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Introduction 

This short note is an introduction to representations of discrete series 
of real semisimple Lie groups, and to the Hodge theory of cohomology 
groups of discrete subgroups. All the materials in this paper are found 
in the literature except for minor changes of proofs. For these several 
years, I have been hoping that someone would write an article which 
contains "everything that number theorists have always wanted to know 
about discrete series . . . but were ashamed to ask". So this is written 
partly for myself. 

To discuss everything on discrete series is out of my power, who 
have little experience in the representation theory. But in Chapter 1, I 
attempt to explain the basic results for discrete series: their definition, 
characters, realizations, and the K-type theorem (i.e. Blattner's conjecture). 
The proofs are not given. I refer to the papers of Harish-Chandra and 
the textbook of Warner [41] for the proofs of the fundamental facts on 
unitary representations and characters of discrete series. Because the 
realization of Narasimhan-Okamoto [31] is most suitable for our purpose, 
I discuss it in Section 1.3. Also I refer to the realization of Schmid [38] 
which is applicable to more general Lie groups. The realization of 
Parthasarathy [35] by spinors is omitted. The proof of Blattner's con­
jecture is completed by Schmid [40] and Hecht-Schmid [19]. We recall 
only its statement in Section 1.4. 

In Chapter 2, I discuss automorphic cohomology groups, or auto­
morphic harmonic forms, i.e. automorphic forms which generate represen­
tations of discrete series. The most important result in this chapter is 
the vanishing theorem (2.3.1) of Parthasarathy [34], which is the sharpest 
improvement of the vanishing results in [15], [31], [38]. It is a pure­
dimensionality of cohomology groups with coefficients in certain holomor­
phic vector bundles on arithmetic quotients of bounded symmetric do­
mains. Geometric automorphic forms in the title are elements of the 
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possible non-vanishing cohomology groups. 
Chapter 3 is devoted to the discussion of cohomologies of cocompact 

discrete subgroups of Lie groups, and the Hodge decompositions of 
cohomologies. Hodge theory for cohomology groups of discrete sub­
groups were discussed by Matsushima-Murakami [28], [29], more than 
two decades ago. Now we know that their results were not the best 
possible in respect of the vanishing of cohomology. 

Borel-Wallach (and also Langlands, cf. [6], Chap. VII, § 6) improved 
this point to obtain a decomposition of cohomology groups. Their proof 
uses the theory of continuous cohomologies, i.e. the theory of cohomology 
groups with values in (differentiable vectors of) the representation spaces 
of infinite dimensional representations of Lie groups. Though it has 
some advantages (for example, the arguments apply not only for Hermitian 
symmetric cases, but also non-Hermitian cases), it is not so clear which 
component of their decomposition has what Hodge type. 

Fortunately, we have another way to discuss the Hodge structures of 
cohomology groups of discrete series, i.e. the Hodge theory for cohomology 
groups with values in variations of Hodge structure, which is due to 
Zucker (and Deligne, cf. [42], [43]). In order to deduce a result which is 
equivalent to the decomposition of Borel-Wallach, from the results of 
Zucker [43], it suffices to apply the vanishing theorem of Chapter 2, as far 
as the discrete subgroup is cocompact. The main result is Theorem 
(3.3.2). In Section 3.4, we discuss the case where the discrete subgroups 
are cocompact in SP2n(R). Because it is natural to expect that analogous 
result is also valid for non-cocompact discrete subgroups, we formulate in 
Section 3.5 some problems for Hodge structures attached to Siegel modular 
forms. 

The author thanks to the referee for his careful reading and many 
useful comments. 

Chapter 1. Representations of discrete series 

In this chapter, we recall some basic facts on the representations of 
discrete series of connected real semisimple Lie groups: their definition, 
characters, realizations, and K-type theorem. We refer to the textbook 
of Warner [41] for the first two sections (especially see I, Chap. 4; II, 
Chap. 10). 

§ 1.1. Definition and basic properties 

Throughout this chapter, we consider a connected real semisimple 
Lie group G with finite center. Then the group G is a locally compact 



Geometric Automorphic Forms 225 

unimodular topological group satisfying the second axiom of countability. 
Our first task is to define the notion of square integrable representations 
for such groups. 

(1.1.1) Definition. An irreducible unitary representation rr: G----+ 
Aut(H) on a Hilbert space H is said to be square integrable, if there exists 
a non-zero vector v in H such that the coefficient gf--lo(rr(g)v, v) (g E G, 
v E H) is square integrable on G. 

As we shall see in Theorem (1.1.10), the group G has a maximal 
compact subgroup K, which is a large compact subgroup of G in the sense 
of [41], I, Chap. 4. In this case the following is known. 

(1.1.2) Lemma. ([41], I, Lemma 4.5.9.1). Let (rr, H) be an irreduci­
ble unitary representation of G on a Hilbert space H. Suppose that there 
are two non-zero vectors vo, Wo in H such that the coefficient (rr(g)vo, wo) is 
square integrable on G. Then there exists a (unique) positive real number 
d. such that 

for any v, w in H. 

(1.1.3) Definition. The number dr. is called the formal degree of rr. 
It depends on a choice of Haar measures of G. 

Remark. When G is compact, and the Haar measure of G is nor­
malized, the formal degree is the true degree of rr. 

The notions of the square integrability and the formal degree are 
invariant under unitary equivalences. 

(1.1.4) Definition. Let G be the set of all unitary equivalence 
classes of irreducible representations of G. Then a unitary equivalence 
class rr EGis said to be discrete, if every member of this class is square 
integrable. The set G d of all discrete classes in G is called the discrete 
series for G. 

The irreducible square integrable unitary representations of G admit 
an alternative characterization by the following. 

(1.1.5) Proposition ([41], I, Corollary 4.5.9.2). Let rr be an irreduci­
ble unitary representation of G on a Hilbert space H. Then the following 
conditions are equivalent: 

(i) rr is square integrable; 
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(ii) l' is unitarily equivalent to a subrepresentation of the left (or right) 
regular representation of G on D(G). 

The Schur Orthogonality Relations are valid for square integrable 
representations of G. 

(1.1.6) Theorem (Godement, cf. [41], I, Theorem 4.5.9.3). Let l' 
and 1" be irreducible square integrable unitary representations of G on 
Hilbert spaces Hand H', respectively. Let VI> Vz E H, WI> Wz E H'. 

(i) If l' and 1" are not unitarily equivalent, then 

Sa (1'(g)vl> vz)(1"(g)w" wz)dg=O 

(ii) If l' and 1" are unitarily equivalent under a unitary equivalence 
1/r: H~H', then 

Sa (1'(g)vl , vz)(1"(g)wl , wz)dg=d;;I(1/rvl , wl )(1/rVZ, wz), 

where d.( = d.,) is the formal degree of 1'. 

(1.1.7) Corollary ([41], I, Corollary 4.5.9.4). Let (1', H) be an irre­
ducible square integrable unitary representation of G. Put 

Pv,w(g) = (1'(g)v, w) (g E G, v, WE H). 

Then for convolutions of coefficients, we have 

Let us recall the notion of integrable representations. 

(1.1.8) Proposition (Harish-Chandra, cf. [41], I, Proposition 4.5.9.5). 
Let l' be an irreducible unitary representation of G on a Hilbert space H. 
Then the following conditions are equivalent: 

(i) There exists a non-zero vector v in H such that the function g H> 

(1'(g)v, v) is integrable on G; 
(ii) There exists a dense subspace Ho of H such that for all v, W in 

Ho, the function gH>(1'(g)v, w) is integrable on G . 

. (1.1.9) Definition. An irreducible unitary representation (1', H) of 
G is said to be integrable, if it satisfies either one of the equivalent condi­
tions of the preceding proposition. 

It is known that an integrable unitary representation of G is square 
integrable. The converse is false. 
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Remark. Let (n:, H) be an irreducible integrable unitary representa­
tion of G. Let HK be the subspace of H consisting of all K-finite vectors 
in H. Then for any v, W E H K , the function gl--+(n:(g)v, w) is integrable. 

The proofs of the preceding results are based on the following funda­
mental results of Harish-Chandra, which tells that a maximal compact 
subgroup K of a connected semisimple Lie group G with finite center is· a 
uniformly large compact subgroup of G. We denote by if the set of all 
equivalence classes of finite dimensional irreducible representations of K. 
Also d(o) stands for the degree of the equivalence class 0 in if. 

(1.1.10) Theorem (Harish-Chandra, cf. [41], I, Theorem 4.4.2.11). 
Let G be a connected semisimple Lie group with finite center, K a maximal 
compact subgroup of G. Then a given 0 E If occurs no more than d(o) times 
in the restriction to K of any topologically completely irreducible Banach 
representation of G. 

Remark 1. Let Xii be the character of 0 E if, and set ~iI=d(o)Xil. Put 

n:(~iI)= Ix ~iI(k)n:(k)dk 
for any given Banach representation (n:, E) of G, where dk is the normal­
ized Haar measure on K, then n:(~iI) is a projection of E onto E(o)=n:(~iI)E. 
E(o) is the isotypic K-submodule of E of type o. The preceding theorem 
says that dim E(o) <d(0)2 for any 0 E if. The subspace EK = L.ilE:t: E(o) 
of K-finite vectors in E is a dense subspace of E. 

Remark 2. A Banach representation (n:, H) of G is said to be 
topologically completely irreducible, if given any bounded operator S on H 
and elements al> •.. , an in H, there exists, for every e > 0, a measure f1 on 
G with compact support such that 

Let n: be a unitary representation of G on a Hilbert space H; Then the 
following statements are equivalent (cf. [41], I, Proposition 4.3.1.7): 

(i) H is topologically irreducible; 
(ii) H is topologically completely irreducible. 

§ 1.2. Characters of the discrete series 

In this section, we recall some fundamental results on the characters 
of the discrete series of semisimple Lie groups. 
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In the first place, we review some results on the characters, which are 
valid for any unimodular Lie group G with a uniformly large compact 
subgroup K. Let us start with the definition of characters. 

Let C;;(G) be the algebra of C~-functions on G with compact support. 
Let C*(G) be the subalgebra of C;;(G) which is the linear span of the 
~",*C;;(G)*~a. (01,02 E K). Then C*(G) is dense in C;;(G) relative to the 
inductive limit topology. 

(1.2.1) Definition. Let (tr, H) be a Banach representation of G 
such that dim H(o) is finite for any 0 E K. For any f E C*(G), the 

operator tr(f)= f af(g)tr(g)dg is of finite rank. Hence the linear func­

tional T~ on CiG): 

f E C*(G)~tr (tr(f» E C 

is well defined. We call T~ the character of tr. 

(1,2.2) Proposition ([41], I, Corollary 4.5.8.3). Lettri (i= 1,2) be 
topologically irreducible unitary representations of a unimodular Lie group 
G with a uniformly large compact subgroup K. Then trl and tr2 are unitarily 
equivalent, if and only if they have the same character. 

The following theorem assures that a character of a representation 
can be extended to a distribution on a unimodular Lie group G. 

(1.2.3) Theorem (Harish-Chandra. [41], I, Theorem 4.5.8.5). Let tr 

be a continuous representation of G on a Hilbert space H with the property 
that there exists an integer m H> 1 such that dim (H(o»<mHd(oY for any 

o E K. Thenfor any f E C;;(G), the operator Lf(g)tr(g)dg is of the trace 

class and the mapping T", defined by the rule 

f~tr (Lf(g)tr(g)dg) (f E C;;(G» 

is a distribution on G. 

By definition, the assumption of the preceding theorem is satisfied 
for any irreducible unitary representation of G, if G is a unimodular Lie 
group with a uniformly compact subgroup K, especially if G is a connected 
semisimple Lie group with finite center, thanks to Theorem (1.1.10). 

When the representation tr is in the discrete series, the character T", is 
written in terms of the coefficient of tr. 
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(1.2.4) Theorem ([41], I, Theorem 4.5.9.7). Let G be a unimodular 
Lie group with a uniformly large compact subgroup K, and ~ an irreducible 
square integrable representation of G on a Hilbert space H. Let T~ denote 
the character of~, d~ the formal degree of~. Then for all v, WE H, we 
have 

(v, w)T~(f)=d~ S G dg(S Gf(hgh-l)(~(h)v, W)dh) for all f E C:(G). 

In order to formulate the results on the characters of representations 
of G, we have to introduce some terminology on the distributions on G, 
and to recall some results on differentiable vectors in representation 
spaces of Banach representations of G. 

(1.2.5) Definition. A distribution Ton G is said to be central, if it 
is invariant under the inner automorphisms of G. 

Let U(ge) denote the universal enveloping algebra of ge, ge the com­
plexification of the Lie algebra g of G. Let Z(ge) denote the center of 
U(ge), Z the center of G. 

(1.2.6) Definition. A distribution Ton G is said to be Z(ge)-finite, 
if the space spanned by X· T (X E Z(ge» is finite dimensional. In parti­
cular T is said to be an eigendistribution of Z(ge), if there exists a 
homomorphism ,,: Z(ge)-+C such that X· T=,,(X)T (all X E Z(ge». A 
distribution T on G is said to be eigendistribution of Z, if there exists a 
homomorphism t;: Z-+C x with properties that T'=C(z)T for all z E Z. 
Here T' denotes the right translate of T by z E Z. 

(1.2.7) Definition. Let G be a Lie group, H a locally convex 
Hausdorff topological vector space (over C), and g~~(g) (g E G) a con­
tinuous representation of G on H. Then a vector v E H is said to be 
differentiable (for ~), if the map g~~(g)v is an H-valued C~-function on 
G. 

Let H~ denote the set of differentiable vectors in H. Then it is easy 
to see that ~(f)v E H~ for v E H andf E C:(G). 

Let ~ be a continuous representation of G on H. Then ~ lifts to a 
representation ~~ of U(ge) on H~ in the following manner. 

(1.2.8) Definition. For X E g, V E H~, define 

(X) 1· ~(exp(tX»v-v 
~~ v = 1m ---0.----"--'--"-' __ 

!-o t 
(t E R), 
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where the limit is taken with respect to the topology of H. The obvious 
extension to U(gc) is also denoted by the same symbol 7r:=. 

(1.2.9) Definition. Let (tr, H) be a Banach representation of a 
connected Lie group G. Then tr is said to be quasi-simple, if there exists 
a homomorphism K. of Z(gc) into C such that tr=(Z)V=K.(Z)V for all 
Z E Z(gc) and v E H=. K. is then called the infinitesimal character of tr. 

(1.2.10) Proposition ([41], I, Propositions 4.4.1.4,4.4.1.5). Let tr be 
a topologically completely irreducible Banach representation of a connected 
Lie group. Then 7r: is quasi-simple. 

(1.2.11) Corollary (Segal, cf. [41], Corollary 4.4.1.6). Let tr be a 
topologically irreducible unitary representation of a connected Lie group. 
Then tr is quasi-simple. 

For differentiable vectors the following fact is known. 

(1.2.12) Theorem ([41], I, Theorem 4.4.3.1). Let G denote a Lie 
group countable at infinity, tr a continuous representation of G on a complete 
locally convex topological vector space H, and H= the space of differentiable 
vectors in H for 7r:. Let K be a compact subgroup of G. Then the space 

is dense in H. 

Similarly as differentiable vectors, we can define analytic vectors in 
representation spaces. 

(1.2.13) Definition. Under the same notation and conditions, a 
vector v E H is said to be analytic (for tr), if the map g~tr(g)v is an H­
valued COl-function on G. 

Then the following is known. 

(1.2.14) Proposition ([41], I, Lemma 4.5.5.1). Let G be a connected 
unimodular Lie group countable at infinity, K a compact connected subgroup 
of G. Let 7r: be a Banach representation of G on H such that dim (H(o)) is 
finite for any 0 E K. Then 

HK = L:: H(o)cH." 
~E1t 

where HOI is the space of analytic vectors in H for 7r:. 
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Especially HKcH= in this case. Moreover, we can readily show 
that Hx is IT.,-stable and IT=-stable under U(gc). Hence we can consider 
the restriction ITK of the representation IT., (or IToo) on H., to H K • 

(1.2.15) Definition (Harish-Chandra). Let IT (resp. IT') be a Banach 
representation of G on H (resp. H') such that dim (H(o» (resp. dim (H'(o») 
is finite for any 0 E K. Then IT and IT' are said to be infinitesimally equiva­
lent, if the representations ITx and ITi.: of U(gc) on HK and Hi.:, respectively, 
are algebraically equivalent. 

Let us return to the characters. In the first place, we know that the 
character of a representation satisfies differential equations. 

(1.2.16) Proposition ([41], I, Proposition 4.5.8.6). Let G be a con­
nected unimodular Lie group, K a uniformly large compact connected 
subgroup of G. Let IT be a topologically completely irreducible Hilbert 
representation of G on H, T~ the character of IT. Let'~ be the central 
character of IT, IC~ the infinitesimal character of IT. Then T. is a central 
eigendistribution on G verifying 

The last assertion of the above proposition is proved in the following 
way: Form the Fourier component T.,o of T. for each 0 E K defined by 
T~,oCf) = T~(f*fo) (f E C;;'(G»; Then it is represented by an analytic 
function to; called the spherical trace function of type 0 for IT; These 
functions are eigenfunctions (Xto;=IC.(X)to;, X E Z(gc) and T. is the sum 
of them in the sense of distributions (cf. [41], II, § 6.1.2). 

Let G be a connected semisimple Lie group with finite center, and K 
a maximal compact subgroup of G. For each 0 E K, the Fourier com­
ponent T~,iJ of type 0 for a square integrable representation IT of G is a 
spherical trace function, which is real analytic and square integrable on 
G, as well as being K-finite and Z(gc)-finite. Then these functions are 
known to be rapidly decreasing on G (cf. [41], II, Theorem 9.3.1.5). On 
the other hand, applying the Weak Selberg Principle for invariant inte­
grals, it is known that the existence of a rapidly decreasing, non-zero 
Z(gc)-finite function on G implies that rank (G) = rank (K). Thus Ga=F¢ 
implies rank (G) = rank (K) for such a group G (cf. [41], II, § 8.5.1, Theo­
rem 8.5.1.7, Corollary 8.5.1.8). The invariant integral of a smooth func­
tionf(x) on G with compact support, relative to a Cartan subgroup J, is 
the function rp J on the subset J' of regular elements in J defined by (cf. 
§ 8.5 of [41], II) 

rpJ(j)=e R (j).L1Aj)f f(xjx- 1)dG/ Jo(i) (jEJ'). 
G/Jo 
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Here Jo is the center of J, x~x denotes the canonical projection of G 
onto GjJo, da/Jo is the G-invariant measure on GjJo, and L1J is given by 

for characters t;p, t;a of the complexification Jc of J corresponding to the 
roots p, a. We omit the definition of CR(j), which is equal to + 1 or -1 
for eachj (cf. § 8.1.1 of [41], II). The Weak Selberg Principle claims that 
these invariant integrals vanish, if rank (G) > rank (K) (cf. [41], II, Theorem 
8.5.1.7, or [17], § 32, p. 76, Lemma 64). 

Conversely, assume that rank (G) = rank (K). Moreover assume that 
G is acceptable, i.e. one half p = t .6a E 1) + a of the sum of positive roots in 
the root system f]) of G with respect to a Cartan subgroup J of G is the 
differential of a holomorphic character of the complexification Jc of J to 
c x = C - {O}. The condition of the acceptability is independent of the 
choice of an ordering for the root system and the choice of a Cartan 
subgroup J of G. 

For such a group G, Harish-Chandra [16] constructed the central 
eigendistributions which are found to be the characters of the discrete 
series of G, in an a priori way completely independent of the theory of 
infinite dimensional representations. Let us formulate this. 

Fix a maximal torus H in K. Then H is a compact Cartan subgroup 
of G. The unitary character group fJ of H is identified with a lattice LH 
in the dual space .v=T fj (fj the Lie algebra of H). Thus for a given 
A E L H , we can assign a unitary character t;. of H by 

t;lexp X)=e"(X) (X E fj), 

and every element of fJ is obtained in this fashion. A unitary character 
is said to be regular or singular, according as A is regular or singular, i.e. 
according as AW:;t:A for any non-trivial element w of the Weyl group Wor 
not. Let L'e be the set of regular elements in L H • 

Let S(fjc) be the symmetric tensor algebra of the complexification fjc 
of fj, and I(fjc) the invariants of S(fjc) under the Weyl group W. Let 
r: Z(gc):::;I(fjc) be the canonical isomorphism. Any linear function A on 
fjc defines a homomorphism I(fjc)---+C by p~ p(A) (p E I(fjc». The com­
position of this with the isomorphism r defines a character Z(gc)---+C of 
Z(gc), which we denote by rl . And any homomorphism Z(gc)---+C arises 
in this manner from a suitable A E Hom (fjc, C). Two linear forms AI and 
A2 of fjc determine the same character of Z(gc), if and only if A'i'=A2 for 
some WE W. 

Let.e be the rank of G, and t an inderminate. For any g E G, we 
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denote by DeCg) the coefficient of t e in det(t+ I-Ad (g». We denote by 
LlH the function on H defined by LlH(h)=~ih) ITaE<ll+ (1-~a(h-l)). Then 
LI H is non-zero on the subset H' = H n G' of regular elements in H. Let 
N(H) be the normalizer of Hin G, and W(G,H)=N(H)jH. Then W(G, H) 
is identified with the subgroup of W= W(gc, fjc) generated by reflexions 
with respect to compact roots. For each W E W(G, H), we define e(W) by 
e(w)=det(w), regarding W as an element of EndR(fj). 

(1.2.17) Theorem ([16], Theorem 3 of § 19, [41], II, Theorem 10.1.1.1). 
Fix an element A E L~. Then there exists exactly one central eigendistribu­
tion e. on G such that: 

(i) Ze.=7.tZ)e. (all Z E Z(gc»; 
(ii) SupgEGIIDe(g)11/2Ielg)l< 00; 
(iii) el=L11/ I;WEW(G,H) e(W)~w. on H' (=Hn G/). 

Note that el is represented by a locally summable function FeA which is 
analytic on G' the set of regular elements in G (cf. [41], II, Theorem 8.3.3.1). 
Therefore the condition (iii) of the above theorem makes sense. 

The condition (ii) of the theorem implies that the distribution e. is 
tempered, i.e. it extends to a continuous linear functional on the space of 
rapidly decreasing smooth functions on G ([17], § 19, Theorem 7, or [41], 
II, Theorem 8.3.8.2). 

Choose a class (5 E K such that the Fourier component el,o of e l does 
not vanish identically. Then eA,o lies in D(G). Let L be the left regular 
representation of G on D(G). c Then the smallest closed L-stable subspace 
containing e. 0 is found to be a finite sum of irreducible unitary representa­
tions. Henc~ G d -=1= 9. Thus we have the following criterion of Harish­
Chandra. 

(1.2.18) Theorem (Harish-Chandra, [17], § 39, Theorem 13, or [41], 
II, Theorem 10.2.1.2). Let G be a connected semisimple (acceptable) Lie 
group with finite center, K a maximal compact subgroup of G. Then G d -=1= 9, 
if and only if rank (G)=rank (K). 

Remark 1. The above theorem is valid, if G is not acceptable. 
Because such G has a finite covering by an acceptable group. 

Remark 2. Oshima, M;ttsuki [32], together with the construction of 
Flensted-Jensen [13], generalizes the above criterion of Harish-Chandra 
for D(GjH') to symmetric spaces GjH'. 

The tempered central eigendistributions {ell A E L~} not only show 
the existence of the discrete series, but also enumerate all the characters 
of the discrete series. The following theorem of Harish-Chandra is 
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fundamental for the discrete series of semisimple Lie groups. 

(1.2.19) Theorem (Harish-Chandra, [17], § 41, Theorem 16, or [41], 
II, Theorem 10.2.4.1). Let G be a connected semisimple acceptable Lie 
group with finite center, K a maximal compact subgroup of G. Assume that 
rank (G)=rank (K). Then 

(i) The discrete series Gd ofG is not empty; 
(ii) For each A E L~, there corresponds a unique element ill EGa 

whose character TOl is given by 

To1=( -1)mGe(A)6l1, 

where e(A)=sign(naE<P+ <A, a») and ma=! dim (G/K); 
(iii) The mapping A>--+ ill of Lir into G d, is surjective and the formal 

degree dOA of the class ill is given by 

dol= [W(G, H)] I n <A, a)1 (r=tdim(G/H)); 
(21!Y aE<P+ 

(iv) Finally, ill1=ill• (AI' A2 E Lir), if and only if Al and A2 are con­
jugate under W(G, H). Here the inner product < , ) of M = Homc(g, C) 
is given by < A, p) = A( HI') (A, p E g't) for HI' E gc defined by the condition: 

p(H)=B(H, HI') for all HE gc 

with respect to the Killing form B. 

Remark 1. In order let (ii) and (iii) of the above theorem make 
sense, we have to normalize the Haar measure of G. We do not discuss 
this here, but refer to Section 8 of [41], II. 

Remark 2. There are I W/W(G, H)I distinct classes in Gd with the 
same infinitesimal character, by (iv) of the preceding theorem. 

The crucial points in the proof of the identification and enumeration 
of the characters of the discrete series, are the (Schur) Orthogonality 
Relations for characters and the following expansion theorem which is 
deduced from the Weak Selberg Principle. . 

(1.2.20) Theorem ([16], Corollary 2 of Lemma 64, [41], II, Theorem 
10.1.2.4). Any smooth rapidly decreasing Z(gc)-finitefunctionf on G has an 
expansion 

f(x)=Mr/ L.: n <A, a)6l.(R(x)f) (x EO), 
lELa aE<P+ 

where R(x)f is the right translation of j, and Ma is a constant depending on 
the normalization of the Haar measure of G; 
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Remark. If the Haar measure of G is normalized so that Theorem 
(1.2.19) is valid. Then M a=(-1)N(2nY with N=tdim(G/K) and r= 
t dim (G/H). 

§ 1.3. Realizations of the discrete series 

A number of realizations of the representations of the discrete series 
are known, such that their representation spaces are certain cohomology 
groups on a homogeneous space with coefficients in vector bundles 
corresponding to the representations of a maximal compact subgroup or 
a compact Cartan subgroup. These realizations are considered as ana­
logues of the Borel-Weil-Bott theorem for compact Lie groups. 

Some realizations of the discrete series which are applicable for any 
semisimple group with condition rank (G) = rank (K), are discussed in [21], 
[35], [38]. But for our purpose, it suffices to discuss the case where the 
quotient space X=G/Khas a G-invariant Hermitian structure. Thus we 
review here mainly the realization of Narasimhan-Okamoto [31]. 

Also we impose another restriction on the group G. Though the 
constructions below are applicable to any connected semisimple Lie group 
G with finite center such that G/K is Hermitian, we assume moreover that 
G has a finite dimensional faithful representation, in order to simplify the 
description of the irreducible representations of a maximal compact group 
K. Therefore G is the identity component of the group of the real points 
of a real linear algebraic group. Thus, for instance, the metaplectic 
groups are excluded from here. But it is easy to see that similar results 
are valid for such groups mutatis mutandis, because these groups are 
covering groups of the groups considered here. Note that our group G 
has a natural complexification by assumption. 

The notation of the preceding sections is still in force in this section. 

(1.3.1) Definition of holomorphic vector bundles. The representation 
spaces are realized as certain square integrable a-cohomology spaces with 
coefficients in holomorphic vector bundles on the complex manifold X, 
associated to the representations of the fixed maximal compact subgroup 
K. Let us recall the definition of these bundles. 

Let a: K~GL(W) be a finite dimensional (unitary) representation of 
K. Then it extends to a holomorphic representation a: Kc~GL(W) of 
the complexification Kc of K. Let g and f be the Lie algebras of G and 
K, respectively, and g=fEBlJ the Cartan decomposition. Then the tangent 
space Tx •o of X at the point o=eK is identified with lJ in the natural way. 
Since X is Hermitian symmetric, there exists an element l of K such that 
Ad (e) ip defines the given complex structure on Tx•o via the above identifi-



236 T.Oda 

cation TX,D~lJ. Let lJe=lJ+E8lJ- be the eigenspace decomposition of the 
complexification lJe of lJ with respect to Ad (c) such that 

Then both lJ+ and lJ- are abelian subalgebras of ge. Put P + =exp (lJ+) 
and P _ =exp (lJ-). Then in the complexification Ge of G, we have 

Therefore, the natural mapping G/K"""""*Ge/KeP _ induced from the inclusion 
G~Ge is injective. This mapping identifies X=G/K with an open 
domain in the compact complex manifold V=Ge/KeP_. 

Now let us define a holomorphic vector bundle Fq on V associated to 
a, as the quotient space of the product GeX Wby the equivalence relation: 

(gu, w) -(g, a(u)w) (g E Ge, w E W, U E KeP _), 

with the structure mapping Fq"""""* V induced from the first projection 
GeX W"""""*Ge. Note that Fq has the natural action of Ge compatible with 
the action of Ge on V via the left multiplication. We denote by the same 
symbol Fq the pullback j*Fq of Fq to X with respect to the injection 
j: X~V. Then Fq is a holomorphic vector bundle over X with an 
action of G compatible with that of G on X. If we denote by .'Fq , the 
locally free analytic sheaf of local holomorphic sections of Fq , we may say 
that the sheaf .'Fq has a G-linearization. Moreover, if the representation 
(a, W) of K is unitary, the metric on W induces a G-invariant Hermitian 
structure on the bundle Fq over X, by the obvious identification: 

Fq=j*Fq=(GX W)/K 

over X. 
Let the representation (a, W) be an irreducible representation of K 

with highest weight 1, 1 being a dominant weight with respect to an 
ordering for the root system (K, H). Then we denote Fq by FA' 

(1.3.2) Square integrable d-cohomology spaces. Before proceding 
further, let us confirm some notations and definitions for the root system 
of G. Fix once for all a compact Cartan subgroup H of G contained in 
K. Let g be the Lie subalgebra of g corresponding to H, and M = 
Homc(ge, C) the dual linear space of the complexification gc of g. Let f/J 
be the root system of ge with respect to ge. Then the root system of fe· 
with respect to gc is canonically identified with a subset f/JK of f/J. The 
elements of f/JK are called compact roots. The elements of f/Jn=f/J-f/JK 
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are called noncompact roots. In other words, a root a E rp is called com­
pact or noncompact, according as the corresponding root space ga is 
contained in tc or Pc. Note that the Weyl group W(G, H) of the pair 
(G, H) is the subgroup of W= W(gc, fjc) generated by the reflexions with 
respect to compact roots. We denote W(G, H) by WK' Note that WK 
holds the set rpK' 

Let B be the Killing form of g. For any linear form A E fj(\' on fjc, 
we define H, E fjc by B(H" H) = A(H) for all HE fjc. Then for any A, 
11 E fj(\', we set <A, 11) = A(Hp). 

Let us denote by L the lattice of integral linear forms on fjc: 

L={A E fj(\'=Homc(fjc, C)1 2<A, a) E Zfor any a E rp}. 
<a, a) 

The elements of L are called weights, and L the weight group of G. 
Let us choose an ordering in rp such that the positive roots rp + 

satisfies 

with rpn+=rpnnrp+, rpn-=rpnn(-rp+). Then we set p=t L;aEdJ+a, as 
usual, and denote by rp K + the intersection rp K n rp +. 

Let X(Hc) be the module of the holomorphic characters Hc--+Cx of 
the complexification Hc of H. Then X(Hc) is naturally identified with a 
sublattice of L. The group Gc is simply connected, if and only if X(HC> 
=L. 

We define the set of dominant weights of g by 

and the subsets L' and L~ by 

L'={A E L[ <A+P, a)*O for all a E rp}, 
and 

respectively. 
For any A E L~ n X(Hc) we denote by (J, the irreducible unitary 

representation of K with highest weight A on the representation space W,. 
Then we can attach a holomorphic vector bundle F, on X as in the previ­
ous section. 

Let Q!r denote the bundle (or the sheaf) of holomorphic i-forms on 
X. Then Q!r has the canonical Hermitian (and Kahler) metric induced 
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from that of X, and the canonical G-action (or G-linearization, resp.) for 
each i. Denote by Q!r the bundle of antiholomorphic i-forms on X. Let 
C:(X, Fi8>Q!r) be the space of C~-sections of Fli9Q!r with compact 
support. Then we can consider the (i-complex (or Dolbeault complex) 
with coefficients in FA: 

a - a -
O----+C:(X, FA)----+C:(X, FA0Q1-)----+C:(X, FA0Qi)----+· .. 

Let L2(X, F10Q!r) be the completion of C:(X, F10Q!r) with respect to the 
metric: 

(81) 82)= Ix (81(X), 82(X»F200:.: dw(X) (8j e C:(X, F100!r), j= 1,2). 

Here the inner metric ( , ) F 200:': on F10Q!r is the tensor product of the 
metrics FA and Q!r, and dw is the G-invariant measure on X unique up to 
constant multiple. Let 

0: L2(X, F10ljJr)----+L2(X, FA0Q!r-1) 

'be the formal adjoint of (i. Consider again the formal adjoint 

(i: L2(X, FA0Q!r)----+L2(X, F10Qtl) 

of o. Then we have a complex: 

a - a -
0----+L2(X, FA)----+L2(X, FA0Q~)----+L2(X, F10Qi)----+· .. 

of square integrable differential forms of type (0, *) with coefficients in FA. 
Since these complexes are G-equivariant, the cohomology group 

is also a G-module for each i, where {(iL2(X, F10Q~1)y! is the closure of 
(iL2(X, FA0Q~1) in L 2(X, FA0Q!r). Put 

Then it is known that for any 8 e L 2(X, F10Q!r) the conditions: 
(i) 08=0; and (ii) (i8=0, 08=0 

are equivalent. The space of harmonic (0, i)-forms with values in F1 is 
given by 
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Then we have a natural isomorphism 

HO,i(X F)~;JfO,i(X F) 
2 'A- 2 'A for each i 

(cf. [33], § 1), and ;Jf~,i(X, F.) is a unitary G-modu1e with respect to the 
induced metric from Lz(X, FlZ;Q!r). 

Define a subset WI of the Wey1 group W= W(gc, qc) by 

Then the map WKX WI-+W given by (s, o}4sa is a bijection. Moreover, 
for D and L~, we have a bijection 

given by (A, a)t--+A(q), where A(q)=a(A+p)-p. 
Then the following result is known by [31] and [34] for the unitary 

representation of G on ;Jf~' leX, F.). 

(1.3.3) Theorem. Let A E L~ n X(Hc), and let An E D and a E WI be 
the unique elements such that A=A})'). Let q. be the number of a E @n+ 

such that <A+P, a»O. Then 

(1.3.3.1) 

and the space ;Jf~' q.(X, FJ is the representation space of an irreducible 
unitary representation of the discrete series of G with character eHP ' 

Remark 1. [31] assumes that Gc is simply connected. Hence X(Hc) 
=L in this case. Note also that the complex structure on X =G/K of [31] 
and [35] are the conjugation of that of ours. Therefore our cohomology 
groups appear different from those of [31] and [35]. See the final remark 
(Remark 3 of § 9) of [31] for this point. 

Remark 2. The vanishing part (i.e. § 7, Theorem 2) of the main 
result of [31] was weaker than (1.3.3.1) of the above theorem. Par­
thasarathy proved a sharper vanishing theorem (Theorem 3, [35]) under 
the assumption: 

for any a E @n+' 

This assumption is now known to be unnecessary by the following reason. 
Since the Blattner conjecture is true (by Schmid et a1.), one of Heven or 
Hodd vanishes as shown in Schmid [39]. The alternating sum formula of 
traces (cf. Theorem 1, [31]) implies that there is unique q such that 
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H~,q(X, F.)*{O}. And finally we can check that q=q. by K-type theorem. 
Once the vanishing theorem is improyed, Theorem 1 of [31] implies 

the second statement of Theorem (1.3.3) (see the proof of Theorem 3, § 8, 
[31]). 

(1.3.4) Other realization. Let us review other realizations. Let us 
recall the realization of Schmid ([15], [37], [38]), which is applicable even 
if G/ K has no invariant complex structure. 

In the first place, the quotient G/H of G by a compact Cartan sub­
group H is made into a homogeneous complex manifold with a G-invariant 
Hermitian metric, and every character J. of H (in L~) determines a holo­
morphic line bundle Lc~D=G/H. Then similarly as in the preceding 
section, we can consider the o-complex: 

of the spaces A5(L.) of compactly supported c= Lrvalued forms of type 
(0, i) on D. The Hermitian metric on D and the (essentially) unique 
G-invariant metric of L. define a G-invariant inner product on A5(L.). 
With respect to it, 0 has a formal adjoint 0*. Let V(L,) be the completion 
of A5(L.) i.e. the space of square-integrable L,-valued forms of type (0, i). 
Then the Laplace operator 0 = d 0 d* + d* 0 d can be extended to an 
unbounded self-adjoint operator on the Hilbert space V(L.). Its kernel 
is a closed subspace, which coincides with the space ;/ti(L.) of square­
integrable c= Lrvalued (0, i)-forms w such that ow=O, o*w=O. 

Let @+(J.) be the positive roots with respect to J., i.e. 

Then we define an integer k, by 

k.= I-@+(J.) n @K+ 1 + I@+(J.) n @n+ I, 

where @ + is the set of positive roots, by which the complex structure on 
G/H is determined. 

Griffiths-Schmid [15] shows the vanishing of ;/ti(L.) for i *k., Schmid 
[38] proves that the representation of the discrete series with character 
6JA+P is realized on the space ;/tkl(L.) for a sufficiently non-singular J.. 

The relation of this realization with that of the previous section is 
given by the "Leray spectral sequence" for the holomorphic mapping 
D=G/H-+X =G/Kwith fiber K/H, in view of the Borel-Weil-Bott theorem 
for the pair (K, H). 
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§ 1.4. The K-type theorem for the discrete series 

We consider a real connected linear semisimple Lie group with a 
maximal compact subgroup K such that K has the same rank as G. But 
we do not assume that G/Khas a G-invariant Hermitian structure. Since 
G is linear, the center of G is finite. 

Let us denote by K the set of equivalence classes of finite dimensional 
irreducible representations of K. Then for each a E K, we can associate 
the character Xa. 

Let 7r be an irreducible unitary representation of G. Then it is 
known that the restriction of rr to K breaks up discretely with finite 
multiplicities. And the multiplicity of any a E K in the decomposition of 
rr is bounded by the degree of a (cf. Theorem (1.1.10». Set 

mea; rr)=the multiplicity of a of K in rr. 

For each a E K, Xa(k)dk defines a distribution on K, where dk is the 
normalized Haar measure on K. Then the boundedness of the multi­
plicities m( a; rr) implies that 

converges to define a distribution on K. Schmid calls 1:~ the K-character 
of 7r in [40]. 

When rr is a representation of the discrete series of G, Blattner's 
conjecture, which is proved completely by Schmid [40] and Hecht-Schmid 
[19], tells an explicit formula for the multiplicity mea; rr) of any a E K. 
Let us recall this result in this section. We assume that G c is simply 
connected for simplicity. 

(1.4.1) Let J. be an element of L'. Then we denote by (rr., H) the 
representation of the discrete series of G with character el + p such that the 
restriction of it to the compact Cartan subgroup H is given by 

C\ (l)N( n (ea / 2 _e- a/ 2»-t '" s(w)eW(HP), <!:iI.+ pIH = - LJ 
aE~ WEWK 

(l+p,a»O 

where N=i dim (G/K). 
Let us define a system of positive roots @ + (J.) with respect to J. by 

@+(J.)={a E @iO+p, a»O}, 

and let us enumerate the set @nn@+(J.) as @nn@+(J.)={~1>f32' ... ,~q}. 
In order to formulate the multiplicity formula of Blattner, we have to 
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define a function Q on -1=11)* in the first place, where 1)* is the dual 
space HomR(1), R) of 1). For each p e -1=11)*, Q(p.) is the number of 
distinct ways in which p can be expressed as a sum 

p=nd31+ n2[32+· .. +nq[3q, 

with nonnegative integral coefficients nt • The function Q(p) is well 
defined, because !P +(.il) spans a cone in -1=11)* lying in a half space. We 
put 

(1.4.2) Theorem. Assume that A e L'. Let p e r-t1)* be a weight 
for K which is dominant with respect to the system of positive root 
!PK n!p +(.il) in !PK, and let 71:1 be a representation of the discrete series with 
character 81+p" Then in 71:1IK' the irreducible K-module of highest weight p 
occurs with multiplicity 

By a simple argument (cf. [7] e.g.), it is known that an equivalent 
variant of the preceding theorem is stated as follows in terms of the 
K-character T". 

(1.4.2), Theorem. Assume that A e L', and let 71:1 be a discrete series 
representation with character 81+p" Then 

T.= L: ( n (ea/ 2 _e- a/ 2»-1 
O~nl,···,nq<OO aErlKncP+(l) 

is the K-character of 71:1. 

From this theorem, we can deduce that for each .il e L~ there exists a 
unique weight 

of K, characterized by the following properties: 
(i) m(apo ; 71:1)= 1; 
(ii) m(ap ; 71:1)=0 for any p of the form p=Po-A, where A stands 

for a non-empty sum of roots in {[3I' ... , [3q}. 
Conversely, Po characterizes the representation 71:1. The following 

theorem is due to Schmid (cf. [39], Theorem 1.3). 
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(1.4.3) Theorem. Up to infinitesimal equivalences, Te). is the unique 
representation of G whose restriction to K contains the irreducible K-module 
of highest weight flo, and does not contain any irreducible K-module with a 
highest weight of the form flo - A, where A stands for a non-empty sum of 
roots in {fil' "', fiq}=<p+(it)n<Pn· 

Remark 1. The condition of the preceding theorem is relaxed for 
"most" of the discrete series, i.e. for the representation Te). of the discrete 
series such that the weight it is far enough from the walls < it + p, a> = 0 
of the Weyl chamber. The result reads as follows. 

There exists a constant c depending only on G, such that if it satisfies 
I < it + p, a> 12:: c for any a E <P, then up to infinitesimal equivalences, Te). is 
the unique representation of G whose restriction to K contains the irre­
ducible K-module of highest weight flo, and does not contain any irreduc­
ible K-module with a highest weight of the form flo - fii (1;S; i;S; q) (cf. 
[21], [37], [39]). 

Remark 2. If G/K is Hermitian and it E L6, we have 

Chapter 2. Automorphic forms of discrete series 

In this chapter, we discuss some automorphic forms on bounded 
symmetric domains which generate the representations of the discrete 
series of semisimple Lie groups. In the first section, we recall the defini­
tion of automorphic forms by Harish-Chandra. In the second section, 
we define "geometric" automorphic forms as sections of cohomology 
spaces over arithmetic quotients of bounded symmetric domains with 
coefficients in certain analytic sheaves. And in later sections, we identify 
them with intertwining operators from the discrete series representations 
to D spaces of quotients of Lie groups by discrete subgroups. 

§ 2.1. Harish-Chandra's definition 

Harish-Chandra [18] gave the definition of the most general notion 
of automorphic forms on real reductive groups, and proved a number of 
fundamental results about them (see also Borel-Jacquet [5]). The purpose 
of this section is to recall some of them. In general we should consider 
the real (or complex) points of reductive algebraic groups defined over 
algebraic number fields. But thanks to Weil's theory of the restriction 
of scalars, it . suffices to consider algebraic groups over Q. 
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Let l§ be a connected reductive algebraic group over Q, f'Z the 
greatest Q-split subtorus of the center of l§. Fix a maximal compact 
subgroup K of the real points G=l§(R) of l§, and denote by Z the real 
points f'Z(R) of f'Z. In order to define slowly increasing functions on G, 
we first define a norm II lion G. 

(2.1.1) Definition. Let!": G~GL(E) be a finite dimensional com­
plex representation with finite kernel and closed image in End (E), and 
let * denote the adjoint with respect to a Hilbert space structure on E 
invariant under K. Then a norm II lion G is defined by 

It is easy to check that if !"' is another representation with the same 
conditions, then there are a constant C>O and a positive integer n such 
that 

for all g E G. 

Also the norm has the following properties: 
(i) IIgg'II~llgll·lIg'll (g,g' E G); 
(ii) there are positive constants c and N such that Ilg-lll~cllgIIN for 

any g E G. 

(2.1.2) Definition. A function f(g) on G is said to be slowly 
increasing if there exist a norm II lion G, a constant C and a positive 
integer n such that 

for all g E G. 

Obviously this condition does not depend on the choice of the norm (but 
n should be replaced). 

Now let us define automorphic forms. Let r be a discrete subgroup 
of G, q: K~GL(V) be a finite dimensional (irreducible) unitary represen­
tation of K, and l: Z(gd~C be an algebra homomorphism. Let X be a 
quasi-character of zir n Z (i.e. a continuous homomorphism X: zir n Z 
~CX). 

(2.1.3) Definition. A V-valued C~-functionf(g) on G is called an 
automorphic form for (r, K) of type (q, l, X), if it satisfies the following 
conditions: 

(i) g E GH-llf(g)1I is a slowly increasing function on G, where Ilf(g)11 
is the norm of the vector f(g) of V with respect to the given Hilbert space 
structure on V. 
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(ii) fer g) = f(g) (r E T, g E G), and f(zg) = X (z)f(g ) (z E Z, g E G). 
(iii) f(gk)=a(k-1)f(g) (k E K, g E G). 
(iv) f*X=),(X)ffor any X E Z(gc), where f*X is the right action 

of Xonf 
(cf. [18], § 2, Definition). 

Usually the group T is an arithmetic subgroup of ~(Q). We assume 
this from now on. Let d(T, K; a, ),)x denote the space of automorphic 
forms of type (a, )" X). 

A variant of the preceding definition is the following (cf. [5]). Let 
dk be the normalized Haar measure on K. For an irreducible finite 
dimensional representation a of K with character X., we associate a measure 
d.X.dk on K, where d. is the dimension of a. A finite sum of such 
measures defines an idempotent of the convolution algebra :!It'(G, K) of 
distributions on G with supports in K. 

(2.1.4) Definition. A complex valued COO-functionf(g) on G is an 
automorphic form for (T, K) of type (~, ", X), if it satisfies the conditions: 

( i) f is slowly increasing on G. 
(ii) f(rg)=f(g) (r E T, g E G), andf(zg)=X(z)f(g) (z E Z, g E G). 
(iii) There is an idempotent ~ in :!It'(G, K) defined by certain 

representations of K, such that f*~ = f 
(iv) There exists an ideal" of finite codimension in Z(gc) which 

annihilatesf:f*X=O (X E f). 
We denote by d(T, K; ~,/)x the space of automorphic forms of 

type (~, ", X) for (T, K). 

It is easy to see that (2.1.3) and (2.1.4) are substantially equivalent. 
One of the main results in [18] is the following finiteness theorem: 

(2.1.5) Theorem. The space d(T, K; a, ),)x, or d(T, K; ~, /)x is 
finite dimensional (over C). 

Actually [18] discusses only semisimple groups. But the methods 
work for reductive groups. 

(2.1.6) Definition. An automorphic form f is called a cusp form, if 

f f(ng)dn=O 
(rnf(R))\f(R) 

for all g E G, where JV is the unipotnet radical of any parabolic Q-sub­
group of ~. In fact it suffices to require this condition for any proper 
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maximal parabolic Q-subgroup of 'ff (cf. Lemma 2, § 2 of [18]). We 
denote by doer, K; a, .:l)x (resp. doer, K; ~, /)x) the space of cusp forms 
in d(r, K; a, .:l)x (resp. d(r, K; ~, /)x). 

(2.1.7) Remark. A more intrinsic version of the growth condition 
(i) in the definition of automorphic forms is given as follows. Let A be 
the identity component of the real points Y"(R) of a maximal Q-split torus 
Y" of 'ff and WQ the system of roots of 'ff with respect to Y". Choose 
an ordering on WQ and let Ll be the set of simple roots with respect to this 
ordering. Given a positive real number t, put 

At={a E A Ila(a)l>t, for all a ELl}. 

Let f be a function satisfying (2.1.4) (ii), (iii), and (iv). Then the growth 
condition (i) is equivalent to: 

(i)' For any given compact subset R of G, and any t >0, there exist 
a constant C and a positive integer m such that 

If(xa)I<C!a(a)lm, for all a E At, IX E Ll, x E R. 

The equivalence is shown in [18], Lemma 6 of Section 3 by using Siegel 
sets. 

§ 2.2. Representations generated by automorphic forms 

Let f be an automorphic form which belongs to d(r, K; ~, /)x. 
Then the subspace of the right translations {f(xg) Ig E G} of the smooth 
functionf(x) on r\G in c=(r\G) defines a subrepresentation of G in the 
right regular representation of G on c=(r\G). We want to recall some 
basic facts about such representations. 

In order to formulate some statements, let us introduce more 
terminology for representations of Lie groups. 

Let E be a locally convex Hausdorff topological vector space, and 7r 

a continuous representation of G on E. Then for each differentiable 
vector U of E (i.e. U E E=), we denote by v the map v: g E Gr-+7r(g)u E E, 
which belongs to C=(G; E) (cf. (1.2.7)). 

(2.2.1) Definition. Let 7r be a continuous representation of G on E. 
Then 7r is said to be differentiable, if E =E= and the map ur-+v is a 
topological isomorphism of E into C=( G; E). 

If 7r: G~Aut (E) is a differentiable representation, we can associate 
a representation 7r= of g (or of U(g)) on E (cf. Definition (1.2.8)). We 
denote 7r= also by 7rls' 
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(2.2.2) Definition. Let rr: K -.Aut (E) be a continuous representa­
tion of K. Then a vector VEE is K-jinite, if it is contained in a finite 
dimensional subspace stable under K. The representation rr is called 
locally finite, if every vector in E is K-finite. 

Let rr: G-.Aut (E) be a continuous representation, and let Ex the 
subspace of K-finite vectors in E. Then it is a semisimple K-module. The 
subspace Eoo n Ex is stable under g. It is known that if an isotypic sub­
space E(o) (0 E K) of Kin E is finite dimensional, it is contained in Eoo. 

(2.2.3) Definition. We say that a representation rr is admissible, if 
the isotypic subspaces E(o) (0 E K) in E are all finite dimensional. In 
this case ExcEoo. 

(2.2.4) Definition. A (g, K)-module E is a real or complex vector 
space E which is a bimodule of g and K, and also a locally finite and 
semisimple K-module with the compatibility conditions: 

(i) rr(k)(rr(X))v=rr(Ad(k)X)rr(k)v (k E K, X E U(gc), v E E); 
(ii) If F is a K-stable finite dimensional subspace of E, the represen­

tation of K on F is differentiable, and has rr II as its differential. 
A (g, K)-module is admissible, if all the isotypic subspaces E(o) for K 

are finite dimensional (0 E K). By Theorem (1.1.10), any (g, K)-module 
Ex of a topologically irreducible unitary representation (rr, E) is admis­
sible. 

Let .?It(G, K) be the convolution algebra of left and right K-finite 
distributions on G with supports in K. Since any element of .?It(G, K) is 
a transversal derivative of an extension of a distribution on K with respect 
to the embedding K~G, it is not difficult to see that ;R(G, K) is 
isomorphic to U(gc)®u(lc)Ax as vector spaces, where Ax is the algebra 
of finite measures on K. 

Letfbe an automorphic form. Then, as a function of Coo(r\G), it 
is a K-finite and Z(gc)-finite function via the right action of G on 
Coo(nG)· 

(2.2.5) Proposition (cf. [5], § 2). The subspace f*.Yf'(G, K) of 
Coo(nG) is an admissible (g, K)-module (or .?It(G, K)-module) consisting 
of automorphic forms. Moreover if f is a cusp form, then f*.?It(G, K) 
consists of cusp forms. 

Remark. Iff satisfies f*X = r(X)f for any X E Z(gc) with respect to 
a character r: Z(gc)-.C of Z(gc), then the representation on f*.Yf'(G, K) 
has the infinitesimal character r. 
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§ 2.3. Geometric automorphic forms 

Let A E L~, and let F). be the G-bundle or the G-linearized locally free 
analytic sheaf on X associated to A. If the sheaf F). descends to an 
analytic sheaf on r\Xwith respect to the quotient mapping X --+r\X, we 
denote the induced sheaf on r\X by the same symbol F).. Let Zo be the 
kernel of the canonical homomorphism G--+Gad of G to its adjoint group 
Gad. Let a). be the irreducible representation of K with highest weight A. 
Then, if a;.(Zo n r) is not trivial, F). on r\X never exists. If a.(Zo n r) 
= {I} and the quotient group r /(Zo n r) is torsion-free, r has no fixed 
point on X. Hence F). on r\X exists in this case. 

Assume that a ).(Zo n r) = {I} and that r has fixed points on X. Then 
we can consider a dense open subset Xo of X invariant under r, not 
containing any fixed point of r. Consider the descent FAo of FAix, with 
respect to Xo--+F\Xo, and put FA=j*(FAo) for j: r\Xo~r\Xin this case. 

In any case, the sheaf FA is cbherent analytic on r\X, and locally 
free except on a closed analytic subset of r\x. 

The following vanishing theorem of the cohomology groups 
Hi(r\X, FA) is due to Parthasarathy [34J, [35J and Hotta-Parthasarathy 
[20J, [21]. 

(2.3.1) Theorem. Assume that r\X is compact. If A E L~, AD and 
a are unique elements in D and Wl, respectively, such that A=A}j')= 
a(A+p)-p. Assume moreover that AD satisfies the condition (rOD), a) 
=1=0 for any r: E W l and any a E f[Jn' Then 

Remark. Under the same assumption as the above theorem, the 
space Hi(r\X, FA) is naturally identified with the space of r-invariant 
harmonic forms on X of type (0, i) with values in FA' 

(2.3.2) Definition. We call an element of Hq).(r\X, FJ a geometric 
automorphic form of type A on X with respect to A. 

In the rest of this chapter, we see that the space Hq).(r\X, FA) is 
canonically identified with the intertwing space of G-modules from a 
representation of the discrete series of G to the space D(r\ G), and 
geometric automorphic forms generate the representations of the discrete 
series. Also we see the relation between geometric automorphic forms 
and the automorphic forms of Harish-Chandra. 

§ 2.4. Serre duality 

Under the same notation as in the previous section, we assume that 
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r has no fixed point on X, hence r\X is smooth. Let 

be the restriction of the adjoint representation of K on gc to lJ+. Then 
the bundle F,+ associated to this representation is isomorphic to the 
holomorphic tangent bundle of X or of r\x. Passing to the duals, we 
have isomorphisms of bundles with G-actions on X: 

where 1:_ and 1:~ are the adjoint representation 

and its p-th wedge product 

respectively. Especially, for p=N the representation 1::: is the irreducible 
representation of K with highest weight - 2pn. Hence 

as G-bundles on X. 

Now we recall that in the Weyl group W there is a unique element 
w_ such that w_(lP+)=lP_, and also that there is a unique element WK_ in 
WK= W(G, H) such that WK-(lPKJ=lPK-. Put O'op=WK_W_ E WI, and 
for A E L~ set 

Note that O'oP(Pc)=Pc and Pop(Pn) = -Pn here. Then Aop E L~ and q).op= 
N-qi.. Moreover we can check that the representation of Kwith highest 
weight Aop is the contragradient representation of the representation with 
highest weight A. 

Thus we have an isomorphism of G-bundle on X: 

Hence, if r has no fixed point on X, there is a perfect pairing 

of analytic locally free sheaves on S = T\X. 
Therefore in this case the Serre duality reads as follows. 



250 T.Oda 

(2.4.1) Theorem. Assume that r\X is compact. There is an isomor­
phism: 

or equivalently there is a perfect pairing: 

Hq,(r\X, Fl) X HN-ql(r\X, Flop)---+C. 

When r has no fixed point on X, r\X is smooth. In this case the 
above theorem is the Serre duality. When r has fixed points on X, we 
can find an index-finite normal subgroup r' in r such that r' has no fixed 
point on X. Then Hql(r\X, Fl)=Hql(r'\X, Fly,r' implies the above 
result. 

Let us denote by £,N-ql(X, Flop) the space of harmonic (N -ql)-forms 
of type (0, N-ql) on X with values in Flop. Then HN-ql(r\X, Flop) is 
identified with the space 

of r-invariant elements in £,N-ql(X, Fl ). 
op 

(2.4.2) Corollary. Suppose that A E L~ and r\X is compact. Then 

dimcHql(r\X, Fl)=dimcHN-ql(r\X, Flop)=dimc£,N-ql(X, Flop)r 

= dimc£,ql(X, FlY. 

§ 2.5. Frobenius reciprocity 

This subsection is an extract from Section 4 of Chapter 8 of the 
textbook of Borel-Wallach [6], which reformulates the result of the book 
[14] of Gelfand, Graev, and Piatetski-Shapiro, in a more general form. 

Let G be a connected semisimple Lie group, and a discrete subgroup 
of G such that r\ G is compact. 

(2.5.1) Definition. If (rr, H) is a unitary representation of G, then 
Hoo denotes the space of Coo-vectors for (rr, H) with coo-topology. (Hoo)* 
denotes the space of continuous linear functionals on Hoo. If (rri' Hi) 
(i= 1,2) are unitary representations of G, then Homo (HI> H 2) denotes the 
space of all bounded linear operators A: Hc ... ~H2 such that 

A 0 rr/g)=rr2(g) 0 A for g E G. 

Let r be a cocompact discrete subgroup of G. Let rrr denote the 
right regular representation of G on D(r\G) (here we fix a biinvariant 
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measure dg on G which induces a right invariant measure d(Tg) on T\G). 
We recall that the space of C~-vectors of (it'r, V(T\G» is precisely the 
space C~(T\G) of C~-functions on T\G with C~-topology. 

If (it', H) is a unitary representation of G, set 

(2.5.2) Theorem (Gelfand, Graev, Piatetski-Shapiro). Let (it', H) 
be an irreducible unitary representation of G. If 

A E Homo(H, V(T\G), 

set Aiv)=A(v)(T·l)for v E H~. The the map 

is a bijectionfrom Homo(H, V(T\G» to (H~)*r. 

(2.5.3) Remark. The preceding theorem is considered as the 
Frobenius reciprocity. Regard C as the trivial T-module. Then C~(T\G) 
=Ind~C in the smooth category (cf. [6], III. 2.1). Hence 

where H~ is any admissible smooth G-module. 

§ 2.6. Frobenius reciprocity for the discrete series 

We can identify the space of geometric automorphic forms for T 
with a intertwing space from a square integrable representation to the 
right regular representation on V(T\G) by the following. 

(2.6.1) Theorem. Let A E L~nX(Hc), and assume that T\X is com­
pact. Then, under the same assumption on An as in Theorem (2.3.1), we 
have 

Hq2(T\X, F,)~Homc(£N-q2(X, FlopY, C) 

~Homr(£~,N-q,(X, F,op)~' C) 

~Homo(£~,N-q,(X, F,op)' V(T\G». 

The first isomorphism is the Serre duality (Theorem (2.4.1». The 
last isomorphism 

Hom (£O,N- q2(X F ) C)~Hom (.:IfC,N-q,CX F \ LZ(T\G» r 2 'lop 00' - G 2 'lop" 
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is shown in the previous section (Theorem (2.5.2)). It suffices to show 
that 

Hql(r\x F)~Hom (.?/f0,N-ql(X F ) D(r\G») , A - G 2 'lop , , 

which is a paraphrase of what is shown in the proof of Theorem 2 of 
Schmid [38]. 

(2.6.2) Remark. In the proof of Theorem 2 of [38], Schmid as­
sumed that A is sufficiently non-singular. We have to explain why the 
condition on A is relaxed as in the preceding theorem. 

The reason to assume that A is very non-singular was twofold: One 
is that the vanishing theorem was not sharp enough (cf. Theorem 7.8 of 
[15], and Corollary 1 of Lemma 5 of [38]), and the other is that the 
characterization of the discrete series by the non-vanishing of harmonic 
forms with values in the unitary representations of G was not verified 
without the assumption that A is very non-singular (cf. Lemma 7 and 
Corollary of Lemma 9 of [38]). However the vanishing theorem of 
Parthasarathy (Theorem 3 of [34]) improves Theorem 1, Corollary 1 and 
Corollary 2 of Lemma 5 of [38], so that they are valid under the same 
condition on A as in Theorem (1.3.3) or (2.3.1). Thus the first point is 
settled. 

The other point is to check that among all irreducible representations 
occurring in the direct sum decomposition of D(r\G), only the discrete 
series representations can contribute to Hql(r\X, FA)' The proof of [38] 
is to show that the non-vanishing of the space .?/ft(n)_l of harmonic forms 
of a unitary representation of G implies that 10 is of the discrete series 
under the assumption that A is very non-singular (cf. Lemmas 7-9 of [38]). 
One should note that .?/ft(7r)_.=F{O} in the notation of [38] implies that the 
Lie algebra cohomology group H*(g, f, H~,o0F)=F{O} for some finite 
dimensional representation F of G, where H~,o is the space of K-finite 
vectors in the representation space Hn of 10. Then Theorem 6.4 of II in 
Borel-Wallach [6] implies that 10 is of the discrete series. Once this point 
is established, the rest of the proofs of [38] works even if A is not very 
non-singular. 

(2.6.3) Remark. Gelfand, Graev, and Piatetski-Shapiro [14] finds 
the isomorphism of Theorem (2.6.1) for elliptic modular forms (Piatetski­
Shapiro [36], Section 4 .discusses the special case for elliptic modular 
forms of weight 2, and attributes this kind of isomorphisms to Gelfand 
and Fomin), and Deligne [9], Scholie 2.1.2 regards the isomorphism of 
the theorem as the definition of (holomorphic) elliptic modular forms 
through the evaluation mapping of the next section. 
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§ 2.7. Evaluation mapping and Harish-Chandra's definition 

In this section, we discuss the relation between the notion of geomet­
ric automorphic forms and automorphic forms in the sense of Harish­
Chandra considered in (2.1). 

Choose an element A E L~ n X(Hc), and put H =H~,N-q,(X, F,). Let 
us consider the subspace HK consisting of K-finite vectors in H. Let W 
be a K-submodule of the isotypic component H(8) of H for some 8 E if, 
and a the representation of K on W. Then by restriction, we have the 
canonical homomorphism 

which we caIl the evaluation mapping at W. If we denote by W* the dual 
space of W, the last space HomK(W, C=(r\Gh) is canonically identified 
with (w*QSlc=(r\G»K. Via this identification, we may consider ew a 
homomorphism of Hq'(F\X, F,) to (W*QSlC=(r\G)K. Moreover, since 
r,op+p: Z(gc)-+C is the infinitesimal character of 1!"op' we have 

Therefore the image of ew belongs to the subspace 

(w*QSlc=(r\G; r1+p»K 

of (W*QSlC=(r\G»K, where c=(r\G; r,+p) is the subspace of c=(r\G) 
consisting of the functions! such that !*x=r1+iX)! for any X E 

Z(gc). Note that rl+p=rlop+p here. When r\G is compact, the space 
(w*QSlc=(r\G; r1+p»K is no other than the space of automorphic forms 
SII(r, K; 0*, r1+ p ) in Section 2.1. Here 0* is the contragradient represen­
tation of a on W*, and we drop the subscript of the character of the 
center Z of G in the symbol SII(r, K; *, *), because it is trivial in this case. 

Now let us recall the K-type theorem of Section 1.4. Let flo be the 
lowest K-type as in Theorem (1.4.3), and 00 the corresponding irreducible 
representation of K on WOo Then by Theorem (1.4.3), the irreducible 
U(gc)-module HK is generated by Wo=H(oo). Therefore the canonical 
homomorphism 

is injective. Accordingly the evaluation mapping 
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is also injective. 
Then Theorem (2.6.1) says that the representation of G generated by 

the automorphic forms in ewo(Hq,(r\X, F,)) or ewo(£,q,(r\X, F,y) is a 
representation of the discrete series of G, which is equivalent to the 
representation on £,~,N-q,(X, F, ). 

op 

(2.7.1) Remark. Especially, when q,=O, the space ewo(HO(r\X, F,)) 
is identified with a space of holomorphic automorphic forms on X for 
r with values in Wg:. The representation generated by a non-zero 
element of this space is equivalent to the representation of G on 
H~,N(X, F,op)' Note that it is contragradient to the representation on 
H~'O(X, F,), and there exists a conjugate-linear isometry of Hilbert spaces 
with G-actions 

,1.1-: £,O,N(X F )~£,O,O(X F) 
11' 2 'lop 2' .< 

(cf. Theorem 1.2 of [33]). 

Consider another embedding X <==---+Gc/KcP + in the place of the 
embedding X<==---+Gc/KcP _ to define a complex structure on X by pull­
back. Then the new complex structure on X is the conjugation of the 
old one. If we denote by 17, the holomorphic bundle corresponding to 
the representation II, of K with respect to the new complex structure on 
X, then there exists a conjugate-linear isometry of Hilbert spaces with G 
actions 

The composition #. b- 1 gives an G-isomorphisms of Hilbert spaces 

Thus the representation of G on H~,N(X, F,op) belongs to the "antiholomor­
phic" discrete series of G. 

(2.7.2) Remark. By a similar reason as in the preceding remark, 
we have a conjugate-linear isomorphism 

If < , > is the pairing Hq,(r\X, F,)XHN-q'(F\X, F,op)--+C of the Serre 
duality (Theorem (2.5.1)), then (1]1> 1]2)=<1]1' #1]2> for 1]£ E Hq,(r\X, F,) 
(i = 1, 2) coincides with the Petersson metric. 
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Chapter 3. Cohomology groups of discrete subgroups 

In this chapter, we consider a local system over an arithmetic quotient 
of a bounded symmetric domain, which corresponds to a finite dimensional 
representation of the isometry group of the domain. And we discuss the 
Hodge decomposition of the cohomology groups with coefficients in that 
local system. Each Hodge component of it is identified with a space of 
geometric automorphic forms considered in the previous chapter. 

The de Rham-Hodge spectral sequence for such cohomology groups 
is due to Deligne (cf. Zucker [42]). And Zucker [43] investigates the 
Hodge decomposition of these cohomology groups, and shows that it 
coincides with the Hodge decomposition of cohomology groups of discrete 
subgroups, which is first investigated by Matsushima-Murakami [28], [29], 
by means of square integrable harmonic forms. 

§ 3.1. Spectral sequences for Hodge decomposition 

Let us recall some basic spectral sequences for Hodge structures of 
the cohomology groups over a (projective) algebraic variety with coeffi­
cients in a family of Hodge structures. 

Let S be a quasi-projective algebraic variety over C. Then we denote 
by the same symbol S the analytic manifold associated to S. Let V be a 
local system of real vector spaces over S, i.e. a locally constant sheaf on 
s=s(c)an whose fibers are finite dimensional real vector spaces. We 
denote by V. the fiber of V at a point s of S. 

(3.1.1) Definition (cf. [10], [42], [43]). A real variation of Hodge 
structure of weight n over S is a local system V of real vector spaces over 
S with the following data: 

(i) (Hodge filtration) The associated holomorphic vector bundle 
"Y =@s @R V has a finite holomorphic filtration F: 

such that at each point s of S, F defines a Hodge structure of weight n 
on Vs. 

(ii) (Transversality) The natural (=Gauss-Manin) connection 
17 = o@l on "Y = @ S @ R V is a flat connection, hence defines a complex: 

which satisfies the transversality axiom: 
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(3.1.1.2) 

of Griffiths for each p. 
Deligne (cf. Zucker [42]) defined a Hodge filtration on the de Rham 

complex {Q~(V)} with values in V by 

(3.1.1.3) 

Here p is the filtered degree, and r is the graded degree of the subcomplex 
FPQ~(V). Then there is the spectral sequence of the hypercohomology 
groups for the filtered complex (Q~(V), F"): 

(3.1.1.4) Ef,q=Hp+q(S, Gr~Q~(V»===?Hp+q(S, Q~(V»~Hp+q(S, V) 

The following theorem is due to Deligne ([42], Theorem (5.9». 

(3.1.2) Theorem. If S is projective, the above spectral sequence 
(3.1.1.4) degenerates at El term. 

A polarization of the variation of Hodge structure V is a bilinear 
form t; V X V ~R( -n) with values in the constant variation of Hodge 
structure R( - n) such that at each point s of V it defines the polarization 
of VB' Here R( -n) is the real Hodge structure of Tate of weight 2n. 

The above notion of variations of Hodge structure is too restrictive 
and a bit inconvenient to consider local systems which are direct sum­
mands of higher direct images of analytic families of abelian varieties over 
arithmetic quotients of bounded symmetric domains (say, the complex 
hyperballs). Thus Deligne and Zucker (cf. [43]) introduced the following 
notion. 

(3.1.3) Definition. A complex variation of Hodge structure of 
weight n over S is a local system V of complex vector spaces over S with 
the following data: 

(i) The associated holomorphic vector bundle ~=(!Js@cV has a 
finite holomorphic decreasing filtration F* as in (i) of (3.1.1). 

(i)' Let @s be the sheaf of germs of anti-holomorphic functions on 
S. Then 17 =@s@c V is considered as the sheaf of local anti-holomorphic 
sections of an anti-holomorphic vector bundle, which we denote by the 
same symbol 17. Then 17 has a finite filtration: 

17=FOY-::JF1Y-::J··· -::J{O}, 

by anti-holomorphic subbundles Fiy. 
(ii) The natural connection f7 =a@l on ~, which is fiat, defines a 

complex (3.1.1.1) satisfying the transversality (3.1.1.2). 
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(ii)' Let.Q~ be the bundle of anti-holomorphic i-forms on S. Then 
the natural connection i7 = dQ91 on i7 is a flat connection, hence defines a 
complex: 

(3.1.3.1) j?~.QHV)=.Q~Q9c V=.Q1Q9~sj?~.Q~~··· 
which satisfies the transversality condition: 

(3.1.3.2) 

The main ingredient in the above definition is that we do not assume 
the Hodge symmetry Hf,q=H~'P for the Hodge components of the 
decomposition V.=EBp+q=nHf,q at each point s E S. A polarization of 
the complex Hodge structure is a sesquilinear form t: Yx V -+C such that 
t(Cu, u»o for u*O, where C is the C operator ofWeil. 

We note that the spectral sequence (3.1.1.4) and its conjugate one 
are also defined for a complex variation of Hodge structure. Recall also 
that there exists the second spectral sequence of hypercohomologies for 
the complex {Gr~Q~(V)}: 

(3.1.4.1) 

and its conjugation 

(3.1.4.2) 

In the subsequent sections of this chapter, we discuss the degeneracy 
of these spectral sequences for variations of Hodge structure over 
arithmetic quotients of bounded symmetric domains, applying the vanish­
ing theorem (2.3.1). 

§ 3.2. Variations of Hodge structure over arithmetic quotients 

In this section, we construct local systems and variations of Hodge 
structure associated to the finite dimensional representations of G. We 
refer to Matsushima-Murakami [28], [29], and Zucker [43] for them. 

(3.2.1) Local systems. Assume that the group G is the (topological) 
identity component of a real semisimple linear algebraic group <:1, such 
that the quotient G/K of G by a maximal compact subgroup K of G has a 
G-invariant Hermitian structure. Let A = R, or A = C, and let 

be a finite dimensional representation of <:1 on an A-vector space V defined 
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over A. 
Let r be a discrete subgroup of G, and Zo the kernel of the canonical 

homomorphism G~Gad as in Section 2.3. Assume that p(Zonr)={l}. 
Then, if r has no fixed point on X, we can define a local system as the 
quotient space of X X V by the relation: 

(x, v) -(rx, p(r)v) (r E n, 
which we denote by the same symbol V. If the arithmetic subgroup r 
has fixed points on X, then we choose a r -invariant open dense subset Xo 
of X without fixed points under r, and we first define the local system 
Vo=F\(XoX V) over r\Xo' Putting V=jiVo) with respect to the canon­
ical immersionj: r\Xo~r\X, we have a constructible sheaf Von s=r\X 
in this case. 

(3.2.2) Variations of Hodge structure. Assume that r has no fixed 
point on X for a while, and let us see that the local system V has a natural 
structure of a variation of Hodge structure over S, when the pair (G, p) 
satisfies some conditions. 

Before discussing such conditions on (G, p), let us see that the 
holomorphic bundle "f'" or the locally free analytic sheaf (!) s(V) consisting 
of local holomorphic sections of V has a canonical holomorphic filtration 
and a connection with the transversality condition. 

Let us consider the trivial local system Vx=X X Von X, which has 
the trivial extension Vxc=Xc X V to the compact dual XC=Gc/KcP,- of 
X. Here P _ is the subgroup of Gc defined in Section 1.3.1. Then the 
holomorphic bundle "f'" xc associated to Vxc over XC is a trivial bundle, 
which is isomorphic to the bundle Fp over XC defined for the representa­
tion (pQ9 A C)lu of U=KcP_ 

which is the restriction of the representation PQ9A C of Gc to U. 
Note that U and P _ are a solvable and a nilpotent Lie group, respec­

tively. Hence there exists a decreasing filtration {F"(VQ9 A C)} on VQ9A C 
stable under U, such that P _ acts trivially on each graded module 
P(VQ9A C)/Fi+l(VQ9A C). 

In order to make the situation more precise and to define a connec­
tion on "f'" in the next paragraph, we recall the following lemma (cf. 
Lemma (5.2) of Part II of [29]). 

(3.2.3) Lemma. Suppose that a finite dimensional complex vector 
space V is an irreducible Gc-module via p: Gc~GL(V). Then there exists 
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Kc-submodules So, SI' .. " Sm of V with the following properties: 
(i) V is the direct sum of Si (O<i <m), i.e. V = EB~o Si' 
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(ii) p(g)v-v E Si_dor any v E Si and g E P+, and p(g)v-v E Si+l 
for any v E Si and g E P_ (i=O, 1, "', m). Here we set S_I={O} and 
Sm+l={O}. 

(iii) So and Sm are the irreducible Kc-modules given by 

So={v E Vlp(g)v=vfor all g E P+}, 
and 

Sm={v E VI p(g)v=v for all g E P _}. 

Moreover, if V is the irreducible Gc-module with highest weight A ED n 
X(Hc), So is an irreducible Kc-module with highest weight A. 

If P&;;AC is irreducible, we can apply the above lemma to Vc= 
V &;; A C, and define a U-stable filtration by FP(V) = EBi<;;P Si' and a U­
stable filtration by Pq(V)=EBgm-q Sj' where U=KcP_ and U=KcP+. 
These filtrations induce a holomorphic filtration on (iJxc(V) = V&;;c(iJx, 
and an anti-holomorphic filtration on @x,(V)= V&;;xc @x,. 

Now let us recall the definition of the connection 17. Since Vx '= 
XC X V is a constant local system, the tensor product of V with the de 
Rham complex of XC defines a complex of sheaves: 

(3.2.3.1) ( ) 17 =a@l n1 ( ) 17 n2 ( ) 17 (iJx, V )J.!x, V ----+J.!x, V ----+ ... 

We can define a similar complex for V. Since the following arguments 
also apply for this conjugate complex by changing the complex structure 
of X via the embedding X~Gc/U, we consider only the holomorphic 
case in the sequels. 

The fibers of the bundles Q~,(V) and C-linear mappings at a point 
Xo= [KcP _] E XC = Gc/KcP _ are given as follows. Let {E. I a E IPn} be a 
set of elements in gc such that 

Here ga is the root space for a, and B the Killing form of gc. Then 
{Eala E IPn+} and {E_ala E IPn+} make basis of lJ+ and lJ-, respectively. 

i * Let !\lJ- be the component of degree i of the exterior algebra !\lJ- of lJ-. 
Then for each i, we denote by 

i i+l 

e(X): !\ lJ -----+ !\ lJ-

the exterior product Y~X!\Y(YE AlJJ. Foranyelementw=~jvj&;;Yj 
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iii i+l 

(U j E V, Y j E 1\ lJ J of V ® 1\ lJ _, we define 170: V ® 1\ lJ _ -+ V ® 1\ lJ _ by 

170(w) = L: L: p(Ea)uj®e(Ka)(Yj). 
j a 

Then the fiber of the complex (3.2.3.1) at Xo is given by 

of K-modules. Note the isomorphism Frp~Q1fc of Section 2.4 here. 
The Lemma (3.2.3) implies the transversality condition: 

(3.2.3.2) 

since the induced homomorphism 

is @xc-linear. 
In order to compute the spectral sequence (3.1.3.1) in the next 

section, it is necessary to know the sheaf Jf'q(Gr~Q~(V». Zucker [43] 
computes it as follows. 

In the first place, we note that the fiber at Xo of the complex 

.. ·~EB Gr~(@xc(V»®c.Q~~l~EB Gr~(@xc(V»®c.Q~c~ ... 
k=O k=O 

with @x.-/inear boundary homomorphisms 17 is also given by (#). Hence 
the sheaf Jf'q(Gr~Q~(V» is isomorphic to the sheaf Faq.k on Xc associated 
to the representation u q , k of K on the cohomology group of the complex: 

q-l 110 q 110 q+l 

(##) Sk_q+l® 1\ lJ-~Sk-q® 1\ lJ-~Sk-q-l® 1\ lJ-

(cf. Theorem (5.29) of [43]). Here we put Si={O}, if i $ {a, 1, ... , m}. 
The last cohomology group is a direct summand of the q-th coho­

mology group of the complex (#). Note that 

q 

V® 1\ lJ- ~cq(lJ+, V)={q-alternating mapping of lJ+ to V}, 

for any q, and that the complex (#) is isomorphic to the standard complex 
of the Lie algegra lJ+ with values in V (note also that lJ+ is abelian). Then 
the cohomology groups of (#) are identified with H*(lJ+, V), and a theo­
rem of Kostant describes them as K-modules. 

(3.2.4) Theorem (Theorem 5.14 of [22], or [41], I, Chap. 2, p. 175). 
Let a be a dominant weight in X(Hc), and V the irreducible G-module with 
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highest weight A. Then for each q, we have an isomorphism of K-modules 

Hq(h+, V)~_ I'D W 1" Q7 w(hp)-p' 
WEWl(q) 

Here W. is the irreducible K-module with highest weight l.J, and 

(3.2.5) In order to characterize the sheaf J!f'q(Gr~(mxc(V))) as a 
subsheaf of EBwEWl(q) Fw().+p)_p, it is necessary to characterize the coho­
mology group of the complex (U) as a submodule of Hq(p+, V). This is 
done in Zucker [43] by investigating the action of a special subtorus of 
dimension 1 in the center of K on V. Let us recall this. 

In the first place, we define an anisotropic subtorus Z of dimension 1 
over R in the center Zx of the maximal compact subgroup K of G, in the 
following way. Note that there is an element tin Zx such that Ad(t)lp 
induces the complex structure on the tangent space Tx .o of X=G/K at 
o=[K] via the identification P~Tx.o. Denote by Zx the group of con­
tinuous characters of Zx. Then Zx is a torsion free (discrete) abelian 
group of finite rank. We consider a submodule Zx.l' of Zx of corank 1 
defined by 

and define a subgroup Z of Zx by 

Z=(Zx.l').l={z E ZxIX(z)=l for all X E Zx.l'}. 

Then we can see that Z is isomorphic to TI = {z E ex Ilzl = I} as topological 
groups, and contains t. Note here that if X is decomposed as a product 
X= Di"=IXj ofm irreducible symmetric domains Xi' then Zx~(TI)m. 

Let p be a representation of G on a finite-dimensional complex vector 
space V. Then for each character X of Z,we put 

V<X)={v E VI p(z)v = X(z)v for all z E Z}, 

and obtain the obvious decomposition: 

Each V <X) is invariant under K. If (0', W) is a representation of K, we 
define W <X) for X E Z similarly as in (*). If W is irreducible, then 
W = W <X) for some X E Z by Schur's Lemma. If we fix an isomorphism 
Z~ T1, then Z~fl~Hom (Tt, TI)~Z. In this case, if X E Z corresponds 
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to n e Z via the isomorphism i ~Z, we write W (n) for W (X). For the 
irreducible K-module W with highest weight A, we denote by Xl (resp. nl) 
the element of i (resp. Z) such that W = W (resp. W (Xl) = W (nl»' 

Let us consider the adjoint action of Z on 9c. Suppose that X is 
written as a product 

• 
X=DXt 

i=1 

of irreducible bounded symmetric domains of non-compact type. Then G 
and K are written as 

and 

where the Lie algebra of Gi is simple and GJKt is a non-compact 
Hermitian symmetric space for each i, and Ko is compact. The center ZK 
of K is written as 

• 
ZK= D ZK,XZKo 

i=l 

with dimRZK , = 1 for each i (1 <i5:.s). 
Let G~Gad be the natural covering of G on its adjoint group Gad. 

Let Z,# and Z,#, be the subgroups of Gad which are the images of ZK and 
ZK£ by G~Gad, respectively. We denote by Pt the covering degree of ZKi 
~Z'#, for each i. 

From now on, we assume that Pi are equal for all i (1 5:. i <s); and we 
put P=Pt. Note that this assumption is satisfied, if the Lie algebra of G 
is simple, or G=Gad. 

If we consider the adjoint representation p=Ad of G on V=PQ9 R C, 
then p+ = V (p), fc= V (0), and p_ = V ( - p) for this integer P, replacing 
the isomorphism Z ~ TI if necessary. 

Under these notations, we can paraphrase Lemma (3.2.2) in the 
following manner. 

Let V be an irreducible G-module (ovre C) with highest weight A. 
We denote by the same symbol p the representations of G and 9 on V. 
Then for V the following holds (cf. Zucker [43], (1.7): 

(i) p(p+)V(n)c V(n+p), p(f)V(n)c V(n), p(p_)V(n)c V(n- p). 
(ii) {nl V(n)*{0}}={n1,nl-p, n,-2p, .. ·,nl-mp}. 
The subspace St of V is equal to V(nl-ip). Therefore, we have 
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q q 

Sk_q® /\.\J-=(Sk-q® /\.\J_)(nl-kp). 

Hence the cohomology group of the complex (##) of (3.2.3) is given by 
Hq(.\J+, V)(nl-kp), which is isomorphic to 

EB WW(1+p)_p(n1-kp) 
weW'(q) 

as a K-module. Note that WW(1+p)_p(n1-kp) is equal to WW(l+P)_p or to 
{O}, since WW(l+p)-P is an irreducible K-module. 

Thus we have the following proposition. 

(3.2.6) Proposition (Corollary (5.32) of [43]). The holomorphic vector 
bundle .1l'q(Gr~.Q~(V» is the bundle associated with the K-module 

EB WW(1+p)_p(n1-kp). 
weWl(q) 

(3.2.7) Remark. Deligne [10] tells that the complex structure of 
G/K is defined by a homomorphism of real algebraic groups 

h: S. -----"" (1 , 

and K is given as the centralizer of h in G (=the identity component of 
(1(R». Our group Z is the image of S.(R). 

(3.2.8) Remark. Let us assume that the representation (p, V) is 
defined over R, i.e. there exists a real vector space V R and a representation 
PR: G~GL(VR) such that P=PB®BC and V= VR®RC. Then, in addi­
tion to the conditions (i) and (ii) for V(n), we have the Hodge symmetry 

V(n)=V(-n). 

§ 3.3. Degeneracy of the spectral sequences 

Let V be a finite dimensional complex vector space which is an 
irreducible G-module with highest weight A E D n X(Hc). Consider the 
pull-back of the complex (3.2.3.1) with respect to the open immersion 
X~X·, and assume that its descent with respect to x~s=r\X exists for 
an arithmetic discrete subgroup r of G which has no fixed point on X. 
We denote the induced bundle and sheaf on S by the same symbol as 
the original one on Xc, if they are obtained in the above way. So we can 
consider the bundle .1l'q(G~.Q8(V» on S. The induced complex on S 
from (3.2.3.1) defines a complex variation of Hodge structure. Zucker 
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[43] shows the degeneracy of the spectral sequence (3.1.4.1) for such a 
variation of Hodge structure. 

(3.3.1) Proposition (proposition (5.19) of [43]). If S\X is compact, 
the spectral sequence 

degenerates at E2• 

Note that Theorem (3.1.2) is also valid for complex variations of 
Hodge structure. Then the following is immediate. 

(3.3.2) Corollary (Remark (5.20) of [43]). If s=r\X is compact, 

dim H"(S, V)=:E :E dim HP(S, yt'q(Gr~.Q~(V»). 
k p+q=n 

In the rest of this section, we make the preceding proposition more 
precise, applying the vanishing theorem (2.3.1). 

From now on, we assume that the Lie algebra of G is simple. 
Let us compute the E2 term of (3.1.4.1). Assume that the highest 

weight A e D n X(Hc) of V satisfies the condition: 

for any (J e WI and any a e ifJ,,+. 

For any w e WI, we put qw=qW(l+p)-p" Then we have qw=N-q for any 
we WI(q) by the definition of WI(q) and qw' Let us define a complex 
vector space H w(q, k) by 

{
HqW(S, FW(l+p)_p), if WW(l+p)_p(nl-kp.) = WW(l+p)-p; 

Hw(q, k)= . 
{O}, If WW(.l+p)_p(n1-kp.)={0}. 

Then by Theorem (2.3.1), nEf,q of the spectral sequence (3.1.4.1) is given 
by 

{ 
EB Hw(q, k), 

EP,q - WEW1(q) 
II 2 -

{O}, 

if p=qw (=N-q); 

if p-=l=qw (=N-q). 

Therefore we have nEf,q={O}, if p+q-=l=N. Hence the homomorphism 

is the zero homomorphism for any p, q. 
Thus we have another proof of the degeneracy of (3.1.4.1), when A 

satisfies the preceding condition. Moreover 
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for any k, if p+q=/::-N. And if p+q=N, we have an isomorphism of 
vector spaces 

where q(w)=1 w( -(/i+) n (/in+ I. 
Combining with the degeneracy of (3.1.1.4) (cf. Theorem (3.1.2», we 

have the following theorem. 

(3.3.2) Theorem. Assume that s=r\X is compact, and A satisfies 
the condition: (00), a) >0 for any (J e WI and any a e (/in+' Then 

(i) Hi(S, V)={O}, ifi=/::-N. 
(ii) The Hodgefiltration F' in HN(S, V) of (3. 1. 1.4) gives an isomor­

phism 

P'HN(S, V)/Fk+IHN(S, V)~ EB Hw(q(w), k) 
WEWI 

for each k. This induces an isomorphism of vector spaces 

(iii) lfthere exists a representation PB: G--'t-GL(VB) on a real vector 
space VB such that V = VB ®B C and P= PB ®B C, then the space HN(S, VB) 
has a real Hodge structure of weight N + m via the filtration F' and its conju­
gate of (3. 1. 1.4), such that the (N+m-k, k) component of HN(S, VB)®BC 
is isomorphic to 

EB Hw(q(w), k). 
WEWI 

Here m=2n,/p. is the number defined in Remark (3.2.8). 

(3.3.3) Remark. The result (i) of the preceding theorem was shown 
by Matsushima-Murakami (cf. Theorem 12.1 of [29]). The last iso­
morphism of (ii) is considered as a generalization of the Eichler-Shimura 
isomorphism for modular forms of one variable. Borel-Wallach con­
structed an isomorphism (cf. [6], Chap. VII, Theorem 6.9): 

under the assumption that A + P is strongly (/i K + -dominant, by investigat­
ing the cohomology groups with values in the irreducible constituents of 
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the G-module V(r\G). Theorem (2.6.1) implies that it is equivalent to 
the last isomorphism of (ii). 

An advantage of the proof given here is that we can tell the Hodge 
type of Hqw(S, Fwo+p)_p), which does not seem to be clear in the proof of 
[6]. 

There is another way to equip a Hodge structure on HN(S, V) via 
square-integrable cohomology groups as it is done in Matsushima­
Murakami [28], [29]. But even in this case, it is important to check that 
this Hodge structure coincides with the geometric one defined above. 
This check was done by Zucker, which is one of the merits of [43]. 

The edge component of the Hodge decomposition in the above 
theorem is identified with a space of holomorphic automorphic forms. 

Though we have assumed that the Lie algebra of G is simple for 
simplicity, Theorem (3.3.2) is valid without modification if Pt are equal 
for all quasi-simple non-compact components Gt of G. The simplest case 
is the case where Gt =SL2(R) for all i. This case is already investigated 
in Matsushima-Shimura [30]. 

§ 3.4. Example. The case of discrete subgroups of the symplectic groups 

Now we apply Theorem (3.3.2) to discrete subgroups r of G= 
SP2n(R). Let us recall the basic facts on the root system of SP2n(R). 

Consider the Euclid space r of dimensional n with the usual 
orthonomal basis: 

t-th 

{e t =(I, ···,0,1,0, .. ·,O)ll<i<n}. 

Then the root system f/) is f/)={±2et , ±ej±ej 11 <i,j<n, i::j=)}, the set 
of positive roots is 

the set of compact roots is 

and the set of non-compact roots is 

A half of the sum of positive roots is 

" P=! L: a=L:(n+l-i)ej=(n,n-l,n-2, .·.,2,1). 
aE4)+ i=l 



Geometric Automorphic Forms 

The weight lattice L of SP2n(R) is identified with zn: 

L={A=OI> A2, ... , An) E zn}, 

and the set D of dominant weights is given by 

267 

Note that any irreducible finite dimensional representation of G is 
defined over R, since G has a split Cartan subgroup over R. Let PR: G----'>­
G L(V R) be the irreducible representation of G on a real vector space V R with 
highest weight A in D. Let Po: G----,>-GL2n(R) be the standard representation 
of G on ~ induced from the natural monomorphism SP2n(R)~GL2n(R). 
Then any point x of X = G/ K defines a complex structure on the real 
vector space R2n, i.e. x defines a Hodge structure of weight 1 of type 
{(I. 0), (0, I)}. The R-Iocal system Vo over X associated to Po is a real 
variation of Hodge structure. Let A = (AI> A2, ... , An). Then the G-module 
V is identified with a submodule of the tensor product pl(R2n) of degree 
nl= I:f=l Ai of the G-module R2n. Thus we can see that the R-Iocal 
system VR associated to the representation PR is a real variation of Hodge 
structure over X of weight n1• 

In our case, the dimension is N=dimcX=n(n+ 1)/2, and p+ =Pc(2), 
p .. =Pc( -2). And the module WW(A+P)_p(k) is given by 

{
WW(l+P)_P' if~(A+p)-P=(.I.!I' ···,f.ln) 

WW(l+p)_p(k) = satIsfies f.ll+· .. +f.ln=k; 

{O}, otherwise. 

Note that X is biholomorphically equivalent to the Siegel upper half 
space of degree n. Then by Theorem (3.3.2), we have the following. 

(3.4.1) Theorem. Assume that X is the Siegel upper half space of 
degree n, and T is a discrete subgroup of SP2n(R) without fixed points on X 
such that S=T\X is compact. Assume that A=(A1, ••• , An) E D satisfies 
(aO), a) =1=0 for any a E WI and a E tPn+. Assume moreover that the local 
system associated to the representation (PR' VR) exists on S. Then HN(S, VR) 
is a real Hodge structure of weight N+n1 such that (N+n1-k, k)-type 
component of HN(S, VR) is canonically isomorphic to 

EB Hqw(S, FW(l+p)_p), 
weWl[kJ 

where Wl[k] is the subset of WI defined by 

WI[k]={WE W l l wO+p)=(lJ1, lJ2' ···,lJn), tilJi=N+n1-k}, 
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Let us reformulate the above theorem in a slightly different way. 
Suppose that {el , •• " e,,} is the standard basis of the Euclid space R". 
For any element w of the Weyl group W of Ga, we can associate a 
permutation u of the set {I, "', n, -1, "', -n} by 

u(i)= j, if w(ei)=e j , and. u(i)= - j; if w(ei) = -ej 

for each i. Then the group W is identified with the set of the permuta­
tions of the set {I, .. " n, -1, .. " -n} such that 

- a(i) = a( - i) foranyie{l, "',n, -1, "', -n}. 

Let e: {I, 2, "', n}-+{±I} be a function on the set {1,2, "', n} 
with values in {± I}. We define an element u. of W by 

u.(i)=e(i)i, usC -i)= -e(i)i 

for any i (1 :S:i <n), or we set 

( 
1, .. ··· ',n, -1, ...... , -n· ) 

u.= e(1)I, .. " e(n)n, -e(I)I, .. " -e(n)n . 

Then there exists a unique element w. of WI such that 

We put A.=W.(A+p)-p for any A e D, and set q.=ql.=j(/),,+ n w,«(/),,+) = 
=j(/),,+ n u.«(/),,+)j. Then it is easy to see that Theorem (3.4.1) is equivalent 
to the following. . 

(3.4.1) bis Theorem. Under the same notation and assumptions as in 
Theorem (3.4.1), the Hodge decomposition of HN(S, VR) is given by 

HN(S, VR)®RC= EB Hq,(S, Fl.) 
.eE 

such that Hq·(S, Fl ,) is the Hodge component of type 

( E (At+(n+l-i)}, E {At+(n+l-i)}) . 
• (i)=-l .(i)=+l 
l~i~n l~i~n 

Here E is the set of all functions on {I, .. " n} with values in {± I}. 

(3.4.2) Remark. The Serre duality tells that there is a perfect 
pairing 
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of complex vector spaces for each e E E, and the natural conjugate linear 
isomorphism 

of Hq,(S, Fl ,) to Hq-,(S, Fl _,) for each E gives the Hodge symmetry. 
In the rest of this section, let us observe a relation between the 

Hodge type of the preceding theorem and the Langlands parameter of 
the discrete series representations of SP2n(R). We refer to the article of 
Borel [4] for the definition and basic properties of Langlands parameter. 
Let G be the adjoint group PSPzn(R) of G. Then the identity component 
LGO of the L-group of G is isomorphic to the complex spinor group 
Spin (2n+ 1, e), which is a double cover of the complex orthogonal group 
SO (2n + 1, e). 

Let wCIR=exUeXj(p=-I;jzj-l=t,zEeX) be the Weil group 
of R, and let 

be the Langlands parameter of the representation n 1 of the discrete series 
of G with infinitesimal character 8 1+0' Then cpD)= -1 (cf. Example 
10.5 of [4]). We consider the restriction of CPl to the identity component 
ex of WCIR: 

p",,(nl): eX----?LGO. 

Then the composition O'spin 0 p",,(n.) of p",,(n.) with)he)pin representation 

O'spln: LG°----?GL(2n , e) 

is equivalent to the homomorphism a of ex to:the:diagonal matrices of 
GL(2n , e) given as follows: 

Let A E Lo and A+P=(uI' /1z, "', /1n). For each~e E E, we put 

Then for each Z E ex, a(z) is the diagonal matrix in GL(2n , e) whose 2n 

diagonal elements are given by {zP'Z-P' I e E E}. 

(3.4.3) Observation. The "Hodge type" of 
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is given by {Cu" - ,u,) IcE E}. Under the assumption of Theorem (3.4.1), 
the Hodge type of HN(S, VR ) is given by 

where + E E is the unique function on {I, .. " n} with the constant value 
+1. 

In the next section, we discuss some problems for the Hodge decom­
position of cohomology groups of Siegel modular groups, expecting that 
the result of this section should have an analogy for non-co compact 
subgroups. For the elliptic modular case, these problems were already 
solved. See Deligne [8] and Zucker [42] for this case. It is also useful 
to see a formulation in terms of Lie algebra cohomologies discussed by 
Langlands [26] for the elliptic modular case. 

§ 3.5. Problems in the Siegel modular case 

It is natural to suspect that the analogy of Theorem (3.4.1) is also 
valid for discrete subgroups which are not cocompact in Sp2nCR). Let us 
formulate this as problems for discrete subgroups of SP2n(R) commensu­
rable with SP2n(Z). 

Let us start with an irreducible representation 

pQ: SP2n(Q)--+GL(VQ) 

of SP2n(Q) with highest weight A E D on a finite-dimensional Q-vector 
space VQ • Then for a discrete subgroup TCSP2n(Q) which is commensu­
rable with SP2n(Z) and has no fixed points on X, we can construct a local 
system VQ over S=T\X with fibers of Q-vector spaces corresponding to 
pQ. 

Recall that these Q-Iocal systems appear naturally by the following 
geometric construction. If T is a congruence subgroup of SP2n(Z), then 

we can construct a canonical analytic family A~S of principally 
polarized abelian varieties over S with a level structure corresponding to 
T. For each i (1 <i:s;:,n), we have an isomorphism Rij*Q~ VQ of local 
systems with A=(1, 1, .. ·,1,0, ... ,0). In general any local system VQ 
~ 

i 

over S is a direct summand of the higher direct image RmfJk)Q of some 
degree m for some k-tuple fiber productj<k): AXsAX'" XsA--*S off 

Let us consider the image 

of the natural homomorphism of the cohomology group with compact 
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supports to the cohomology groups (without any conditions on supports), 
Then the first problem is the following. 

(3.5.1) Problem. Show that HN(S, VQ) has a rational Hodge struc­
ture of weight N+nl , where 

Remark. The above problem is considered as a special case of the 
analogue for Hodge structures of the £-adic purity theorem, which is the 
main result of Deligne [12]. 

The analytic manifold S has a natural structure of a quasi-projective 
algebraic variety over C. Let S* be a smooth compactification of the 
algebraic variety S. The bundle Fl is considered as an algebraic bundle 
over S. 

(3.5.2) Problem. Suppose that A ED satisfies the assumption of 
Theorem (3.4.1). Set Et=jiFl) for the immersion j: S~S*. Find 
a sheaf of ideal Jl on S* with support in S* - S for each A, such that 
there exists an isomorphism 

l: HN(S, VQ)®QC~ EB Hqw(S*, F!(l+P)_p®JW(l+P)_P) 
WEWI 

compatible with the Hodge decomposition of HN(S, VQ), and for each 
WE WI, Hqw(S*, F!(l+P)_.®JW(l+P)_p) is contained in the 

(~Vi' N+nl - ~ Vi) (W(A+p)=(Vl> ... , Vn) E zn) 

type component of H N(S, VQ) ®Q C via t. 

Similarly as for elliptic modular forms or Hilbert modular forms, 
one might proceed to attach Hodge structures to primitive Siegel modular 
forms. 

Let f be an automorphic cusp form on Gad=PSPzn(R) for T, 
which generates an irreducible automorphic representation (w, V .. ) in 
d(PSPzn(Q)\PSPzn(A» such that the infinite component Woo of w= ®.EP w. 
is equivalent to nl~p for some A' E L~ n X(Hai?). Here A is the adele ring 
of Q, P the set of all non-trivial places of Q, and Hai? the complexification 
of a compact Cartan subgroup Had of Gad. For the given weight A' E L~, 

there exist unique A E D and W E WI such that A'=A(W)=W(A+p)-p. 
If f (or the representation w) is "generic" in some sense, it seems 

natural to expect the following.' 
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(3.5.3) Problem. For each WE WI, find an automorphic form /w 
on Gad for r which generates an irreducible automorphic representation 
WW=@vEPWw,V such that 

Ww,v::;;:;Wv for all finite place v E P, 

and 

W w ,=::;;:;7!"{W(l+p)-p)op for the infinite place 00. 

Let K., be the subfield of C, generated over Q by the eigenvalues aT 
of/with respect to the Hecke operators T: T(f)=aTf Assume that K", 
is totally real. Then for each embedding (1: K.,~C, we expect that 
there exists a companion/", which is an automorphic form on Gad for r 
such that T(j")=a'T/q for all Hecke operators T. We write/~ for (f")w. 

(3.5.4) Problem. Define a rational sub-Hodge structure Hncw)(M." Q) 
of weight n(w)=N+nl in fiNeS, VQ) for / (or for w) with the following 
properties: 

(i) There is an algebra homomorphism 

of K., to the endomorphism algebra of the Hodge structure HnC")(M." Q) 
induced from the action of the Hecke operators on fiNeS, VQ). Moreover, 

dimx.,HnCW)(Mw, Q)=2n (=\ WI\). 

(ii) For each embedding (1: K.,~C, the (1-eigencomponent 

HnC")(M." Q)@x""q C of Hncwl(Mw, Q)@QC 

with respect to K", has a natural identification 

such that Cf~ constitutes a part of the (2:::;i~l Vi' N+n1 - .z:::;i~llii) type 
component of Hncwl(Mw, Q)@xw,"C. Here (lil> ... , lin)=W(A+p). 

In order to justify (3.5.3), it seems natural to expect the following. 

(3.5.5) Problem. Fix a dominant weight A. Show that the traces 
of the Hecke operator T: 

tr {T\ Hqw(S*, F!(Hp)-p@JWC1+P)_p)} 
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possibly, modulo some terms corresponding to "degenerate" automorphic 
forms. 

(3.5.6) Remark. We find that the contribution from elliptic ele­
ments of r does depend on W E WI in the dimension formula of auto­
morphic forms of Hotta-Parthasarathy [21]. 

(3.5.7) Remark. If the modular formsfw in Problem (3.5.3) exist. 
the L-functions for the fw coincide with that of f In this sense, we 
cannot tell fw from f by their L-functions. This problem seems to be 
different from the L-indistinguishability of Labesse-Langlands [23]. 

In the rest of this section, let us add a few words about the gamma 
factors of L-functions of Siegel modular forms. The L-group of Gad for 
Q is isomorphic to Spin (2n+ 1, C). Let L(s, w, spin) be the L-function 
of the automorphic representation CI) for the spinor representation spin = 
Spin (2n+ 1, C)--+GL(2n , C). The Euler factors of L(s, w, spin) are 
defined except for a finite number of bad primes for CI) (cf. Langlands [24], 
[25], and Borel [4]). Assume that the Euler factors at bad primes are also 
defined in some way. 

When the variety S = r\X has a canonical model SQ defined over Q. 
we can consider the .e-adic analogy il:lSQxQ, VQ,) of ilN(S, VQ) on 
which the absolute Galois group Gal (Q/Q) acts. Let Hn("')(M"" Qe) be the 
Gal (Q/Q)-submodule of il :r.(SQ X Q, VQ,), corresponding to Hn("')(M"" Q) 
by the comparison theorem. For a given embedding 0": K",--+Qe, we put 

Then we expect that it defines an .e-adic representation 

P"': Gal(Q/Q)~AutQ,(V""e) 

on V"", with dimQ,V""e=i Wl i=2n. For each isomorphism t: Qe--+C, we 
can define the L-function 

L(s, P"" toO") 

associated to Pt»' which is the product of the characteristic polynomials of 
the Frobenius elements in Gal (Q/Q). The fundamental problem for 
L-functions of geometric Siegel modular forms is to show the equality 

( new) .) ( ) L s+-2-' w, spIn =L s, p." toO" 

for a given w, by choosing suitable 0" and t. Let Loo(s, P .. ) be the Euler 
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factor at the infinity place 00. Then the expected functional equation for 
A(s, PO)' to a) = L=(s, pO))L(s, PO)' to a) is 

A(n(w)+ l-s, P';;, to a)=e(s)A(s, PO)' to a). 

The factor L=(s, PO)) is conjectured by Serre and Deligne (cf. [11] Section 
5.3): when new) is odd, L=(s, PO)) is a product of 2n-1 gamma functions 
T(s-i) (i E Z) 

where 

T(s, PO)) = n res sn, 
eEE 

:si<x;-

s:= L: {Ai+(n+I-i)} and S;= L: {Ai+(n+I-i)}. 
sEE eEE 

e(i)=+l ,(i)=-l 

When n=2, the gamma factors of the L·functions for holomorphic Siegel 
modular forms in Andrianov [1], [2] and Arakawa [3] are of the form 
conjectured above. 

§ 3.6. A remark for the case of unitary groups 

Let us suppose that G is the adjoint group of the unitary group 
U(p, q). Set n= p+q. Then the dual group of Gis SL(n, C). On the 
other hand, the number of Hodge components of the cohomology group 
of ad is crete subgroup is IW11=Cn,p=nl/(plql). Note that in this case 
the Hodge symmetry is lost. The computation of the Hodge type suggests 
that if we can attach a Hodge structure H to a primitive geometric 
automorphic form, it might be a p-th (or q-th) exterior product of another 
Hodge structure over the field of eigenvalues. Thus, when p > 2 and 
q~2, one might imagine a period relation for H different from the 
Riemann-Hodge relation, i.e. a Plucker relation between the entries of the 
period matrix of H. 
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