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On Dirichlet Series Attached to Holomorphic
Cusp Forms on SO (2, q)

Takashi Sugano

§ 0. Introduction

In [1] and [2], A. N. Andrianov has studied the relation of the L-
function associated to a Siegel modular form of genus two and its Fourier
coefficients, and using this relation he has proved the meromorphic
continuation and the functional equation of the L-function. Let Fbe a
Siegel cusp form of genus two of weight k. It has the Fourier expansion:

(0.0 F@2)= 2, a(DelTt(T2)],

=tT>0

where Z is in the Siegel upper half plane of degree two and T runs
through all semi-integral symmetric positive definite matrices. We assume
that Fis a simultaneous eigen function of all the Hecke operators T(m):

0.2) T (m)F=2,(m)F (m=1,2,--).

Andrianov proved that, in some right half plane, the Dirichlet series

©.3) S 5 anTyry}ms
m=1 \T;€H(d)
has the Euler product expansion
©04) { 3 aToUT)} Lals—k+2,1)"'Li(s)
T EH @

Here d is the discriminant of an imaginary quadratic field K=Q(v d),
H(d) denotes the set of equivalence classes under SL,(Z) of semi-integral
symmetric primitive positive definite matrices with determinant —d/4.
It forms an abelian group and is identified with the ideal class group of
K; X is a character of H(d), which is regarded as an ideal class character
of K, and L.(s, X) denotes the L-function with character X. L(s) is
defined by
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Lo(s)=C(25— 2k + 4) i;l Ap(mym=1.

The main purpose of this paper is to give a generalization of the
theorem above by Andrianov in SO(2, g) case (Theorem 1). Note that
Sp(2, R) is isogenous to SO(2, 3). Let g (=3) be an integer and

(o)

be a non-degenerate rational symmetric matrix with 2 positive and ¢
negative eigenvalues. Let G [resp. G*] be the special orthogonal group
of Q [resp. Q]. For each prime p, put

K,=G,NSL,.(Z,) and K,=T] K,
p

In Section 1 we define the space &,(K;), which consist of holomorphic
cusp forms on G, of weight k with respect to K,. FEach element F in
©,(K;) has the Fourier expansion (cf. (1.11)):

F(g;; )= 2. a(gs;nelQ(y, 2)),

=il
where g, e G, |, E(g,) is a lattice in Q¢ and 2 is a complex domain
defined in (1.2). We assume that Fis a simultaneous eigen function of
the Hecke algebra 2, determined by the pair (G,, K,) for almost all p.
We fix a g, € G%, and a & e L(g,) such that v/ —1£e . We define a
subgroup H(£) of G* by

H(&)o={g e G§|g&=¢&}.

Then H(£).., the group of R-rational points, is isomorphic to SO(g—1).
For each prime p, put

M(g,; 8),=H(),Ng,K;g;* and M(g,;;8),=[] M(g;; &),

Denote by ¥"(g,; £) the space of functions on H(&),, which are left H(¢),
invariant and right H(¢).M(g;; &), invariant. Let {u, ---,u,} be a
complete system of representatives of H(&)\H(£),/H(§).M(g,; &);, such
that u; =1 (i=1, ---, k). Take an f'in 7'(g,; &) and assume that f is a
simultaneous eigen function of the Hecke algebra 5/, determined by the
pait (H(8),, M(g;; &),) for almost all p. Then the Dirichlet series
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0.5) 5_1_,' (&)™ Z’L: a(uigf; mg)@m-(s+ k- q/2)
(m1?1;__)1=1 =1 . e(&)i
Vpes

has the Euler product expansion

06 {u@ Latugss LU L LT 517D
i=1 9(5)1

1 if ¢ is odd,
£,(25)"' if g is even.

Here e(8),=#{H ()N M(ug,; )} (1 <i<h), p§)= X1 e®)", 2 is a
sufficient large finite set of primes, L,(F;s) [resp. L,(f:s)] is the L-
function of F [resp. f], which is defined in 4-1, and ,(s) denotes the
Riemann zeta function neglecting p-factors for p belonging to £.

In Section 2 we recall some basic facts on the Hecke algebras
following [5], and prepare two lemmata (Lemma 2 and Lemma 4). The
proof of Theorem 1 is reduced to local argument and is similar to [6], in
which the case g=3 is treated in detail. After we calculate local factors
in Section 3, our main result will be stated and proved in Section 4. In
Section 5 we study some related problems. The case which has interest
for us is that f satisfies the condition 3 a(u,g,; &)(f(u,)/e(£),) 0. It
seems that in general a constant function on H(£), does not have this
property. Indeed, Proposition 3 asserts that if f=1, p¢ & and n,>2
(n, is the Q -rank of G), then some relations, not depending to F, hold
between the eigenvalues of the Hecke algebra s#,. Finally, in a quite
special situation, we give an integral representation of the Dirichlet series
(0.5) of Rankin-Selberg type (Theorem 2).

The author wishes to express his deepest gratitude to Professors
Hideo Shimizu, Shin-ichiro Ihara, and Takayuki Oda for their valuable
advice and warm encouragement. He also thanks very much to the
referee, who checked so carefully the original manuscript and corrected
the errors contained in it.

Notations. We denote by Z, Q, R, and C, respectively, the ring of
integers, the rational number field, the real number field, and the complex
number field. For an associative ring R with identity element, R* denotes
the group of all invertible elements. For any set S, M,, ,(S) denotes the
set of m X n matrices with entries in S. Put M, (S)=M,(S). If Ris a
ring with unit element, A ,(R) forms a ring and we denote by 1, the unity
of M, (R). Put GL,(R)=M,(R)*. If R is commutative, we denote by
SL,(R) the special linear group of degree n. If Q@ € M, (R) is a symmetric
matrix, for X, Y e M, (R) we put Q(X, ¥)=‘XQY and Q[X]=0(X, X).



336 T. Sugano

For each place v of Q, we denote by Q, the v-completion of Q, and by
[x], the module of x for an x ¢ OF. Q, [resp. 0] means the adele ring
of Q [resp. the idele group of @] and for x=(x,) € QX put |x|,=[].|xls-
For an algebraic group G defined over Q and a field XK containing Q, we
denote by G, the group of K-rational points of G. We abbreviate Gy, to
G,. We denote by G, G.., and G, ;, the adelized group of G, the infinite
part of G,, and the finite part of G, respectively. Each prime p is identi-
fied with the corresponding finite place. When L is a Z module, we put
L,=L®;Z, For zeC, we put e[z]=exp(2nv/—1z). The cardinality
of a finite set S is denoted by £ .5 or | S|.

§1. Holomorphic cusp forms on SO(2, q)

1-1. Let ¢>3 and Q be a non-degenerate rational symmetric matrix
with 1 positive and g—1 negative eigenvalues. Put L=2Z? (column
vectors) and V=L®,0=07% We set

1
wy Q=(1 0 )

Then it has 2 positive and g negative eigenvalues. We denote by G*
[resp. G] the special orthogonal group of Q [resp. O] defined over Q:
accordingly, the set of Q-rational points is

G5={g e SL,(Q)|'gQg=0},
[resp. Go={g & SL,..(Q)|‘g0g=0}].

1
We regard G* as a subgroup of G through the embedding gn—»( g )
1

We denote by 2 one of the connected components of

(1.2) (Ze V®C|Qlim 2]>0},

where Im & means the imaginary part of %. This domain is isomorphic
to the irreducible bounded symmetric domain of type IV,. Let G2 denote
the identity component of G... We define an action g{(Z> of G%, on @
and a scalar valued automorphy factor J(g, Z) on G% X2 by

—30[Z]\ (40l 2)]
(13) g Z |=| K2 &2 (<G Zc)
1 1
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In this manner G%, acts on @ transitively. We fix an element %, in &
such that the real part of %, is 0, and denote by K., the stabilizer sub-
group of &, in G%. Then & is isomorphic to G%/K...

For each prime p, put

(1.4) K,=G,NSL,.(Z,),

and we abbreviate [],... K, to K.

Let k& be a positive integer. We say that a function F on G, is a
holomorphic cusp form of weight & and with respect to K, if F satisfies
the following three conditions:

(i) F(rguy=F(g) for YreG, YueKk,,
(ii) For any g=g..8; (8- € G%, g, € G4, /),
(1.5) F(g.g)J(g.., Z,)"* depends only on g; and Z=g.(Z,>,
and it is holomorphic on 2 as a function of &,
(iii) Fis bounded on G .

We denote by &,(K,) the space of such functions. We introduce a
positive definite hermitian inner product (the Petersson inner product),

<7 by
(16) FFy=[  F@F@,
¢Q\Ga

where F,, F, e ©,(K,) and dg is a fixed right G,-invariant measure on
G,\G,. Equipped with this inner product, ©,(K;) forms a finite dimen-
sional Hilbert space.

For each Fe ©,(K,) and g, € G,,,, we put

(L7) F(g;; 2)=F (8.8 (8= Z)* (Z € D),
where g., € G, is chosen so that =g (Z,>. If we put

(1.8) I'(g)=GoN G Xg,Kg7,

which is a discrete subgroup of G2, then F(g,; &) satisfies
1.9 F(g;;1<Z))=J(1, Z)"F(g,; Z) forany 7 eI'(g,).
For each X ¢ V, we define an element 75 of G by

1 —'XQ —}0IX]
(1.10) rx=( 1, X )
1
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Since the holomorphic function F(g,; &) is invariant under 2%+ X,
where X is in the lattice L(g,)={X e V,|7x € I'(g,)}, it has the following
Fourier expansion.

(L.1D) Fg;; Z)= 2. algs;nelQy, L)),

n€Llgy
Y=igeo

where L(g,)={X € V,|Q(X, ¥) € Z for all Y e L(g,)} is the dual lattice of
L(g;), and the right hand side of (1.11) converges absolutely and uniformly
on any compact subset of 2.

Let us introduce adelic Fourier coefficients of F. Let X=[], X, be
the character of @, such that X|Q@=1 and X.(x)=e[x] for all x e R. For
each £ e V,, put

(1.12) Ffg;: &= F(— Q¢ X)NdX (g€ G,
Vo\V4

where dX is the normalized Haar measure of V,\V,. We can easily check
that for each g.. ¢ G% and g, € G, ,,

(1.13) Fx(googf; E):a(gf; &J (8. go)—ke[Q(& - REINIR

where we understand a(g,; £§)=0 if &¢ I:(gf) or v —16¢ 2. The next
properties follow easily from the above definition:

Fy(7xgu; &)=1(Q(&, X))Fy(g; &)  forVXeV,,Vuek,,
(1.14) Fz((a B8 )g; E)=Fz(g; pléa) forVaeQ*,VBe G}
ot
F(rzg)= EEZV:QFZ(g; HUQE, X)) forVXeV,.

1-2. Fix a &in V, such that ¥/ — 18 € 2, and put V¥ =Q¢, V®=
{Xe V|0, X)=0}. We write QW=0|V® (;=1,2). Since Q[£] is
positive and Q has only one positive eigenvalue, we see that Q® is
negative definite. Let us define an algebraic subgroup H(£) of G* by

(1.15) H(8)y={g e G§|gt=¢&}.

It is nothing but the special orthogonal group of 0®. For an element
g; ¢ G, ; and a prime p, we put

(1.16) M(gf;g)p=H(E)pnngfgj—‘1>

and we abbreviate [], M(g,; &), to M(g,;&);. We denote by ¥ (g;; &)
the space of C-valued functions on H(¢), satisfying
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(1.17)  fGrhh.m)=f(h) for V1 e H(&)y, Yh.. € H(§).., Ym,; e M(g,; &);.

In this space, the Petersson inner product is deﬁﬁed by

(118 Sufdmo=] 1) iEan

(BIQ\H($)4

where dh is the right H(£), invariant measure on H (&)o\H (&), with the
total volume 1. Since |H(&)\H(&),/H(§)..M(g,; £),| is finite, ¥*(g,; &)
forms a finite dimensional Hilbert space.

When fis a left H(&)y-invariant function on H(§),, we put

(1.19) of.(8)= Fy(ug; &)f(w)du (g e G,).

H(§)Q\H(£)4

Lemma 1. Let F be a non-zero element of ©(K;). Then there exist
g, € G ; and & e V, such that Fy(g,; £)0. Furthermore there exists an
fin ¥°(g,; &) such that ¢f (g,)=0.

Proof. First we note that
(1.20) G,=GyG% ;G K.
Indeed, for any prime p, G, is generated by G},

1

a
( 1, ) (@e 09,7y and T}:( X 1, ) XeV,).
a’ —3Q[X] —'XQ 1

Hence, (1.20) is an easy consequence of the approximation theorem of
valuations. From this, we can take a g, € G} ;, and g.. € G2 such that
F(g.g,)20. Take a & in V, such that Fy(g..g,; £)=0. Then from the
property (1.13), we have F,(g;; £)20. Now we define a function f; on

H(&), by
1.21) fl(u)=Fx(”gf; ).

From (1.13) and (1.14), f; belongs to 7"(g,; &). Therefore there exists an
fin 7 (g;; &) such that {f,/Dr 30 and the function ¢f . has the
required property. Q.E.D.

§2. Hecke algebra

2-1. In this subsection we recall the definitions and some properties
of Hecke albebras following Satake [5]. Let p be a prime number, L a



340 T. Sugano

lattice in QF (column vectors), and .S a non-degenerate symmetric matrix
of degree N with coefficients in Q,. We say that L is Z, -integral with
respect to S if S[x]/2 e Z, for all x e L. We denote by SO(S) the special
orthogonal group and put

Q.1 SO(S; L)={g € SO(S)|gL=L}.

Denote by £(S; L) the Hecke algebra of the pair (SO(S), SO(S; L));
namely, #(S; L) is the set of bi-SO(S; L)-invariant functions on SO(S)
with compact support, and it forms a C-algebra by the convolution
product

@2 Gos)@)=|  s(en i,

where dh is the Haar measure of SO(S) normalized by the condition that
the volume of SO(S; L)is 1. If L is a maximal Z -integral lattice with
respect to S, then SO(S; L) is a maximal compact subgroup of SO(S),
and the Hecke algebra #(S; L) is commutative (cf. Satake [5]).
Let S, be an anisotropic symmetric matrix of size n, over Q,, and
- assume that Z}° is a maximal Z -integral lattice with respect to S;. From
the well known property of quadratic forms over local fields, we have
0<n,<4. For a non-negative integer n, we put

J.
(23) S,=| S, |, L,=2Z%", and V,=0Q%*™,
J, ? ?
1

where an( K ) (size m). Then L, is a maximal Z -integral lattice
1

with respect to S,. Put G,=S0(S,), K,=S0(S,;L,) and &,=
ZL(S,; L;). Note that if L is a maximal Z -integral lattice with respect to
S, then SO(S; L) is isomorphic to K, for a suitable choice of S, and #.
For an n-tuple of integers r=(r,, - - -, r,), we set

(2.4) n"':diag(p”, A 1’ cee, l’p"Tn’ . .,p—n) e G".
|

n,
1 %
Xz( T . ) € GL,L(QP)}.
0 1

Then the following Iwasawa and Cartan decomposition hold.

Put

X = %
(2.5 N,=4g=10 1, * eG,
0 0 J,' X",
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(2.6) G,= U Nqxo'K,= |) =N, K,
rezn rezZ»

.7 G,=]] K=K, (disjoint),
red

where

g =0 r) e Z0in> > >0} 0,
=0y - sr) e Z0 2> ) if ny=0.

We often identify the Hecke algebra ., with the set of finite C-
linear combinations of double K, cosets. In [5], I. Satake gives an
explicit isomorphism between .#, and an affine algebra. We recall it
here. Let X, - - -, X, be algebraically independent variables over C and
C[XE, - -+, XZ] be an affine algebra generated by X, X7% .-, X, X1
Let ©, denote the group of all permutations of the variables X, - - -, X,
and w® (1<i<n) denotes the transformation; X,—»X;?, X;->X; (i2¢j).
For each g e G,, the double coset K,gK, can be decomposed into right
K, cosets in the form

(2'8) KngKn = U nix”Km
i€l

where r,=(r;, -+ +5 ¥;,n) € Z", n; € N, and I is a finite index set. The set
{r;|i € I'} is uniquely determined by K, gK,. Put

(29) @"(KngKn):Z ﬁ (pl—no/2—ij)rim+1-j’
i€l j=1

and extend it to a C-linear mapping from #, to C[X{, ---, XZ]. Then
it gives an algebra isomorphism

(2.10) 0, : L, —> CIXE, - -+, X2]",

where W, denotes the group of automorphisms of the algebra C[XT, - - -,
Xz] generated by &, and w® (1<i<n) [resp. S, and wPw? (11, j<n)]
if n,>>1 [resp. n,=0], and C[X%, - - -, X£]"~ denotes the subalgebra of all
W, invariants.

Now we set

(2.11) T ()={g e G,|pg € M,,,.(Z,)}.
For each r (0<r<n), we put

212 & ={g e T,(1)|ranky,,z (p&)=r},
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where rank, ., (pg) means the rank of pg in M,,,,(Z,/pZ,). Then we
have

(2.13) T, (D)= || & (disjoint),

o<rg
and from the Cartan decomposition (2.7),
K, c["K, if n,20 or razn,
Q14 &= =D or s
K.ci'K, 11 K,ci”'K, if n,=0 and r=n,

where ¢ =g®-b%-0 (in the upper suffix, 1 appears r times) and
W — qplyee,=D)
G .

2-2. In this subsection we decompose &), into right K, ., cosets
inductively. For r (1<r<n), R [resp. R™’] denotes a complete set of
representatives of K, /(c{”K,c{" "N K,) [resp. K, /(¢ K, e N K,)]

Lemma 2. When nyz1 or 0<r<n—1,

P 1
&= 1l ey ™Y T2.Kui1 1l ( ecy ™ |71, K, i
r 1

e€ RV sERY—D
X1 Xz
1 1
(2'15) L[ ec;r—l) TXsKn-H U 6c7(1,r) 7’¢1’4[<7z.+1
cERY -V 1 ce Ry 1
X3 (X
p-!
1 eci' v |K,,. (disjoint).
e€ R )4

Here, for X e V,,, we have put
1 —XS, —}S,[X]
TX= X s

12n+no
1

(2.16)

and X, - -+, X, runs through the following set, respectively.

o

Xy
X, € —ZZ'r—l, Xy, e —1zn—r+1
X,=|z| e V,/L, 1€D p 2 Ve €D P

zep-'L,

X €pT 2y Xy Yo € pT 2y, 3S,[X] e p'Z,

X,=|z| eV,/L,
zep 'Ly, and x, or y, ¢ Z2"7**
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A
x,ep'Z77Y, zep'L,—L
X=(2evyr, 120 r 0 FEP TRl
0 ESO[Z]GP Zp

{XF(g) e V./L,|x ep-*z;,}.

We understand that R =¢ if r<<0 or r>n. When n,=0 and r=n, n+1,

the identity (2.15) holds with an addition of the following K, ,, cosets to the
right hand side:

1
1 ( e’ )TXg'Kn+l if r=n,
1

p o
n,
U 5Cn ) TXI’Kn+1
cc R p-'l
Xy

1

-1
1 e |Ku  ifr=n+l,
ee RV’ D

where X, X runs through the following set, respectively,

X;: € Vn/LnIXIEp—IZ;'I’ yzep‘lzp ’

X = e Vo/L,|x, € p~*Z1™, y, € p~*Z,,;.

Proof. We assume that n,>>1. From the definition of 7,,,(1) and
the Iwasawa decomposition (2.6), we have

-~1<ag1 iy X
o<icn SERL

. p°
Tn+1(1)= ]_[ ]_I U ( EC';P )TXKn-H’
p‘ a
where X runs through

{X e V,/L,

cP®XepiL,, p*S, X ¢ p"Ln}
3p°S,[X]ep'Z, '

For each bz( ecth )TX, rankz,,.z (pb) is calculated easily (note

pa
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that if Si[z] € 2pZ, then S,z € L,), and our assertion follows. The case

n,=0 can be treated similarly. Q.E.D.
Put
2.17) L= {z eV, % Szl € p'lZp}.

Then L{/L, is a vector space over Z,/pZ,. We denote by 0=0a(S,) its
dimension (0<6<n,). From Lemma 2 and the definitions of the Satake
isomorphism @, ((2.9)), we have

Lemma 3.
B, E0) =P (X s+ X7 1D, (E5 )

+77 (0~ DD )+ D)
+pr—2(pn—-r+2_ 1) (pn—-r+1+no +Pa)¢n(5¥_2))-

Especially, since ${¢”/K,} is given by the value @,(@&”) for X,=
pr+i-t (1Ki<n), we can prove

e r J-1 n-j+1__1)(Pn-j+no+p0)
2.18 /K )=]] 22
(2.18) HerlKy=11 -1

by using this lemma and induction on #. This formula will be used in
Section 5.

2-3. Let T be an indeterminate. Since each coefficient of
(2.19) j]i[l(l —X,T)(1—X;'T)
is invariant under W, there uniquely exists a polynomial
@20 PD=Pu (D=3 (~Da0T* (@be2)
such that
5 (= D" @ )T =[] 1= X, —X7'D).
From the reciprocity of (2.19), we have '

a,2n—k)=ea,(k) O<k<2n).

In this subsection we determine «,(k) inductively.
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Lemma 4.
(i) a,(k) is written in the form
(k)= 3 a,.(r)é" with a,,r)eC.

0<r<n

(11) an+1,k(r)=p—(n+no/2)an k_](r—l) z'fr}l,

=d,, k(o)"l‘an,k 2(0)—‘ —1 n,k—l(O)

n+n 0/2

_ =D oy if =0,

pn +7n9/2
(i) When 0<k<2n+2 and 1< r <n, the following relations hold.

)+ =L =D )y P

pn+no/2 n+n 0/2 " k-1 r-—l)

T pt=T ___ n=r-1+ng ]
LT =D(p ) 4, (r+1).

pn +n0/2

Here we understand that a, ,{r’)=0 unless 0k’ <2n or unless 0<r’ <n.

Proof. If n=0, (i) is trivial. We shall prove our assertions by
induction on #. Assume that (i) holds for n. Since

n+1(Pn+1(T)) {]—( +1+Xn+1)T+ TZ} Z (_ l)an(O( (k))Tk
we have

D,y o i(01(K)) =D (@, (k) + (X i1+ X 1)D (0, — 1)) + D, (e, (k—2))
0<k<2n+2).

From Lemma 3,

Orrn )= 3 DO
a0+ 00— ——7‘— PRG)
@.21) S ‘1);,{’::,: "+p) (D)
= 3 0. @)+ 4. m—%ﬁ% e

L =)= POV AR ),

pn +no/2 p‘n +n0/2
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Since the left hand side of (2.21) belongs to C[X%, - - -, X%,,]®** and the
right hand side belongs to C[XE, ---, XZ]°~, it must be a constant.
From the fact that 1 and & (1<r<n) are linearly independent over C,
the coefficient of @,(¢{") must be 0 (1 <r<n), so (iii) is proved. As @,,,,
is an isomorphism, (i) holds for n+1 and (ii) is also. proved. Q.E.D.

Let us define the local L-factor. As in Section 1, let L be a maximal
Z ,-integral lattice in Q) with respect to S. Denote by » the Witt index
of S and put n,=N—2n. If we take a suitable S, then S is represented
in the form (2.3) and £(S; L) is isomorphic to .#,. We put =4(S; L)
=3(S,) (@(S,) is defined after (2.17)). Through this isomorphism, we
define a polynomial Py(T) in £(S; L) [T] (see (2.20)). When ¢ is a
homomorphism from #(S; L) to C, we obtain a polynomial Py(T’; ¢) in
C[T] replacing each coefficient of P¢[77] by its g-image. For se C, we
put

Py(p=2;0)! if nyj=0or 1,
Py(p*; 0) H(1—p*+1=mar) (I pevieonom) s
222) L(S;0;5)= if ny=2 or 3,
Py(p*30) (1 —p™) " (L=p=* ) (L p* )
XA +p~H)~! if ny=4.

Thus L,(S; o; 5)"! is of degree N [resp. N—1] as a polynomial in p~* if N
is even [resp. odd].

§ 3. Euler factor

3-1. In this section we use the same notations as in Section 2. We
denote by L, the dual lattice of L, with respect to S,; so L,=S;'L,.
Let & be a primitive element of L, and fix it throughout this section. We
denote by N(¢) an element of Z, such that N(§)é is a primitive element
of L,. We assume that N(§)S,[£] is a unit of Z,. Note that N(¢) € 2Z,.
Put

(3.1 H()={geG,|gt=8},
and

Wyf+1,e={50: H@E)NKNG,.\/K,..—>C|
o(Tx8)=X(S:(& X)) ¢p(g) for all X e V,},

where X=X, is a character of Q, whose conductor is Z,. The Hecke
algebra &, ,, acts on W%, . by the right convolution;

(3.2)
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B3 @HE=| eE I (e Wi de Lo

Furthermore, when we denote by %’ the Hecke algebra determined by
the pair (H(&), H)N K,), &’ acts on WL, . by the left convolution;

G G@=] s (e Wisede D)

In Proposition 1 and Proposition 2, we shall calculate the formal power
series

(3.5) Fp(T)=iso((p 1 ))T
v =0 p-l

when ¢ is a left &’ and right %, ., eigen function.
For b ¢ G,, we denote by m, the minimal integer such that p"”'b e
L,. We can easily check that

(3.6) m,>0.

Lemma 5.

R my+1
U Supp SDCU 7‘X( b )Kn+15
120 BEGR —(mp+1)
XEVa p

$EWE 1e

where supp ¢ means the support of ¢.

Proof. Take any element g in G,,; such that ¢(g)=0. From the
Iwasawa decomposition (2.6) and the definition of W%, ., we may assume
that

pa
G.7) g=( b )
p——n,

where ae Z and b e G,. Since for X e L,, o(g7 %) =¢(g), p*~ ™S, (p™b'¢,
X) must be an integer. From the choice of m,, we have a>>m, and our
assertion is verified. Q.E.D.

Let us describe the action of some elements of &,,, on Wi, ..
Forle Z and r (0<r<n), put
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pl
DR eci if ny2:0 or rcn,
s RY pt

P! P!
s [T | P P [ I
cERL™ pt ce R’ pt

if n,=0 and r=n.

B8 o(r, )=

Note that if / is negative ¢(r, /)=0.

Lemma 6. For (>0 and r O<r<n+1), the following identity holds.

pl
(o (( 1 ,)) =p"*"o(r—1, I+ 1)+p"p(r, )+ o(r—1, 1-1)
-

PP =D p)p(r—2, D7 (P’ = Dep(r—1, 1)
ifiz=1,
) =2, 00—/ r—2, 0+ 76 (r—1, 0)— p~"r— 1, 0)
if 1=0.

Here we have put

1
B9  YE0= 2. XS ec;’)X))so(( ec;” 1))

sERL™

X€p—1Ln/Ln

eI Xep=ily O<r<n—1)
3Sa[X1ep—1Zp

1

(3.10) ', 0= 20 X(Su&ec”X ))90( ecy” )

cerg) 1
Z::‘lLo/Lo

’l’s“[%‘-p"“ if n,20 or ren,

X=
0

and ¢"(n, 0)=o(n, 0) if n,=0 and r=n.

This lemma is a direct consequence of Lemma 2. In the right hand
side of (3.9) and (3.10), every element ¢ of R{” which contributes the sum,
must satisfy ¢{”7%¢~'¢ ¢ L, (cf. Lemma 5).

3-2. In this subsection we assume that ¢ is an eigen function of
&1 We denote by g, the homomorphism of Z,,, to C determined

by ¢:
3.11) pxd=a,(P)p (pe L)
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We put
(3.12) 0TV =P, (p" ™™ T; )
=3 (~1ya ¢<am<k»( )
and
(3.13) P(T)=F,(T)X 2,(T),

where F,(T) is the formal power series defined in (3.5).

Proposition 1. Notation being as above, we have

B(D= 5, (=0 (=) (3, B

o<rsn
where
n-r__ n—7—1+ng 3
Bw,k(r) {a (r) P (p lp)ffnolz +p ) k- 1(r+])
_pr+5—(7l+’ﬂo/2)an’k_1(r)}€0(r, 0)
+p—(n+no/2)an,k_1(r+ 1)¢’(r, 0)
+p7‘(7‘*"0/2){61”,;0-1(’)‘“an,k—l(r+ D}e"(r, 0).
Proof. Put

P(D)=3 (~'BDT"

From Lemma 6, we have

2n+2
B)=(—1)' 3 (=DpHermem

pz—k
X D20 Gy, k(")%(cv(fh (( 1 ))
0<r<n+1 pk—l

2n+2
Gady =2 (CDEPTE T ()

k=0

X{U=kprme(r—1, I—k+1)+3(=k)po(r, I-k)
+3(=k)p(r—1, [—k—1)+3(I>k)p"~(p*— Dg(r—1, I—k)
+a(U>Rk)p (P =D+ pO) plr — 2, I—K)
+8(I=k)p'(r—2, 0)—5(I=k)p""*¢"(r—2, 0)
+o(I=R)p""'¢"(r—1,0)—8(I=k)p"'o(r—1, O)},
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where the symbol §((x)) means 1 or 0 according as the condition (x) is
satisfied or not. 'We write the right hand side of (3.14) as

2 et m) & 3y w0+ 35w, 0)

STr<n-—
o<rsn

From (iii) of Lemma 4, we have u, ,(r)=0 if m>1, and

Uy (r)=p~ " a, oy (rF 1) —pr e (pror—1)
X (P TPy, (r - 2)—p g, (1)}
zp—(n+no/2)l{an,l(r)_pr—(n+no/2)(pn—r___ 1)(pn—r-1+no+p3)
Xy, (r+1) _“PT+3_(n+"°/Z)an,L—l(r)}-

Here we used the inductive property (ii) in Lemma 4. The values of u{(r)
and u’(r) are easily seen, and our assertion is verified. Q.E.D.

3-3. Changing a Z, basis of L,, we may assume that

0
I
{57\ s_(Nes _[~e
(3.19) Sn—(J 3 ) S A A
n’ 0

where s is a unit of Z,, S§ is an anisotropic symmetric matrix of size #;
(my=n,+1 or n,—1) and »’ is the Q -rank of H(§). We fix such a reali-

zation, and put
I
Sr= S; .
Wy

We_define G,,, K}, T;.(1), &>, e’ or P,(T) in the same way as G,, K,,,
T.(D), &, ¢ or P,(T), respectively.

Lemma 7.
{ge T,(D|g ¢ e L,}=TL(DK,.

Proof. Take any element g in 7,(1) such that g-'¢ e L,. We shall
prove that g e T,(1)K,. From the Iwasawa decomposition (2.6) we may

assume that
a 1, X, Y,+Y
gel|l b Ligas 2,
JtatT,, 1,
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where a e GL,(Q,), be SOS}), Ze M, ,, AQ)s Xg=—J,'Z8}, YV,=
—13J,°Z8,Z and Ye M, Q) satisfying J,,Y4+°YJ,,=0. Let us show
that if b-'¢ ¢ L, then b is in M,..(Z,). Put b—(?’ ‘g), where o e Q,,
Be M, ,(Q,),7eM, (Q,)and e M, (Q,). We know
G1g (YO ) (NOwrSI - NGt 1Sp )
8o/ \N(&)s‘Ba+'aSqy N(&)s'BB+'3Si0

Since b‘1<N($)_l)—(a§]/V£%> §"IZ"°'+1, we obtain e« e Z, and fe

M, ,(Z). Comparing (1, 1) block of (3.16) we have S{[7] € 2Z, (here we
have used the fact that N(§) € 2Z,). Since S} is anisotropic, we have
TeM,,(Z,). Similarly by comparing (2,2) block of (3.16), we know
that § e M, (Z,),and b isin M, (Z,). Thus we may assume that b=1.

Put Z-( ) where z, € M, ,(Q,) and z,e M, . (Q,). Since g6 € L,
we know that z, e M, ,(Z,), and we may assume that z,=0. Then g
belongs to G.,N T,(1), the above statement has been checked. Q.E.D.

We denote by %, the Hecke algebra determined by the pair (G%,, K}).
Hereafter we suppose that ¢ € W7, . is a simultaneous eigen function of
Z;., and denote by o], the homomorphism of #;. to C determined by ¢:
(3.17) gro=0,()p ($ e L)

Lemma 8.

(i) olr, 0)=olEP)p(D),

(i) ¢'r, 0=p"C'o(EP)p(),

i) ¢"(r, 0)=C"al@P)p(D),

~ -1
where C'= > X(Sé((N(g) ), Z)), and

zep-lzg""“/lz"”“
380 l2]ep—1Zyp

0
B, 0

Proof. Lemma 7 assures that we can take a set of representatives
of 87)/K’, as that of {ge &P|g ¢ e L .}/K,. Thus we have

1
or, 0= 2 so(( g 1))—0’(6(”)90(1)
geeV /Ky,

We shall prove (ii). From the definition (3.9), we get
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1
X(S.(& X ))so(( g 1))

X(S.u(&, XD}e(r, 0).

Sol(rs 0)= Z
geel) /Ky,
Xep—1Ly/Ln
gXep—1iL,
3S.[X1ep—1Z,

={ X

Xep—1Ly/Ly
e Xep—1Ly
38n[X]ep—1Zyp

It is easy to see that the coefficient of ¢(r, 0) coincides to p™C’. (iii) is
proved quite similarly. Q.E.D.

Let ¢’ denote the dimension of the vector space {z € p~'Z7%'|3S([X] e
P 'Z ) Z} over Z,[pZ, (i.e., 3’ =3(S})).

Lemma 9.
(i) a,z{aora—l if nj=n,—1,
0 if ny=n,4+1,
(ii) c"={pa ya=2,
0 ifo'=0—1,
p° if 9 =20 and ny=n,— 1,
(iii) C’'=q —pm if 9'=0 and nj=n,+1,
0 ifo'=0—1.

This lemma is easily checked by using the complete list of S, in
[3, Satz 9.7].

Proposition 2. Let ¢ be an element of W}, . Assume that ¢ is an
eigen function of %, and & ,.,, and denote by o, and ¢, the homomor-

phisms defined by (3.17) and (3.11), respectively. Then the following
identity holds.

T
P(T)= Q@(DF¢(T)=P;'(W; 0';)90(1)
1 if =n and & =0,
Xq(L4p?-@moT) ifn'=n and 3 =0—1,
(1—p- o T)(1+p?-@*mT) jfn'=n—1 and 9'=0,
where P,(T; a,) denotes the image of P,(T) by a.

Proof. Suppose that n”’=n and '=0. We can write P)(T) in the
form
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PUT=3 (— DX 3 by )E)T"

<r<n

By induction on s, we shall prove
(18) B, (r)=p b, (r)o[E")e(D).  (0<k<2n, 0<r<n)
From the above two lemmata, we know

B, (r)={a, (r)—(p "1t —p=mPq, o (r4 D}al(e)p(1).
Clearly (3.18) holds for n=0; so we assume that (3.18) holds for n. If
r>=1, then

(3-19) an+!,k(r) _Pnoﬂ(pn—r—P_l)an+1,k—1(r+ 1)—p_k/2bn+l,k(r)
(0<k<2n+2)

is equal to

p= o, a, o y(r—1)—p™H(pt T —pa, o)
—p~* V%, (r—1)},

from (ii) of Lemma 4, and it vanishes by the induction assumption. Let
rbe 0. Then (3.19) is equal to

1 (0)+ a5 _(0) —p~"*"2(p° — D, ;_4(0)
—p~ (Pt —1)(p" PNy, (1) — (1 =P ")y, -(0)
=P Mb,,(0)+ by, 5 (0) —p= 0= D(p? — 1)b,, ,_+(0)
—p-ttomd(pn__T)(pr-tene-iy piyh (1)),

Using the induction assumption and the fact
pl—(n +no/2)(pn—1_ 1)(1’"-““_1+Pa)an,k—2(2)

=0, - 1(1)Fay 1-o(1)—p' ="+ (p? — l)an,k—z(rl)
_pl.— o +n0/2)an,k-2(0)’

we know that (3.19) is 0. Hence our assertion is proved. The other
cases follow similarly. Q.E.D.

§4. Main Theorem

4-1. 1In this section we shall state our main theorem and its proof.
We use the same notations as in Section 1. For each prime p, we denote
by #, the Hecke algebra £(Q; Z2*%). Let #, act on S(K,) by
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@) EP@=[ Ferdn (Fe®.K),¢ex)).
Note that
“4.2) (Fx¢, Fyy=(F, Fyxgy (B, Fr e @(K)), g € ),

where ¢(g)=¢(g~") (T denotes the complex conjugation). Thus, if #,
is commutative, then each element of s, acts on ©,(K;) as a normal
operator with respect to the Petersson inner product ¢, >.

We denote by &, the set of all primes p such that L, is not maximal
Z -integral with respect to Q. Since Q € GL,(Z,) for almost all p, $Z,
is finite. We note that if p ¢ &, then o, is commutative. Hereafter we
assume that F e ©,(K,) is a simultaneous eigen function of all 2, such
that p ¢ #,. We denote by ¢, the homomorphism from s, to C
determined by F:

4.3) Frg=0p (HF (pet,).

For any finite set & containing #,, and for se C, we define the L-
function L,(F; s) by

“4 L,(F; 5)= pl;[, L0 05,559,

where L,(0;0p,,;s) is defined in (2.22). Since every coefficient of
Lp(Q~; 0r,p; §)"'in p~¢ is bounded by p4r, where A4 is a positive constant
not depending on p, the product in (4.4) converges absolutely in some
right half plane.

We fix g, € Gf ; and £ e V,, such that Fy(g,; £)=0. Denote by ¢,
the Hecke algebra £(Q®; L(g,) N V®). It acts on ¥7(g,; &) by the convo-
lution, and has a property similar to (4.2). Let N(§) be the minimal
(positive) integer such that N(£)¢ is in L. Assume that ¢ is a primitive
element of fp; then L,=(VONL),&V®NL), if and only if N(§)Q[£]

¢ Z3. Denote by #(g;; &) the minimal set such that if p does not belong
to #(g;; £), then

i) p i '@1’
ii) & is a primitive element in L,

iii) N()QI¢l e Z7,
iv) the p-part of g, is in K,.

4.5

Clearly the number of elements of #(g;; £) is finite, and if p ¢ #(g,; &)
then 2, is commutative. When an element f of ¥7(g,; §) is an eigen
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function for such #;, we denote by g, , the homomorphism from #; to
C determined by f:

(4.6) frg=0,,(f (e}

For any finite set & of primes containing #(g,; &) and s € C, we define

L,(f; s) by
4.7 L,(f;9) =pl;[?Lp(Q<2’ 0105 5)-
Now we state our main result.

Theorem 1. Let F be an element of ©,(K,), and assume that it is a
simultaneous eigen function of #,(¥p ¢ #,). Fixag,e Gf andaé eV,
and put P,=P(g;; E). Take an element f of ¥'(g,; &), which is a simul-
taneous eigen function of all #, (Yp ¢ P,). Take a finite set P of primes
containing P,. Then the following Euler product expansion holds in some
right half plane.

mZ—: ™ Za(”igfsmé) fg&)i) m-GrE-a/

(m,p)=1
for Vpeg

= {pter 3 atwss 0 LU0V, 9L 4
H (14 ps+2-177) if q is odd,
< 3‘7#3
JLA=P 00+ [ (A7) g s even

Here a( ;) is defined in (1.11), {uy, - - -, u,} is a complete set of representa-
tives of H(&)Q\H(&)JH(&)M(g;; &); such that u, .,=1(1<i<h), e(§),=
#{I!(E)QQM(uzgf, f)f} and #(5) Dt e(®;'. For p ¢ P, we put 0,=
3(0; Z8*Y and 3,=09(Q®; (V® N L),).

(4.8)

Remark. (i) If fis an eigen function of 5}, then f is also an
eigen function of . '

(ii) 9,=0,=0 for almost all p.

(iii) Note that

oh, (8 ) = 3 atuig;; L g)) e[0, 2]

Therefore the identity (4.8) is not trivial for a suitable choice of g;, & and
f (Lemma 1).
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This theorem is reduced to some local problems. Let p be a prime
not belonging to £, and put

Wig,; Q3={p; M(gs; §),\Go/ K——>C]
o(Tx8)=2(Q(& X)) X eV}
Note that as a function on G, ¢f . belongs to W(g,; £);. Since p is not

in &, this space is nothing but the space W7 ., . (n, is the Witt index of
Q over Q,), so we can use the results in Section 3.

(4.9)

4-2. Now we are going to prove Theorem 1. Let c(¢) denote the
characteristic function of R*X[],es Z5 X [I5¢- Q7 in QX, where T[]’
means the usual restricted product. In two manners we calculate

t |
4.10) | c(t)goz:,e« 1 )gf)m;—wdw,
Q% (-1

where d*t=[] d*t, is a Haar measure of Q%. First, this integral is
equal to

t
I > c(mt)pf e (( 1 )g,r>| L d*t
Q*\Q% meQ* -1

—_—_[: m;;zx {#(5)—12"(%&: me) fﬁg;z O }dx

mezZy

(Vpeo)
Since & is primitive in f,p for p¢ 2, a(ug,; m&)=0 unless me Z,.
Hence (4.10) is equal to

@iy 5 ue Zawzgf,msfﬁ”i) R

(m p) =1
(Vpes)

where we have put 2zv —1Q(§, Z)=—A4 (4>0). On the other hand,
if p ¢ #,, the function

p(8)=0f.(g'8) (geG)),

where g is a fixed element of G, whose p-part is 1, belongs to Wiie (1,
is the Witt index of Q over Q,). Note that

Sro=0; (Do (pe#))

(4.12)
¢*¢:0F,p(¢)§0 (¢ € e;fp)'
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From Proposition 2, we have

. t
T e
Q;; t-l

= %{‘,e(gl)Pp(P'(s —um)Q (pmte-am)-t
=0k (&VL03 05,53 IL Q3 07,53 5+1)”

1 if g is odd and 9,=0,,
(1+p=2+27i7%) if ¢ is odd and 9,=3,—1,
((1 —p~*)(1+p~**%) if ¢ is even and 9,=4d,,
A—p=)A+p~**?»)(A+p=*~'*%) if g is even and 8,=0,— 1.

Therefore (4.10) is equal to

LOAR=02) )+ 32 atug,; T8 L (F; 9L, 4B

ArvEman (@),
(4.13) [T (A4p-s+ie-1) if g is odd,
ap%dp
XA pee
[T A=p)A+p~*%) I (14p~*7**%) if g is even.
rés rgs
apxdp
Comparing (4.11) with (4.13), we obtain our theorem., - Q.E.D.

§ 5. Some related problems

5-1. In this subsection, we prove Proposition 3, which asserts that
in Theorem 1 if we can take a constant function as f, then F must be a
kind of old form. We use the same notations as in Theorem 1. For each
prime p, we denote by n, the Q,-rank of G* (thus the Q -rank of G is
n,+1), and we put n, ,=q—2n,. Let 2, be a finite set of primes including
P,=P(g,; &) and satisfies the condition: if p ¢ &, then Q e GL(Z,).
Therefore if p is not in £,, then 0<n, ,<2 and 3,=0.

Proposition 3. Notations being as above, and we assume that

5.1 Z:hl a(u,g;; &e(€); 0.

Let p be a prime not belonging to &, and assume that n,>2. Then between

0r,)(E01) (0<r <n,+1), the following (n,— 1) relations hold:

(5.2) 05, E0)=A 05 J(E2. ) — By 0r, ,(E5) )+ CV0r, o(E00 1)
@B<r<n,+1),
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- Here
'r—l_l
AT — p X D,
pr-Z(pn‘,_1)(pnp+nu,p—1+1) p ‘
pn—_P =1 pm

Lo
co= (=@ =D =D 004D
=D -D('—D
Dy =4(&, "/ Knp)
I Vbt | ittt VIR

j=1 p—1

Proof. We fix p (p ¢ &), and abbreviate n, to n. We assume that
n,, ,=1, since the other cases are proved quite similarly. We use the same
notations as in Section 3. To prove this assertion, it is sufficient to show
that if ¢ € W}, is left H(&)-invariant and go(l):ﬁFO then the relatlon (5.2)
holds. We may assume that

0 .
&z(SI)a $1=(0) ELI.
0 . c

First we reformulate Lemma 5 in a more precise form. Put for /, m>0,

pm ln—l ’
h,= 1 eG, h,= h, eG,,
p—m . ln—l

pm+t .
8,1 = hm €G,.1
p—(m+l)
Then we have

(5.3) U suppoC U NH(E)2n, 1Ko

$EWL 1e 20

and

where N={ry|X e V,}. Indeed, from Lemma 5 it remains to prove that
foreach b e G,

5.9 ' be H®h,K,

where m=m,.. We put b-'&=p-"¢’, where & is a primitive element of
L,. Then there exists a k in K, such that
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0 1\
ké’=(8§), ${=(0) eL,
0 ¢’

Since 1S,[f]=c=p~*"¢’, we have
gl=h,"'p"&,.

If we put bk~'h;'=u, then u belongs to H(&), and (5.4) is proved. Itis
easily seen that the right hand side of (5.3) is a disjoint union. Now, we
prove our proposition by using Lemma 6. Since ¢( e W2, ) is left H(g)
invariant, each term appearing in the right hand side in Lemma 6 is
written in terms of ¢(g,,;). For 1<r<n+1, we have

(5.5 07, ,(ERDp(D)=p"*'o(r—1, )+pe(r, 0)
+¢'(r—2,0)—p"*p(r—2, 0).
From Lemma 7, Lemma 8, and Lemma 9, we know that
o(j, 0=4CP/K)p(1),  ¢'(J, 0)=4#EP/K)p" C'o(1),
and
oUs D=4CP/K:)0(8,)+{#(E7/K,) — €K ) }p(g1,0)

where 7’ is the Q,-rank of H(¢) and C’ is given in Lemma 9. Therefore
the right hand side of (5.5) is written as a linear combination of ¢(1),
o(g,,:) and (g,,), and their coefficients are easily calculated by (2.18).
Cancelling ¢(g, ,) and ¢(g,,,) by using (5.5) for r=1 and r=2, we obtain
our assertion. Q.E.D.

5-2. In a special case we give an integral representation of Rankin-
Selberg type of the Dirichlet series in Theorem 1. We put

N 0 N
0= 7) = ¢=(%)
where N is a positive even integer and 7" is an even integral symmetric
negative definite matrix of degree g— 1, and assume that for each prime
D, Z3 is a maximal Z -integral lattice with respect to Q. Furthermore for

the sake of simplicity, we assume that & =+ — 1& (%, is the origin of &).
Note that in this case, #,=2(1;&)=¢. We denote by G” the special
1

orthogonal group of T |, regarded as a subgroup of G. We define
1

a maximal parabolic subgroup B” of G” by
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* % %
(5.6) Bg:{ 0 * x]e G/Q'}
0 0 =

For any prime P
K”———G”ﬂ SLq+1( )

is a maximal compact subgroup of G and G/ has the Iwasawa decompo-
sition G =B/K}.  We put

KI=K.NGZ,

where K, is the stabilizer subgroup of &, in G°. Then we have G//=
B!K”. Weput K"=T],K), Foranyge G, we put

Hg) = *
g=| 0 ulg =x )k(g),
0 0 1«

where #(g) € Q%, u(g) € H(§),=SO(T), and k(g) € K”.
Let F [resp. f] be an element of S,(K,) [resp. ¥°(1; &)], and assume
that F [resp. f]is a simultaneous eigen function of 5, [resp. 2#°;] for all p.

Theorem 2. Let the assumptions be as above. Then

{#(5) Z a(ug; &) f () } ( ) (s+k-a/2)

e(£),
(5.7 XI(s+k—q/2) X L(F; s) X L(F; s+1)
{ [T (14p-t+oe=1) if q is odd,
X 3@#313'
T A=p=)(+p7%) T[ (14+p*7*%) if qis even,

has the following integral representation in some right half plane:
59) [ F@E@ s—1/2:7)de.
cg\ed

Here E(g,5;f)=2 enpaplt(TQ)Li " LAf(u(7g)), and the other notations
are the same as in Theorem 1. :

Proof. We start from (4.10). Put

t
59) 2.6)= sog,e(( 1 ))ltlif‘”’dxt-
o% !
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As we have already seen in 4-2, it is enough to prove that @7 .(s) has the
integral representation (5.8). The right hand side of (5.9) is equal to

t
Foe 1 Lt dxt.
j oncs (22 ¥ e(( t") ) "

We can easily see that

SR =] FOdY (geG.).
ceQ V‘Q2>\V )

2
i

Therefore we have

oto=[ | [ o
Q\Q4 JHOQ\H ()4 J VGV

(5.10) ¢
F(Ty( u ))|t|§(‘1’2f(u)deu d*t.
-1

Since G”/=B’{K”, taking a suitable right G// invariant measure on Bg\G/,
the right hand side of (5.10) is equal to

[ F@l@ e )iz
\GA

=L,,\G,,F(g){ > )t fuTg))}ds.
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So our theorem has been proved. Q.E.D.
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