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Conformal and Killing Vector Fields on Complete
Non-compact Riemannian Manifolds

Shinsuke Yorozu

0. In this note, we introduce the notion of vector fields with finite
global norms, in order to discuss the vector fields on non-compact
Riemannian manifolds. It should seem to be natural notion because we
have some generalizations of well-known results for compact Riemannian
manifolds (cf. [3], [9]). These generalizations are our main results. Our
discussions are restricted to conformal and Killing vector fields. We
show some examples in which the relations between the volumes of com-
plete non-compact Riemannian manifolds and the global norms of Killing
vector fields are discussed. For Killing vector fields with finite global
norms, the case of complete non-compact Riemannian manifolds without
boundary has stated in [11], and the case of non-compact Riemannian
manifolds with boundary has stated in [12]. Our idea is based on in [1],
[4], [6] and [10]. The case of affine and projective vector fields with finite
global norms may be discussed similarly, but this case is not stated in this
note (cf. [13]).

The discussions of different point of views appeared in [S] and [7].

We shall be in C=-category. The manifolds considered are connected

and orientable.

1. Let M be a complete non-compact Riemannian manifold (without
boundary) of dimension m. We denote the Riemannian metric (resp. the
Levi-Civita connection) on M by g (resp. ). Let g,; denote the com-
ponents of g with respect to a local coordinate system (x', - - -, x™), and
(g%) denotes the inverse matrix of the matrix (g;;). We set V i—V aowi
and I'=g"l,.

For two (O s)-tensor fields 7 and S on M, we denote the local scalar
product (resp. the global scalar product) of T and S by (T, S (resp. {7,

SY), that is,

<T, S>=L Til“'ixs’i1~ui3
s!
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(T, S>>=jM<T, S dvol

where T and S;,...;, denote the components of T and S respectively,

and

Jeeriy

T1eevis o l1] tsd
S1 s_g 11, g 'sSjl---j,-

We set || T|*={T, T) and we remark that || T’ < 4 co.
Let T® S denote the tensor product of two tensor fields 7 and S, for
example,

(T® S)ij: TiSj

for two (0, 1)-tensor fields 7" and S.

We denote the space of all s-forms on M by A°(M), and let A{(M)
denote the subspace of 4°(M) composed of forms with compact supports.
Let Li(M) be the completion of A5(M) with respect to the scalar product
{ , ». The operator d: A(M)—A**'(M) denotes the exterior derivative
and 0: A*(M)—A*~'(M) is defined by

5:(__ l)sm+m+1 * d*,
where = denotes the star operator. Then we have

(d&, nhy=(§, on)

for any & e A°(M) and 7 e A°*'(M), one of which has compact support.
The Laplacian operator 4 is defined by

A=dd+dd.

For a 1-form &, we have

@ o (#)=-r¢,
(3) (Ag)i: —VjVjEi-l—R{gj

where R(3/0x‘, 8/0x7) d/ox*=Rl,, 8/dx", R,,=R:,,, Ri=g*R,, and R,
denote the components of the Ricci tensor of /. Here and hereafter, we
use the Einstein summation convention.

Through this note, we identify the vector fields on M and its dual
I-forms with respect to g and they are represented by the same letters.
For a vector field §=¢° 9/0x* on M, we have its dual 1-form £=§, dx/=
g, & dx’.
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Definition 1. A vector field & on M is called a vector field with finite
global norm if its dual 1-form with respect to g belongs in Ly(M) N A'(M),
ie &e Ly(M)N A(M).

Definition 2. A vector field & on M is called a conformal vector field
with characteristic function 2 if

©) £.g=22g

where % denotes the Lie derivative operator and 2 is a function on M.
If 2 is vanishes identically, & is called a Killing vector field, that is,

%) Z.g=0.

We have that (4) and (5) are expressed locally by

4y V&+V,6,=22g,
and

O Ve +V,E=0
respectively.

2. Let o be a point of M and fix it. For each point p e M, we
denote by p(p) the geodesic distance from o to p. We set

B(r)={p & M|o(p)<r}
for any r >0. We may choose a C~-function ¢ on R satisfying
0=Zp()<1l foranyteR

w)=1 for t<1
w(t)=0 for t =2.

For every r >0, we set
w(p)=o(p)/r)

for any p e M, and then w, is a Lipschitz continuous function on M.

>

The function w, has the following properties:

0<w(p)£l foranype M
supp w, C B(2r)
wp)=1 for any p € B(r)
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lim w,=1

7=

[dw,| §£ almost everywhere on M
r

where C >0 is a constant independent of r (cf. [1], [4], [10]). Then we
have

Lemma 1 (cf. [1], [4]). For any & e A(M), there exists a positive
constant A independent of r such that

ndwr®snz<m§%nsnz@,)

'ndw,Asnz(mg—r’%nsnzm)

A
|| aw, /\x EHZB(Zr) <;§ “ EIFB(ZT)

where || §|[zen= (5, E)sen =.[B<2T) <&, &) dvol.

Now we remark that, for any & € Li(M) N A°(M), w,& is an s-form with
compact support and w,&—§& (r — + oo) in the strong sense. We have

©6) dw8)=wid¢-+2w,dw,\E& almost everywhere on M
(D W) =widé—=Qw.dw,\* &) almost everywhere on M
for any & e A'(M).

Lemma 2. For any & ¢ A'(M),

4w, dw, @&, V&) pan + (W I &, w,6) en +2(w. V&, WFE) por, =0,
where (V*8),=VV &, and (V§&),,=V &,.

Proof. We consider a 1-form 7 defined by

p=F&,)&dx".

Then the form %(wiy) is an (m—1)-form with compact support in B(2r).
By the Stokes’ theorem which is applicable to Lipschitz continuous forms
(cf. [41, [10]), we have

[ actwm=0.
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On the other hand, we have
d(x(win)= —*d(wyn).

Thus we have

[ xomn=]  waum=o.
M B(2r)
By (2) and (7), we have

dwin)=—wiVlV D& —w,(V.£)VE) —x Qw,dw, N x7)
and
« (dw, N\xp)=(dw,) 2
— )T
=(dw,).£,(V*¢%)
=(dw, ®8),('¢’)
=2dw,Q¢&, V&>.

Therefore we have
A w,dw, @&, V&) pan + w8, W, per + 2w V&, wVE)pen=0. O
From (3), (6) and (7), we have
Lemma 3. For any & € A(M),

<<W,.=%f, wrs»B(Zr)
= <<wr72€, Wr$>>B(2r) + <<w'rd§, Wrd§>>B(2r) + 2<<W7.d$, dwr /\ $>>B(Zr)
+ <<W75$: w7-5§>>B(27) - 2<<w15§a *(dwr /\ *E)»B(Zr)

where & denotes the Ricci transformation on A (M) defined by (%&),= R%E,.

Lemma 4. For a conformal vector field & with characteristic function
Aon M,

W, dE|[zon =24|W.VE|Ben —2m|w,2|3en

w208 I3 ery = m* || W, |3 en-

Proof. We have

(de, dg>= %{(Vis,-—msistf— pigs)
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-;—{4(71-5,»)(7151')—42:7/5,-}

(8¢, 05)=('¢)V’¢,)

=2'm’.
Thus we have the assertions. O

Let & be a conformal vector field on M with characteristic function
A.  Then we have, by the Schwarz inequality, Lemma 1 and Lemma 4,

|2{w,d&, dw, \EDpen |
§2|| wrdE”B(zr) “dwr/\SHB(Zr)

1w, -4, A

1 44
ZwFElzen —?m]|w,/'l||23(2,) +*r7“5”23(zr)
and
[2<<W75$9 * (dwr/\ * E)>>B(27) ]éz “ Wras ||B(27) H dwr/\ * S HB(Zr)
< 190,38 e+ 511, A €l

1 54
§—5—m2” w,|[5en +-rT 1€ 15en-

Thus we have, from Lemma 2 and Lemma 3,

(W, ZE, W& ) sen
= —&w,dw, ®&, V&) pan — 2w,V &, WV EY sen
+{w,d&, w,dE) par +2{w,dE, AW, N\EY pen
+{w, 08, w,08) par —2(w, 08, * (AW, N\ %)) per

1 84
= '—? Nw. V& %en —72—“5”%(%) —2||w V& Ben

+4 “ er’S HZB(ZT) —2m || er?. “33(27)
4

A
pr 1€ zen

1 2
- H WTV‘SnzB(Zr) + ’Z—m || W,.Z ”B(Zr) -

54
r2

1§ 3er

1
+m* | w, 2[5 _?mz W, Alsen —
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15

]. 2 4 2
= WP e+ g m(m =2 w2l — T2

r2

I€1zan-

Thus we have

Lemma 5. Let & be a conformal vector field on M with characteristic
Sfunction A and with finite global norm. If lim sup {w, %€, w,£) per < + o0,
then e

tim sup (v, 28, w,&)aan 211 7E F+4-m(m— "2 2y

From this lemma, we have

Theorem 1. Suppose that a complete non-compact Riemannian mani-
fold M has non-positive Ricci curvature. Then every conformal (or Killing)
vector field on M with finite global norm is a parallel vector field. More-
over, if M has negative Ricci curvature, then there is no non-zero conformal
(or Killing) vector field on M with finite global norm.

Remark. The Killing vector field case of the above theorem was
given in [11]. The above theorem is a generalization of well-known com-
pact case (cf. [3], [9]).

Since the length of a parallel vector filed is constant, we have
Corollary 1. Let M be a complete non-compact Riemannian manifold
with non-positive Ricci curvature. If there exists a non-zero conformal (or

Killing) vector field on M with finite global norm, then the volume of M is
finite.

Remark. Recently, H. Wu has proved the following theorem:

Theorem ([8]). Let M be a complete non-compact Riemannian mani-
fold which satisfies
-4
pZ+s

Ricci curvature =
where p denotes the distance from a fixed point of M and A and ¢ are positive
constants. Then M has infinite volume.

This Wu’s theorem is a generalization of the result of S.T. Yau [10].
From Corollary 1, we have

Corollary 2. Let M be a complete non-compact Riemannian manifold
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with non-positive Ricci curvature. If there exists a non-zero Killing vector
field on M with finite global norm, then the group of isometries of M is
compact.

Proof. The group of isometries of a complete Riemannian manifold
having finite volume is compact (cf. [2]). Thus, by this fact and Corollary
1, we have the assertion. O

We have an example:

Example 1. Let r, be a fixed positive number and f a function on R
satisfying

fey=[r® for r,<|rl.

Then [~ f2(r)dr=+oo and f” fHP)dr< +oo. Let M be a warped

product Riemannian manifold RX ,S% that is, ds®=dr®+ f*(r){d6*+
sin®dd¢*t. Then

the volume of M =J+w I” r” S(r) sin 0 drdb do
~ J0 JO

A vector fleld &= f(r)9/or on M is a conformal vector field. And, we
have

ll$i12=r° f f" f4r) sin6drdfdy
-~ Jo Jo

< oo,
By the method given in [6], we have

Theorem 2. Let M be a complete non-compact Riemannian manifold
having finite volume. If'¢ is a conformal vector field on M with non-negative
(or non-positive) characteristic function 2 and with finite global norm, then &
is a Killing vector field.

Proof. We have, for any r,

L o= ([, e et ([, (L) dor)”

<11€/lnan i— (Vol (M)



Conformal and Killing Vector Fields 467
where |£|=4+/(&, &) and Vol (M) denotes the volume of M. Thus we have

lim inf - J |&| dvol=0
B(r)

P+ 00 r

On the other hand, we have

j w? div & dvol l g_C_ |&| dvol
B(2r) r JB@n
and
div = —ma,

Therefore, we have

m I 2 dvol =0,

M

that is, 2=0. |

Remark. Theorem 2 holds without the finiteness of global norm of &.
This is pointed out by Professor T. Sunada. His method differs from our

method.

3. For a vector field & on M, we set

Bw:Vi{"j'l'Vj&—‘%(kak)gu
and
7= B,;§ dx*.
Then we have
Lemma 6. It holds that

Bij:Bji, g“Bii:Os
BijVi§j=<B, B,

PoB =T+ R+ (1= 2 )7 7.

By (2) and (7), we have

=— Wz(VkBkj)Ej - Wszj(VkEj) — % (2w, dw, A\ *7).
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Since j x0(w27))=0, we have
M

Lemma 7. For a vector field & on M,
(W, B, W,8) nory + (W, B, W, BY pary +4(w,dw, D E, BY pary =0
where (B) s=V"By;.
Thus we have

Theorem 3. Let M be a complete non-compact Riemannian manifold
of dimension m (=3) and & a vector field on M with finite global norm. & is
a conformal vector field if and only if & satisfies

®) V'CVksf+R,15’°+(1 —E)VfV,,suo.
m

Proof. If ¢ satisfies (8), then, by Lemma 1 and Lemma 7, we have

H WrBH?B(zr) = _4<<wrdwr ® 5, B>>B(27)
§4 H dwr ® E HB(ZT) ” WTB”B(Zr)

<2{#1dw. @€ an+ -1, Bllen

84 1
= lzen+ 5w, Blzen.
r 2
Thus we have
1 84
~ || er H?R(Zr) élé“ “ S HZB(ZH'
2 r
Letting r— + oo, we have || B|f=0. Therefore, we have B=0, that is, £ is
a conformal vector field on M. The converse is trivial. |
The following theorem is a corollary of the above theorem.

Theorem 4. Let M be a complete non-compact Riemannian manifold
and & a vector field on M with finite global norm. ¢& is a Killing vector field
if and only if & satisfies

re.&+Rig*=0 and V&=0.

Example 2. In the Euclidean 3-space E?, (8) is changed into

, 3. o 1 8 (&g _ -
® "Z=:1 (axk)2+3 ox? <kZ=:1 ax"> 0 U=L23.
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Thus, we may consider a vector field £ on E?® defined by
E=¢'0/ox'+&%9/ox* - & 9/ox?
where

&= (xl)z _ %(XZ)Z - %(xs)z_l_ 1

2___2_'_ 1\2 22_3 3\2
§~ 3(X)+(X) 3(x)+1
s 2 oy — 2 e g ()
&= 3(X) 3(x)+(x)+l-

Then we have ||§|’= + oo, and & satisfies (8)’, but £ is not a conformal
vector field on E°®.

Remark. Theorem 3 and Theorem 4 are generalizations of well-
known results in the compact cases (cf. [9]).

. 4. We show some examples in which the relations between the
volume of manifolds and the norms of Killing vector fields are discussed.
Let M be a warped product Riemannian manifold RX ;N of a 1
dimensional complete non-compact Riemannian manifold R and an m—1
dimensional compact Riemannian manifold N, where fis a positive func-
tion on R. Let (x!, x% ---,x™) denote a local coordinate system on M
such that (x% ---,x™) denotes a local coordinate system on N. The
components g,; of the metric tensor field g on M are expressed by

1
(g ij) = (_-
0

0
f Z(XI)haﬂ

where ,, denote the components of the metric tensor field # on N. Then
we have

) (2=<a, B=m),

the volume of M =j S0 (det (hp))' 2 dxtdxP - - dx™.
M

We consider a vector field & on M, that is,

E

Szél(xls xza Y xm)‘a__+5a(x1’ x27 Ct s xm) 9
ox’ ox®

and we have

(9) 51 = ‘51, Sa :fz(xl)haﬂ(x2, R xm)sﬁ.
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Lemma 8. A vector field £=£'9/ox'+£*d/ox* on M is a Killing
vector field if and only if it holds that

0&'ax'=0
S°h, 5 06%)0x" + 08 [ox =0
She (08 [0xP + I )+ [ (087 [0x"+ I 8) +2f"h. 6" =0,

where I, denote the components of the Levi-Civita connection on N with
respect to a local coordinate system (x%, - - -, x™) and [ denotes df(x")/dx".

Proof. A vector field & on M is a Killing vector field if and only if
it holds (5Y, that is,
4 3 1=0
Vlga—i—VaSl:O
Vagﬂ—l_Vﬂéa:O'

From the above facts and (9), we have the assertion. O

Example 3. Let f be the function on R defined by f(x')=e", and
M=RX,N. Let §=&5/0x* be a non-zero vector field on N satisfying
V&4V &,= —ah,, where I/ denotes the Levi-Civita connection on N and
a is a constant number. Then a vector field £=ad/ox'+& on M is a
Killing vector field. We have that Vol (M) = 4 co and [[|’= + oo.

Example 4. Let f'be the function on R defined by f(x")=exp (— (x")?),
and M =RXx ,N. We take a non-zero Killing vector field £=¢£=8/6x* on
N. Then the vector field £=£&=9/0x* on M is a Killing vector field. We
have that Vol (M)<+ oo and ||&|f< 4 0.

Example 5. Let r, be a fixed positive number, and let m, be a fixed
positive number such that

_.L‘<m0<~1—_
m—1 m—1

Let f be a function on R satisfying
JED=[x"|"" for r<T|x'|

‘We remark that

[ = oo, [ mpdan <+ oo
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Let £=£06/0x" be a non-zero Killing vector field on N. Then g=¢g=djox"
is a Killing vector field on M =R X N, and we have that Vol (M)= + oo
and [[£2||< + co.

Example 6. Let 1, be a fixed positive integer and ¢ a number such
that 0<{e<{2/(m—1). We remark that

0

i n- @ (g m-nym -1 Z n 9 < 4 oo

n="ng n=ng
o 0

Z n-(2+s)(n1/(m—l))m+1: Z n_(1+e—2/(m-1)):+oo.

n=ng n=ng

We consider a function f on R such that, for each integer n (>n,),

0 f(xH<n- (x| e (n, n41]

F)=n"m-n |x'| € [n4-n-2*9/10, n+9n-C+2/10]
fx=0 |x'| e (n4+n=C*, n41].
Then we have
8

e[ fronas e
n

n+l
_§_><n—(1+e—(2/<m—l>)£ fm+1(xl)dxlgn—(1+s—2/(m—1)).
10 Tn -

We also consider the function f on R defined by f(x')=exp (—(x")?.
Then we consider a function f on R such that, for each integer n (>n,),

0<f(x)gnt/m-n |x'| e (n, n+1]
Sty =nt/m=b %] & [ 41~ *9[10, n-9n~+9/10]
SeH=F@") x| € (n4n=C*9, nt11.

Let M=RX /N, and a Killing vector field £=£*9/0x* on N induces a
Killing vector field £=£°5/0x* on M. We have that Vol (M)<+ oo and

18] =+ oco.
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