (with respect to the character
X)'function of I"(V) and is an eigenfunction of all Laplacians of H*".

Definition 1.  We define the p-th coefficient of 6(u, I'(N)) by
Y, F(N))=Res;_ .17 Wls, 1, T(V)).
Definition 2”/. We define the singular value of 8(u, I'(NV)) by
V(e T'(N))=Res,_ ., Vs, &5, T'(N)).
Then O(u, I'(N)) has the following Fourier expansion:
O, TN =0, PV Y@= + @ayes-nr(PEL) e

X 33 9, TVl )R, (o] N)eluz|N).

PE]
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Let 6(u, I'(2*)) be a theta series for I'(4*¥) which has p-th coefficients
¥(p, I'(A*)). Regarding 6(u, I'(2*)) as a theta series for I'(A*m), let
(e, ['(A*m)) be its p-th coefficient. Then, by (3.7),

(3.8) Ve, (%)) =Ar(pm, I'(2*m)),

3.9 Wy, I'(A*¥m))=0 if (p, m)=1.
Our argument in this paper is based on the following lemma.
Lemma 5. 6(u, I'(N))=0 if and only if ¥/(x;, ['(N))=0 for all x,.
Proof. See [4], Theorem 4.1.2.

§4. Eisenstein series for 77(1*) and their residues at s=(/+1)/]
For each «; € P(2%), i.e., k,=0, 1, 2., [—1, oo, put
“.n E(u, s, £;)=V(@*)E(u, s, ['(2*)).

Let (s, u, £;) be the p-th coefficient of E(y, s, k;). Now we calculate them.
Ife;=a (@=0,1,2, ---,1—1), then

=e(—aﬂ/1*)‘!’(s’ fl)a
where (s, 1) is defined by (1.8).
Meanwhile,

(4.3) (s, oo)__c_%;*) dmé;m (7) ( a;p; ) N(e)-.

cED* d=1(2%)

Here we can write c=¢2l¢’ where e € U/U,, b=(I+1)/2, ¢’ e D, (¢/, 2)=1.
There exist 4, B e 9 such that 7¥2°4+4¢’B=1. Then d can represented
by

d=2*2"Ad,+c'Bj

where d, runs through a complete set of invertible residues (mod ¢’) and §
runs through a set of residues (mod 1*2%) subject to =1 (4*¥). Now we
get

@ (=)=
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and so
e\ [ du ) (ezb>(a,c/> (B&y )
— e = = 4
g:%;*c ( d) ( cA* g;%*;l*xb ) A eA*Ab
%, 5. (¢ )e(‘””)
(4 6) di mod¢’ C/ c

F=c—1(i%) A
( 22262*) ( 1) (dl#>
d1 mod ¢’ C,

X

For r e A(2%), we put

@47 vom= 3 (£ s mne,
c—T(ll)
@ reom 2 ()5

Then we have

(4.9) ’\I/‘(S, 2 OO)_ ;l (€2b )l—bswr(s, 6—22(1_2)[,#).

ré
eEU/UY *
bz(l+1

Let (s, £, £,) be the singular value of E(u, s; £;) at an essential cusp
£; of I’(2*); it is given by

@10) Vs, £ /cj)=( = L, d) N(e)".

1 ) (c,d) & M 35(2%)
We put £(s)= fof?:l N(c)~s.

Lemma 6. We have

> 3 (SN =0 =D s Dels—14+
=0(4*) ¢ mod 2*¢ \ d

ceDy* d=1(2%)

Proof. If we write c=¢A’c’ as the above argument for ¥ (s, z, o),

we get
c\ _ e’ \[ 4, ¢’ d1>
d m%‘l: e <7> - é m§1*1” (T)( 2 ) dy BZO:d ¢ (67

d=1(a%) a=1(a¥%)
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o)y ifex=1,2,---,1—1(%),1|band
= (¢”) is a [-th power,
0 otherwise.

This proves Lemma 6.
Lemma 7. Ifr=1,2,--.,1—1 (%), then
> 3 (DO =els—nets—1+ D"
c=7(4*) d mod ¢ C
cED* d=a(at)

for any a.

Proof. It is enough to prove the case =1 (1*). We may assume
ce D, c=1(%). Since

( d) {@(c) if (¢) is a I-th power,
d mod 2*¢

c 0 otherwise,

d=a(i¥)
our assertion follows.

Now let us calculate ¥(s, x;, £,). We devide it into seven cases [1]-[7].
[1] the case of ;=0 and x;=a'[1’" (4-type). In this case

M (%) ={(c, d) € DX 9; c=0(3%), d=1 (3*), d mod c1*}

rie=(#)(5)

So, by Lemma 6, we have

and, if (¢, d) € M;,(2%),

@11) (s 0, a'/T')z( - )l*(‘;‘—:>@(2)(l”“— )1 (ls— De(ls— I+ 1),

[2] the case of k,=0 and k;=a’/7’ (B-type or C-type). If (c,d)e
M p2¥), then c=—a’ (A*) (@'=1,2, ---,[—1) and

rieo-(2)(2)

So, by Lemma 7, we have

4.12) (s, 0, a’/T’):( ul )”(;_',)z(ls—l)c(ls—u1)‘*.

s—1
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[3] the case of k,=«a (¢=1,2, ---,I—1) and k;=a'[1" (A-type). If
(c, d) e M,;(2*), then c=« (2*) and

rie=(2)(2)

So, by Lemma 7, we have

@13) ¥ a oc’/T’)=( z )”(.f;‘_:)g(zs—l)c(ls—lJr1)-1.

s—1

[4] the case of k,=a (¢=1,2, ---,I—1) and k;=a'/V" (B-type). If
a=a’ (1*), then

M%) ={(c, d) € DX 9; c=0 (%), d=1 (%), d mod ci*},
Tler d) = (-2—)(%) (e, d) € M, (3¥).

If az=a’ (1), then for (¢, d) € M,,(A%), c=1,2, - - -, [—1 (¥) and

= 4 d
e =(0)(%)
[44 C
So, by Lemma 6 and Lemma 7, we get

(ﬁ)”(g)m}a“-l—1)—lcas—z)cas—l+1)-‘
(414 (s, @, 1) = if a=a’ (A%),

<L>"(ﬁ>c(1s—1)c(ls—l+ Dt if et @9).

s—1 o

[5] the case of k;=a (@=1,2, ---,[—1) and k;=a’/7" (C-type). If
(c, d) e M, (2*), then c=—1 (2*) and

e ()(2),

So, by Lemma 7, we have

@15 s a a'/T')=< m >Z*<g’)c(ls—l)§(ls—l+1)"1.

s—1

[6] the case k;=co and k;=a'[1" (A-type or B-type). If (c,d)e
M,;(2*), then ¢=1 (2*) and

rieo=(2)(2)
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So, by Lemma 7, we have

4.16) (s, oo, &f7)= (L)l*(:—:)C(ls——l)C(ls——l+ 1y,

s—1
[7] the case of k;=co and &;=a’[/V’ (C-type). In this case
M, (2*)={(c, d) € DX 9: =0 (2¥), d=1 (2*), d mod ca*},
- 7
e o-(2)(5)

So, by Lemma 6, we have

¥/
@17) 96 oo, =( 5 1) (D)o@ar = nets— - ets =141
— a

Next, we consider the residue 6(u, £;) of E(u, s, x;) at s=(+1)/L
The singular value of 6(u, ;) at &, is given by Res,_ (., 1, ¥(S, £;, £;) which
is easily evaluated by (4.11), - - -, (4.17). Noting that (’/a’)=(«'[7") when
a'[r’ is of B-type and that the value of @Q)(/**~'—1)tat s=({+1)/lis 1,
we see that the singular values of (u, &,) at each essential cusp are equal
to each other. Hence, by Lemma 5, 8(u, £,) are equal to each other. Now
we write it simply 6(u); we call it the /-th power theta series for K. We
restate what we have proved as

Proposition 5. Let V(x;) be the singular value of 6(u) at an essential
cusp k;. Then

(ln)”(‘;‘—,')az)-l Res,. L(s) if &,=al7', V=1 (&%),

J’(’Vj)z v
(1w (L)o@ Res,oale) f my=ait, =1 G,

[44

Now consider the u-th coefficient 4(¢) of 8(u). Since 8(u)=0(u, k),
it follows that y(i)=Res,. .1/ (s, s x;) for every ;. So, by (4.2), we
have

Proposition 6. (1) =0 unless e(u/2¥)=1; and y()=Res,_ . ;. (s,
Y, o) where (s, p, o0) is given by (4.9).

Remark. If we calculate (4.9) explicitly, we can get some relations
among (eA*y) (e e U, (4, ))=1, p e D). But it is complicated even in
case of /=35.
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§ 5. Eisenstein series for 1"(1*m)

As in the second section m is a prime divisor =21 of K (m € D). Let
P(2*m) be a complete set of I'(A*m)-inequivalent essential cusps. We
consider Eisenstein series of I'(A*m) for k; ¢ P(A*m) such that k,=a/7 is
of (4, A)-type, i.e., 7 € D, 7=1 (%), =0 (1*m): We put

(.1 E(u, s, T)=V(2*m)(i;-)Ei(u, s, T(A*m)).

This does not depend upon the choice of « but on 7 (mod m).
Let (s, p, 7) be the p-th coefficient of E(u, s, 7). Then we have

d

(5.2) Yis, B, N= > 3T (d>e( f )N(c)-s

¢=—~7(A*m) d mod *me \ C cA*m
cED¥p d=a(*m

- = (s wrer.

ce
c=r(*m)

Let a be an ideal character of 9 defined modulo (m). We put

(5.3) Ew,s,0)= 2, aNE®W,s,7).

rE€A(2*m)
7=1(2%)

Let (s, u, a) be the p-th coefficient of E(u, s, a). Then we have

Proposition 7.

v, m)= 3 @£t pNE) s

c
c=1(a%)
(cym)=1

especially
A*m s
v 1) 5 (A )ele pNE)
ceD C

e=1(2%)
(c,m)=1

where 1,, is the trivial character modulo (m).

In order to calculate the singular values of E(u, s, 7), we need the
following two lemmas.

Lemma 8. Suppose 1=0 (%), a=1 (2*), (", ®)=1. Then
c
£ \N()-*

( d ) ©

c€Dy*m d mod *mce
e=y(2*m) d=a(i*m)
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U@ UG 0@ (- =1 3 (%)kN(m)"(“”

X b BEN@E) " if T=0 (m),

- (¢,ma)=1
[@-12@P(c)N(c)t -1t if 720 (m).
i
(e, ma)=1
‘e€ U/ U¥mye=1,2, 00, L —1(2%)
Proof. We write c=e2’m*c’ where ¢ e U/U,, b=({+1)/2, k=0,

¢’ e D, (c’,mi)=1. Then there exist 4,, A,, 4, € 9 such that

M e! A+ A0 Ay A mE A = 1.
The representations of d can be chosen as follows:

d=m**1¢’Ad, + ¥ 3¢’ Ayd, 4+ 25 2P m* 1 A d,

where d, runs through a set of residues (mod A*2%) subject to d;=1 (1*),
d, runs through a set of residues (mod m***) subject to d,=« (m) and d,
runs through a complete set of invertible residues (mod ¢’). Then

(@)=CE@)=()E) )7)

— = . = —
d mod *mc d dy mod %20 dl 2 de modmk+1 \ J11/ dsmode’ \ C
d=a(i*m) d1=1(a*) de=a(m)

lb(ﬁ)kzv(m)kq)(c/) if e=1,2, .., 1—1 (%), 1|5,
m
= m*=1 (2*) and (¢’) is a /-th power,

0 otherwise.

Hence we may write c=e2'"m*c! where ¢ € U/Upyp, =1, 2, - - -, [—1(4%),
bZ1, k=0, m*=1 (%), c,e D, (¢;, mA)=1. If7=0 (m), then c=e1'*m*c},
k=1. Ifr=£0(m), then c=¢A'’c}, eA*cl=7 (m). So our lemma follows.

Lemma 9. Suppose r=1,2, ---,1—1 %), (0, N=1. Then

(£
ciim dmidhme \ ¢
v@mUE 33 (L) N 5 aNE)
by V1 2,
= if 7=0(m).
wittm DN if 77£0(m).

e€D,(e,ma)=1
e€ U/U *m,e=1(2%)



Gauss Sums and Theta Series 381

Proof. It is enough to prove the case 7=1(2*). We can write
c=em*c’ where ¢ € U/Up,, k=0, ¢’ e D, (¢’,mA)=1. Since c=1 (%),
we have e=1 (1¥), m*c’=1 (1*). Then

> (i):(il_)kN(m)"@(c’) if (¢’) is a I-th power,
dmod 2*me \ C m

d=a(*m)

=0 otherwise.

Hence we may write c=em"c} where ¢ € U/Upy, e=1 (%), k=0, m*=
1(2%), ¢, e D, (¢, mA)=1. If ¥=0 (m), then c=em~c}, k=1, m*=1 (2¥).
If 7=£0 (m), then c=ec}, eci=7 (m). So our assertion follows.

Let (s, 7, ;) be the singular value of E(u, s, 7) at an essential cusp
k;; it is given by

o dene=(5) (%) L 3 T ONE)

where £, =a/l € P(1*m). We take ai=<? ‘g) and ojz(?, ‘g,), then

My (¥m)={(c, d) & Dpuy X 9; c=—Ta'(X*m),

(5.5) d= —71p/(A*m), d mod cA*m}

Let us calculate ¥ (s, 7, «;) for each type of ;.
[1] k;=a/[1": (4, A)-type. If (c, d) € M, {(2*m), then c=0 (A*m), d=

71"t (A*m) and
wien-(2) (23)

Hence, by Lemma &, we have

5.6) Vs T /cj)=( : )l*(;‘—:>U(l*m)U(A*)“@(Z)(l“‘"—1)"

s—1

k 7\ -k o
X > <L> (L) Nm)*a=2 3= B(e)N(e)! .
wiaatm TN eimp=1

[2] ;=a’'[1": (A4, B)-type or (4, C)-type. If (c, d) e M,(A*m), then
c=0 (%), c= —7a’ (m), d=1 (2*) and

w2 (€)(5)

Hence, by Lemma 8, we have
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iere=(2) (5)
(5.7) o

T/

! zb(l—s)(p(c)N(c)l ~1-1s
exldel=ra’(m)
bz1,c€D,(¢c,mi)=1
€ U/UrFm,e=1,2,+++,1~1(2%)

[3] k,=d'[1": (B, A)-type or (C, A)-type.

If (¢, d) € M,,(A*m), then
c=1,2, -+, 1—1 (%), c=0(m), d=77""* (m) and

riea-(£) (0)(2)

44 c
Hence, by Lemma 9, we have

s, 7, k)= (;_’j—l)(;—) U@ m)U (%)

) & ’
< & GG
iz, N8/ A1

)—kN(m E(1-$) Z @(C)N(c)l—l—ls
€D
12

(5.8)

¢
(c,ma)=1

[4] k,=a'[7": (B, B)-type, (B, C)-type (C, B)-type or (C, C)-type
(c; d) € M, (A*m), then ¢=1, 2, - - -, [—1 (A¥), c=—7a’ (m) and

ze)=(2)"(Z)(£).

a’/\c
Hence, by Lemma 9, we have

o= =) (5)

If

(5.9)

- D(c)N(c)t-1-1e,
o gel=—ya’(m)
€ ,8=1(2%)
ceD,(c,mi)=1
Let (s, a, £,) be the singular value of E(x, 5, a) at an essential cusp
k;; it is given by
(5.10)

‘p(sz a, ’Cj)=7€‘4§m) C((T)\‘I;(S, 7, ICJ')'

7=1(4%)

We define

£, @)= EZI:)

a(c)N(c)™".
(cfml):l
Then, by (5.6), - - -, (5.9) and (5.10), we have

Proposition 8. Suppose a*=#1,,. Then
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\1;(5': a, /fj)

<s_7i 1)z*(;{_/’)ﬁ(a’)@(l)((ﬁ(l)l)l—Ls_1)—1C(ls_l’ ae(ls—I+1, ab)-!
if k;=a’[T" is of (4, B)-type or of (4, C)-type,

= (sj 1 )l*<£l—;)a(0/)C(ls_l, (IZ)C(IS—]+ 1, al)-1
if e;=a'[1" is of (B, B)-type, of (B, C)-type,

of (C, B)-type or of (C, C)-type,
0 otherwise.

Proposition 9. (s, 1,,, x,) is given by: if k,=a’[1" is of (4, A)-type,

(&j_l)l*(‘;‘_:)@(z) UR*m) U=~ — 1) d(a%m)

X O@F) (N (m)» -t — 1) e(Is—1, L)e(Us—I1+1,1,)7%;

if ,=a'[7" is of (4, B)-type or (4, C)-type,

;2 )l*(%)@a)(l“-‘—1>“C(’S—’= lalillr—it 1, 1)

s—1

if k,=a’[7" is of (B, A)-type or of (C, A)-type,

( x )z<r_'/) UQ*m)U %) B(*m)B (%) - (N (m)s -t — 1)1

s—1 o

X LUs—1, 1,)o(s—1+1, 1,)7%;
l'flcj=05//Tl is of (B, B)-type, (B, C)-type, (C, B)-type or (C, C)-type,

( - )l*(g/)ms——h L)CUs—1+1, 1,)"%

s—1

§ 6. Main results
We put
(6‘1) 0(“5 a)zRess=(l+1)/lE(u= s, C[).

Then the singular value V(a, £;) of 6(u, a) at an essential cusp &, is given
by Res,_ .1, V(s, a, £)).

Proposition 10. Suppose a'+#1,,, then
6(u, a)=0.
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Proof. Since Res,_ (1, C(s—1, a)(Is—1+1,a")'=0, we get, by
Proposition 8,
V(a, k)=0 for all &,.
This implies 6(u, a)=0 from Lemma 5.

Theorem 1. Suppose a’=£1,, then the Dirichlet series
3 a@ele, HNE)™

(c,m)=1

e=1(2%)

is holomorphically continued to the region Re(s)>1.
Proof. This theorem follows from Proposition 7 and Proposition 10.
We consider 8(u) a theta series for I'(2*m). Then we have
Proposition 11.
6(u)=(1+N(m)=)b(u, 1,).

Proof. The singular values of 6(u) are given in Proposition 5, and
those of (u, 1,,) are derived from Proposition 9. Meanwhile, the values
of Q) ~*—1)* and U@*m)U*)"'@(2*m)D(a*)~(N(m)**-*—1)"" at
s=(I+1)/l are equal to 1, and that of {(Is—DZ(Is—I+1)¢ls—I1+1,1,)
Lids—1,1,)" at s=({+1)/l is 1+ N(@m)~'. So the singular values of §(x)
and (1+N(m)~H0(u, 1,) at each «, are equal to each other. This proves
Proposition 11.

Proposition 12. If (u, m)=1, then

Ress=(1+1)/l "lf(s> M lm):O

In other words, if (1, my=1, then the Dirichlet series

(%) ete. ey
it \ e
e

is holomorphically continued to the region Re(s)>1.
Proposition 13.
W) =1+N) ") Res,_ .0, 9(s, mp, 1,).

Proof of Proposition 12 and Proposition 13. These follow from
Proposition 11 and (3.8), (3.9).
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Theorem 2. We have
(' ) =)

Proof. Since (s, m**'y, 1,)=1(s, my, 1,)), our assertion follows
from Proposition 13.

Theorem 3. If (u, m)=1, then
(m' =) =0.

Proof. Since (s, p, 1,)=1(s, m*~'my, 1,), our assertion follows
from Proposition 12 and Proposition 13.

In (1.8) of Section 1, we replace p by m‘y (=0, (1, m)=1) and
rearrange the right hand side in the following way:

6D W mp=5Ney 3 (A )gtnte muN
v kc_fx*) mkc .
Germ=1
We put
smodm \ M m )

for k=1,2, --.,1—1. Itis easy to see that, for r1=0, 1,2, ..., /-2,

(") aulom. N @) e, m =) i k=141,
©4)  gOn'e, Mu)=10(c mty) if k=0,
0 otherwise.

Then (6.2) is written in the following form:

W, mp)= (—Zci)g(c, )N (c)~*

ceD
=10%)
(eym)=1
Z* t+1
(6.5) +(7) Zea s, )N ()= 405
x5 ()% eemeane-

ceD
mb+1le=1(2%)
(¢,m)=1

fort=0,1,2, ---,1—2. If m=1(2*), then

(s, mtp) = (s, mt+ips, 1)

6.6
6.6 +<£>t+lgt+1(m, N (m)t+E+03g(s, m' =Ty, 1)
m
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for t=0,1,2, --.,]—2. Taking residues of both sides of (6.6) and using
Proposition 13, we have

Theorem 4. [f m=1 (¥), (m, u)=1, then

1!,(mz—z—?.#)= _'?*_ —t—lgwl(m’ ﬂ)N(m)_l+(t+1)/l\[/‘(mt/")
m

fort=0,1, ..., (I—-3)/2.
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