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On Riemannian Manifolds of Nonnegative Ricci Curvature 
Containing Compact Minimal Hypersurfaces 

Ryosuke Ichida 

§ O. Introduction 

In this paper we study geometric properties of Riemannian manifolds 
which contain compact minimal hypersurfaces. Our main result, Theo­
rem 4.1, of this paper is stated as follows. 

Let N be an n-dimensional (n?3 2) connected, complete, real analytic 
Riemannian manifold without boundary. Let (M!, j;) and (M2' fz) be 
compact, connected, real analytic, minimal hypersurfaces immersed in N 
by real analytic immersions j; and fz. Suppose that N is of nonnegative 
Ricci curvature and that j;(M!) n fz(M2) =~. Then N is isometric to one 
of four types of real analytic Riemannian manifolds described in Section 
4. 

In case N is a complete, connected, locally symmetric space of non­
negative sectional curvature, such classification was already done by 
Nakagawa and Shiohama ([6]). 

Theorem 1.1 in Section 1 plays important roles in this paper which 
was proved by the author ([4]). In Section 2 we give an application of 
Theorem 1.1. Making use of this theorem, we obtain Lemma 2.1 which 
is a basic lemma of this paper. In Section 3 we study geometric properties 
of compact, connected Riemannian manifolds with boundary which con­
tain a compact minimal hypersurface. Results of this section will be used 
to prove Theorems 4.1 and 4.2. Theorem 3.1 was also proved by Kasue 
independently ([5]). 

As applications of Theorem 4.2 we obtain Theorems 4.3 and 4.4. For 
connected, complete Riemannian manifolds of positive Ricci curvature, 
Frankel proved the assertions of Theorems 4.3 and 4.4 ([3]). But, in gen­
eral, Frankel's result does not hold for Riemannian manifolds of non­
negative Ricci curvature. We can easily give counterexamples. Therefore, 
in our theorems, we need the assumption that Riemannian manifolds are 
homogeneous. 
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Throughout this paper we always assume that manifolds and appa­
ratus on them are of class C =, unless otherwise stated. 

§ 1. Minimum principle 

Let N be an n-dimensional (n;> 2) connected Riemannian manifold 
and let < , ) be the Riemannian metric of N. Let el, .. " en be an 
orthonormal basis of the tangent vector space TpN at a point p of 
N and let X be a unit tangent vector at p. The quantity RicAX)= 
L:7=1 <R(ei, X)X, ei) is called the Ricci curvature of N with respect to X 
direction where R denotes the Riemannian curvature tensor of N. We say 
that N is of nonnegative (resp. positive) Ricci curvature if RicAX);>O 
(resp. RicAX) >0) for every unit tangent vector X at every point of N. 
Let N be as above and let f: M -? N be an isometric immersion of an 
(n-l)-dimensional Riemannian manifold Minto N. We say that (M,!) 
is a minimal hypersurface in N if the trace of the second fundamental 
form of M for f is zero everywhere. It is called that (M, f) is a totally 
geodesic hypersurface in N if the second fundamental form of M for f 
vanishes identically. 

Let D be an open metric ball in the n-dimensional (n> 1) Euclidean 
space Rn. Let (Xl' .. " xn) be the canonical coordinate system in Rn. 
For an r >0, let us consider a Riemannian manifold N =(D X( -r, r), ds2) 

whose line element is given by ds2 = L:7,J=1 gilx, t)dxidx j +dt 2 • Let r be 
the Riemannian connection of N. For a t, 1 t I<r, we denote the mean 
curvature (with respect to a/at) of the level hypersurface S,={(x; t); XED} 
in N by H,. In case n= 1, by the mean curvature we mean the geodesic 
curvature. 

Lemma 1.1. Under the above situation, suppose RicAa/at);>o. Then 
Ht~H" holds for any t<t'. If Ht=H" for t<t', then for each s, t ~s 
~ t', Ss is totally geodesic. 

For the proof, see [4]. 
Now for a U E C 2(D), lul<r, we consider a hypersurface S={(x, u(x)); 

xED} in N. We put xi=a/aXi+Uia/at and gij=gij+UiUj where Ui= 
au/axi, 1 ~i,j ~n. We can give a unit normal vector field ~= L:7=1 ~i a/axi 
+~n+l a/at on S as follows 

where IWuW= L:7.i=1 gij(X, u(x))uiuj, ui= L:'J=1 gij(X, u(x))uj and here gij 
is the (i,j)-component of the inverse matrix of (gij)' Let A be the mean 
curvature of S with respect to~. A is given by A= l/n L:7,j=1 gij<r XiXj, 0 
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where gij=giJ(X, u(x»-uiujj(l +llI7uW). Rewriting it we get 

n 

(1.1) I: {(l+ Il17uW)gi j (X, u(x»-UiUj}Uij 
i,j=l 

where 

= nA(x) (1 + Il17uW)3/2_ nH(x, u(x»(l + Il17uW) 
1 n + - I: (agijjat)(x, u(x»uiuj 
2 i,j~l 

n 

+ I: {(l+ II17UW)giix , u(x»-uiuj}nix, u(x»uk 
i,j,k==:.l 

and r~j denotes the Christoffel's symbol. 
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In (1.1), if we regard A as a given real-valued continuous function on 
D, then (1.1) is a nonlinear differential equation of second order on D. 
Then the following theorem holds. 

Theorem 1.1 ([4]). Suppose RicAajat);;'O on DX[O, r). Let A be a 
given real-valued continuous function on D such that A ~Ho on D. Then any 
solution u of the equation (1.1) such that ° ~ u< r can not take the minimum 
value in D unless u is constant. 

§ 2. An application of the minimum principle 

Let N be an n-dimensional (n;;'2) connected, complete Riemannian 
manifold without boundary. We denote by d the distance function on N. 
For a subset S of Nwe set S(r)={p E N; d(p, S)=r}, r;;'O. A geodesic 
<1: [0, 1]---+N is called a minimal geodesic if its length is equal to the dis­
tance between its .end points. Let (SI' t l ) and (S2' (2) be connected hyper­
surfaces embedded in N such that SI n S2=9 where tk: Sk---+N be the in­
clusion map. We suppose that there exist points PI E SI and P2 E S2 such 
that d(PHP2)=d(SH S2)=r>0. Let <1: [0, r]---+N be a minimal geodesic 
from PI to h By minimality, the velocity vector &(0) (resp. &(r» is per­
pendicular to SI (resp. S2), respectively. Let el (resp. e2) be the unit 
normal vector field on an open neighborhood WI (resp. W2) of PI (resp. P2) 
in SI (resp. S2) such that el = &(0) at PI (resp. e2 = - &(r) at P2), respectively. 
We denote by Hk the mean curvature of Sk with respect to ek on Wk, 
k=I,2. 

Lemma 2.1. Under the situation stated above, suppose that N is of 
nonnegative Ricci curvature and that Hk;;,O on Wk , k= 1,2. Then there 
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exist open neighborhoods Vk, Vk C Wk, of Pk in Sk' k= 1, 2, with the follow­
ing properties: 

(1) VI and V2 are totally geodesic. 
(2) The map (/): VI X [0, r]--+N defined by (/)(p, t)=expp t~I(P) is an 

isometric imbedding of the Riemannian product manifold VI X [0, r] into N 
where expp denotes the exponential map at p. 

Proof Taking W2 sufficiently small if necessary, we may assume 
that for an e>O (2e<r) exp: J..i.(W2)--+Nis an embedding and for each t, 
O:::;;t:::;;2e,d(expq t~2(q),S2)=tforq e W2, where J..i.(W2) = {tMq); q e W2 , 

0:::;;t:::;;2e}. We put Wis)={expqsUq); q e W2} and t"is)=expqsMq), 
O:::;;s:::;;e, q e W2 • We note that t"p.(e)=a(r-e) and that by Gauss Lemma 
the velocity vector fis) is perpendicular to Wis), O:::;;S:::;;e, q e W2. For 
each s, O:::;;S:::;;e, let H2 .• be the mean curvature of Wis) with respect to 
fis), q e W2 • We put A= -H2o,' Then by Lemma 1.1 A:::;;O on Wie). 
Now, a(r-e) is not a focal point of SI along a because a is a minimal 
geodesic from SI to S2' Therefore, by the implicit function theorem, there 
exist an open neighborhood VI of PI in SI' which is diffeomorphic to an 
open metric ball in Rn-I, and a function u of class C'" on VI such that 
u~r-e on VI' U(PI)=U-e and an open neighborhood W of t"p.(e) in 
Wle) can be expressed by W = {expp u(p)~lp); p e VI}' We note that A 
is the mean curvature of W with respect to -fie). Then we can apply 
Theorem 1.1 to the present case. Hence, by Theorem 1.1, u=r-e on V;. 
Then by Lemma 1.1 A=O on W. Furthermore, by Lemma 1.1 V/t)= 
{exppt~l(p);pe VI} is a totally geodesic hypersurface, O:::;;t:::;;r-e. We 
note W = VI(r -e). Let V2 be an open neighborhood of P2 in S~ such that 
W = {expq e~iq); q e V2}. By Lemma 1.1 V2(s)={expqs.;iq); q e V2} is 
totally geodesic, 0:::;; s:::;; e. Then the map (/): VI X [0, r]--+ N defined by 
(/)(p, t) = expp t Up) is an isometric imbedding and (/)(V; X {r}) = V2 , 

(/)(VIX(O, r))nSk=¢, k=l, 2. 

Proposition 2.1. Let N be an n-dimensional (n~2) connected, com­
plete Riemannian manifold of nonnegative Ricci curvature without boundary. 
Let (MI> It) and (M2' fz) be compact, connected, minimal hypersurfaces im­
mersed in N by immersions It and /Z, respectively. Suppose that SI = It(MI) 
and S2 = /z(M2) do not intersect. Then the follOWing holds. 

(1) SlcSlr), S2 CSj(r) where r=d(Sl> S2)' 
(2) (Sk' tk) is a compact, connected, totally geodesic hypersurface im­

bedded in N where tk: Sk--+N is the inclusion map, k= 1,2. 
(3) SI is locally isometric to S2' 
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Proof By the assumption we can choose points PI E SI and P2 E S2 
such that d(pi>P2)=d(SI> S2)=r. Then C={q E M2; d(SI,/z(q»=r} is a 
nonempty closed subset of M 2 • We shall show C is open in M 2 • This 
implies C=M2 because M2 is connected. Hence, S2CSI(r). Now let q2 
be an arbitrary point of C and take points PI E SI and ql E MI such that 
d(pl>/z(q2) = d(SI,/z(q2» = r, ];(ql) ~ PI' Let U. be a connected open 
neighborhood of q. in M. such thatfklu.: Uc~N is an embedding, k= 1,2. 
We put W.=fk(Uk), k= 1,2, andp2=/z(q2)' Let a: [0, r]-+Nbe a minimal 
geodesic with unit speed from PI to P2' By minimality of a, 0'(0) (resp. 
aCr» is perpendicular to WI (resp. W2) and a«O, r»nsk=s6, k=l, 2. 
Since WI and W2 are minimal hypersurfaces in N, by Lemma 2.1 there are 
open neighborhoods VI of PI in WI and V2 of P2 in W2 with properties (1) 
to (3) in Lemma 2.1. Thus there exists an open neighborhood of q2 in 
M2 which is contained in C. Hence C is open in M2. By the same argu­
ment, we have SlcS2(r). Using Lemma 2.1, we see that (MI>];) and 
(M2,/z) are totally geodesic hypersurfaces in N. In the following, we 
shall show that (SI' t l ) and (S2' (2) are embedded hypersurfaces in N. Let 
P be a point of SI' We choose a q E MI such that ];(q)=p. By Lemma 
2.1 there exists a connected open neighborhood U of q in MI with the 
following properties: (1) ]; I U: U -+ N is an embedding, (2) (fJ p: Vp X 
[0, rJ-+N, (fJp(p', t)=expp' t~pCp'), is an isometric imbedding where Vp= 
];(U) and ~p is a unit normal vector field on Vp, (3) (fJp(VpX(O, r»n 
S.=s6, k= 1,2, and (fJiVp X {r})cS2. Then there exists an 5>0 such 
that B.(p) n SI c Vp where B,(p) = {p' E N; d(p, p')<5}. In fact, suppose 
for contradiction that there is a sequence of points Pj of SI\ Vp,j = 1, 2, .. " 
which converges to P in N. Then Pj ~ (fJp(VpX[O, r]) for eachpj. Let 
{qj},j=I,2, "', be a sequence of points in MI such that j;(qj)=Pj' By 
compactness of MI, we can choose a subsequence of {qj} which converges 
to a q' E MI so that q' ~q and ];(q')=p. Then there is a connected 
open neighborhood U' of q' in MI such that q ~ U' and];IU': U'-+N is an 
embedding. We put V;=];(U'). By V~cSlr), v;n (fJp(Vp X (0, r])=s6. 
Hence, Vp and V; have the same tangent vector space at p. Since Vp and 
V; are totally geodesic, taking U' sufficiently small if necessary, V;c Vp 
holds. Then, for a sufficiently large number j, Pj E V;c Vp. This is a 
contradiction because Pj ~ SI\Vp, Thus we can choose an 5>0 so that 
B,(p) n SI c Vp • Therefore (SI> t l ) is a compact, connected, totally geodesic 
hypersurface imbedded in N. By the same argument as above, so is 
(S2' (2). From the above argument, it is clear that SI is locally isometric 
to S2' 

Lemma 2.2. Let N be as in Proposition 2.1. Let (SI' t l ) and (S2' (2) 
be compact, connected, totally geodesic hypersurfaces imbedded in N which 
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are disjoint. Then there exists an isometric imbedding f: M X [0, e]~N 
(e >0) of a Riemannian product manifold M X [0, e] into N where M is an 
(n-I)-dimensional compact, connected Riemannian manifold without bound­
ary. 

Proof By Proposition 2.1, SIC Slr) and S2C SI(r) where r= 
d(SI' S2) >0. Since SI and S2 are compact hypersurfaces, for each p E SI 
(resp. S2) there are at most two minimal geodesics from p to S2 (resp. SI)' 
For each k, k= 1,2, let Gk,l be a subset of Sk such that for any p E Gk,l 
there is a unique minimal geodesic from p to SUI' where SS=Sh and let 
Gk,2=St\Gk,l' Using Lemma 2.1, we can show that either Gk,I=Sk 
or Gk,2=Sk' k= 1,2. Therefore the following four cases are possible: 
(1) GI,I=SI' G2,I=S2' (2) GI,I=Sh G2,2=S2> (3) GI,2=SI' G2,1=S2 
and (4) GI,2=SI' G2,2=S2' For each case we shall show that the asser­
tion of the lemma holds. 

Case (1). For each p E SI let qp: [0, r]~N bea unique minimal 
geodesic with unit speed from p to S2' It follows from Lemma 2.1 that 
the map (/): SI X [0, r]~N defined by (/)(p, t)=qit) is an isometric imbed­
ding. 

Case (2). We put D={p EN; d(p, S2)<r}. Then D is a connected 
open subset of N with boundary SI' Let ~(p) be the unit normal vector 
to SI at p which directs to D. By Lemma 2.1 the map (/),: SI X [0, e]~ N 
defined by (/).(p, t)=exp p te(p) is an isometric imbedding, O<e<r. 

In the case (3), by the same argument as in the case (2) the assertion 
holds, 

Case (4). We put L= {p E N; d(p, SI)=d(p, S2)}' By virtue of 
Lemma 2.1 and Proposition 2.1, L is a compact, totally geodesic hyper­
surface imbedded in N which has at most two connected components. In 
case L is connected, we see that the pair (L, S2) satisfies the condition of 
the case (2). Therefore the assertion holds. We now suppose that L has 
two connected components. Let LI be a connected component of L. 
Then we see that the pair (SI' L I ) satisfies the condition of the case (1). 
Hence the assertion holds. 

§ 3. Riemannian manifolds with boundary 

Let N =N U aN be an n-dimensional (n~2) connected, complete 
Riemannian manifold with compact boundary aN of class C"'. We denote 
by d the distance function on N. Let p be a point of N. For each q E 

B.(p)\{p}, r=d(p, aN), there is a minimal geodesic q: [0, r'J~BrCp), r'= 
d(p, q), with unit speed fromp to q where Br(p) is the closed metric ball 
of radius r centered at p. 

Making use of Lemma 2.1, we can prove the following theorem. 
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Theorem 3.1 ([4]). Let N =N U aN be an n-dimensional (n~2) con­
nected, complete Riemannian manifold with compact boundary aN of class 
coo. Suppose that N is of nonnegative Ricci curvature and that the mean 
curvature of aN with respect to the inner normal direction is nonnegative. 
Then aN has at most two connected components. If aN has exactly two 
connected components, then N is isometric to a Riemannian product manifold 
M X [0, r], r >0, where M is an (n -1 )-dimensional compact, connected 
Riemannian manifold without boundary. 

In the following let N =N U aN be an n-dimensional (n~2) compact, 
connected Riemannian manifold with connected boundary aN of class Coo. 
We will denote by ~(p) the inner unit normal vector to aN at p. We set 
L(t)={p e N; d(p, aN)=t}, t~O. For a subset S of N we put S(t)= 
{p e N; d(p, S)=t}, t~O. 

Definition. Let N = N U aN be an n-dimensional (n ~ 2) compact, 
connected Riemannian manifold with connected boundary aN of class Coo. 
We will call that N is of Mobius type if aN admits an isometric involution 
t of fixed point free and N is isometric to a quotient manifold aNX 
[0,0]/ - where o=max {d(p, aN); peN} and - is an equivalence relation 
in the Riemannian product manifold aN X [0, 0] defined by (p, t)-(p, t) 
for p e aN, O::::;t ::::;0, and (p, o)-(t(p), 0) for p e aN. 

Theorem 3.2. Let N =N U aN be an n-dimensional (n~2) compact, 
connected Riemannian manifold with connected boundary aN of class Coo. 
Let (M,!) be a compact, connected, minimal hypersurface immersed in N 
by an immersion f Suppose that N is of nonnegative Ricci curvature and 
that the mean curvature of aN with respect to the inner normal direction· is 
nonnegative. Then we have following. 

(1) f(M)=L(r), r=d(f(M), aN), and L(t) is a compact, connected, 
totally geodeSiC hypersurface imbedded in N, O::::;t ::::;r. 

(2) Ifr <o=max {d(p, aN); peN}, then (/)T: aN X [0, r]~N, (/)r(P, t) 
= expp t ~(p), is an isometric imbedding of the Riemannian product manifold 
aNX [0, r] into Nand (/)r(aNX {t})=L(t), O::::;t ::::;r. 

(3) If r = 0, then N is of Mobius type. 

Proof The assumption RicN~O implies RicN(~)~O for the inner 
unit normal vector ~ at any point of aN. We put S=f(M). Let p and 
q be points of S and aN such that d(p, q)=d(S, aN)=r, respectively. 
Then there exists a minimal geodesic (1: [0, r]~ N with unit speed from p 
to q. By minimality of (1, (1([0, r»cN and a(O) (resp. a(r» is perpendic­
ular to S (resp. aN). Then we can apply Lemma 2.1 to the present case. 
Therefore there exists an connected open neighborhood V of q in aN 
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such that i/J: V X [0, r]--+ N, i/J(p', t) = expp' t ~(p'), is an isometric imbed­
ding and i/Jr(Vx{r})cS. Using a similar argument as in the proof of 
Proposition 2.1, ScL(r) and aNcS(r). Then we see that S=L(r) and 
L(t) is a compact, connected, totally geodesic hypersurface imbedded in 
N, O~t ~r. Since S is a hypersurface in N, for each q E S there are at 
most two minimal geodesics from q to aN. Let Gl be a subset of S such 
that for each q E Gl there exists a unique minimal geodesic from q to aN. 
We put GZ=S\GI. Using Lemma 2.1, we see that either GI=S or Gz=S. 
We now assume r<a. Then we shall show GI=S. Suppose, for con­
tradiction, Gz=S. Let q be a point of L(a) and let T: [0, a]--+N be a 
minimal geodesic with unit speed such that T(O) E aN and T(a)=q. By 
minimality of T, f(O) is the inner unit normal vector to aN at T(O) and fer) 
is perpendicular to S =L(r) ar T(r). Since Gz=S, there is a minimal 
geodesic r: [0, r]--+N with unit speed from T(r) to aN such that t(O)~ 
-fer). By minimality of r, t(O)=f(r). This implies a=d(q, aN)=2r 
-a, which is a contradiction. Thus GI=S. Then i/Jr: aN x [0, r]--+N, 
i/Jr(P, t)=expp t~(p), is an isometric imbedding and i/Jr(aN X {t})=L(t), 
O~t~r. 

Next we assume r = a. Then Gz = S. For if Gl = S, then i/Ja: aN X 
[0, a]--+N is an isometric imbedding onto N. Therefore aN has just two 
connected components. This contradicts the connectedness of aN. Gz = S 
implies that i/Ja: aN X [0, a]--+N is an isometric immersion onto Nand 
i/Ja: aN X [0, a)--+N is an isometric imbedding. For each q E L(a) i/Jil(q) = 
{(PI' a), (Pz, a)} where pz = eXPP1 2a~(PI). We now define a map 1/1': aN--+ 
aN by 1/I'(p) = expp 2a~(p). Then 1/1' is an isometric involution of aN which 
is fixed point free. From the above argument we see that N is of Mobius 
type. 

Theorem 3.3. Let N =N U aN be an n-dimensional (n;>2) compact, 
connected, real analytic Riemannian manifold with connected, real analytic 
boundary aN. Let (M,f) be a compact, connected, minimal hypersurface 
of class C~ immersed in N by an immersion f Suppose that N is of non­
negative Ricci curvature and that the mean curvature of aN with respect to 
the inner normal direction is nonnegative. Then we have the following. 

(1) f(M)=L(r), r=d(f(M), aN), and L(t) is a compact, connected, 
totally geodesic, real analytic hypersurface imbedded in N, O~t ~a= 
max {d(p, aN); pEN}. 

(2) N is of Mobius type. 

Proof We shall show that L(a) is a compact, connected, totally 
geodesic hypersurface of class COl imbedded in N. First we assume r= 
d(f(M), aN)<a. Since aN is real analytic, by Theorem 3.2 i/Jr: aN X 
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[0, r]---+N, (fJr(P, t)=expp t~(p), is an isometric imbedding of class C" and 
(fJr(aNX{t})=L(t), O~t~r~ Let to be the supremum of those numbers 
t for which (fJt: aNX[O,t]---+N, (fJ/p, t')=expp t'~(p), is an isometric im­
bedding of class C"'. Then L(to) is a compact, connected, totally geodesic 
hypersurface of class C" imbedded in N. Suppose to<o. Since L(to) is 
compact and real analytic, for a sufficiently small e>O, to+e<o, L(t) is a 
compact, connected, hypersurface of class C'" imbedded in N, to ~ t~ to + e. 
By analyticity, L(t) is totally geodesic, to~t~to+e. Hence (fJto+e: aNx 
[0, to + e]---+N is an isometric imbedding of class COl. This is a contradic­
tion. Thus 10 =0. Hence L(o) is a compact, connected, totally geodesic 
hypersurface of class COl imbedded in N. In case r =0, it follows from 
the previous theorem that L(o) is a compact, connected, totally geodesic 
hypersurface of class C" imbedded in N. The assertions of theorem follow 
from the previous theorem. 

§ 4. Main theorems 

In order to state our main theorems we need to describe four types 
of Riemannian manifolds which are model spaces in our consideration. 

In the following, manifolds and apparatus on them are of class Coo 
or C" unless otherwise stated. 

Let N be an n-dimensional (n ~ 2) compact, connected Riemannian 
manifold without boundary. We will call that N is of type I if there exists 
a Riemannian submersion TJf: N ---+SI(r) such that for each Z E SI(r) TJf -I(Z) 
is connected and totally geodesic where SI(r) denotes a circle of radius r 
in the Euclidean plane. 

Let M be an (n-I)-dimensional (n~2) compact, connected Rieman­
nian manifold without boundary which admits isometric involutions tl 
and t2 of fixed point free. In a Riemannian product manifold M X [0, r], 
r>O, we define an equivalence relation ~ as follows: (p, O)~(tl(P), 0), 
(p, t)~(p, I), O~t~r, and (p, r)~(tlp), r), wherep E M. We will say 
that the quotient manifold N = M X [0, r]/ ~ is of type II. 

Let M be an (n - I)-dimensional (n ~ 2) compact, connected Rieman­
nian manifold without boundary which admits an isometric involution t 
of fixed point free. We define an equivalence relation ~ in the Rieman­
nian product manifold M X [0, 00) as follows: (p, 0) ~(t(p), 0) and (p, t) 
(p, t), t ~ 0, where p E M. The quotient manifold N = M X [0, 00)/ ~ is 
called a manifold of type III.· 

Finally, we will call that a Riemannian product manifold M X R is 
of type IV where M is an (n-I)-dimensional (n~2) compact, connected 
Riemannian manifold without boundary and R is a real line. 



482 R. Ichida 

Theorem 4.1. Let N be an n-dimensional (n;;:. 2) connected, complete, 
real analytic Riemannian manifold without boundary. Let (MI' h) and 
(M2' h) be compact, connected, real analytic, minimal hypersurfaces im­
mersed in N by real analytic immersions hand h. Suppose that N is of 
nonnegative Ricci curvature and that h(MI) n h(M2) = ifJ. Then N is iso­
metric to one of four types of real analytic Riemannian manifolds described 
above. 

Proof By Proposition 2.1 and Lemma 2.2, there is an isometric 
imbedding of class Cw f: M X [ - 2r1> 2rl]-+N (rl >0) of a Riemannian 
product manifold M X [ - 2r1> 2rl] into N where M is an (n -1 )-dimensional 
compact, connected, real analytic Riemannian manifold without boundary. 
We set LI=f(M X {rl})' L2=f(M X {-rl}) and D=N\f(M X[ -rl' rl])' 
LI and L2 are compact, connected, real analytic, totally geodesic hyper­
surfaces imbedded in N. D has at most two connected components and 
aD = LI U L2. We first suppose D is connected. Then, by virtue of The­
orem 3.1, 15=D U aD is real analytically isometric to a Riemannian pro­
duct manifold L Ix[0,r2], r2>0. We define a map i1>: LIXR-+N by 
i1>(p, t)=expp t~(p) where ~(p) is the unit normal vector to LI at p which 
directs to D. We see that i1>: LIXR-+N is a Riemannian covering 
map and that LI=i1>(LIX {O}) = i1>(LI X {r}), r=2rl+r2, and i1>(LIX{t})n 
i1>(LI X {t'}) = ifJ, O~t<t'<r. We put L(t)=i1>(LIX{t}), O~t<r, and 
SI(r/2-;r)={z E C; Izl=r/2-;r}, where z is a complex number. We now 
define a map 'IF: N-+SI(r/2-;r) by 'IF(q) = (r/2-;r) exp (i2-;rt/r), q E L(t), i2= 
-1. Then, by the above argument, 'IF: N -+S\r/2-;r) is a Riemannian 
submersion and for each (r/271:) exp (iO) E S\r/2-;r), 0~B<2-;r, '1Jf-1«r/2-;r) 
X exp (iO))=L(rB/2-;r). Therefore we see that N is of type I. 

Next we consider the case where D has two connected components. 
Let DI and D2 be connected components of D such that aDI =LI and aD2= 
L 2• We have to consider the following three cases: (1) 151 and 152 are 
compact, (2) one of them is compact and the other is noncompact, (3) 151 

and 152 are noncompact. We note that DI (resp. D2) contains a compact, 
connected, totally geodesic hypersurface f(M X {2rl}) (resp. f(M X { - 2rl}) 
of class cw, respectively. 

In the case (1), both of 151 and 152 satisfy the hypotheses of Theorem 
3.3. Hence 151 and 152 are of Mobius type. Therefore N is of type II. 

For the case (2), we may suppose that 151 is compact and 152 is non­
compact. By the same reason as above, 151 is of Mobius type. On the 
other hand, since f: M X [ - 2r1, - rl]-+ 152 is an isometric imbedding of 
class Cw, using the analyticity of N we can show that 152 is real analytically 
isometric to L2 X [0, 00). Then N is of type III. 

In the case (3), by a similar argument as above we see that N is real 
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analytically isometric to LI X R. We complete the proof. 
In the following, we assume that manifolds and apparatus on them 

are of class Coo. 

Theorem 4.2. Let N be an n-dimensional (n ~ 3) connected, homo­
geneous Riemannian manifold. Let (Mlo it) and (M2,!z) be compact, con­
nected, minimal hypersurfaces immersed in N by immersions it and !z. 
Suppose that N is of nonnegative Ricci curvature and that !.(MI) n!z(M2) = ifJ. 
Then N is of type I or type IV. 

Proof By Proposition 2.1 and Lemma 2.2, there is an isometric 
imbeddingf: Mx[-2r, 2r]~N(r>0) where Mis an (n-1)-dimensional 
compact, connected, Riemannian manifold without boundary. We set 
LI=f(Mx{r}) and L2=f(Mx{-r}), and put D=N\f(Mx[-r,r]). 
D has at most two connected components and aD=LI U L 2 • In case Dis 
connected, by the same argument as in the proof of Theorem 4.1, we see 
N is of type I. Next we consider the case whereD has two connected 
components. Let DI and Dz be connected components of D such that 
aDI =LI and aDz=L2 • We shall show that 151 and 15z are noncompact. 
Suppose for contradiction that 151 is compact. We let o=max{d(p, L I); 
p E DI}. Letp be a point of DI such that d(p, LI)=o. Since N is homo­
geneous and connected, the identity component 10(N) of the isometry 
group leN) of N is transitive on N. We can choose an isometry F E 10(N) 
so that p E F(LI). Let Ft(O ~ t ~ 1) be a continuous curve in 10(N) such 
that Fo is the identity transformation and FI = F. By continuity of Ft 
(0 ~ t ~ 1); there exists a tl (0 < tl < 1) such that Ft(LI) n Mo = ifJ for each t, 
o ~ t ~ tlo where Mo = f(M X {OD. By Proposition 2.1, for each t, 0 ~ t ~ 
tlo there is a positive ret) such that Ft(LI)cMo(r(t))= {q EN; d(q, Mo)= 
ret)}. Using Proposition 2.1 and the continuity of Ft (O~t ~1), we can 
showthatforeacht,O~t~l, there exists anr(t)~O such that Ft(LI)C 
Mir(t)). Since p E F(LI) and F(LI) is connected, F(LI)cLI(o)={q E DI; 
d(q, LI)=o}. Then it follows from Theorem 3.2 that DI is of Mobius 
type. Hence LI is a double covering manifold of F(LI). This is a con­
tradiction. Therefore 151 is noncompact. By the same argument, so is 
152 • 

We shall show that 15k is isometric to Lk X [0, 00), k= 1, 2. Since LI 
is compact and 151 is noncompact, there is a geodesic (1: [0, 00 )~151 with 
unit speed such that (1(0) ELI, &(0) is perpendicular to LI and d((1(t), L I) 
= t, t >0. Let to be the supremum of those numbers t for which I/)t: Ll X 
[0, t]~DIo I/)t(p, t')=expp t'~(p), is an isometric imbedding where ~(p) is 
the unit normal vector to Ll at p ELI which directs to DI. From the 
definition of DI, to~r. Suppose to is finite. Since N is homogeneous 
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and L, is compact, for a sufficiently large t, > to there exists an isometry F 
of N such that F(a(O))=a(t,), F(L,)cD, and L, n F(L,) = cp. By (1) of 
Proposition 2.1, we see F(L,)={p ED,; d(p, L,)=t,}. Using Lemma 2.1 
we see that iPtt : L,X[O, t,]~D" iPt,(p, t)=expp t$(p), is an isometric im­
bedding. This is a contradiction. Hence 15, is isometric to L, >< [0, 00). 
By the same argument, 15z is isometric to L z X [0, 00 ).Therefore N is of 
type IV. 

Corollary 4.1. Let N be an n-dimensional (n;;:d) noncom pact, con­
nected, homogeneous Riemannian manifold of nonnegative Ricci curvature. 
Suppose that N contains a compact, connected, minimal hypersurface (M, f) 
immersed by an immersion f Then N is of type IV. 

Proof Since N is noncompact and homogeneous, there is an iso­
metry F of N such thatf(M) n F(f(M))=cp. Then, by the previous the­
orem, the assertion holds. 

As applications of Theorem 4.2 we have the following theorems. 

Theorem 4.3. Let N be ann-dimensional (n~ 3) compact, connected, 
homogeneous Riemannian manifold of nonnegative Ricci curvature whose 
fundamental group isfinite. Let (M" it) and (Mz,j.) be compact, connected, 
minimal hypersurfaces immersed in N by immersions it and fz. Then it(M,) 
and fz(Mz) must intersect. 

Proof Suppose, for contradiction, it(M,) nfz(Mz) = cpo By Theorem 
4.2, N is of type I. On the other hand, the fundamental group of a 
Riemannian manifold of type I contains an infinite cyclic group. This 
contradicts the assumption. 

Theorem 4.4. Let N be an n-dimensional (n;;;d) compact, connected, 
homogeneous Riemannian manifold of nonnegative Ricci curvature whose 
fundamental group is finite. Let (M, l) be a compact, connected, minimal 
hypersurface imbedded in N where l is the inclusion map. Then the natural 
homomorphism of fundamental groups l#: 1':l(M)~1':,(N) is surjective. 

Proof Let N be the universal Riemannian covering manifold of N 
and let 1':: N ~ N be the Riemannian covering map. N is homogeneous. 
Since N is compact and 1':,(N) is finite, N is compact. We see that each 
connected component of M =1':-'(M) is a compact, minimal hypersurface 
imbedded in N. By Theorem 4.3, M is connected. Let [a] be in 1':lN, p), 
p E M, and let a: [0, 1]~N be a continuous closed curve which is a re­
presentative of [a]. Let &: [0, l]~N be the lift of a starting from P E if, 
1':(p)=p. We can joint p and &(1) by a continuous curve ft: [0, l]~M 
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such that ~(O)=jJ and ~(l)=tX(l). Then ~=7r 0 ~ is homotopic to a fixing 
the base point p. Hence tlf([~])= [a]. Thus tlf is surjective. 

The author would like to express his thanks to the referee who 
pointed several errors in the original manuscript out to him. 
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