Advanced Studies in Pure Mathematics 4, 1984 Group Representations and Systems of Differential Equations pp. 223-242

F-mild Hyperfunctions and Fuchsian Partial Differential Equations

Toshinori Oaku

§ **o. Introduction**

Non-characteristic boundary value problems were formulated for hyperfunctions by Komatsu-Kawai [9] and Schapira [12]. They defined the boundary values of hyperfunction solutions and proved the uniqueness of solutions of the boundary value problem. Solvability of the (local) boundary value problem was proved by Kaneko [2] under the assumption of semi-hyperbolicity.

Kataoka [6, 8] introduced the notion of mildness on the boundary for hyperfunctions. He studied non-characteristic boundary value problems in detail by using the theory of mild hyperfunctions (see [7, 8]).

Let P be a linear partial differential operator of order *m* with analytic coefficients defined on an open subset *M* of $\mathbb{R}^n \ni x=(x_1, x')$, and set int $M_+ = \{x \in M; x_1 > 0\}$ and $N = \{x \in M; x_1 = 0\}$. Suppose that N is noncharacteristic with respect to P. Then any hyperfunction $u(x)$ defined on int M_+ satisfying $Pu(x)=0$ becomes mild on N, and the boundary value $v_i(x') = (\partial/\partial x_i)^i u(+0, x')$ is defined as a hyperfunction on N for any integer $j \geq 0$. Moreover if $v_0(x')$, \cdots , $v_{m-1}(x')$ vanish, then $u(x)$ vanishes near N.

However, if N is characteristic with respect to P, then $u(x)$ is not mild in general. In this paper, we define the F-mildness for hyperfunctions defined on int M_{+} . The notion of F-mildness is a generalization of that of mildness. If $u(x)$ is F-mild on N, we can define the boundary value $v_i(x') = (\partial/\partial x_i)^j u(f)$ for any integer $j \ge 0$ as a hyperfunction on N in a natural way.

Using F-mild hyperfunctions, we formulate boundary value problems for Fuchsian partial differential operators and prove the uniqueness of solutions of the boundary value problem. Let *P* be a Fuchsian partial differential operator of weight $m-k$ with respect to x_1 in the sense of Baouendi-Goulaouic [1] and let $u(x)$ be a hyperfunction on int M_{+} satisfying $Pu(x)=0$. Assume that the characteristic exponents of P avoid certain integral values. Under these assumptions, if $u(x)$ is F-mild on N

Received April 28, 1983.

and $\left(\frac{\partial}{\partial x_i}\right)^i u(+0, x')$ vanishes for any $0 \le i \le m-k-1$, then $u(x)$ vanishes near *N* (Corollary of Theorem 2). Moreover, if *P* is hyperbolic with respect to the x_1 -direction on int M_+ , then this boundary value problem is locally solvable. (Solvability will be treated in a forthcoming paper.) We should remark that Kashiwara-Oshima [4] formulated boundary value problems for all hyperfunction solutions of $Pu(x)=0$ on int M_+ . They defined *m* 'boundary values' of a solution $u(x)$ and proved that these 'boundary values' determine $u(x)$ near *N*. However, as stated above, $(m-k)$ boundary values determine $u(x)$ if $u(x)$ is F-mild.

Cauchy problems for Fuchsian partial differential operators were studied by Tahara [13] and \hat{O} aku [11] in the category of hyperfunctions with a real analytic parameter x_i : Well-posedness of the Cauchy problem for Fuchsian hyperbolic operators was proved in [13], and the uniqueness of solutions of the Cauchy problem was proved in [11] for general Fuchsian operators. Micro-local Cauchy problems for Fuchsian pseudo-differential operators were also treated in [10, 11]. In this and forthcoming papers, we shall extend these results to boundary value problems.

In Section 1, we develop the theory of F-mild hyperfunctions by using the curvilinear wave expansions (Radon transformations) for holomorphic functions (cf. Kataoka [5] and Kaneko [3]). Our main result in Section I is the edge of the wedge theorem for F-mild hyperfunctions (Theorem 1).

In Section 2, we formulate the boundary value problem for Fuchsian partial differential operators and state a micro-local uniqueness theorem (in other words, propagation of regularity from the boundary) (Theorem (2) .

In Section 3, we give a characterization of the singular spectrum of a mild hyperfunction using the carrier of an analytic functional. Combining this characterization and the method of [1] (Cauchy problems for analytic functionals), we prove the micro-local uniqueness theorem in Section 4.

§ 1. Theory of F-miId hyperfunctions

Kataoka introduced the notion of mild hyperfunctions in his theory of micro-local boundary value problems ([6, 8]). Let *M* be a real analytic manifold and M_{+} be a closed subset of M with real analytic boundary N . When N is non-characteristic for a linear partial differential operator *P* with analytic coefficients, each hyperfunction u on int M_{+} (the interior of M_+) satisfying $Pu=0$ becomes mild on N and has boundary values (as hyperfunctions) on N in a natural way. Thus the notion of mildness is sufficient for non-characteristic boundary value problems. However, when N is characteristic for P , u is not mild on N generally.

We shall consider a wider class of hyperfunctions on int M_{+} which have boundary values in a natural way.

First let us recall the notion of mild hyperfunctions in accordance with [6]. Since mildness is a local property and invariant under local coordinate transformations, we set $M=R^n \ni x=(x_1, x')$ with $x'=(x_2, \dots, x')$ x_n), $M_+ = \{x \in M; x_1 \ge 0\}$, and $N = \{x \in M; x_1 = 0\}$. We consider hyperfunctions defined on int M_{+} locally on a neighborhood of a point of N. More precisely, let *i*: int $M_+ \rightarrow M$ be the natural embedding and consider the sheaf $\mathscr{B}_{N|M_{+}} = (j_{*}j^{-1}\mathscr{B}_{M})|_{N}$, where \mathscr{B}_{M} denotes the sheaf of hyperfunctions on M. By the flabbiness of \mathscr{B}_M , we can also write $\mathscr{B}_{N|M_+} =$ $\Gamma_{M_+}(\mathscr{B}_M)/\Gamma_N(\mathscr{B}_M)$; here for a subset S of M and a sheaf \mathscr{F} on M, $\Gamma_S(\mathscr{F})$ denotes the sheaf of sections of $\mathcal F$ whose supports are contained in S.

Let $\hat{x}=(0, \hat{x}')$ be a point of N and $u(x)$ be a germ of $\mathscr{B}_{N|M_{+}}$ at \hat{x} . Then $u(x)$ is said to be mild at \hat{x} if and only if $u(x)$ can be expressed on ${x \in \text{int } M_+; |x-\hat{x}| \leq \varepsilon}$ as a sum of boundary values of holomorphic functions

$$
u(x) = \sum_{j=1}^{J} F_j(x_1, x' + \sqrt{-1} \Gamma_j 0),
$$

where J is a positive integer, ε is a positive number, Γ_i are open convex. cones (whose vertices are 0) in \mathbb{R}^{n-1} , and $F_j(z)$ is a holomorphic function defined on

$$
D(\hat{x}, \Gamma_j, \varepsilon) = \{z = (z_1, z') \in \mathbb{C}^n; |z - \hat{x}| < \varepsilon, \sqrt{\text{(Im } z_1)^2 + (-\text{Re } z_1)^2} \le \varepsilon \text{Im } z', \text{ Im } z' \in \Gamma_j\}.
$$

Here we set (t) ₊ =max $(0, t)$ for $t \in \mathbb{R}$. The subsheaf of $\mathscr{B}_{N|M_{+}}$ consisting of sectinos of $\mathscr{B}_{N|M+}$ which are mild on N is denoted by $\mathscr{B}_{N|M+}$, and its section is called a mild hyperfunction.

Now we define the notion of F-mildness which is a generalization of that of mildness.

Definition 1. Let $u(x)$ be a germ of $\mathcal{B}_{N|M_+}$ at \dot{x} . Then $u(x)$ is said to be F-mild at \hat{x} if and only if $u(x)$ has the expression

(1)
$$
u(x) = \sum_{j=1}^{J} F_j(x_1, x' + \sqrt{-1} \Gamma_j 0)
$$

on $\{x \in \text{int } M_+; |x-\hat{x}| \leq \varepsilon\}$, where *J* is a positive integer, ε is a positive number, Γ_i are open convex cones in \mathbb{R}^{n-1} , and $F_i(z)$ is a holomorphic function defined on a neighborhood (in $Cⁿ$) of

$$
D'(\hat{x}, \Gamma_j, \varepsilon) = \{ z = (z_1, z') \in C^n; \ |z - \hat{x}| < \varepsilon, \ \text{Re } z_1 \geq 0, \ \text{Im } z_1 = 0, \ \text{Im } z' \in \Gamma_j \}.
$$

For an open subset U of N , we set

 $\mathcal{B}_{N+M+1}^F(U)=\{u\in\mathcal{B}_{N+M+1}(U); u \text{ is F-middle at each point of } U\}.$

Then it is easy to see that $\mathring{\mathcal{B}}_{N+M+1}^F: U \rightarrow \mathring{\mathcal{B}}_{N+M+1}^F(U)$ defines a sheaf on N, which we call the sheaf of F-mild hyperfunctions. By the definition, we have the inclusions

$$
\mathring{\mathscr{B}}_{N|M_+} \!\!\subset \mathring{\mathscr{B}}^F_{N|M_+} \!\!\subset \!\mathscr{B}_{N|M_+}.
$$

These sheaves are invariant under the action of a linear partial differential operator with analytic coefficients.

In the sequel we shall prove several properties of F-mild hyperfunctions.

Lemma 1. Let Γ be an open convex cone of \mathbb{R}^{n-1} and $F(z)$ be a holo*morphic function defined on a neighborhood of* $D'(0, \Gamma, \varepsilon)$ *with* $\varepsilon > 0$. *Then for any open subcone* Γ' *of* Γ *such that* $\overline{\Gamma'} \cap S^{n-2} \subset \Gamma$ *(here* $S^{n-2} = \{x' \in \mathbb{R}^{n-1}\}$) $|x'|=1$), there exists $c>0$ such that $F(z)$ is holomorphic on

$$
\{z=x+\sqrt{-1}\,y\in\mathbf{C}^n;|z|\leq c,\,y_1^2\leq c|y'|^2(x_1+c|y'|^2),\,y'\in\Gamma'\}.
$$

Proof. The function $F(w_1^2, z')$ is holomorphic on

$$
\{(w_1, z') \in \mathbb{C}^n; |w_1| < \sqrt{(\varepsilon/2)}, |z'| < \varepsilon/2, \text{ Im } w_1 = 0, \text{ Im } z' \in \Gamma\}.
$$

Let Γ' be an open convex cone of \mathbb{R}^{n-1} such that $\Gamma' \subset \Gamma$ (i.e. $\overline{\Gamma'} \cap S^{n-2} \subset \Gamma$ Γ). Then by virtue of the local version of Bochner's tube theorem, there exists $\delta > 0$ such that $F(w_1^2, z')$ is holomorphic on

 $\{(w_1, z') \in C^n; |w_1| \leq \sqrt{\delta}, |z'| \leq \delta, |\text{Im } w_1| \leq \delta | \text{Im } z'|, \text{Im } z' \in \Gamma'\}.$

Hence *F(z)* is holomorphic on

ence
$$
F(z)
$$
 is holomorphic on
\n
$$
\left\{z \in C^n; |z_1| < \delta, |z'| < \delta, \text{Im } z' \in \Gamma', \text{Re } z_1 > \left(\frac{|\text{Im } z_1|}{2\delta |\text{Im } z'|}\right)^2 - (\delta |\text{Im } z'|)^2\right\}.
$$

(Since $F(z)$ is defined on a neighborhood of $D'(0, \Gamma, \varepsilon)$, it is also singlevalued on the above set.) This completes the proof.

Proposition 1. *F-mildness is invariant under local coordinate transformations of M which preserve M₊ and N.*

We can easily verify this proposition by using Lemma 1. Note that we can define the sheaf of F-mild hyperfunctions on the

real analytic boundary of a real analytic manifold by virtue of this proposition. The following proposition is also an immediate consequence of Lemma 1:

Proposition 2. *Let u(x) be an F-mild hyperfunction. Then for any intergr* $q \geq 2$ *,* $u(x_1^q, x')$ *is a mild hyperfunction.*

Proposition 3. *Let u(x) be an F-mild hyperfunction defined on an open subset U of N. Then* $u(x_1^2, x')$ *is well-defined as a hyperfunction with a real analytic parameter* x_1 *on a neighborhood (in M) of U.*

Proof. Let $u(x)$ be defined by

$$
u(x) = \sum_{j=1}^{J} F_j(x_1, x' + \sqrt{-1} \Gamma_j 0)
$$

at $\hat{x} \in U$, where F_j is holomorphic on a neighborhood of $D'(\hat{x}, \Gamma_j, \varepsilon)$ with open convex cones Γ_j in \mathbb{R}^{n-1} and $\varepsilon > 0$. Then

$$
u(x_1^2, x') = \sum_{j=1}^J F_j(x_1^2, x' + \sqrt{-1} \Gamma_j 0)
$$

is a hyperfunction with a real analytic parameter x_1 . On the other hand, $u(x_1^2, x')$ is well-defined on $\{x \in M; |x-x| \leq \varepsilon, x_1 \neq 0\}$ as a hyperfunction and coincides with the above definition there. Hence by Holmgren's uniqueness theorem, the above definition of $u(x_1^2, x')$ does not depend on the choice of defining functions. This completes the proof.

By this proposition we can define boundary values of F-mild hyperfunctions.

Definition 2. Let $u(x)$ be an F-mild hyperfunction defined on an open subset U of N. Then the boundary value $u(+0, x') \in \mathcal{B}_N(U)$ is defined as the restriction of $u(x_1^2, x')$ to N.

Remark. Let $u(x)$ be defined by (1). Then it is easy to see that

$$
u(+0, x') = \sum_{j=1}^{J} F_j(0, x' + \sqrt{-1} \Gamma_j 0)
$$

holds on $\{(0, x') \in N; |x' - \mathring{x}'| \leq \varepsilon\}.$

Now we define the ρ -singular spectra of F-mild hyperfunctions. Let $\sqrt{-1}S^*M = (\sqrt{-1}T^*\dot{M} - \dot{M})/R^+ = M \times \sqrt{-1}S^{n-1}$ and $\sqrt{-1}S^*N =$ $N \times \sqrt{-1} S^{n-2}$ be the purely imaginary cosphere bundles of *M* and *N* respectively and let $\pi_{M}: \sqrt{-1} S^* M \rightarrow M$ and $\pi_{N}: \sqrt{-1} S^* N \rightarrow N$ be the

228 T.6aku

canonical projections. Let $\rho: \sqrt{-1} S^* M |_{N} - \sqrt{-1} S^* M \rightarrow \sqrt{-1} S^* N$ be the canonical map. We denote by $SS(f)$ the singular spectrum of a hyperfunction f .

Definition 3, Let $u(x)$ be an F-mild hyperfunction defined on a subset U of N. Then the ρ -singular spectrum ρ -SS(u) of u is the closed subset of $\pi_N^{-1}(U)$ \subset $\sqrt{-1}$ S^{*}N defined by

$$
\rho - SS(u) = \rho(SS(u(x_1^2, x')) \cap (\sqrt{-1} S^*M|_N - \sqrt{-1} S^*M)).
$$

It is easy to see that $SS(u(+ 0, x')) \subset \rho - SS(u(x))$ holds.

In the sequel, we shall characterize the ρ -singular spectrum by defining functions. For $\xi' = (\xi_2, \dots, \xi_n) \in S^{n-2}$ and $z' = (z_2, \dots, z_n) \in C^{n-1}$, we put

$$
W(z',\xi') = \frac{(n-2)!}{(-2\pi\sqrt{-1})^{n-1}} \times \frac{(1-\sqrt{-1}\langle z',\xi'\rangle)^{n-3}\{1-\sqrt{-1}\langle z',\xi'\rangle - (z'^2-\langle z',\xi'\rangle^2)\}}{\{\langle z',\xi'\rangle + \sqrt{-1}\langle z'^2-\langle z',\xi'\rangle^2\rangle\}^{n-1}},
$$

where $\langle z', \xi' \rangle = z_2 \xi_2 + \cdots + z_n \xi_n$ and $z'^2 = z_2^2 + \cdots + z_n^2$. In the sequel, we use fundamental properties of curvilinear wave expansions (Radon transformations) for holomorphic functions proved in Section 1 of [5]. See also Chapter 2, Section 3 and Chapter 3, Section 3 of [3].

Lemma 2. *Let K be a compact subset of* N *with C2-boundary and let u(x) be an F-mild hyperfunction on K defined by*

$$
u(x) = \sum_{j=1}^{J} F_j(x_1, x' + \sqrt{-1} \Gamma_j 0),
$$

where F_j *is holomorphic on a neighborhood of* $D'(K, \Gamma_j, \varepsilon) = \bigcup_{x \in K} D'(x, \Gamma, \varepsilon)$ *with open convex cones* Γ_j *in* \mathbb{R}^{n-1} *and* $\varepsilon > 0$. Let \hat{x} be a point of int K *and* $\hat{\xi}'$ *be a point of* S^{n-2} . *Then the point* $(\hat{x}, \sqrt{-1} \hat{\xi}') \in \sqrt{-1} S^* N$ *is not contained in* $\rho - SS(u)$ *if and only if*

$$
F(z; \xi') = \sum_{j=1}^{J} \int_{K + \sqrt{-1}a_j} F_j(z_1, w') W(z' - w', \xi') dw'
$$

is analytic at $(z, \xi') = (\hat{x}, \hat{\xi}')$ *for any sufficiently small* $a_j \in \Gamma_j$ *.*

Proof. First assume that $(\hat{x}, \sqrt{-1}\hat{\xi}') \notin \rho - SS(u)$. Then there exist holomorphic functions $G_{\nu} (\nu=1, \cdots, l)$ defined on a neighborhood of $\tilde{D}'(\hat{x}, V_{\nu}, \varepsilon) = \{z \in \mathbb{C}^n; |z - \hat{x}| \leq \varepsilon, \text{Im } z_1 = 0, \text{Im } z' \in V_{\nu}\}\$ such that

$$
u(x_1^2, x') = \sum_{\nu=1}^l G_{\nu}(x_1, x' + \sqrt{-1} V_{\nu} 0)
$$

on $\{x \in M; |x - \hat{x}| \leq \varepsilon\}$; here V, are open convex cones in \mathbb{R}^{n-1} whose polar sets $V^0 = \{\xi' \in \mathbb{R}^{n-1}; \langle y', \xi' \rangle \ge 0 \text{ for any } y' \in V_\nu\}$ do not contain ξ' . Set $D=\{x' \in \mathbb{R}^{n-1}; |x'-x'| \leq \varepsilon/2\}$ and let $b_{y} \in V_{y}$ be small enough. Then by the edge of the wedge theorem for hyperfunctions, we know that

$$
F(z_1^2, z'; \xi') - \sum_{\nu=1}^l \int_{D + \sqrt{-1}b_{\nu}} G_{\nu}(z_1, w') W(z'-w', \xi') dw'
$$

is analytic in (z, ξ') on a neighborhood of $\{\hat{x}\}\times S^{n-2}$ if $b_n \in V$, are small enough. On the other hand,

$$
\int_{D+\sqrt{-1}b_v} G_{\nu}(z_1, w')W(z'-w', \xi')dw'
$$

is analytic on a neighborhood of $\{\hat{x}\}\times(S^{n-2}-V_v^0)$. Since $\hat{\xi}'$ is not contained in V_1^0, \cdots, V_L^0 , the function $F(z_1^2, z'; \xi')$ is analytic at $(z, \xi') = (\hat{x}, \hat{\xi}')$. Noting that $F(z; \xi')$ is analytic (and single-valued) on a neighborhood of $D'(\hat{x}, \hat{\mu}, \varepsilon) \times {\hat{\xi}}'$ with some $\varepsilon > 0$ for any open cone $\hat{\mu} \in \mathbb{R}^{n-1}$; $\langle y', \hat{\xi}' \rangle$ >0 , we know that $F(z; \xi')$ is analytic at $(\hat{x}, \hat{\xi}')$.

Now assume that $F(z; \xi')$ is analytic at $(\hat{x}, \hat{\xi}')$. Let Λ_k $(k=0, 1, \dots,$ J') be closed proper convex cones in R^{n-1} such that $\bigcup_{0 \leq k \leq J'} A_k = S^{n-2}$, $\zeta' \in \text{int } A_0$, the measure of $A_i \cap A_k$ is zero, and that $F(z; \zeta')$ is analytic in (z, ξ') on a neighborhood of $\{\hat{x}\}\times (A_0\cap S^{n-2})$. Put

$$
F_{jk}(z) = \int_{A_k \cap S^{n-2}} d\sigma(\xi') \int_{K + \sqrt{-1}a_j} F_j(z_1, w') W(z'-w', \xi') dw'
$$

for $k=0, 1, \dots, J'$, where $d\sigma(\xi')$ denotes the volume element on S^{n-2} . Then $F_{ik}(z)$ is holomorphic on a neighborhood of $D'(\hat{x}, V_{jk}, \varepsilon)$ with some $\varepsilon > 0$ for any open convex cone $V_{jk} \subset \Delta_k^0 + \Gamma_j$, and we have

$$
F_j(z) = F_{j0}(z) + \sum_{k=1}^{J'} F_{jk}(z)
$$

on $D'(\hat{x}, \Gamma_i, \varepsilon)$. By the above assumption, $F_{1,0} + \cdots + F_{J,0}$ is analytic at $z=\hat{x}$. Since

$$
\pi_{N}^{-1}(\{\hat{x}\}) \cap \rho - SS(F_{jk}(x_{1}, x' + \sqrt{-1} V_{jk}0)) \subset {\{\hat{x}\}} \times \sqrt{-1} (d_{k}^{0} + \Gamma_{j})^{0}
$$

$$
\subset {\{\hat{x}\}} \times \sqrt{-1} d_{k},
$$

we have $(\hat{x}, \sqrt{-1}\hat{\xi}') \notin \rho - SS(u(x))$. This completes the proof.

230 T.6aku

Proposition 4. *Let u(x) be an F-mild hyperfunction defined on a neighborhood of* $\hat{x} \in N$. Then $(\hat{x}, \sqrt{-1} \hat{\xi}') \in \sqrt{-1} S^* N$ is not contained in $p-SS(u)$ if and only if there exist holomorphic functions F_j $(j=1, \dots, J)$ *defined on a neighborhood of D'*(\hat{x} , Γ _{*j*}, ε) *with* ε > 0 *and open convex cones* $\Gamma_j \subset \mathbb{R}^{n-1}$ whose polar sets do not contain $\hat{\xi}'$ such that

(2)
$$
u(x) = \sum_{j=1}^{J} F_j(x_1, x' + \sqrt{-1} \Gamma_j 0).
$$

Proof. It is obvious that $(\hat{x}, \sqrt{-1} \hat{\xi}') \notin \rho - SS(u)$ if *u* has the above expression. Assume $(x, \sqrt{-1} \xi') \notin \rho - SS(u)$. Let $u(x)$ be defined by

$$
u(x) = \sum_{j=1}^{J'} G_j(x_1, x' + \sqrt{-1} V_j 0),
$$

where G_j is holomorphic on a neighborhood of $D'(\hat{x}, V_j, \varepsilon)$ with $\varepsilon > 0$ and open convex cones $V_i \subset \mathbb{R}^{n-1}$. Then by Lemma 2,

$$
G(z; \xi') = \sum_{j=1}^{J'} \int_{D + \sqrt{-1}b_j} G_j(z_1, w') W(z' - w', \xi') dw'
$$

is analytic at $(z, \xi') = (\hat{x}, \hat{\xi}')$ if $b_j \in V_j$ are sufficiently small. Here we set $D=\{x' \in \mathbb{R}^{n-1}; |x'-\hat{x}'| \leq \varepsilon/2\}$. Then by the argument of the latter part of the proof of Lemma 2, *u* has the expression (2) with $\Gamma^0 \neq \xi'$. This completes the proof.

In view of this proposition, we know that $\rho - SS(u(x))$ coincides with $t - SS(u(x))$ defined in [6] for a mild hyperfunction $u(x)$ (see Definition 2.2.1 of [6]).

Proposition 5. *Let u(x) be an F-mild hyperfunction defined on an open subset U of N. Then we have*

$$
\rho - SS(u(x)) = \rho - SS(u(x_1^q, x'))
$$

for any positive integer q.

Proof. Let \hat{x} be a point of *U* and let *K* be a compact subset of *U* with C^2 -boundary such that $\hat{x} \in \text{int } K$. Let $u(x)$ be defined by (1) with F_j holomorphic on a neighborhood of $D'(K, \Gamma_j, \varepsilon)$. Set

$$
F(z; \xi') = \sum_{j=1}^{J} \int_{K + \sqrt{-1}a_j} F_j(z_1, w') W(z' - w', \xi') dw'
$$

with sufficiently small $a_i \in \Gamma_i$. Let $\overset{\circ}{\xi}' \in S^{n-2}$ and set

$$
\Gamma = \{y' \in \mathbb{R}^{n-1}; \langle y', \mathring{\xi}' \rangle > \sqrt{|y'|^2 - \langle y', \mathring{\xi}' \rangle^2} \}.
$$

Since $F(z; \xi')$ is analytic on a neighborhood of $D'(\hat{x}, \Gamma, \delta) \times {\{\hat{\xi}'\}}$ with some δ >0, *F(z^q, z'*; ξ') is analytic on a neighborhood of $(z, \xi') = (\dot{x}, \dot{\xi}')$ if and only if $F(z; \xi')$ is analytic on a neighborhood of $(\hat{x}, \hat{\xi}')$. This completes the proof in view of Lemma 2.

Proposition 6. Let K be a compact set of N and Γ be an open convex *cone of* \mathbb{R}^{n-1} . Let $u(x)$ be an F-mild hyperfunction defined on a neighbor*hood of K such that* $\rho - SS(u) \subset K \times \sqrt{-1} \Gamma^{\circ}$ *. Then, for any open convex cone* $\Gamma' \subseteq \Gamma$, there exists a unique holomorphic function $F(z)$ defined on a *neighborhood of D'(K,* Γ' *,* ε *) for some* $\varepsilon > 0$ *such that*

$$
u(x) = F(x_1, x' + \sqrt{-1}T'0)
$$

holds on $\{x \in M; \text{dis } (x, K) \leq \varepsilon, x_1 \geq 0\}$ (dis *denotes the distance*).

Proof. There exists a holomorphic function G defined on a neighborhood of $\tilde{D}'(K, \Gamma', \varepsilon) = \bigcup_{x \in K} \tilde{D}'(x, \Gamma', \varepsilon)$ with some $\varepsilon > 0$ such that

$$
u(x_1^2, x') = G(x_1, x' + \sqrt{-1} \Gamma' 0)
$$

on $\{x \in M; \text{dis } (x, K) \leq \varepsilon\}$. Since

$$
G(x_1, x' + \sqrt{-1} I'') = G(-x_1, x' + \sqrt{-1} I'')
$$

we have $G(z_1, z') = G(-z_1, z')$. Hence there exists a holomorphic function *F(z)* defined on a neighborhood of $D'(K, \Gamma', \delta)$ with some $\delta > 0$ such that $G(z) = F(z_1^2, z')$. Then we have

$$
u(x_1^2, x') = F(x_1^2, x' + \sqrt{-1} \Gamma' 0)
$$

on $\{x \in M; \text{dis } (x, K) \leq \delta\}$. Hence we have

$$
u(x) = F(x_1, x' + \sqrt{-1} T'0)
$$

on $\{x \in M; \text{dis } (x, K) \leq \delta, x_1 > 0\}$. This completes the proof.

Theorem 1 *(Edge of the wedge theorem for F-mild hyperfunctions).* Let K be a compact subset of N and $\Gamma_1, \cdots, \Gamma_J$ be open convex cones in R^{n-1} . Let $F_i(z)$ be a holomorphic function defined on a neighborhood of $D'(K, \Gamma_j, \varepsilon)$ with $\varepsilon > 0$ such that

$$
\sum_{j=1}^{J} F_j(x_1, x' + \sqrt{-1} \Gamma_j 0) = 0
$$

on $\{x \in M; x_1 > 0, \text{dis } (x, K) \leq \varepsilon\}.$ Then for any subcone $\Gamma'_i \subset \Gamma_j$, there *exist holomorphic functions* $F_{jk}(z)$ defined on a neighborhood of $D'(K, \Gamma'_{j}+)$ Γ'_k , δ) with some δ > 0 such that

$$
F_j(z) = \sum_{k=1}^J F_{jk}(z) \quad (j = 1, \dots, J)
$$

and $F_{ik}(z) = -F_{ki}(z)$ for $1 \leq j, k \leq J$.

Proof. We shall prove this theorem by induction on J . First set *J=2.* Note that

$$
F_1(x_1^2, x' + \sqrt{-1} \Gamma_1 0) = -F_2(x_1^2, x' + \sqrt{-1} \Gamma_2 0)
$$

holds on a neighborhood of K in M by virtue of Holmgren's uniqueness theorem. Hence by the usual edge of the wedge theorem for hyperfunctions, $F_1(z_1^2, z') = -F_2(z_1^2, z')$ is holomorphic on a neighborhood of

 $D'(K, \Gamma'_1 + \Gamma'_2, \varepsilon')$ with some $\varepsilon' > 0$. Setting $F_{12} = F_1$ and $F_{21} = F_2$, we have proved this theorem for $J=2$.

Now we assume that the theorem has been proved for J. Let F_1, \dots, F_{J+1} , etc. satisfy the assumptions of the theorem with J replaced by $J+1$. Let Γ''_j be an open convex cone of \mathbb{R}^{n-1} such that $\Gamma'_j \subset \Gamma''_j \subset \Gamma'_j$. Let $\Lambda_1, \cdots, \Lambda_J$ be closed convex cones in \mathbb{R}^{n-1} such that

$$
\Delta_j \subset (\Gamma_j'' + \Gamma_{j+1}'')^0 \quad (j = 1, \dots, J),
$$

$$
\bigcup_{1 \leq j \leq J} \Delta_j \supset (\Gamma_1^0 \cup \dots \cup \Gamma_{j}^0) \cap \Gamma_{j+1}^0
$$

and that the measure of $\Delta_i \cap \Delta_k$ is zero if $j \neq k$. Let D be a compact set of *N* with C²-boundary such that $K \subset D \subset \{x \in \mathbb{R}^n \, ; \, \text{dis } (x, K) \leq \varepsilon/2 \}$ and set

$$
G_j(z) = \int_{\Delta_j \cap S^{n-2}} d\sigma(\xi') \int_{D+\sqrt{-1}a} F_{J+1}(z_1, w') W(z'-w', \xi') dw'
$$

for $j=1, \dots, J$, where $a \in \Gamma_{J+1}$ is small enough. Since the *p*-singular spectrum of

$$
F_{J+1}(x_1, x' + \sqrt{-1} \Gamma_{J+1} 0) = -\sum_{j=1}^{J} F_j(x_1, x' + \sqrt{-1} \Gamma_j 0)
$$

is contained in $K \times \sqrt{-1} (T_{J+1}^0 \cap (T_1^0 \cup \cdots \cup T_J^0))$, the function

$$
G_0(z) = F_{J+1}(z) - \sum_{j=1}^J G_j(z)
$$

becomes holomorphic on a neighborhood of *K* by virtue of Lemma 2. Note that $G_j(z)$ is holomorphic on a neighborhood of $D'(K, \Gamma''_j + \Gamma''_{j+1}, \delta)$ with some $\delta > 0$ and that $F_{J+1} = G_0 + G_1 + \cdots + G_J$ on $D'(K, \Gamma''_{J+1}, \delta)$. Applying the induction hypothesis to the functions $F_1 + G_0 + G_1$, $F_2 + G_2$, \cdots , F_J+G_J , we can find holomorphic functions $G_{ik}(j, k=1, \dots, J)$ defined on a neighborhood of $D'(K, \Gamma'_i + \Gamma'_k, \delta)$ with $\delta > 0$ such that $G_{ik} + G_{ki} = 0$ and

$$
F_1 + G_0 + G_1 = \sum_{k=1}^J G_{1,k},
$$

$$
F_j + G_j = \sum_{k=1}^J G_{jk} \quad (j = 2, \dots, J).
$$

Set $F_{jk}=G_{jk}$ for $1 \leq j, k \leq J$ and $F_{1,J+1}=-F_{J+1,1}=-G_0-G_1, F_{j,J+1}=$ $-F_{J+1,j}=-G_j$ for $j=2, \dots, J$. Then we have

$$
F_j = \sum_{k=1}^{J+1} F_{jk}, \qquad F_{jk} + F_{kj} = 0,
$$

and F_{jk} is holomorphic on a neighborhood of $D'(K, \Gamma'_j + \Gamma'_k, \delta)$. This completes the proof.

Before ending this section, we give an example of F-mild hyperfunctions which are not mild.

Example. Let α be a real number such that $1 \leq \alpha \leq 2$ and set

$$
F(z_1, z_2) = (z_1 - e^{\pi \sqrt{-1}(2-\alpha)/2} z_2^{\alpha})^{-1};
$$

here we take the branch of z_3^{α} *such that* $z_3^{\alpha} > 0$ *for* $z_3 > 0$ *. Then* $F(z_1, z_2)$ *is holomorphic on*

$$
\{(z_1, z_2) \in \mathbb{C}^2; |z_1| < |z_2|^{\alpha}, \text{ Im } z_2 > 0\}
$$

$$
\bigcup \Big\{(z_1, z_2) \in \mathbb{C}^2; |\arg z_1| < \left(1 - \frac{\alpha}{2}\right)\pi, \text{ Im } z_2 > 0\Big\}.
$$

Thus $u(x)=F(x_1, x'+\sqrt{-1}0)$ defines an F-mild hyperfunction on N= ${(x_1, x_2) \in \mathbb{R}^2$; $x_1 = 0}$. On the other hand, $F(z_1, z_2)$ is singular on the set ${(-t^{\alpha}, \sqrt{-1} t)}$; $t \ge 0$. By virtue of Proposition 6 and the corresponding result for mild hyperfunctions (Proposition 2.1.21 of [6]), we know that $u(x)$ is not mild at $(0, 0)$.

§ **2. Fuchsian partial differential equations**

We use the notation $D=(D_1, D')$ and $D'=(D_2, \dots, D_n)$ with $D_j =$ $\partial/\partial x_i$. Let P be a linear partial differential operator with real analytic coefficients defined on a neighborhood of $\dot{x}=(0, \dot{x}') \in N$. In accordance 234 T.6aku

with Baouendi-Goulaouic [1], we call P a Fuchsian partial differential operator of weight $m-k$ with respect to $x₁$ if P can be written in the form

$$
P = x_1^k D_1^m + A_1(x, D')x_1^{k-1}D_1^{m-1} + \cdots + A_k(x, D')D_1^{m-k} + A_{k+1}(x, D')D_1^{m-k-1} + \cdots + A_m(x, D'),
$$

where

 (i) *k, m* \in *Z,* $0 \le k \le m$,

(ii) the order of $A_i(x, D')$ is at most *j* for $1 \le j \le m$,

(iii) the order of $A_j(0, x', D')$ is at most 0 for $1 \le j \le k$.

Setting $A_i(0, x', D') = a_i(x')$ for $1 \leq j \leq k$, we define the characteristic polynomial $e(\lambda, x')$ of P by

$$
e(\lambda, x') = \lambda(\lambda - 1) \cdots (\lambda - m + 1) + a_1(x')\lambda(\lambda - 1) \cdots (\lambda - m + 2) + \cdots + a_k(x')\lambda(\lambda - 1) \cdots (\lambda - m + k + 1).
$$

Let $\lambda = 0, \dots, m-k-1, \lambda_1, \dots, \lambda_k$ be the roots of the equation $e(\lambda, \hat{x}') = 0$ (they are called the characteristic exponents of *P* at $\dot{x} = (0, \dot{x}')$).

We consider boundary value problems for *P* in the framework of Fmild hyperfunctions and give a uniqueness theorem.

Theorem 2. *Assume* $\lambda_i \notin \{v \in \mathbb{Z}; v \geq m-k\}$ for $1 \leq j \leq k$. Let $u(x)$ *and f(x) be F-mild hyperjunctions defined on a neighborhood of x such that Pu=f.* Let $\dot{\xi}'$ be a point of S^{n-2} and suppose $(\dot{x}, \sqrt{-1} \dot{\xi}') \notin \rho - SS(f(x))$ *and* $(x, \sqrt{-1}\xi') \notin SS(D_1^j u(+0, x'))$ *for* $0 \leq j \leq m-k-1$. Then we have $(\hat{x}, \sqrt{-1} \hat{\xi}') \notin \rho - SS(u(x)).$

We shall give the proof of this theorem in Section 4.

Corollary. *Assume* $\lambda_j \notin \{v \in \mathbb{Z}; v \geq m-k\}$ for $1 \leq j \leq k$. Let $u(x)$ be an *F-mild hyperfunction defined on a neighborhood of* \hat{x} satisfying $Pu(x)=0$ and $D_1^j u(+0, x') = 0$ for $0 \le j \le m-k-1$. *Then* $u(x) = 0$ *holds on a neigh*borhood of \mathring{x} .

Proof. By Theorem 2, we know that $\rho - SS(u(x)) \cap \pi_v^{-1}(\hat{x}) = \phi$. In view of Lemma 2, this implies that $u(x)$ is real analytic on a neighborhood of \hat{x} . Hence we have $u(x)=0$ on a neighborhood of \hat{x} by virtue of the Cauchy-Kowalevsky type theorem for Fuchsian partial differential equations (see [1]).

On the other hand, we can solve the boundary value problem if *P* is hyperbolic with respect to the x_1 -direction on int M_+ . More precisely, let *P* be as above and assume that $p_m(x, \zeta_1, \sqrt{-1} \xi')$ never vanishes if $x \in \mathbb{R}^n$, $|x-\hat{x}| < \varepsilon$, $x_1 > 0$, $\xi' \in \mathbb{R}^{n-1}$, Re $\zeta_1 \neq 0$ with some $\varepsilon > 0$; here p_m denotes the principal symbol of *P*. Assume moreover that $\lambda_j \notin {\lbrace \nu \in Z : \nu \geq m-k \rbrace}$ for

 $1 \leq j \leq k$. Then for any F-mild hyperfunction $f(x)$ defined on a neighborhood of \hat{x} and for any hyperfunction $v_i(x')$ defined on a neighborhood of \hat{x}' ($0 \leq j \leq m-k-1$), there exists a unique F-mild hyperfunction $u(x)$ defined on a neighborhood of \hat{x} such that $Pu = f$ and $D/u(0, x') = v_i(x')$ for $0 \le j \le m-k-1$. We shall give a proof of this statement elsewhere.

§ **3. Mild hyperfunctions and analytic functionals**

We shall consider mild hyperfunctions with compact supports and regard them as analytic functional valued functions.

We fix $R>0$ and put $B_R=\{x' \in \mathbb{R}^{n-1}; |x'| \leq R\}$. For a subset *K* of C^{n-1} and $s>0$, we set

$$
K_s = \{ z' \in C^{n-1}; \text{dis } (z', K) \leq s \},
$$

where dis $(z', K) = \inf \{|z' - w'|; w' \in K\}$. For an open bounded subset Ω of C^{n-1} , we denote by $\mathcal{O}_c(\Omega)$ the space of the continuous functions on $\overline{\Omega}$ which are holomorphic on *Q*. By the norm $||f|| = \sup \{ |f(z')|; z' \in \Omega \}$, $\mathcal{O}_c(\Omega)$ becomes a Banach space. We denote by $F(\Omega)$ the closure of $\mathcal{O}(C^{n-1})$ (the space of all entire functions on C^{n-1}) in $\mathcal{O}_n(\Omega)$, and by $F'(\Omega)$ its dual space (note that $F(\Omega)$ and $F'(\Omega)$ are Banach spaces). If $\Omega_1 \subset \Omega$, are two open connected bounded sets in C^{n-1} , there are natural inclusions $F(\Omega_2) \subset F(\Omega_1)$ and $F'(\Omega_1) \subset F'(\Omega_2)$.

Let $f(x)$ be a mild hyperfunction defined on N whose support is contained in int B_R . Then $f(x)$ can be regarded as a hyperfunction defined on $\{x \in M; 0 \le x_i \le \varepsilon\}$ whose support is contained in $(0, \varepsilon) \times \text{int } B_R$ for some $\varepsilon > 0$. Hence for any $\phi(x') \in \mathcal{A}(B_R)$ (where $\mathcal A$ denotes the sheaf of real analytic functions on \mathbb{R}^{n-1}),

$$
\langle f(x_1, \cdot), \phi \rangle = \int_{R^{n-1}} f(x_1, x') \phi(x') dx'
$$

is well-defined as a real analytic function on $\{x_1 \in \mathbb{R} : 0 \le x_1 \le \varepsilon\}$. Moreover this function becomes analytic on a neighborhood of $x_1 = 0$:

Proposition 7. Let $f(x)$ be a mild hyperfunction defined on N whose *support is contained in int* B_R *. Then there exists* $\delta > 0$ *such that for any s*>0 *the function* $f(x_1, \cdot)$ *can be regarded as an F'*((B_R))-valued function on ${x_1 \in \mathbf{R}; 0 \leq x_1 \leq \delta}$ by the pairing

$$
\langle f(x_1, \cdot), \phi \rangle = \int_{R^{n-1}} f(x_1, x') \phi(x') dx'
$$

for $\phi(z') \in F((B_R)_s)$. Moreover the function $f(x_1, \cdot)$ can be continued to an

236 **T.oaku**

 $F'(B_p)$)-valued holomorphic function defined on a complex neighborhood of ${x, \epsilon \mathbf{R}} : 0 \leq x_i \leq \delta$. *(This complex neighborhood depends on s* > 0).

Proof. Using the softness of the sheaf of mild microfunctions $\hat{\mathscr{C}}_{N|M_+}$ (see Theorem 2.1.12 of [6], where $\hat{\mathscr{C}}_{N|M_+}$ is denoted by $\hat{\mathscr{C}}_{N|M_+}$) and Proposition 2.1.21 of [6], we can take holomorphic functions $F_i(z)$ ($i=1, \dots,$ *J*) defined on a neighborhood of $D'(B_R, \Gamma_i, 2\varepsilon)$ with open convex cones $\Gamma_i \subset \mathbb{R}^{n-1}$ and $\varepsilon > 0$ such that

$$
f(x) = \sum_{j=1}^{J} F_j(x_1, x' + \sqrt{-1} \Gamma_j 0).
$$

Let $a_i \in \Gamma$ be small enough and set

$$
F(z; \xi') = \sum_{j=1}^{J} \int_{B_{R+s} + \sqrt{-1}a_j} F_j(z_1, w') W(z'-w', \xi') dw'.
$$

In view of Lemma 2, $F(z; \xi')$ is analytic on a neighborhood of $(z, \xi') \in$ ${0} \times \partial B_R \times S^{n-2}$. Let A_k ($k=1, \dots, n$) be closed proper convex cones in R^{n-1} such that $A_1 \cup \cdots \cup A_n = R^{n-1}$ and the measure of $A_i \cap A_k$ is zero for $i \neq k$. We set

$$
G_k(z) = \int_{A_k \cap S^{n-2}} F(z; \xi') d\sigma(\xi').
$$

Then for arbitrary open convex cones $V_k \subset \Lambda_k^0$, G_k is holomorphic on a neighborhood of

$$
D'(B_n, V_{\kappa}, \delta) \cup \{ z \in C^n; |z_1| \leq \delta, \text{ dis } (z', \partial B_n) \leq \delta \}
$$

with some $0 < \delta < 1$. Moreover we have

$$
f(x) = \sum_{k=1}^{n} G_k(x_1, x' + \sqrt{-1} V_k 0)
$$

on B_R . By Lemma 1, we may assume that each $G_k(z)$ is holomorphic on

$$
\{z=x+\sqrt{-1}\,y\in\mathbf{C}^n;|z_1|\leq\delta,\,\operatorname{dis}\,(z',B_R)\leq\delta,\,x_1\geq-\delta\,|y'|^2,\,\\|y_1|\leq\delta\,|y'|^2,\,y'\in V_k\}.
$$

We may assume $0 \lt s \lt \delta/4$. Let ε_k : $B_R \to \mathbb{R}^{n-1}$ be a C^2 map such that

- (i) $\varepsilon_k(x') = 0$ for $x' \in \partial B_R$,
- (ii) $\varepsilon_k(x') \in V_k$, $|\varepsilon_k(x')| \leq s/2$ for $x' \in \text{int } B_R$,
- (iii) $|\epsilon_k(x')| = s/2$ for $x' \in B_R$, dis $(x', \partial B_R) \ge \partial/2$,

and set $\gamma_k = \{x' + \sqrt{-1} \epsilon_k(x'); x' \in B_R\}$. Then by the definition of the integration of a hyperfunction, we have

$$
\int_{R^{n-1}} f(x_1, x') \phi(x') dx' = \sum_{k=1}^{n} \int_{\gamma_k} G_k(x_1, w') \phi(w') dw'
$$

for $\phi \in F((B_{R})$). Thus the function

$$
\langle f(z_1, \cdot), \phi \rangle = \sum_{k=1}^n \int_{\gamma_k} G_k(z_1, w') \phi(w') dw'
$$

is holomorphic on

$$
U_s = \{z_1 = x_1 + \sqrt{-1} \, y_1 \in \mathbf{C}; \, |z_1| < \delta/4, \, x_1 > -\delta s^2/4, \, |y_1| < \delta s^2/4\}.
$$

It is easy to see that $f(z_1, \cdot)$ is an $F'(B_R)$, valued holomorphic function on *Us.* This completes the proof.

In the sequel we shall characterize the ρ -singular spectra of mild hyperfunctions by using the carriers of analytic functionals. For

$$
\xi' = (\xi_2, \dots, \xi_n) \in S^{n-2}
$$
 and $z' = (z_2, \dots, z_n) \in C^{n-1}$,

we set

$$
\Phi(z',\xi') = \langle z',\xi'\rangle + \sqrt{-1}(z'^2 - \langle z',\xi'\rangle^2).
$$

For $w' \in C^{n-1}$ and $\xi' \in S^{n-2}$ we define an open set $U(w', \xi')$ of C^{n-1} by

$$
U(w',\xi') = \{z' \in C^{n-1}; \text{ Im }\Phi(w'-z',\xi')\} - (\text{Re }\Phi(w'-z',\xi'))^2\}.
$$

We fix $\hat{\xi}' \in S^{n-2}$ and set

$$
V(\hat{\xi}', s, r) = (B_R)_s \cap \mathrm{int} \, (\bigcap_{(w', \xi') \in K_r} U(w', \xi')),
$$

where $K_r = \{(w', \xi') \in C^{n-1} \times S^{n-2}; |w'| \leq r, |\xi' - \xi'| \leq r\}$ for $s, r > 0$. It is easy to see that $V(\hat{\xi}', s, r)$ is a polynomially convex open subset of C^{n-1} . Note that there is a natural inclusion

$$
F'(V(\hat{\xi}',s,r)) \subset F'((B_R)_s).
$$

Proposition 8. *Let f(x) be a mild hyperfunction defined on N whose support is contained in int* B_R *. Then the following conditions (i), (ii), (iii) are equivalent:*

(i) $(0, \sqrt{-1} \dot{\xi}') \notin \rho - SS(f)$.

(ii) *For any s*>0, there exists $r>0$ such that $f(z_1, \cdot)$ is an $F'(V(\xi'),$ (s, r))-valued holomorphic funciton on a neighborhood of $z_1 = 0$.

(iii) *There exist s, r* > 0 *such that* $f(z_1, \cdot)$ *is an F'(V* (ξ', s, r))-valued *holomorphic function defined on a neighborhood of* $z_1 = 0$.

Proof. First let us show that (i) implies (ii). We inherit the notations in the proof of Proposition 7. We may assume $\zeta' \in \text{int } I_1$ and $F(z; \xi')$ is analytic on a neighborhood of $\{z \in C^n; |z_1| \leq \varepsilon, |z'| \leq \varepsilon\} \times$ $(A_1 \cap S^{n-2})$ with some $\varepsilon > 0$. Then $G_1(z)$ becomes holomorphic on $\{z \in C^n\}$; $|z_1|\leq \varepsilon, |z'| \leq \varepsilon$. We may assume $V_k \subset \{y' \in \mathbb{R}^{n-1}; \langle y', \xi'\rangle < 0\}$ for $k=2$, \cdots , *n.* We can modify ε_1 so that $\langle \varepsilon_1(x'), \xi' \rangle \langle 0$ if $|x'| \leq \varepsilon/2$ and that $\varepsilon_1(x') \in V_1$ is small enough if $x' \in B_R - B_s$. Since $U(w', \xi')$ contains

$$
\{z'=x'+\sqrt{-1}\,y'\in C^{\,n-1};\,\langle v'-y',\xi'\rangle\!>((v'-y')^2-\langle v'-y',\xi'\rangle^2)\}
$$

with $w'=u'+\sqrt{-1} v'$, we may assume $\gamma_k\subset V(\hat{\xi}', s, r)$ for $k=2, \dots, n$ and $x' + \sqrt{-1} \varepsilon_1(x') \in V(\xi', s, r)$ for $|x'| \leq \varepsilon/2$ if $r > 0$ is small enough. the other hand, since $B_R - B_s$ is contained in $V(\hat{\xi}', s, r)$ if $r < \varepsilon$, we may assume $\gamma_1 \subset V(\hat{\xi}', s, r)$ by letting $\varepsilon_1(x') \in V_1$ be sufficiently small for $x' \in$ $B_R - B_s$. Hence we can take $\gamma_k \subset V(\hat{\xi}', s, r)$ so that $G_k(z)$ is holomorphic on a neighborhood of $\{0\} \times \gamma_k$ for $k = 1, \dots, n$. This implies (ii).

Next let us show that (iii) implies (i). Suppose that $f(z_1, \cdot)$ is an $F'(V(\hat{\xi}', s_0, r_0))$ -valued holomorphic function on $\{|z_1| \leq \delta\}$ with some s_0, r_0 >0 . Note that

$$
f(x_1^2, x') = \int_{S^{n-2}} d\sigma(\xi') \int_{R^{n-1}} f(x_1^2, y') W(x'-y'+\sqrt{-1} 0, \xi') dy'
$$

holds on $(-\delta^{1/2}, \delta^{1/2}) \times \mathbb{R}^{n-1}$. Since the singular spectrum of

$$
g(x,\xi') = \int_{R^{n-1}} f(x_1^2, y')W(x'-y'+\sqrt{-1}0, \xi')dy'
$$

is contained in

$$
\{(x,\xi';\sqrt{-1}(adx_1+\langle\xi',dx')\rangle)\in\sqrt{-1}\ S^*(R^n\times S^{n-2});\ a\in R\}.
$$

it suffices to show that $g(x, \xi')$ is analytic at $(x, \xi') = (0, \xi')$. Set

$$
G(x_1, z', \xi') = \int_{R^{n-1}} f(x_1^2, u') W(z'-u', \xi') du'.
$$

Then $G(x_1, z', \xi')$ is a real analytic function defined on

$$
\{(x_1, z', \xi') \in \mathbb{R} \times \mathbb{C}^{n-1} \times S^{n-2}; |x_1| \leq \delta^{1/2},
$$

$$
\langle \text{Im } z', \xi' \rangle > (\text{Im } z')^2 - \langle \text{Im } z', \xi' \rangle^2 \}
$$

with holomorphic parameters *z',* and we have

$$
g(x, \xi') = G(x_1, x' + \sqrt{-1} \xi' 0, \xi').
$$

It is easy to see that $\{V(\hat{\xi}', s, r); s > s_0, 0 < r < r_0\}$ constitutes a system of fundamental neighborhoods of the closure of $V(\xi, s_0, r_0)$ consisting of polynomially convex open sets. Thus, as a function of *w',* we can regard $W(z'-w', \xi')$ as an $F(V(\xi', s_0, r_0))$ -valued holomorphic function defined on a complex neighborhood of $\{(z', \xi') \in C^{n-1} \times S^{n-2} \colon |z'| \leq r_0, |\xi' - \xi'| \leq r_0\}.$ By the assumption (iii), the function

$$
G(z,\xi')=\langle f(z_1^2,\cdot), W(z'-w',\xi')\rangle_{w'}
$$

is holomorphic on a complex neighborhood of $(z, \xi') = (0, \xi')$. Hence $g(x, \xi')$ is real analytic at $(x, \xi') = (0, \xi')$. This completes the proof.

§ **4. Proof of Theorem** 2

We inherit the notation in Section 2. First let us show that it suffices to prove Theorem 2 when $k=m$. For this purpose we begin with the following lemma.

Lemma 3. Let l be a positive integer and let $u(x)$ be an *F-mild hyperfunction defined on a neighborhood of* $\hat{x} \in N$ *such that* $(\hat{x}, \sqrt{-1}\hat{\xi}')$ *is not contained in the singular spectrum of* $D_1^{\nu}u(+0, x')$ *for* $\nu=0, 1, \dots, l-1$. *Then there exist two F-mild hyperfunctions* $v(x)$ *and* $u'(x)$ *defined on a neighborhood of x such that*

$$
u(x) = x_1^l v(x) + u'(x)
$$

and that $(x, \sqrt{-1} \dot{\xi}') \notin \rho - SS(u'(x))$.

Proof. Let $u(x)$ be defined by

$$
u(x) = \sum_{j=1}^{J} F_j(x_1, x' + \sqrt{-1} \Gamma_j 0)
$$

with F_j holomorphic on a neighborhood of $D'(\hat{x}, \Gamma_j, \varepsilon)$, where $\Gamma_1, \cdots, \Gamma_J$ are open convex cones in \mathbb{R}^{n-1} and $\varepsilon > 0$. Put

$$
G_j(z) = F_j(z) - \sum_{\nu=0}^{l-1} \frac{1}{\nu!} z_1^{\nu} \left(\frac{\partial}{\partial z_1} \right)^{\nu} F_j(0, z').
$$

Then there is a holomorphic function $H_i(z)$ defined on a neighborhood of $D'(\hat{x}, \Gamma_j, \varepsilon)$ such that $G_j(z) = z_1^l H_j(z)$. Set

$$
v(x) = \sum_{j=1}^{J} H_j(x_1, x' + \sqrt{-1} \Gamma_j 0),
$$

$$
u'(x) = \sum_{\nu=0}^{L-1} \frac{1}{\nu!} x_1^{\nu} D_1^{\nu} u(0, x').
$$

Then we have $u(x) = x_1^1 v(x) + u'(x)$ and $(\hat{x}, \sqrt{-1} \hat{\xi}') \notin \rho - SS(u')$. This completes the proof.

Now let *P*, $u(x)$, $f(x)$ be as in Theorem 2 with $0 \le k \le m$. Then by Lemma 3, there exist F-mild hyperfunctions $v(x)$ and $u'(x)$ defined on a neighborhood of *x* such that

$$
u(x) = x_1^{m-k}v(x) + u'(x)
$$

and $(x, \sqrt{-1} \xi') \notin \rho - SS(u')$. Then we have

$$
Px_1^{m-k}v(x) = f(x) - Pu'(x),
$$

and $(x, \sqrt{-1} \dot{\xi}')$ is not contained in the *ρ*-singular spectrum of $f(x)$ - $Pu'(x)$. It is easy to see that Px_1^{m-k} is a Fuchsian partial differential operator of weight 0 with respect to x_1 and its characteristic exponents are not contained in $\{v \in Z; v \ge 0\}$. Hence in order to prove Theorem 2, we have only to show the following proposition.

Proposition 9. *Set*

$$
P=(x_1D_1)^m-A_1(x, D')(x_1D_1)^{m-1}-\cdots-A_m(x, D'),
$$

where $A_i(x, D')$ *is a linear partial differential operator of order* $\leq j$ *with analytic coefficients defined on a neighborhood of* $x=0$ *such that A_i*(0, x', D') *is a function* $a_i(x')$ *for* $i = 1, \dots, m$ *. Put*

$$
e(\lambda, x') = \lambda^m - a_1(x')\lambda^{m-1} - \cdots - a_m(x')
$$

and assume e(j, 0) \neq 0 *for any j* \in *Z with j* \geq 0. *Let u(x) be an F-mild hyperfunction defined on a neighborhood of* 0 *such that* $\rho - SS(Pu(x))$ *does not contain* $(0, \sqrt{-1} \xi')$. *Under these assumptions,* $\rho - SS(u(x))$ *does not contain* $(0, \sqrt{-1} \dot{\xi}')$.

Proof. We can choose an integer $q \ge 2$ such that $e(j/q, 0) \ne 0$ for any $j \in \mathbb{Z}$ with $j \ge 0$. Set $Pu(x) = f(x), v(x) = u(x_1^q, x')$, and

$$
Q = \left(\frac{1}{q}x_1D_1\right)^m - A_1(x_1^q, x', D')\left(\frac{1}{q}x_1D_1\right)^{m-1} - \cdots - A_m(x_1^q, x', D').
$$

Note that Q is a Fuchsian partial differential operator of weight 0 with respect to x_1 whose characteristic exponents are not contained in $\{\nu \in \mathbb{Z}; \nu \geq 0\}$. We have

$$
g(x) = Qv(x) = f(x_1^a, x')
$$

and $(0, \sqrt{-1} \dot{\xi}') \notin \rho - SS(g(x))$. Since $v(x)$ and $g(x)$ are mild hyperfunc-

tions, we may assume that they are defined on N and their supports are contained in int B_R with sufficiently small $R>0$ by virtue of the softness of the sheaf of mild hyperfunctions (Corollary 2.1.22 of [6]). Thus, for any $s > 0$, we can regard $v(z_1, \cdot)$ and $g(z_1, \cdot)$ as $F'(B_R)$.)-valued holomoprhic functions on a neighborhood of $z_1 = 0$. By Proposition 8, $g(z_1, \cdot)$ is an $F'(V(\hat{\xi}', s, r))$ -valued holomorphic function on a neighborhood of $z_i=0$ for some s, $r>0$.

Since $V(\hat{\xi}', 2s, r/2) \supset V(\hat{\xi}', s, r)$, there exists $\epsilon > 0$ such that $V(\hat{\xi}', 2s, r/2)$ $r/2$) $\supset V(\xi', s, r)$. Using the method of Baouendi-Goulaouic (Theorem 3) of [1]), we can show that there exists a unique $F'(V(\hat{\xi}', s, r))$. valued holomorphic function $\tilde{v}(z_1, \cdot)$ defined on a neighborhood of $z_1 = 0$ such that $Q\tilde{v}(z_1, \cdot) = g(z_1, \cdot)$. (Though they assume $V(\xi', s, r) \subset \mathbb{R}^{n-1}$ in Theorem 3 of [1], their proof also applies to our case.) By the uniqueness of the solution w of $Qw = g$, we know that $v(z_1, \cdot)$ is an $F'(V(\xi', 2s, r/2))$ -valued holomorphic function defined on a neighborhood of $z_1 = 0$. Thus by Proposition 8, we have $(0, \sqrt{-1} \dot{\xi}') \notin \rho - \overline{SS}(v(x))$. In view of Proposition 5, we get $(0, \sqrt{-1} \xi') \notin \rho - SS(u(x))$. This completes the proof.

References

- [1] Baouendi, M. S. and Goulaouic, C., Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math., 26 (1973), 455-475.
- [2] Kaneko, A., Singular spectrum of boundary values of solutions of partial differential equations with real analytic coefficients, Sci. Papers College Gen. Ed. Univ. Tokyo, 25 (1975), 59-68.
- [3] --, Introduction to hyperfunctions I, University of Tokyo Press, 1980 (in Japanese).
- [4] Kashiwara, M. and Oshima, T., Systems of differential equations with regular singularities and their boundary value problems, Ann. of Math., 106 (1977), 145-200.
- [5] Kataoka, K., On the theory of Radon transformations of hyperfunctions, J. Fac. Sci. Univ. Tokyo, 28 (1981), 331-413.
- [6] --, Micro-local theory of boundary value problems I, J. Fac. Sci. Univ. Tokyo,27 (1980),355-399.
- [7] --, Micro-local theory of boundary value problems II, J. Fac. Sci. Univ. Tokyo, 28 (1981), 31-56.
- [8] --, Some properties of mild hyperfunctions and an application to propagation of micro-analyticity in boundary value problems, J. Fac. Sci. Univ. Tokyo, 30 (1983), 279-297.
- [9] Komatsu, H. and Kawai, T., Boundary values of hyperfunction solutions of linear partial differential equations, Publ. Res. Inst. Math. Sci., 7 (1971), 95-104.
- [10] \hat{O} aku, T., Micro-local Cauchy problems and local boundary value problems, Proc. Japan Acad., 55, (1979), l36-140.
- [11] --, Uniqueness of hyperfunction solutions of Fuchsian partial differential equations, Sûrikaiseki-kenkyûsho Kôkyûroku No. 508 (1983), 41-60 (in Japanese).
- [12] Schapira, P., Probleme de Dirichlet et solutions hyperfonctions des equations elliptiques, Boll. Un. Mat. Ital. (Serie 4), $2(1969)$, 367-372.

II3] Tahara, H., Fuchsian type equations and Fuchsian hyperbolic equations, Japan. J. Math., 5 (1979), 245-347.

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan