Advanced Studies in Pure Mathematics 4, 1984 Group Representations and Systems of Differential Equations pp. 223–242

F-mild Hyperfunctions and Fuchsian Partial Differential Equations

Toshinori Ôaku

§ 0. Introduction

Non-characteristic boundary value problems were formulated for hyperfunctions by Komatsu-Kawai [9] and Schapira [12]. They defined the boundary values of hyperfunction solutions and proved the uniqueness of solutions of the boundary value problem. Solvability of the (local) boundary value problem was proved by Kaneko [2] under the assumption of semi-hyperbolicity.

Kataoka [6, 8] introduced the notion of mildness on the boundary for hyperfunctions. He studied non-characteristic boundary value problems in detail by using the theory of mild hyperfunctions (see [7, 8]).

Let P be a linear partial differential operator of order m with analytic coefficients defined on an open subset M of $\mathbb{R}^n \ni x = (x_1, x')$, and set int $M_+ = \{x \in M; x_1 > 0\}$ and $N = \{x \in M; x_1 = 0\}$. Suppose that N is noncharacteristic with respect to P. Then any hyperfunction u(x) defined on int M_+ satisfying Pu(x)=0 becomes mild on N, and the boundary value $v_j(x') = (\partial/\partial x_1)^j u(+0, x')$ is defined as a hyperfunction on N for any integer $j \ge 0$. Moreover if $v_0(x'), \dots, v_{m-1}(x')$ vanish, then u(x) vanishes near N.

However, if N is characteristic with respect to P, then u(x) is not mild in general. In this paper, we define the F-mildness for hyperfunctions defined on int M_+ . The notion of F-mildness is a generalization of that of mildness. If u(x) is F-mild on N, we can define the boundary value $v_j(x') = (\partial/\partial x_1)^j u(+0, x')$ for any integer $j \ge 0$ as a hyperfunction on N in a natural way.

Using F-mild hyperfunctions, we formulate boundary value problems for Fuchsian partial differential operators and prove the uniqueness of solutions of the boundary value problem. Let P be a Fuchsian partial differential operator of weight m-k with respect to x_1 in the sense of Baouendi-Goulaouic [1] and let u(x) be a hyperfunction on int M_+ satisfying Pu(x)=0. Assume that the characteristic exponents of P avoid certain integral values. Under these assumptions, if u(x) is F-mild on N

Received April 28, 1983.

and $(\partial/\partial x_1)^{j}u(+0, x')$ vanishes for any $0 \le j \le m-k-1$, then u(x) vanishes near N (Corollary of Theorem 2). Moreover, if P is hyperbolic with respect to the x_1 -direction on int M_+ , then this boundary value problem is locally solvable. (Solvability will be treated in a forthcoming paper.) We should remark that Kashiwara-Oshima [4] formulated boundary value problems for all hyperfunction solutions of Pu(x)=0 on int M_+ . They defined m 'boundary values' of a solution u(x) and proved that these 'boundary values' determine u(x) near N. However, as stated above, (m-k) boundary values determine u(x) if u(x) is F-mild.

Cauchy problems for Fuchsian partial differential operators were studied by Tahara [13] and Ôaku [11] in the category of hyperfunctions with a real analytic parameter x_1 : Well-posedness of the Cauchy problem for Fuchsian hyperbolic operators was proved in [13], and the uniqueness of solutions of the Cauchy problem was proved in [11] for general Fuchsian operators. Micro-local Cauchy problems for Fuchsian pseudo-differential operators were also treated in [10, 11]. In this and forthcoming papers, we shall extend these results to boundary value problems.

In Section 1, we develop the theory of F-mild hyperfunctions by using the curvilinear wave expansions (Radon transformations) for holomorphic functions (cf. Kataoka [5] and Kaneko [3]). Our main result in Section 1 is the edge of the wedge theorem for F-mild hyperfunctions (Theorem 1).

In Section 2, we formulate the boundary value problem for Fuchsian partial differential operators and state a micro-local uniqueness theorem (in other words, propagation of regularity from the boundary) (Theorem 2).

In Section 3, we give a characterization of the singular spectrum of a mild hyperfunction using the carrier of an analytic functional. Combining this characterization and the method of [1] (Cauchy problems for analytic functionals), we prove the micro-local uniqueness theorem in Section 4.

§ 1. Theory of F-mild hyperfunctions

Kataoka introduced the notion of mild hyperfunctions in his theory of micro-local boundary value problems ([6, 8]). Let M be a real analytic manifold and M_+ be a closed subset of M with real analytic boundary N. When N is non-characteristic for a linear partial differential operator P with analytic coefficients, each hyperfunction u on int M_+ (the interior of M_+) satisfying Pu=0 becomes mild on N and has boundary values (as hyperfunctions) on N in a natural way. Thus the notion of mildness is sufficient for non-characteristic boundary value problems. However, when N is characteristic for P, u is not mild on N generally. We shall consider a wider class of hyperfunctions on int M_+ which have boundary values in a natural way.

First let us recall the notion of mild hyperfunctions in accordance with [6]. Since mildness is a local property and invariant under local coordinate transformations, we set $M = \mathbb{R}^n \ni x = (x_1, x')$ with $x' = (x_2, \dots, x_n)$, $M_+ = \{x \in M; x_1 \ge 0\}$, and $N = \{x \in M; x_1 = 0\}$. We consider hyperfunctions defined on int M_+ locally on a neighborhood of a point of N. More precisely, let j: int $M_+ \to M$ be the natural embedding and consider the sheaf $\mathscr{B}_{N|M_+} = (j_* j^{-1} \mathscr{B}_M)|_N$, where \mathscr{B}_M denotes the sheaf of hyperfunctions on M. By the flabbiness of \mathscr{B}_M , we can also write $\mathscr{B}_{N|M_+} = \Gamma_{M_+}(\mathscr{B}_M)/\Gamma_N(\mathscr{B}_M)$; here for a subset S of M and a sheaf \mathscr{F} on M, $\Gamma_S(\mathscr{F})$ denotes the sheaf of sections of \mathscr{F} whose supports are contained in S.

Let $\dot{x}=(0, \dot{x}')$ be a point of N and u(x) be a germ of $\mathscr{B}_{N|M_+}$ at \dot{x} . Then u(x) is said to be mild at \dot{x} if and only if u(x) can be expressed on $\{x \in \operatorname{int} M_+; |x-\dot{x}| \le \varepsilon\}$ as a sum of boundary values of holomorphic functions

$$u(x) = \sum_{j=1}^{J} F_j(x_1, x' + \sqrt{-1} \Gamma_j 0),$$

where J is a positive integer, ε is a positive number, Γ_j are open convex cones (whose vertices are 0) in \mathbb{R}^{n-1} , and $F_j(z)$ is a holomorphic function defined on

$$D(\mathring{x}, \varGamma_{j}, \varepsilon) = \{z = (z_{1}, z') \in C^{n}; |z - \mathring{x}| < \varepsilon, \\ \sqrt{(\operatorname{Im} z_{1})^{2} + (-\operatorname{Re} z_{1})_{+}^{2}} < \varepsilon |\operatorname{Im} z'|, \operatorname{Im} z' \in \Gamma_{j}\}.$$

Here we set $(t)_+ = \max(0, t)$ for $t \in \mathbb{R}$. The subsheaf of $\mathscr{B}_{N|M_+}$ consisting of sectinos of $\mathscr{B}_{N|M_+}$ which are mild on N is denoted by $\mathscr{B}_{N|M_+}$, and its section is called a mild hyperfunction.

Now we define the notion of F-mildness which is a generalization of that of mildness.

Definition 1. Let u(x) be a germ of $\mathscr{B}_{N|M_+}$ at \dot{x} . Then u(x) is said to be F-mild at \dot{x} if and only if u(x) has the expression

(1)
$$u(x) = \sum_{j=1}^{J} F_j(x_1, x' + \sqrt{-1} \Gamma_j 0)$$

on $\{x \in \text{int } M_+; |x-\dot{x}| < \varepsilon\}$, where J is a positive integer, ε is a positive number, Γ_j are open convex cones in \mathbb{R}^{n-1} , and $F_j(z)$ is a holomorphic function defined on a neighborhood (in \mathbb{C}^n) of

$$D'(\dot{x}, \Gamma_j, \varepsilon) = \{z = (z_1, z') \in C^n; |z - \dot{x}| < \varepsilon, \text{ Re } z_1 \ge 0, \text{ Im } z_1 = 0, \text{ Im } z' \in \Gamma_j\}.$$

For an open subset U of N, we set

 $\mathring{\mathscr{B}}_{N|M_{+}}^{F}(U) = \{ u \in \mathscr{B}_{N|M_{+}}(U); u \text{ is F-mild at each point of } U \}.$

Then it is easy to see that $\hat{\mathscr{B}}_{N|M_+}^F: U \mapsto \hat{\mathscr{B}}_{N|M_+}^F(U)$ defines a sheaf on N, which we call the sheaf of F-mild hyperfunctions. By the definition, we have the inclusions

$$\mathring{\mathscr{B}}_{N|M_{+}} \subset \mathring{\mathscr{B}}^{F}_{N|M_{+}} \subset \mathscr{B}_{N|M_{+}}.$$

These sheaves are invariant under the action of a linear partial differential operator with analytic coefficients.

In the sequel we shall prove several properties of F-mild hyperfunctions.

Lemma 1. Let Γ be an open convex cone of \mathbb{R}^{n-1} and F(z) be a holomorphic function defined on a neighborhood of $D'(0, \Gamma, \varepsilon)$ with $\varepsilon > 0$. Then for any open subcone Γ' of Γ such that $\overline{\Gamma}' \cap S^{n-2} \subset \Gamma$ (here $S^{n-2} = \{x' \in \mathbb{R}^{n-1}; |x'|=1\}$), there exists c > 0 such that F(z) is holomorphic on

$$\{z = x + \sqrt{-1} y \in C^n; |z| < c, y_1^2 < c |y'|^2 (x_1 + c |y'|^2), y' \in \Gamma'\}.$$

Proof. The function $F(w_1^2, z')$ is holomorphic on

$$\{(w_1, z') \in \mathbb{C}^n; |w_1| \le \sqrt{(\varepsilon/2)}, |z'| \le \varepsilon/2, \text{ Im } w_1 = 0, \text{ Im } z' \in \Gamma\}.$$

Let Γ' be an open convex cone of \mathbb{R}^{n-1} such that $\Gamma' \subset \Gamma$ (i.e. $\overline{\Gamma}' \cap S^{n-2} \subset \Gamma$). Then by virtue of the local version of Bochner's tube theorem, there exists $\delta > 0$ such that $F(w_1^2, z')$ is holomorphic on

 $\{(w_1, z') \in \mathbb{C}^n; |w_1| < \sqrt{\delta}, |z'| < \delta, |\operatorname{Im} w_1| < \delta |\operatorname{Im} z'|, \operatorname{Im} z' \in \Gamma'\}.$

Hence F(z) is holomorphic on

$$\Big\{z \in \boldsymbol{C}^n; |z_1| < \delta, |z'| < \delta, \operatorname{Im} z' \in \Gamma', \operatorname{Re} z_1 > \Big(\frac{|\operatorname{Im} z_1|}{2\delta |\operatorname{Im} z'|}\Big)^2 - (\delta |\operatorname{Im} z'|)^2\Big\}.$$

(Since F(z) is defined on a neighborhood of $D'(0, \Gamma, \varepsilon)$, it is also single-valued on the above set.) This completes the proof.

Proposition 1. *F*-mildness is invariant under local coordinate transformations of M which preserve M_+ and N.

We can easily verify this proposition by using Lemma 1.

Note that we can define the sheaf of F-mild hyperfunctions on the

real analytic boundary of a real analytic manifold by virtue of this proposition. The following proposition is also an immediate consequence of Lemma 1:

Proposition 2. Let u(x) be an *F*-mild hyperfunction. Then for any integr $q \ge 2$, $u(x_1^q, x')$ is a mild hyperfunction.

Proposition 3. Let u(x) be an F-mild hyperfunction defined on an open subset U of N. Then $u(x_1^2, x')$ is well-defined as a hyperfunction with a real analytic parameter x_1 on a neighborhood (in M) of U.

Proof. Let u(x) be defined by

$$u(x) = \sum_{j=1}^{J} F_j(x_1, x' + \sqrt{-1} \Gamma_j 0)$$

at $\dot{x} \in U$, where F_j is holomorphic on a neighborhood of $D'(\dot{x}, \Gamma_j, \varepsilon)$ with open convex cones Γ_j in \mathbb{R}^{n-1} and $\varepsilon > 0$. Then

$$u(x_1^2, x') = \sum_{j=1}^{J} F_j(x_1^2, x' + \sqrt{-1} \Gamma_j 0)$$

is a hyperfunction with a real analytic parameter x_1 . On the other hand, $u(x_1^2, x')$ is well-defined on $\{x \in M; |x - \hat{x}| \le \varepsilon, x_1 \ne 0\}$ as a hyperfunction and coincides with the above definition there. Hence by Holmgren's uniqueness theorem, the above definition of $u(x_1^2, x')$ does not depend on the choice of defining functions. This completes the proof.

By this proposition we can define boundary values of F-mild hyperfunctions.

Definition 2. Let u(x) be an F-mild hyperfunction defined on an open subset U of N. Then the boundary value $u(+0, x') \in \mathcal{B}_N(U)$ is defined as the restriction of $u(x_1^2, x')$ to N.

Remark. Let u(x) be defined by (1). Then it is easy to see that

$$u(+0, x') = \sum_{j=1}^{J} F_j(0, x' + \sqrt{-1} \Gamma_j 0)$$

holds on $\{(0, x') \in N; |x' - \mathring{x}'| < \varepsilon\}$.

Now we define the *p*-singular spectra of F-mild hyperfunctions. Let $\sqrt{-1}S^*M = (\sqrt{-1}T^*M - M)/R^+ = M \times \sqrt{-1}S^{n-1}$ and $\sqrt{-1}S^*N = N \times \sqrt{-1}S^{n-2}$ be the purely imaginary cosphere bundles of M and N respectively and let $\pi_M: \sqrt{-1}S^*M \to M$ and $\pi_N: \sqrt{-1}S^*N \to N$ be the

canonical projections. Let $\rho: \sqrt{-1} S^*M|_N - \sqrt{-1} S^*M \rightarrow \sqrt{-1} S^*N$ be the canonical map. We denote by SS(f) the singular spectrum of a hyperfunction f.

Definition 3, Let u(x) be an F-mild hyperfunction defined on a subset U of N. Then the ρ -singular spectrum ρ -SS(u) of u is the closed subset of $\pi_N^{-1}(U) \subset \sqrt{-1} S^*N$ defined by

$$\rho - SS(u) = \rho(SS(u(x_1^2, x'))) \cap (\sqrt{-1} S^*M|_N - \sqrt{-1} S^*M)).$$

It is easy to see that $SS(u(+0, x')) \subset \rho - SS(u(x))$ holds.

In the sequel, we shall characterize the ρ -singular spectrum by defining functions. For $\xi' = (\xi_2, \dots, \xi_n) \in S^{n-2}$ and $z' = (z_2, \dots, z_n) \in C^{n-1}$, we put

$$W(z',\xi') = \frac{(n-2)!}{(-2\pi\sqrt{-1})^{n-1}} \times \frac{(1-\sqrt{-1}\langle z',\xi'\rangle)^{n-3}\{1-\sqrt{-1}\langle z',\xi'\rangle - (z'^2-\langle z',\xi'\rangle^2)\}}{\{\langle z',\xi'\rangle + \sqrt{-1}(z'^2-\langle z',\xi'\rangle^2)\}^{n-1}},$$

where $\langle z', \xi' \rangle = z_2 \xi_2 + \cdots + z_n \xi_n$ and $z'^2 = z_2^2 + \cdots + z_n^2$. In the sequel, we use fundamental properties of curvilinear wave expansions (Radon transformations) for holomorphic functions proved in Section 1 of [5]. See also Chapter 2, Section 3 and Chapter 3, Section 3 of [3].

Lemma 2. Let K be a compact subset of N with C^2 -boundary and let u(x) be an F-mild hyperfunction on K defined by

$$u(x) = \sum_{j=1}^{J} F_j(x_1, x' + \sqrt{-1} \Gamma_j 0),$$

where F_j is holomorphic on a neighborhood of $D'(K, \Gamma_j, \varepsilon) = \bigcup_{x \in K} D'(x, \Gamma, \varepsilon)$ with open convex cones Γ_j in \mathbb{R}^{n-1} and $\varepsilon > 0$. Let \hat{x} be a point of int Kand $\hat{\xi}'$ be a point of S^{n-2} . Then the point $(\hat{x}, \sqrt{-1}\hat{\xi}') \in \sqrt{-1}S^*N$ is not contained in $\rho - SS(u)$ if and only if

$$F(z;\xi') = \sum_{j=1}^{J} \int_{K+\sqrt{-1}a_j} F_j(z_1,w') W(z'-w',\xi') dw'$$

is analytic at $(z, \xi') = (\hat{x}, \xi')$ for any sufficiently small $a_i \in \Gamma_i$.

Proof. First assume that $(\hat{x}, \sqrt{-1}\hat{\xi}') \notin \rho - SS(u)$. Then there exist holomorphic functions G_{ν} $(\nu=1, \dots, l)$ defined on a neighborhood of $\tilde{D}'(\hat{x}, V_{\nu}, \varepsilon) = \{z \in \mathbb{C}^n; |z-\hat{x}| < \varepsilon, \text{ Im } z_1 = 0, \text{ Im } z' \in V_{\nu}\}$ such that

$$u(x_1^2, x') = \sum_{\nu=1}^{l} G_{\nu}(x_1, x' + \sqrt{-1} V_{\nu} 0)$$

on $\{x \in M; |x-\dot{x}| < \varepsilon\}$; here V_{ν} are open convex cones in \mathbb{R}^{n-1} whose polar sets $V_{\nu}^{0} = \{\xi' \in \mathbb{R}^{n-1}; \langle y', \xi' \rangle \geq 0$ for any $y' \in V_{\nu}\}$ do not contain $\dot{\xi}'$. Set $D = \{x' \in \mathbb{R}^{n-1}; |x'-\dot{x}'| \leq \varepsilon/2\}$ and let $b_{\nu} \in V_{\nu}$ be small enough. Then by the edge of the wedge theorem for hyperfunctions, we know that

$$F(z_1^2, z'; \xi') - \sum_{\nu=1}^l \int_{D+\sqrt{-1}b_{\nu}} G_{\nu}(z_1, w') W(z'-w', \xi') dw'$$

is analytic in (z, ξ') on a neighborhood of $\{x\} \times S^{n-2}$ if $b_{\nu} \in V_{\nu}$ are small enough. On the other hand,

$$\int_{D+\sqrt{-1}b_{\nu}}G_{\nu}(z_1,w')W(z'-w',\xi')dw'$$

is analytic on a neighborhood of $\{\mathring{x}\} \times (S^{n-2} - V_{\nu}^{0})$. Since $\mathring{\xi}'$ is not contained in $V_{1}^{0}, \dots, V_{\ell}^{0}$, the function $F(z_{1}^{2}, z'; \xi')$ is analytic at $(z, \xi') = (\mathring{x}, \mathring{\xi}')$. Noting that $F(z; \xi')$ is analytic (and single-valued) on a neighborhood of $D'(\mathring{x}, \varDelta, \varepsilon) \times \{\mathring{\xi}'\}$ with some $\varepsilon > 0$ for any open cone $\varDelta \subset \{y' \in \mathbb{R}^{n-1}; \langle y', \mathring{\xi}' \rangle > 0\}$, we know that $F(z; \xi')$ is analytic at $(\mathring{x}, \mathring{\xi}')$.

Now assume that $F(z; \xi')$ is analytic at $(\mathring{x}, \mathring{\xi}')$. Let $\varDelta_k (k=0, 1, \cdots, J')$ be closed proper convex cones in \mathbb{R}^{n-1} such that $\bigcup_{0 \le k \le J'} \varDelta_k = S^{n-2}$, $\mathring{\xi}' \in \operatorname{int} \varDelta_0$, the measure of $\varDelta_j \cap \varDelta_k$ is zero, and that $F(z; \xi')$ is analytic in (z, ξ') on a neighborhood of $\{\mathring{x}\} \times (\varDelta_0 \cap S^{n-2})$. Put

$$F_{jk}(z) = \int_{\mathcal{A}_k \cap S^{n-2}} d\sigma(\xi') \int_{K+\sqrt{-1}a_j} F_j(z_1, w') W(z'-w', \xi') dw'$$

for $k=0, 1, \dots, J'$, where $d\sigma(\xi')$ denotes the volume element on S^{n-2} . Then $F_{jk}(z)$ is holomorphic on a neighborhood of $D'(\hat{x}, V_{jk}, \epsilon)$ with some $\epsilon > 0$ for any open convex cone $V_{jk} \subset \mathcal{A}_k^0 + \Gamma_j$, and we have

$$F_{j}(z) = F_{j0}(z) + \sum_{k=1}^{J'} F_{jk}(z)$$

on $D'(x, \Gamma_j, \varepsilon)$. By the above assumption, $F_{1,0} + \cdots + F_{J,0}$ is analytic at z = x. Since

$$\pi_N^{-1}(\{\mathring{x}\}) \cap \rho - SS(F_{jk}(x_1, x' + \sqrt{-1} V_{jk} 0)) \subset \{\mathring{x}\} \times \sqrt{-1} (\varDelta_k^0 + \varGamma_j)^0 \\ \subset \{\mathring{x}\} \times \sqrt{-1} \varDelta_k,$$

we have $(\dot{x}, \sqrt{-1}\dot{\xi}') \notin \rho - SS(u(x))$. This completes the proof.

Proposition 4. Let u(x) be an *F*-mild hyperfunction defined on a neighborhood of $\hat{x} \in N$. Then $(\hat{x}, \sqrt{-1}\hat{\xi}') \in \sqrt{-1}S^*N$ is not contained in ρ -SS(u) if and only if there exist holomorphic functions F_j $(j=1, \dots, J)$ defined on a neighborhood of $D'(\hat{x}, \Gamma_j, \varepsilon)$ with $\varepsilon > 0$ and open convex cones $\Gamma_j \subset \mathbb{R}^{n-1}$ whose polar sets do not contain $\hat{\xi}'$ such that

(2)
$$u(x) = \sum_{j=1}^{J} F_j(x_1, x' + \sqrt{-1} \Gamma_j 0).$$

Proof. It is obvious that $(\mathring{x}, \sqrt{-1}\mathring{\xi}') \notin \rho - SS(u)$ if u has the above expression. Assume $(\mathring{x}, \sqrt{-1}\mathring{\xi}') \notin \rho - SS(u)$. Let u(x) be defined by

$$u(x) = \sum_{j=1}^{J'} G_j(x_1, x' + \sqrt{-1} V_j 0),$$

where G_j is holomorphic on a neighborhood of $D'(\dot{x}, V_j, \varepsilon)$ with $\varepsilon > 0$ and open convex cones $V_j \subset \mathbb{R}^{n-1}$. Then by Lemma 2,

$$G(z;\xi') = \sum_{j=1}^{J'} \int_{D+\sqrt{-1}b_j} G_j(z_1,w') W(z'-w',\xi') dw'$$

is analytic at $(z, \xi') = (\mathring{x}, \mathring{\xi}')$ if $b_j \in V_j$ are sufficiently small. Here we set $D = \{x' \in \mathbb{R}^{n-1}; |x' - \mathring{x}'| \le \varepsilon/2\}$. Then by the argument of the latter part of the proof of Lemma 2, u has the expression (2) with $\Gamma_j^0 \neq \mathring{\xi}'$. This completes the proof.

In view of this proposition, we know that $\rho - SS(u(x))$ coincides with $\iota - SS(u(x))$ defined in [6] for a mild hyperfunction u(x) (see Definition 2.2.1 of [6]).

Proposition 5. Let u(x) be an *F*-mild hyperfunction defined on an open subset U of N. Then we have

$$\rho - SS(u(x)) = \rho - SS(u(x_1^q, x'))$$

for any positive integer q.

Proof. Let \dot{x} be a point of U and let K be a compact subset of U with C^2 -boundary such that $\dot{x} \in \text{int } K$. Let u(x) be defined by (1) with F_j holomorphic on a neighborhood of $D'(K, \Gamma_j, \varepsilon)$. Set

$$F(z;\xi') = \sum_{j=1}^{J} \int_{K+\sqrt{-1}a_j} F_j(z_1,w') W(z'-w',\xi') dw'$$

with sufficiently small $a_i \in \Gamma_i$. Let $\xi' \in S^{n-2}$ and set

$$\Gamma = \{ y' \in \mathbf{R}^{n-1}; \langle y', \hat{\xi}' \rangle > \sqrt{|y'|^2 - \langle y', \hat{\xi}' \rangle^2} \}.$$

Since $F(z; \xi')$ is analytic on a neighborhood of $D'(\mathring{x}, \Gamma, \eth) \times \{\mathring{\xi}'\}$ with some $\eth > 0$, $F(z_1^q, z'; \xi')$ is analytic on a neighborhood of $(z, \xi') = (\mathring{x}, \mathring{\xi}')$ if and only if $F(z; \xi')$ is analytic on a neighborhood of $(\mathring{x}, \mathring{\xi}')$. This completes the proof in view of Lemma 2.

Proposition 6. Let K be a compact set of N and Γ be an open convex cone of \mathbb{R}^{n-1} . Let u(x) be an F-mild hyperfunction defined on a neighborhood of K such that $\rho - SS(u) \subset K \times \sqrt{-1}\Gamma^{\circ}$. Then, for any open convex cone $\Gamma' \subset \Gamma$, there exists a unique holomorphic function F(z) defined on a neighborhood of $D'(K, \Gamma', \varepsilon)$ for some $\varepsilon > 0$ such that

$$u(x) = F(x_1, x' + \sqrt{-1}\Gamma'0)$$

holds on $\{x \in M; \text{dis}(x, K) < \varepsilon, x_1 > 0\}$ (dis denotes the distance).

Proof. There exists a holomorphic function G defined on a neighborhood of $\tilde{D}'(K, \Gamma', \varepsilon) = \bigcup_{x \in K} \tilde{D}'(x, \Gamma', \varepsilon)$ with some $\varepsilon > 0$ such that

$$u(x_1^2, x') = G(x_1, x' + \sqrt{-1} \Gamma' 0)$$

on $\{x \in M; \operatorname{dis}(x, K) \leq \varepsilon\}$. Since

$$G(x_1, x' + \sqrt{-1}\Gamma'0) = G(-x_1, x' + \sqrt{-1}\Gamma'0),$$

we have $G(z_1, z') = G(-z_1, z')$. Hence there exists a holomorphic function F(z) defined on a neighborhood of $D'(K, \Gamma', \delta)$ with some $\delta > 0$ such that $G(z) = F(z_1^2, z')$. Then we have

$$u(x_1^2, x') = F(x_1^2, x' + \sqrt{-1} \Gamma' 0)$$

on $\{x \in M; \text{ dis } (x, K) \le \delta\}$. Hence we have

$$u(x) = F(x_1, x' + \sqrt{-1}\Gamma'0)$$

on $\{x \in M; \text{ dis } (x, K) < \delta, x_1 > 0\}$. This completes the proof.

Theorem 1 (Edge of the wedge theorem for F-mild hyperfunctions). Let K be a compact subset of N and $\Gamma_1, \dots, \Gamma_J$ be open convex cones in \mathbb{R}^{n-1} . Let $F_j(z)$ be a holomorphic function defined on a neighborhood of $D'(K, \Gamma_j, \varepsilon)$ with $\varepsilon > 0$ such that

$$\sum_{j=1}^{J} F_{j}(x_{1}, x' + \sqrt{-1} \Gamma_{j} 0) = 0$$

on $\{x \in M; x_1 > 0, \text{ dis } (x, K) < \varepsilon\}$. Then for any subcone $\Gamma'_j \subset \Gamma_j$, there exist holomorphic functions $F_{jk}(z)$ defined on a neighborhood of $D'(K, \Gamma'_j + \Gamma'_k, \delta)$ with some $\delta > 0$ such that

$$F_{j}(z) = \sum_{k=1}^{J} F_{jk}(z) \quad (j=1, \cdots, J)$$

and $F_{jk}(z) = -F_{kj}(z)$ for $1 \leq j, k \leq J$.

Proof. We shall prove this theorem by induction on J. First set J=2. Note that

$$F_1(x_1^2, x' + \sqrt{-1}\Gamma_1 0) = -F_2(x_1^2, x' + \sqrt{-1}\Gamma_2 0)$$

holds on a neighborhood of K in M by virtue of Holmgren's uniqueness theorem. Hence by the usual edge of the wedge theorem for hyperfunctions, $F_1(z_1^2, z') = -F_2(z_1^2, z')$ is holomorphic on a neighborhood of

 $D'(K, \Gamma'_1 + \Gamma'_2, \varepsilon')$ with some $\varepsilon' > 0$. Setting $F_{12} = F_1$ and $F_{21} = F_2$, we have proved this theorem for J = 2.

Now we assume that the theorem has been proved for J. Let F_1, \dots, F_{J+1} , etc. satisfy the assumptions of the theorem with J replaced by J+1. Let Γ''_j be an open convex cone of \mathbb{R}^{n-1} such that $\Gamma'_j \subset \Gamma''_j \subset \Gamma''_j$. Let $\Delta_1, \dots, \Delta_J$ be closed convex cones in \mathbb{R}^{n-1} such that

and that the measure of $\Delta_j \cap \Delta_k$ is zero if $j \neq k$. Let D be a compact set of N with C²-boundary such that $K \subset D \subset \{x \in \mathbb{R}^n; \text{ dis } (x, K) \leq \varepsilon/2\}$ and set

$$G_{j}(z) = \int_{A_{j} \cap S^{n-2}} d\sigma(\xi') \int_{D+\sqrt{-1}a} F_{J+1}(z_{1}, w') W(z'-w', \xi') dw'$$

for $j=1, \dots, J$, where $a \in \Gamma_{J+1}$ is small enough. Since the ρ -singular spectrum of

$$F_{J+1}(x_1, x' + \sqrt{-1}\Gamma_{J+1}0) = -\sum_{j=1}^{J} F_j(x_1, x' + \sqrt{-1}\Gamma_j 0)$$

is contained in $K \times \sqrt{-1} (\Gamma_{J+1}^0 \cap (\Gamma_1^0 \cup \cdots \cup \Gamma_J^0))$, the function

$$G_0(z) = F_{J+1}(z) - \sum_{j=1}^J G_j(z)$$

becomes holomorphic on a neighborhood of K by virtue of Lemma 2. Note that $G_j(z)$ is holomorphic on a neighborhood of $D'(K, \Gamma''_j + \Gamma''_{J+1}, \delta)$

with some $\delta > 0$ and that $F_{J+1} = G_0 + G_1 + \cdots + G_J$ on $D'(K, \Gamma''_{J+1}, \delta)$. Applying the induction hypothesis to the functions $F_1 + G_0 + G_1$, $F_2 + G_2$, \cdots , $F_J + G_J$, we can find holomorphic functions G_{jk} $(j, k=1, \cdots, J)$ defined on a neighborhood of $D'(K, \Gamma'_j + \Gamma'_k, \delta)$ with $\delta > 0$ such that $G_{jk} + G_{kj} = 0$ and

$$F_1 + G_0 + G_1 = \sum_{k=1}^{J} G_{1,k},$$

$$F_j + G_j = \sum_{k=1}^{J} G_{jk} \quad (j = 2, \dots, J).$$

Set $F_{jk} = G_{jk}$ for $1 \le j, k \le J$ and $F_{1,J+1} = -F_{J+1,1} = -G_0 - G_1, F_{j,J+1} = -F_{J+1,j} = -G_j$ for $j = 2, \dots, J$. Then we have

$$F_j = \sum_{k=1}^{J+1} F_{jk}, \qquad F_{jk} + F_{kj} = 0,$$

and F_{jk} is holomorphic on a neighborhood of $D'(K, \Gamma'_j + \Gamma'_k, \delta)$. This completes the proof.

Before ending this section, we give an example of F-mild hyperfunctions which are not mild.

Example. Let α be a real number such that $1 < \alpha < 2$ and set

$$F(z_1, z_2) = (z_1 - e^{\pi \sqrt{-1}(2-\alpha)/2} z_2^{\alpha})^{-1};$$

here we take the branch of z_2^{α} such that $z_2^{\alpha} > 0$ for $z_2 > 0$. Then $F(z_1, z_2)$ is holomorphic on

$$\{(z_1, z_2) \in \mathbf{C}^2; |z_1| < |z_2|^{\alpha}, \text{ Im } z_2 > 0\} \\ \bigcup \left\{ (z_1, z_2) \in \mathbf{C}^2; |\arg z_1| < \left(1 - \frac{\alpha}{2}\right) \pi, \text{ Im } z_2 > 0 \right\}.$$

Thus $u(x) = F(x_1, x' + \sqrt{-1}0)$ defines an F-mild hyperfunction on $N = \{(x_1, x_2) \in \mathbb{R}^2; x_1 = 0\}$. On the other hand, $F(z_1, z_2)$ is singular on the set $\{(-t^{\alpha}, \sqrt{-1}t); t \ge 0\}$. By virtue of Proposition 6 and the corresponding result for mild hyperfunctions (Proposition 2.1.21 of [6]), we know that u(x) is not mild at (0, 0).

§ 2. Fuchsian partial differential equations

We use the notation $D = (D_1, D')$ and $D' = (D_2, \dots, D_n)$ with $D_j = \partial/\partial x_j$. Let P be a linear partial differential operator with real analytic coefficients defined on a neighborhood of $\hat{x} = (0, \hat{x}') \in N$. In accordance

with Baouendi-Goulaouic [1], we call P a Fuchsian partial differential operator of weight m-k with respect to x_1 if P can be written in the form

$$P = x_1^k D_1^m + A_1(x, D') x_1^{k-1} D_1^{m-1} + \dots + A_k(x, D') D_1^{m-k} + A_{k+1}(x, D') D_1^{m-k-1} + \dots + A_m(x, D'),$$

where

(i) $k, m \in \mathbb{Z}, 0 \leq k \leq m$,

(ii) the order of $A_j(x, D')$ is at most j for $1 \le j \le m$,

(iii) the order of $A_j(0, x', D')$ is at most 0 for $1 \le j \le k$.

Setting $A_j(0, x', D') = a_j(x')$ for $1 \le j \le k$, we define the characteristic polynomial $e(\lambda, x')$ of P by

$$e(\lambda, x') = \lambda(\lambda - 1) \cdots (\lambda - m + 1) + a_1(x')\lambda(\lambda - 1) \cdots (\lambda - m + 2)$$
$$+ \cdots + a_k(x')\lambda(\lambda - 1) \cdots (\lambda - m + k + 1).$$

Let $\lambda = 0, \dots, m - k - 1, \lambda_1, \dots, \lambda_k$ be the roots of the equation $e(\lambda, \dot{x}') = 0$ (they are called the characteristic exponents of *P* at $\dot{x} = (0, \dot{x}')$).

We consider boundary value problems for P in the framework of Fmild hyperfunctions and give a uniqueness theorem.

Theorem 2. Assume $\lambda_j \notin \{\nu \in \mathbb{Z}; \nu \ge m-k\}$ for $1 \le j \le k$. Let u(x)and f(x) be F-mild hyperfunctions defined on a neighborhood of \hat{x} such that Pu = f. Let $\hat{\xi}'$ be a point of S^{n-2} and suppose $(\hat{x}, \sqrt{-1}\hat{\xi}') \notin \rho - SS(f(x))$ and $(\hat{x}, \sqrt{-1}\hat{\xi}') \notin SS(D_1^ju(+0, x'))$ for $0 \le j \le m-k-1$. Then we have $(\hat{x}, \sqrt{-1}\hat{\xi}') \notin \rho - SS(u(x))$.

We shall give the proof of this theorem in Section 4.

Corollary. Assume $\lambda_j \notin \{\nu \in \mathbb{Z}; \nu \ge m-k\}$ for $1 \le j \le k$. Let u(x) be an *F*-mild hyperfunction defined on a neighborhood of \hat{x} satisfying Pu(x)=0 and $D_1^ju(+0, x')=0$ for $0 \le j \le m-k-1$. Then u(x)=0 holds on a neighborhood of \hat{x} .

Proof. By Theorem 2, we know that $\rho - SS(u(x)) \cap \pi_N^{-1}(\dot{x}) = \phi$. In view of Lemma 2, this implies that u(x) is real analytic on a neighborhood of \dot{x} . Hence we have u(x) = 0 on a neighborhood of \dot{x} by virtue of the Cauchy-Kowalevsky type theorem for Fuchsian partial differential equations (see [1]).

On the other hand, we can solve the boundary value problem if P is hyperbolic with respect to the x_1 -direction on int M_+ . More precisely, let P be as above and assume that $p_m(x, \zeta_1, \sqrt{-1}\xi')$ never vanishes if $x \in \mathbb{R}^n$, $|x-\dot{x}| < \varepsilon, x_1 > 0, \xi' \in \mathbb{R}^{n-1}$, Re $\zeta_1 \neq 0$ with some $\varepsilon > 0$; here p_m denotes the principal symbol of P. Assume moreover that $\lambda_j \notin \{\nu \in \mathbb{Z}; \nu \ge m-k\}$ for

 $1 \le j \le k$. Then for any F-mild hyperfunction f(x) defined on a neighborhood of \dot{x} and for any hyperfunction $v_j(x')$ defined on a neighborhood of \dot{x}' ($0 \le j \le m-k-1$), there exists a unique F-mild hyperfunction u(x) defined on a neighborhood of \dot{x} such that Pu=f and $D_1^iu(+0, x')=v_j(x')$ for $0 \le j \le m-k-1$. We shall give a proof of this statement elsewhere.

§ 3. Mild hyperfunctions and analytic functionals

We shall consider mild hyperfunctions with compact supports and regard them as analytic functional valued functions.

We fix R > 0 and put $B_R = \{x' \in \mathbb{R}^{n-1}; |x'| \leq R\}$. For a subset K of C^{n-1} and s > 0, we set

$$K_s = \{z' \in C^{n-1}; \operatorname{dis}(z', K) < s\},\$$

where dis $(z', K) = \inf \{|z' - w'|; w' \in K\}$. For an open bounded subset Ω of C^{n-1} , we denote by $\mathcal{O}_c(\Omega)$ the space of the continuous functions on $\overline{\Omega}$ which are holomorphic on Ω . By the norm $||f|| = \sup \{|f(z')|; z' \in \Omega\}$, $\mathcal{O}_c(\Omega)$ becomes a Banach space. We denote by $F(\Omega)$ the closure of $\mathcal{O}(C^{n-1})$ (the space of all entire functions on C^{n-1}) in $\mathcal{O}_c(\Omega)$, and by $F'(\Omega)$ its dual space (note that $F(\Omega)$ and $F'(\Omega)$ are Banach spaces). If $\Omega_1 \subset \Omega_2$ are two open connected bounded sets in C^{n-1} , there are natural inclusions $F(\Omega_2) \subset F(\Omega_1)$ and $F'(\Omega_1) \subset F'(\Omega_2)$.

Let f(x) be a mild hyperfunction defined on N whose support is contained in int B_R . Then f(x) can be regarded as a hyperfunction defined on $\{x \in M; 0 < x_1 < \varepsilon\}$ whose support is contained in $(0, \varepsilon) \times \text{int } B_R$ for some $\varepsilon > 0$. Hence for any $\phi(x') \in \mathcal{A}(B_R)$ (where \mathcal{A} denotes the sheaf of real analytic functions on \mathbb{R}^{n-1}),

$$\langle f(x_1, \cdot), \phi \rangle = \int_{\mathbb{R}^{n-1}} f(x_1, x') \phi(x') dx'$$

is well-defined as a real analytic function on $\{x_1 \in \mathbf{R}; 0 \le x_1 \le \varepsilon\}$. Moreover this function becomes analytic on a neighborhood of $x_1=0$:

Proposition 7. Let f(x) be a mild hyperfunction defined on N whose support is contained in int B_R . Then there exists $\delta > 0$ such that for any s > 0 the function $f(x_1, \cdot)$ can be regarded as an $F'((B_R)_s)$ -valued function on $\{x_1 \in \mathbf{R}; 0 < x_1 \leq \delta\}$ by the pairing

$$\langle f(x_1, \cdot), \phi \rangle = \int_{\mathbb{R}^{n-1}} f(x_1, x') \phi(x') dx'$$

for $\phi(z') \in F((B_R)_s)$. Moreover the function $f(x_1, \cdot)$ can be continued to an

 $F'((B_R)_s)$ -valued holomorphic function defined on a complex neighborhood of $\{x_1 \in \mathbf{R}; 0 \leq x_1 \leq \delta\}$. (This complex neighborhood depends on s > 0).

Proof. Using the softness of the sheaf of mild microfunctions $\mathring{\mathscr{C}}_{N|M_+}$ (see Theorem 2.1.12 of [6], where $\mathring{\mathscr{C}}_{N|M_+}$ is denoted by $\widehat{\mathscr{C}}_{N|M_+}$) and Proposition 2.1.21 of [6], we can take holomorphic functions $F_j(z)$ $(j=1, \dots, J)$ defined on a neighborhood of $D'(B_R, \Gamma_j, 2\varepsilon)$ with open convex cones $\Gamma_j \subset \mathbb{R}^{n-1}$ and $\varepsilon > 0$ such that

$$f(x) = \sum_{j=1}^{J} F_j(x_1, x' + \sqrt{-1} \Gamma_j 0).$$

Let $a_i \in \Gamma_i$ be small enough and set

$$F(z;\xi') = \sum_{j=1}^{J} \int_{B_{R+\varepsilon}+\sqrt{-1}a_j} F_j(z_1,w') W(z'-w',\xi') dw'.$$

In view of Lemma 2, $F(z; \xi')$ is analytic on a neighborhood of $(z, \xi') \in \{0\} \times \partial B_R \times S^{n-2}$. Let Δ_k $(k=1, \dots, n)$ be closed proper convex cones in \mathbb{R}^{n-1} such that $\Delta_1 \cup \dots \cup \Delta_n = \mathbb{R}^{n-1}$ and the measure of $\Delta_j \cap \Delta_k$ is zero for $j \neq k$. We set

$$G_k(z) = \int_{\mathcal{A}_k \cap S^{n-2}} F(z; \xi') d\sigma(\xi').$$

Then for arbitrary open convex cones $V_k \subset \Delta_k^0$, G_k is holomorphic on a neighborhood of

$$D'(B_R, V_k, \delta) \cup \{z \in C^n; |z_1| < \delta, \operatorname{dis}(z', \partial B_R) < \delta\}$$

with some $0 < \delta < 1$. Moreover we have

$$f(x) = \sum_{k=1}^{n} G_k(x_1, x' + \sqrt{-1} V_k 0)$$

on B_R . By Lemma 1, we may assume that each $G_k(z)$ is holomorphic on

$$\{z = x + \sqrt{-1} \ y \in C^n; |z_1| < \delta, \operatorname{dis}(z', B_R) < \delta, x_1 > -\delta |y'|^2, \\ |y_1| < \delta |y'|^2, y' \in V_k\}.$$

We may assume $0 \le s \le \delta/4$. Let $\varepsilon_k \colon B_R \to \mathbb{R}^{n-1}$ be a C^2 map such that

- (i) $\varepsilon_k(x') = 0$ for $x' \in \partial B_R$,
- (ii) $\varepsilon_k(x') \in V_k, |\varepsilon_k(x')| \leq s/2 \text{ for } x' \in \text{int } B_R,$
- (iii) $|\varepsilon_k(x')| = s/2$ for $x' \in B_R$, dis $(x', \partial B_R) \ge \delta/2$,

and set $\tilde{\gamma}_k = \{x' + \sqrt{-1} \varepsilon_k(x'); x' \in B_R\}$. Then by the definition of the integration of a hyperfunction, we have

$$\int_{\mathbf{R}^{n-1}} f(x_1, x') \phi(x') dx' = \sum_{k=1}^n \int_{\gamma_k} G_k(x_1, w') \phi(w') dw'$$

for $\phi \in F((B_R)_s)$. Thus the function

$$\langle f(z_1, \cdot), \phi \rangle = \sum_{k=1}^{n} \int_{T_k} G_k(z_1, w') \phi(w') dw'$$

is holomorphic on

$$U_s = \{z_1 = x_1 + \sqrt{-1} y_1 \in C; |z_1| < \delta/4, x_1 > -\delta s^2/4, |y_1| < \delta s^2/4\}.$$

It is easy to see that $f(z_1, \cdot)$ is an $F'((B_R)_s)$ -valued holomorphic function on U_s . This completes the proof.

In the sequel we shall characterize the ρ -singular spectra of mild hyperfunctions by using the carriers of analytic functionals. For

$$\xi' = (\xi_2, \dots, \xi_n) \in S^{n-2}$$
 and $z' = (z_2, \dots, z_n) \in C^{n-1}$,

we set

$$\Phi(z',\xi') = \langle z',\xi' \rangle + \sqrt{-1} (z'^2 - \langle z',\xi' \rangle^2).$$

For $w' \in \mathbb{C}^{n-1}$ and $\xi' \in S^{n-2}$ we define an open set $U(w', \xi')$ of \mathbb{C}^{n-1} by

$$U(w',\xi') = \{z' \in C^{n-1}; \operatorname{Im} \Phi(w'-z',\xi') > -(\operatorname{Re} \Phi(w'-z',\xi'))^2\}.$$

We fix $\xi' \in S^{n-2}$ and set

$$V(\hat{\xi}', s, r) = (B_R)_s \cap \operatorname{int} (\bigcap_{(w', \xi') \in K_r} U(w', \xi')),$$

where $K_r = \{(w', \xi') \in \mathbb{C}^{n-1} \times S^{n-2}; |w'| \leq r, |\xi' - \xi'| \leq r\}$ for s, r > 0. It is easy to see that $V(\xi', s, r)$ is a polynomially convex open subset of \mathbb{C}^{n-1} . Note that there is a natural inclusion

$$F'(V(\xi', s, r)) \subset F'((B_R)_s).$$

Proposition 8. Let f(x) be a mild hyperfunction defined on N whose support is contained in int B_R . Then the following conditions (i), (ii), (iii) are equivalent:

(i) $(0, \sqrt{-1}\xi') \notin \rho - SS(f).$

(ii) For any s > 0, there exists r > 0 such that $f(z_1, \cdot)$ is an $F'(V(\dot{\xi}', s, r))$ -valued holomorphic function on a neighborhood of $z_1 = 0$.

(iii) There exist s, r > 0 such that $f(z_1, \cdot)$ is an $F'(V(\xi', s, r))$ -valued holomorphic function defined on a neighborhood of $z_1 = 0$.

Proof. First let us show that (i) implies (ii). We inherit the notations in the proof of Proposition 7. We may assume $\mathring{\xi}' \in \operatorname{int} \mathcal{A}_1$ and $F(z; \xi')$ is analytic on a neighborhood of $\{z \in \mathbb{C}^n; |z_1| \leq \varepsilon, |z'| \leq \varepsilon\} \times (\mathcal{A}_1 \cap S^{n-2})$ with some $\varepsilon > 0$. Then $G_1(z)$ becomes holomorphic on $\{z \in \mathbb{C}^n; |z_1| \leq \varepsilon, |z'| \leq \varepsilon\}$. We may assume $V_k \subset \{y' \in \mathbb{R}^{n-1}; \langle y', \mathring{\xi}' \rangle < 0\}$ for $k=2, \ldots, n$. We can modify ε_1 so that $\langle \varepsilon_1(x'), \mathring{\xi}' \rangle < 0$ if $|x'| \leq \varepsilon/2$ and that $\varepsilon_1(x') \in V_1$ is small enough if $x' \in B_R - B_{\varepsilon}$. Since $U(w', \xi')$ contains

$$\{z' = x' + \sqrt{-1} y' \in \mathbb{C}^{n-1}; \langle \upsilon' - \upsilon', \xi' \rangle > ((\upsilon' - \upsilon')^2 - \langle \upsilon' - \upsilon', \xi' \rangle^2)\}$$

with $w'=u'+\sqrt{-1}v'$, we may assume $\tilde{r}_k \subset V(\hat{\xi}', s, r)$ for $k=2, \dots, n$ and $x'+\sqrt{-1}\varepsilon_1(x') \in V(\hat{\xi}', s, r)$ for $|x'| \leq \varepsilon/2$ if r>0 is small enough. On the other hand, since $B_R - B_{\varepsilon}$ is contained in $V(\hat{\xi}', s, r)$ if $r<\varepsilon$, we may assume $\tilde{r}_1 \subset V(\hat{\xi}', s, r)$ by letting $\varepsilon_1(x') \in V_1$ be sufficiently small for $x' \in B_R - B_{\varepsilon}$. Hence we can take $\tilde{r}_k \subset V(\hat{\xi}', s, r)$ so that $G_k(z)$ is holomorphic on a neighborhood of $\{0\} \times \tilde{r}_k$ for $k=1, \dots, n$. This implies (ii).

Next let us show that (iii) implies (i). Suppose that $f(z_1, \cdot)$ is an $F'(V(\xi', s_0, r_0))$ -valued holomorphic function on $\{|z_1| < \delta\}$ with some $s_0, r_0 > 0$. Note that

$$f(x_1^2, x') = \int_{S^{n-2}} d\sigma(\xi') \int_{R^{n-1}} f(x_1^2, y') W(x' - y' + \sqrt{-1} 0, \xi') dy'$$

holds on $(-\delta^{1/2}, \delta^{1/2}) \times \mathbf{R}^{n-1}$. Since the singular spectrum of

$$g(x,\xi') = \int_{\mathbb{R}^{n-1}} f(x_1^2, y') W(x' - y' + \sqrt{-1} 0, \xi') dy'$$

is contained in

$$\{(x,\xi';\sqrt{-1}(adx_1+\langle\xi',dx'\rangle)\infty)\in\sqrt{-1}S^*(\mathbb{R}^n\times S^{n-2});a\in\mathbb{R}\},\$$

it suffices to show that $g(x, \xi')$ is analytic at $(x, \xi') = (0, \xi')$. Set

$$G(x_1, z', \xi') = \int_{\mathbb{R}^{n-1}} f(x_1^2, u') W(z' - u', \xi') du'.$$

Then $G(x_1, z', \xi')$ is a real analytic function defined on

$$\{(x_1, z', \xi') \in \mathbf{R} \times \mathbf{C}^{n-1} \times \mathbf{S}^{n-2}; |x_1| < \delta^{1/2}, \\ \langle \operatorname{Im} z', \xi' \rangle > (\operatorname{Im} z')^2 - \langle \operatorname{Im} z', \xi' \rangle^2 \}$$

with holomorphic parameters z', and we have

$$g(x, \xi') = G(x_1, x' + \sqrt{-1} \xi', \xi').$$

It is easy to see that $\{V(\dot{\xi}', s, r); s > s_0, 0 < r < r_0\}$ constitutes a system of fundamental neighborhoods of the closure of $V(\dot{\xi}, s_0, r_0)$ consisting of polynomially convex open sets. Thus, as a function of w', we can regard $W(z'-w', \xi')$ as an $F(V(\dot{\xi}', s_0, r_0))$ -valued holomorphic function defined on a complex neighborhood of $\{(z', \xi') \in C^{n-1} \times S^{n-2}; |z'| < r_0, |\xi' - \dot{\xi}'| < r_0\}$. By the assumption (iii), the function

$$G(z,\xi') = \langle f(z_1^2,\cdot), W(z'-w',\xi') \rangle_{w'}$$

is holomorphic on a complex neighborhood of $(z, \xi') = (0, \xi')$. Hence $g(x, \xi')$ is real analytic at $(x, \xi') = (0, \xi')$. This completes the proof.

§ 4. Proof of Theorem 2

We inherit the notation in Section 2. First let us show that it suffices to prove Theorem 2 when k=m. For this purpose we begin with the following lemma.

Lemma 3. Let l be a positive integer and let u(x) be an F-mild hyperfunction defined on a neighborhood of $\hat{x} \in N$ such that $(\hat{x}, \sqrt{-1}\hat{\xi}')$ is not contained in the singular spectrum of $D_1^{\nu}u(+0, x')$ for $\nu = 0, 1, \dots, l-1$. Then there exist two F-mild hyperfunctions v(x) and u'(x) defined on a neighborhood of \hat{x} such that

$$u(x) = x_1^l v(x) + u'(x)$$

and that $(\mathring{x}, \sqrt{-1}\mathring{\xi}') \notin \rho - SS(u'(x))$.

Proof. Let u(x) be defined by

$$u(x) = \sum_{j=1}^{J} F_{j}(x_{1}, x' + \sqrt{-1} \Gamma_{j} 0)$$

with F_j holomorphic on a neighborhood of $D'(\hat{x}, \Gamma_j, \varepsilon)$, where $\Gamma_1, \dots, \Gamma_J$ are open convex cones in \mathbb{R}^{n-1} and $\varepsilon > 0$. Put

$$G_j(z) = F_j(z) - \sum_{\nu=0}^{l-1} \frac{1}{\nu!} z_1^{\nu} \left(\frac{\partial}{\partial z_1}\right)^{\nu} F_j(0, z').$$

Then there is a holomorphic function $H_j(z)$ defined on a neighborhood of $D'(\dot{x}, \Gamma_i, \varepsilon)$ such that $G_j(z) = z_1^i H_j(z)$. Set

$$v(x) = \sum_{j=1}^{J} H_j(x_1, x' + \sqrt{-1} \Gamma_j 0),$$

$$u'(x) = \sum_{\nu=0}^{l-1} \frac{1}{\nu!} x_1^{\nu} D_1^{\nu} u(+0, x').$$

Then we have $u(x) = x_1^l v(x) + u'(x)$ and $(\dot{x}, \sqrt{-1}\dot{\xi}') \notin \rho - SS(u')$. This completes the proof.

Now let P, u(x), f(x) be as in Theorem 2 with $0 \le k < m$. Then by Lemma 3, there exist F-mild hyperfunctions v(x) and u'(x) defined on a neighborhood of x such that

$$u(x) = x_1^{m-k}v(x) + u'(x)$$

and $(\dot{x}, \sqrt{-1}\dot{\xi}') \notin \rho - SS(u')$. Then we have

$$Px_1^{m-k}v(x) = f(x) - Pu'(x),$$

and $(\dot{x}, \sqrt{-1}\dot{\xi}')$ is not contained in the ρ -singular spectrum of f(x) - Pu'(x). It is easy to see that Px_1^{m-k} is a Fuchsian partial differential operator of weight 0 with respect to x_1 and its characteristic exponents are not contained in $\{\nu \in \mathbb{Z}; \nu \ge 0\}$. Hence in order to prove Theorem 2, we have only to show the following proposition.

Proposition 9. Set

$$P = (x_1D_1)^m - A_1(x, D')(x_1D_1)^{m-1} - \cdots - A_m(x, D'),$$

where $A_j(x, D')$ is a linear partial differential operator of order $\leq j$ with analytic coefficients defined on a neighborhood of x=0 such that $A_j(0, x', D')$ is a function $a_j(x')$ for $j=1, \dots, m$. Put

$$e(\lambda, x') = \lambda^m - a_1(x')\lambda^{m-1} - \cdots - a_m(x')$$

and assume $e(j, 0) \neq 0$ for any $j \in \mathbb{Z}$ with $j \ge 0$. Let u(x) be an F-mild hyperfunction defined on a neighborhood of 0 such that $\rho - SS(Pu(x))$ does not contain $(0, \sqrt{-1}\xi')$. Under these assumptions, $\rho - SS(u(x))$ does not contain $(0, \sqrt{-1}\xi')$.

Proof. We can choose an integer $q \ge 2$ such that $e(j/q, 0) \ne 0$ for any $j \in \mathbb{Z}$ with $j \ge 0$. Set Pu(x) = f(x), $v(x) = u(x_1^q, x')$, and

$$Q = \left(\frac{1}{q}x_1D_1\right)^m - A_1(x_1^q, x', D')\left(\frac{1}{q}x_1D_1\right)^{m-1} - \cdots - A_m(x_1^q, x', D').$$

Note that Q is a Fuchsian partial differential operator of weight 0 with respect to x_1 whose characteristic exponents are not contained in $\{\nu \in \mathbb{Z}; \nu \geq 0\}$. We have

$$g(x) = Qv(x) = f(x_1^q, x')$$

and $(0, \sqrt{-1}\xi') \notin \rho - SS(g(x))$. Since v(x) and g(x) are mild hyperfunc-

tions, we may assume that they are defined on N and their supports are contained in int B_R with sufficiently small R>0 by virtue of the softness of the sheaf of mild hyperfunctions (Corollary 2.1.22 of [6]). Thus, for any s>0, we can regard $v(z_1, \cdot)$ and $g(z_1, \cdot)$ as $F'((B_R)_s)$ -valued holomoprhic functions on a neighborhood of $z_1=0$. By Proposition 8, $g(z_1, \cdot)$ is an $F'(V(\dot{\xi}', s, r))$ -valued holomorphic function on a neighborhood of $z_1=0$ for some s, r>0.

Since $V(\xi', 2s, r/2) \supset V(\xi', s, r)$, there exists $\varepsilon > 0$ such that $V(\xi', 2s, r/2) \supset V(\xi', s, r)_{\varepsilon}$. Using the method of Baouendi-Goulaouic (Theorem 3 of [1]), we can show that there exists a unique $F'(V(\xi', s, r)_{\varepsilon})$ -valued holomorphic function $\tilde{v}(z_1, \cdot)$ defined on a neighborhood of $z_1=0$ such that $Q\tilde{v}(z_1, \cdot)=g(z_1, \cdot)$. (Though they assume $V(\xi', s, r) \subset \mathbb{R}^{n-1}$ in Theorem 3 of [1], their proof also applies to our case.) By the uniqueness of the solution w of Qw=g, we know that $v(z_1, \cdot)$ is an $F'(V(\xi', 2s, r/2))$ -valued holomorphic function defined on a neighborhood of $z_1=0$. Thus by Proposition 8, we have $(0, \sqrt{-1}\xi') \notin \rho - SS(v(x))$. In view of Proposition 5, we get $(0, \sqrt{-1}\xi') \notin \rho - SS(u(x))$. This completes the proof.

References

- Baouendi, M. S. and Goulaouic, C., Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math., 26 (1973), 455-475.
- [2] Kaneko, A., Singular spectrum of boundary values of solutions of partial differential equations with real analytic coefficients, Sci. Papers College Gen. Ed. Univ. Tokyo, 25 (1975), 59-68.
- [3] —, Introduction to hyperfunctions I, University of Tokyo Press, 1980 (in Japanese).
- [4] Kashiwara, M. and Oshima, T., Systems of differential equations with regular singularities and their boundary value problems, Ann. of Math., 106 (1977), 145-200.
- [5] Kataoka, K., On the theory of Radon transformations of hyperfunctions, J. Fac. Sci. Univ. Tokyo, 28 (1981), 331-413.
- [6] —, Micro-local theory of boundary value problems I, J. Fac. Sci. Univ. Tokyo, 27 (1980), 355–399.
- [7] —, Micro-local theory of boundary value problems II, J. Fac. Sci. Univ. Tokyo, 28 (1981), 31-56.
- [8] —, Some properties of mild hyperfunctions and an application to propagation of micro-analyticity in boundary value problems, J. Fac. Sci. Univ. Tokyo, 30 (1983), 279–297.
- [9] Komatsu, H. and Kawai, T., Boundary values of hyperfunction solutions of linear partial differential equations, Publ. Res. Inst. Math. Sci., 7 (1971), 95-104.
- [10] Ôaku, T., Micro-local Cauchy problems and local boundary value problems, Proc. Japan Acad., 55, (1979), 136–140.
- [11] —, Uniqueness of hyperfunction solutions of Fuchsian partial differential equations, Sûrikaiseki-kenkyûsho Kôkyûroku No. 508 (1983), 41-60 (in Japanese).
- [12] Schapira, P., Problème de Dirichlet et solutions hyperfonctions des équations elliptiques, Boll. Un. Mat. Ital. (Serie 4), 2 (1969), 367–372.

[13] Tahara, H., Fuchsian type equations and Fuchsian hyperbolic equations, Japan. J. Math., 5 (1979), 245-347.

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan