Advanced Studies in Pure Mathematics 3, 1984 Geometry of Geodesics and Related Topics pp. 459-472

Conformal and Killing Vector Fields on Complete Non-compact Riemannian Manifolds

Shinsuke Yorozu

0. In this note, we introduce the notion of vector fields with finite global norms, in order to discuss the vector fields on non-compact Riemannian manifolds. It should seem to be natural notion because we have some generalizations of well-known results for compact Riemannian manifolds (cf. [3], [9]). These generalizations are our main results. Our discussions are restricted to conformal and Killing vector fields. We show some examples in which the relations between the volumes of complete non-compact Riemannian manifolds and the global norms of Killing vector fields are discussed. For Killing vector fields with finite global norms, the case of complete non-compact Riemannian manifolds without boundary has stated in [11], and the case of non-compact Riemannian manifolds with boundary has stated in [12]. Our idea is based on in [1], [4], [6] and [10]. The case of affine and projective vector fields with finite global norms may be discussed similarly, but this case is not stated in this note (cf. [13]).

The discussions of different point of views appeared in [5] and [7].

We shall be in C^{∞} -category. The manifolds considered are connected and orientable.

1. Let *M* be a complete non-compact Riemannian manifold (without boundary) of dimension *m*. We denote the Riemannian metric (resp. the Levi-Civita connection) on *M* by *g* (resp. *V*). Let g_{ij} denote the components of *g* with respect to a local coordinate system (x^1, \dots, x^m) , and (g^{ij}) denotes the inverse matrix of the matrix (g_{ij}) . We set $\nabla_i = \nabla_{\partial/\partial x^i}$ and $\nabla^i = g^{ij} \nabla_j$.

For two (0, s)-tensor fields T and S on M, we denote the local scalar product (resp. the global scalar product) of T and S by $\langle T, S \rangle$ (resp. $\langle T, S \rangle$), that is,

$$\langle T, S \rangle = \frac{1}{s!} T_{i_1 \cdots i_s} S^{i_1 \cdots i_s}$$

Received December 23, 1982. Revised April 15, 1983.

$$\langle\!\langle T,S\rangle\!\rangle = \int_{M} \langle T,S\rangle dvol$$

where $T_{i_1...i_s}$ and $S_{j_1...j_s}$ denote the components of T and S respectively, and

$$S^{i_1\cdots i_s} = g^{i_1j_1}\cdots g^{i_sj_s}S_{j_1\cdots j_s}$$

We set $||T||^2 = \langle \langle T, T \rangle$ and we remark that $||T||^2 \leq +\infty$.

Let $T \otimes S$ denote the tensor product of two tensor fields T and S, for example,

$$(T \otimes S)_{ij} = T_i S_j$$

for two (0, 1)-tensor fields T and S.

We denote the space of all s-forms on M by $\Lambda^{s}(M)$, and let $\Lambda^{s}_{0}(M)$ denote the subspace of $\Lambda^{s}(M)$ composed of forms with compact supports. Let $L_{2}^{s}(M)$ be the completion of $\Lambda^{s}_{0}(M)$ with respect to the scalar product $\langle \langle , \rangle \rangle$. The operator $d: \Lambda^{s}(M) \rightarrow \Lambda^{s+1}(M)$ denotes the exterior derivative and $\delta: \Lambda^{s}(M) \rightarrow \Lambda^{s-1}(M)$ is defined by

 $\delta = (-1)^{sm + m + 1} * d *,$

where * denotes the star operator. Then we have

$$\langle\!\langle d\xi, \eta \rangle\!\rangle = \langle\!\langle \xi, \delta\eta \rangle\!\rangle$$

for any $\xi \in \Lambda^{s}(M)$ and $\eta \in \Lambda^{s+1}(M)$, one of which has compact support. The Laplacian operator Δ is defined by

$$\Delta = d\delta + \delta d.$$

For a 1-form ξ , we have

(1)
$$(d\xi)_{ij} = \nabla_i \xi_j - \nabla_j \xi_i$$

(2)
$$(\delta\xi) = -\nabla^i \xi_i$$

(3)
$$(\Delta \xi)_i = -\nabla^j \nabla_j \xi_i + R_i^j \xi_j$$

where $R(\partial/\partial x^i, \partial/\partial x^j) \partial/\partial x^k = R_{kij}^h \partial/\partial x^h$, $R_{ki} = R_{khi}^h$, $R_i^j = g^{jk}R_{ki}$ and R_{ki} denote the components of the Ricci tensor of V. Here and hereafter, we use the Einstein summation convention.

Through this note, we identify the vector fields on M and its dual 1-forms with respect to g and they are represented by the same letters. For a vector field $\xi = \xi^i \partial/\partial x^i$ on M, we have its dual 1-form $\xi = \xi_j dx^j = g_{ji}\xi^i dx^j$.

Definition 1. A vector field ξ on M is called a vector field with *finite* global norm if its dual 1-form with respect to g belongs in $L_2^1(M) \cap \Lambda^1(M)$, i.e. $\xi \in L_2^1(M) \cap \Lambda^1(M)$.

Definition 2. A vector field ξ on M is called a *conformal vector field* with characteristic function λ if

$$\mathcal{L}_{\xi}g = 2\lambda g$$

where \mathscr{L} denotes the Lie derivative operator and λ is a function on M. If λ is vanishes identically, ξ is called a *Killing vector field*, that is,

$$\mathscr{L}_{\varepsilon}g=0.$$

We have that (4) and (5) are expressed locally by

(4)' $\nabla_i \xi_j + \nabla_j \xi_i = 2\lambda g_{ij}$

and

respectively.

2. Let o be a point of M and fix it. For each point $p \in M$, we denote by $\rho(p)$ the geodesic distance from o to p. We set

$$B(r) = \{ p \in M | \rho(p) < r \}$$

for any r > 0. We may choose a C^{∞} -function μ on **R** satisfying

$0 \leq \mu(t) \leq 1$	for any $t \in \mathbf{R}$
$\mu(t) = 1$	for $t \leq 1$
$\mu(t) = 0$	for $t \geq 2$.

For every r > 0, we set

$$w_r(p) = \mu(\rho(p)/r)$$

for any $p \in M$, and then w_r is a Lipschitz continuous function on M. The function w_r has the following properties:

> $0 \leq w_r(p) \leq 1 \qquad \text{for any } p \in M$ supp $w_r \subset B(2r)$ $w_r(p) = 1 \qquad \text{for any } p \in B(r)$

$$\lim_{r \to \infty} w_r = 1$$

$$|dw_r| \leq \frac{C}{r} \qquad \text{almost everywhere on } M$$

where C > 0 is a constant independent of r (cf. [1], [4], [10]). Then we have

Lemma 1 (cf. [1], [4]). For any $\xi \in \Lambda^{s}(M)$, there exists a positive constant A independent of r such that

$$\|dw_{r} \otimes \xi\|_{B(2r)}^{2} \leq \frac{A}{r^{2}} \|\xi\|_{B(2r)}^{2}$$
$$\|dw_{r} \wedge \xi\|_{B(2r)}^{2} \leq \frac{A}{r^{2}} \|\xi\|_{B(2r)}^{2}$$
$$\|dw_{r} \wedge \xi\|_{B(2r)}^{2} \leq \frac{A}{r^{2}} \|\xi\|_{B(2r)}^{2}$$

where $\|\xi\|_{B(2r)}^2 = \langle\!\langle \xi, \xi \rangle\!\rangle_{B(2r)} = \int_{B(2r)} \langle \xi, \xi \rangle dvol.$

Now we remark that, for any $\xi \in L_2^s(M) \cap \Lambda^s(M)$, $w_r \xi$ is an s-form with compact support and $w_r \xi \to \xi$ $(r \to +\infty)$ in the strong sense. We have

(6) $d(w_r^2\xi) = w_r^2 d\xi + 2w_r dw_r \wedge \xi$

almost everywhere on ${\cal M}$

(7) $\delta(w_r^2\xi) = w_r^2\delta\xi - *(2w_rdw_r\wedge *\xi)$ almost everywhere on M

for any $\xi \in \Lambda^1(M)$.

Lemma 2. For any $\xi \in \Lambda^1(M)$,

$$4\langle\!\langle w_r dw_r \otimes \xi, \nabla \xi \rangle\!\rangle_{B(2r)} + \langle\!\langle w_r \nabla^2 \xi, w_r \xi \rangle\!\rangle_{B(2r)} + 2\langle\!\langle w_r \nabla \xi, w_r \nabla \xi \rangle\!\rangle_{B(2r)} = 0,$$

where $(\nabla^2 \xi)_i = \nabla^j \nabla_j \xi_i$ and $(\nabla \xi)_{ij} = \nabla_i \xi_j$.

Proof. We consider a 1-form η defined by

$$\eta = (\nabla_i \xi_i) \xi^j dx^i.$$

Then the form $*(w_r^2\eta)$ is an (m-1)-form with compact support in B(2r). By the Stokes' theorem which is applicable to Lipschitz continuous forms (cf. [4], [10]), we have

$$\int_{\mathcal{M}} d(*(w_r^2\eta)) = 0.$$

On the other hand, we have

$$d(*(w_r^2\eta)) = -*\delta(w_r^2\eta).$$

Thus we have

$$\int_{\mathcal{M}} * \delta(w_r^2 \eta) = \int_{B(2r)} * \delta(w_r^2 \eta) = 0.$$

By (2) and (7), we have

$$\delta(w_r^2\eta) = -w_r^2(\overline{V}^i\overline{V}_i\xi_j)\xi^j - w_r^2(\overline{V}_i\xi_j)(\overline{V}^i\xi^j) - *(2w_rdw_r\wedge *\eta)$$

and

Therefore we have

$$4\langle\!\langle w_r dw_r \otimes \xi, \nabla \xi \rangle\!\rangle_{B^{(2r)}} + \langle\!\langle w_r \nabla^2 \xi, w_r \xi \rangle\!\rangle_{B^{(2r)}} + 2\langle\!\langle w_r \nabla \xi, w_r \nabla \xi \rangle\!\rangle_{B^{(2r)}} = 0. \quad \Box$$

From (3), (6) and (7), we have

Lemma 3. For any $\xi \in \Lambda^1(M)$,

$$\begin{split} \langle \langle w_r \mathscr{R}\xi, w_r \xi \rangle \rangle_{B(2r)} \\ &= \langle \langle w_r \nabla^2 \xi, w_r \xi \rangle \rangle_{B(2r)} + \langle \langle w_r d\xi, w_r d\xi \rangle \rangle_{B(2r)} + 2 \langle \langle w_r d\xi, dw_r \wedge \xi \rangle \rangle_{B(2r)} \\ &+ \langle \langle w_r \delta\xi, w_r \delta\xi \rangle \rangle_{B(2r)} - 2 \langle \langle w_r \delta\xi, * (dw_r \wedge *\xi) \rangle \rangle_{B(2r)} \end{split}$$

where \mathscr{R} denotes the Ricci transformation on $\Lambda^{i}(M)$ defined by $(\mathscr{R}\xi)_{i} = R_{i}^{h}\xi_{h}$.

Lemma 4. For a conformal vector field ξ with characteristic function λ on M,

$$\| w_r d\xi \|_{B(2r)}^2 = 4 \| w_r \nabla \xi \|_{B(2r)}^2 - 2m \| w_r \lambda \|_{B(2r)}^2$$

$$\| w_r \delta \xi \|_{B(2r)}^2 = m^2 \| w_r \lambda \|_{B(2r)}^2.$$

Proof. We have

$$\langle d\xi, d\xi \rangle = \frac{1}{2} \{ (\nabla_i \xi_j - \nabla_j \xi_i) (\nabla^i \xi^j - \nabla^j \xi^i) \}$$

$$= \frac{1}{2} \{4(\nabla_i \xi_j)(\nabla^i \xi^j) - 4\lambda \nabla^j \xi_j\}$$
$$= 4\langle \nabla \xi, \nabla \xi \rangle - 2m\lambda^2$$
$$\langle \delta \xi, \delta \xi \rangle = (\nabla^i \xi_i)(\nabla^j \xi_j)$$
$$= \lambda^2 m^2.$$

Thus we have the assertions.

Let ξ be a conformal vector field on M with characteristic function λ . Then we have, by the Schwarz inequality, Lemma 1 and Lemma 4,

$$|2\langle\!\langle w_r d\xi, dw_r \wedge \xi \rangle\!\rangle_{B^{(2r)}}| \\ \leq 2||w_r d\xi||_{B^{(2r)}} ||dw_r \wedge \xi||_{B^{(2r)}} \\ \leq \frac{1}{4} ||w_r d\xi||_{B^{(2r)}}^2 + 4||dw_r \wedge \xi||_{B^{(2r)}}^2 \\ \leq ||w_r \nabla \xi||_{B^{(2r)}}^2 - \frac{1}{2}m||w_r \lambda||_{B^{(2r)}}^2 + \frac{4A}{r^2} ||\xi||_{B^{(2r)}}^2$$

and

$$\begin{split} |2\langle\!\langle w_r \delta \xi, *(dw_r \wedge *\xi) \rangle\!\rangle_{B(2r)} &| \leq 2 \| w_r \delta \xi \|_{B(2r)} \| dw_r \wedge *\xi \|_{B(2r)} \\ &\leq \frac{1}{5} \| w_r \delta \xi \|_{B(2r)}^2 + 5 \| dw_r \wedge *\xi \|_{B(2r)}^2 \\ &\leq \frac{1}{5} m^2 \| w_r \lambda \|_{B(2r)}^2 + \frac{5A}{r^2} \| \xi \|_{B(2r)}^2. \end{split}$$

Thus we have, from Lemma 2 and Lemma 3,

$$\begin{split} \langle\!\langle w_r \mathscr{R}\xi, w_r \xi \rangle\!\rangle_{B(2r)} &= -4 \langle\!\langle w_r dw_r \otimes \xi, \nabla \xi \rangle\!\rangle_{B(2r)} - 2 \langle\!\langle w_r \nabla \xi, w_r \nabla \xi \rangle\!\rangle_{B(2r)} \\ &+ \langle\!\langle w_r d\xi, w_r d\xi \rangle\!\rangle_{B(2r)} + 2 \langle\!\langle w_r d\xi, dw_r \wedge \xi \rangle\!\rangle_{B(2r)} \\ &+ \langle\!\langle w_r \delta\xi, w_r \delta\xi \rangle\!\rangle_{B(2r)} - 2 \langle\!\langle w_r \delta\xi, * (dw_r \wedge *\xi) \rangle\!\rangle_{B(2r)} \\ &\geq -\frac{1}{2} \|w_r \nabla \xi\|_{B(2r)}^2 - \frac{8A}{r^2} \|\xi\|_{B(2r)}^2 - 2 \|w_r \nabla \xi\|_{B(2r)}^2 \\ &+ 4 \|w_r \nabla \xi\|_{B(2r)}^2 - 2m \|w_r \lambda\|_{B(2r)}^2 \\ &- \|w_r \nabla \xi\|_{B(2r)}^2 + \frac{1}{2} m \|w_r \lambda\|_{B(2r)}^2 - \frac{4A}{r^2} \|\xi\|_{B(2r)}^2 \\ &+ m^2 \|w_r \lambda\|_{B(2r)}^2 - \frac{1}{5} m^2 \|w_r \lambda\|_{B(2r)}^2 - \frac{5A}{r^2} \|\xi\|_{B(2r)}^2 \end{split}$$

Conformal and Killing Vector Fields

$$=\frac{1}{2}\|w_{r}\nabla\xi\|_{B(2r)}^{2}+\frac{4}{5}m\left(m-\frac{15}{8}\right)\|w_{r}\lambda\|_{B(2r)}^{2}-\frac{17A}{r^{2}}\|\xi\|_{B(2r)}^{2}.$$

Thus we have

Lemma 5. Let ξ be a conformal vector field on M with characteristic function λ and with finite global norm. If $\limsup_{r \to +\infty} \langle \langle w_r \mathscr{R} \xi, w_r \xi \rangle \rangle_{B(2r)} < +\infty$, then

$$\limsup_{r \to +\infty} \langle\!\langle w_r \mathscr{R}\xi, w_r \xi \rangle\!\rangle_{B(2r)} \geq \frac{1}{2} \|\nabla \xi\|^2 + \frac{4}{5} m \left(m - \frac{15}{8}\right) \|\lambda\|^2.$$

From this lemma, we have

Theorem 1. Suppose that a complete non-compact Riemannian manifold M has non-positive Ricci curvature. Then every conformal (or Killing) vector field on M with finite global norm is a parallel vector field. Moreover, if M has negative Ricci curvature, then there is no non-zero conformal (or Killing) vector field on M with finite global norm.

Remark. The Killing vector field case of the above theorem was given in [11]. The above theorem is a generalization of well-known compact case (cf. [3], [9]).

Since the length of a parallel vector filed is constant, we have

Corollary 1. Let M be a complete non-compact Riemannian manifold with non-positive Ricci curvature. If there exists a non-zero conformal (or Killing) vector field on M with finite global norm, then the volume of M is finite.

Remark. Recently, H. Wu has proved the following theorem:

Theorem ([8]). Let M be a complete non-compact Riemannian manifold which satisfies

Ricci curvature
$$\geq \frac{-\tilde{A}}{\rho^{2+\epsilon}}$$

where ρ denotes the distance from a fixed point of M and \tilde{A} and ε are positive constants. Then M has infinite volume.

This Wu's theorem is a generalization of the result of S.T. Yau [10]. From Corollary 1, we have

Corollary 2. Let M be a complete non-compact Riemannian manifold

with non-positive Ricci curvature. If there exists a non-zero Killing vector field on M with finite global norm, then the group of isometries of M is compact.

Proof. The group of isometries of a complete Riemannian manifold having finite volume is compact (cf. [2]). Thus, by this fact and Corollary 1, we have the assertion. \Box

We have an example:

Example 1. Let r_0 be a fixed positive number and f a function on R satisfying

$$f(r) = |r|^{-3/8}$$
 for $r_0 < |r|$.

Then $\int_{-\infty}^{+\infty} f^2(r)dr = +\infty$ and $\int_{-\infty}^{+\infty} f^4(r)dr < +\infty$. Let *M* be a warped product Riemannian manifold $\mathbf{R} \times_f S^2$, that is, $ds^2 = dr^2 + f^2(r) \{ d\theta^2 + \sin^2 \theta \, d\varphi^2 \}$. Then

the volume of
$$M = \int_{-\infty}^{+\infty} \int_{0}^{\pi} \int_{0}^{2\pi} f^{2}(r) \sin \theta \, dr \, d\theta \, d\varphi$$

= $+\infty$.

A vector field $\xi = f(r) \partial/\partial r$ on M is a conformal vector field. And, we have

$$\|\xi\|^2 = \int_{-\infty}^{+\infty} \int_0^{\pi} \int_0^{2\pi} f^4(r) \sin \theta \, dr \, d\theta \, d\varphi$$

<+\infty.

By the method given in [6], we have

Theorem 2. Let M be a complete non-compact Riemannian manifold having finite volume. If ξ is a conformal vector field on M with non-negative (or non-positive) characteristic function λ and with finite global norm, then ξ is a Killing vector field.

Proof. We have, for any r,

$$\frac{1}{r} \int_{B^{(2r)}} |\xi| dvol \leq \left(\int_{B^{(2r)}} \langle \xi, \xi \rangle dvol \right)^{1/2} \left(\int_{B^{(2r)}} \left(\frac{1}{r} \right)^2 dvol \right)^{1/2}$$
$$\leq \|\xi\|_{B^{(2r)}} \frac{1}{r} (\operatorname{Vol}(M))^{1/2}$$

where $|\xi| = \sqrt{\langle \xi, \xi \rangle}$ and Vol (M) denotes the volume of M. Thus we have

$$\liminf_{r \to +\infty} \frac{1}{r} \int_{B(2r)} |\xi| \, dvol = 0$$

On the other hand, we have

$$\left|\int_{B(2r)} w_r^2 \operatorname{div} \xi \, dvol \right| \leq \frac{C}{r} \int_{B(2r)} |\xi|^2 dvol$$

and

div
$$\xi = -m\lambda$$
.

Therefore, we have

$$m\int_{M}\lambda\,dvol=0,$$

that is, $\lambda \equiv 0$.

Remark. Theorem 2 holds without the finiteness of global norm of ξ . This is pointed out by Professor T. Sunada. His method differs from our method.

3. For a vector field ξ on *M*, we set

$$B_{ij} = \nabla_i \xi_j + \nabla_j \xi_i - \frac{2}{m} (\nabla^k \xi_k) g_{ij}$$

and

$$\hat{\eta} = B_{ij}\xi^j dx^i.$$

Then we have

Lemma 6. It holds that

$$B_{ij} = B_{ji}, \qquad g^{ij}B_{ij} = 0,$$

$$B_{ij}\nabla^{i}\xi^{j} = \langle B, B \rangle,$$

$$\nabla^{k}B_{kj} = \nabla^{k}\nabla_{k}\xi_{j} + R_{j}^{k}\xi_{k} + \left(1 - \frac{2}{m}\right)\nabla_{j}\nabla^{k}\xi_{k}.$$

By (2) and (7), we have

$$\delta(w_r^2\hat{\eta}) = w_r^2\delta\hat{\eta} - *(2w_r\,dw_r\,\wedge\,*\,\hat{\eta})$$

= $-w_r^2(\nabla^k B_{kj})\xi^j - w_r^2 B_{kj}(\nabla^k\xi^j) - *(2w_r\,dw_r\,\wedge\,*\,\hat{\eta}).$

nd

Since $\int_{M} * \delta(w_r^2 \hat{\eta}) = 0$, we have

Lemma 7. For a vector field ξ on M,

$$\langle\!\langle w_r B, w_r \xi \rangle\!\rangle_{B(2r)} + \langle\!\langle w_r B, w_r B \rangle\!\rangle_{B(2r)} + 4 \langle\!\langle w_r d w_r \otimes \xi, B \rangle\!\rangle_{B(2r)} = 0$$

where $(\hat{B})_j = \nabla^k B_{kj}$.

Thus we have

Theorem 3. Let M be a complete non-compact Riemannian manifold of dimension $m (\geq 3)$ and ξ a vector field on M with finite global norm. ξ is a conformal vector field if and only if ξ satisfies

(8)
$$\nabla^k \nabla_k \xi^i + R^i_k \xi^k + \left(1 - \frac{2}{m}\right) \nabla^i \nabla_k \xi^k = 0.$$

Proof. If ξ satisfies (8), then, by Lemma 1 and Lemma 7, we have

$$\|w_{r}B\|_{B(2r)}^{2} = -4\langle\!\langle w_{r}dw_{r}\otimes\xi,B\rangle\!\rangle_{B(2r)} \\ \leq 4\|dw_{r}\otimes\xi\|_{B(2r)}\|w_{r}B\|_{B(2r)} \\ \leq 2\Big\{4\|dw_{r}\otimes\xi\|_{B(2r)}^{2} + \frac{1}{4}\|w_{r}B\|_{B(2r)}^{2}\Big\} \\ \leq \frac{8A}{r^{2}}\|\xi\|_{B(2r)}^{2} + \frac{1}{2}\|w_{r}B\|_{B(2r)}^{2}.$$

Thus we have

$$\frac{1}{2} \|w_r B\|_{B(2r)}^2 \leq \frac{8A}{r^2} \|\xi\|_{B(2r)}^2.$$

Letting $r \to +\infty$, we have $||B||^2 = 0$. Therefore, we have B=0, that is, ξ is a conformal vector field on M. The converse is trivial.

The following theorem is a corollary of the above theorem.

Theorem 4. Let M be a complete non-compact Riemannian manifold and ξ a vector field on M with finite global norm. ξ is a Killing vector field if and only if ξ satisfies

$$\nabla^k \nabla_k \xi^i + R^i_k \xi^k = 0 \quad and \quad \nabla_i \xi^i = 0.$$

Example 2. In the Euclidean 3-space E^3 , (8) is changed into

(8)'
$$\sum_{k=1}^{3} \frac{\partial^2 \xi^j}{(\partial x^k)^2} + \frac{1}{3} \frac{\partial}{\partial x^j} \left(\sum_{k=1}^{3} \frac{\partial \xi^k}{\partial x^k} \right) = 0 \quad (j = 1, 2, 3).$$

Thus, we may consider a vector field ξ on E^{3} defined by

 $\xi = \xi^1 \partial/\partial x^1 + \xi^2 \partial/\partial x^2 + \xi^3 \partial/\partial x^3$

where

$$\xi^{1} = (x^{1})^{2} - \frac{2}{3}(x^{2})^{2} - \frac{2}{3}(x^{3})^{2} + 1$$

$$\xi^{2} = -\frac{2}{3}(x^{1})^{2} + (x^{2})^{2} - \frac{2}{3}(x^{3})^{2} + 1$$

$$\xi^{3} = -\frac{2}{3}(x^{1})^{2} - \frac{2}{3}(x^{2})^{2} + (x^{3})^{2} + 1$$

Then we have $\|\xi\|^2 = +\infty$, and ξ satisfies (8)', but ξ is not a conformal vector field on E^3 .

Remark. Theorem 3 and Theorem 4 are generalizations of well-known results in the compact cases (cf. [9]).

4. We show some examples in which the relations between the volume of manifolds and the norms of Killing vector fields are discussed.

Let M be a warped product Riemannian manifold $\mathbf{R} \times_f N$ of a 1 dimensional complete non-compact Riemannian manifold \mathbf{R} and an m-1 dimensional compact Riemannian manifold N, where f is a positive function on \mathbf{R} . Let (x^1, x^2, \dots, x^m) denote a local coordinate system on M such that (x^2, \dots, x^m) denotes a local coordinate system on N. The components g_{ij} of the metric tensor field g on M are expressed by

$$(g_{ij}) = \left(\frac{1}{0} \middle| \frac{0}{f^2(x^1)h_{\alpha\beta}}\right) \qquad (2 \leq \alpha, \beta \leq m),$$

where $h_{\alpha\beta}$ denote the components of the metric tensor field h on N. Then we have

the volume of
$$M = \int_M f^{m-1}(x^1) (\det(h_{\alpha\beta}))^{1/2} dx^1 dx^2 \cdots dx^m.$$

We consider a vector field ξ on M, that is,

$$\xi = \xi^1(x^1, x^2, \cdots, x^m) \frac{\partial}{\partial x^1} + \xi^{\alpha}(x^1, x^2, \cdots, x^m) \frac{\partial}{\partial x^{\alpha}},$$

and we have

(9)
$$\xi_1 = \xi^1, \qquad \xi_{\alpha} = f^2(x^1) h_{\alpha\beta}(x^2, \cdots, x^m) \xi^{\beta}.$$

S. Yorozu

Lemma 8. A vector field $\xi = \xi^1 \partial/\partial x^1 + \xi^\alpha \partial/\partial x^\alpha$ on M is a Killing vector field if and only if it holds that

$$\begin{aligned} &\partial \xi^{1} / \partial x^{1} = 0 \\ &f^{2} h_{\alpha\beta} \, \partial \xi^{\beta} / \partial x^{1} + \partial \xi^{1} / \partial x^{\alpha} = 0 \\ &f h_{\alpha\gamma} (\partial \xi^{\gamma} / \partial x^{\beta} + \Gamma_{\beta\gamma}^{\gamma} \xi^{\gamma}) + f h_{\beta\gamma} (\partial \xi^{\gamma} / \partial x^{\alpha} + \Gamma_{\alpha\gamma}^{\gamma} \xi^{\gamma}) + 2f' h_{\alpha\beta} \xi^{1} = 0, \end{aligned}$$

where $\Gamma_{\alpha\beta}^{r}$ denote the components of the Levi-Civita connection on N with respect to a local coordinate system (x^2, \dots, x^m) and f' denotes $df(x^1)/dx^1$.

Proof. A vector field ξ on M is a Killing vector field if and only if it holds (5)', that is,

$$\begin{aligned}
\nabla_1 \xi_1 &= 0 \\
\nabla_1 \xi_a + \nabla_a \xi_1 &= 0 \\
\nabla_a \xi_a + \nabla_a \xi_a &= 0.
\end{aligned}$$

Π

From the above facts and (9), we have the assertion.

Example 3. Let f be the function on \mathbb{R} defined by $f(x^1) = e^{x^1}$, and $M = \mathbb{R} \times_f N$. Let $\tilde{\xi} = \xi^{\alpha} \partial/\partial x^{\alpha}$ be a non-zero vector field on N satisfying $\tilde{V}_{\alpha} \tilde{\xi}_{\beta} + \tilde{V}_{\beta} \tilde{\xi}_{\alpha} = -ah_{\alpha\beta}$ where \tilde{V} denotes the Levi-Civita connection on N and a is a constant number. Then a vector field $\xi = a \partial/\partial x^1 + \tilde{\xi}$ on M is a Killing vector field. We have that $\operatorname{Vol}(M) = +\infty$ and $\|\xi\|^2 = +\infty$.

Example 4. Let f be the function on **R** defined by $f(x^1) = \exp(-(x^1)^2)$, and $M = \mathbf{R} \times_f N$. We take a non-zero Killing vector field $\tilde{\xi} = \xi^{\alpha} \partial/\partial x^{\alpha}$ on N. Then the vector field $\xi = \xi^{\alpha} \partial/\partial x^{\alpha}$ on M is a Killing vector field. We have that $\operatorname{Vol}(M) < +\infty$ and $\|\xi\|^2 < +\infty$.

Example 5. Let r_0 be a fixed positive number, and let m_0 be a fixed positive number such that

$$\frac{1}{m+1} < m_0 < \frac{1}{m-1}.$$

Let f be a function on **R** satisfying

 $f(x^1) = |x^1|^{-m_0}$ for $r_0 < |x^1|$.

We remark that

$$\int_{r_0}^{+\infty} f^{m-1}(x^1) dx^1 = +\infty, \qquad \int_{r_0}^{+\infty} f^{m+1}(x^1) dx^1 < +\infty.$$

Let $\tilde{\xi} = \xi^{\alpha} \partial/\partial x^{\alpha}$ be a non-zero Killing vector field on N. Then $\xi = \xi^{\alpha} \partial/\partial x^{\alpha}$ is a Killing vector field on $M = \mathbf{R} \times_f N$, and we have that $\operatorname{Vol}(M) = +\infty$ and $\|\xi^2\| < +\infty$.

Example 6. Let n_0 be a fixed positive integer and ε a number such that $0 < \varepsilon < 2/(m-1)$. We remark that

$$\sum_{n=n_0}^{\infty} n^{-(2+\epsilon)} (n^{1/(m-1)})^{m-1} = \sum_{n=n_0}^{\infty} n^{-(1+\epsilon)} < +\infty$$
$$\sum_{n=n_0}^{\infty} n^{-(2+\epsilon)} (n^{1/(m-1)})^{m+1} = \sum_{n=n_0}^{\infty} n^{-(1+\epsilon-2/(m-1))} = +\infty.$$

We consider a function \hat{f} on **R** such that, for each integer n (> n_0),

$$0 \leq \hat{f}(x^{1}) \leq n^{1/(m-1)} \qquad |x^{1}| \in (n, n+1]$$

$$\hat{f}(x^{1}) = n^{1/(m-1)} \qquad |x^{1}| \in [n + n^{-(2+\epsilon)}/10, n + 9n^{-(2+\epsilon)}/10]$$

$$\hat{f}(x = 0 \qquad |x^{1}| \in (n + n^{-(2+\epsilon)}, n+1].$$

Then we have

$$\frac{\frac{8}{10}}{\frac{8}{10}} \times n^{-(1+\epsilon)} \leq \int_{n}^{n+1} \hat{f}^{m-1}(x^{1}) dx^{1} \leq n^{-(1+\epsilon)}$$
$$\frac{\frac{8}{10}}{\frac{8}{10}} \times n^{-(1+\epsilon-(2/(m-1)))} \leq \int_{n}^{n+1} \hat{f}^{m+1}(x^{1}) dx^{1} \leq n^{-(1+\epsilon-2/(m-1))}.$$

We also consider the function \tilde{f} on **R** defined by $\tilde{f}(x^1) = \exp(-(x^1)^2)$. Then we consider a function f on **R** such that, for each integer n (> n_0),

$$0 < f(x^{1}) \le n^{1/(m-1)} \qquad |x^{1}| \in (n, n+1]$$

$$f(x^{1}) = n^{1/(m-1)} \qquad |x^{1}| \in [n + n^{-(2+\epsilon)}/10, n + 9n^{-(2+\epsilon)}/10]$$

$$f(x^{1}) = \tilde{f}(x^{1}) \qquad |x^{1}| \in (n + n^{-(2+\epsilon)}, n+1].$$

Let $M = \mathbf{R} \times_{f} N$, and a Killing vector field $\xi = \xi^{\alpha} \partial/\partial x^{\alpha}$ on N induces a Killing vector field $\xi = \xi^{\alpha} \partial/\partial x^{\alpha}$ on M. We have that $\operatorname{Vol}(M) < +\infty$ and $\|\xi\|^{2} = +\infty$.

References

- A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Etudes Sci. Publ. Math., 25 (1965), 313-362.
- [2] G. Averous and S. Kobayashi, On automorphisms of spaces of nonpositive curvature with finite volume, Differential Geometry and Relativity (Eds. Cahen and Flato), 19-26, D. Reidel Publ. Company, Dordrecht Holland, 1976.

S. Yorozu

- [3] S. Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc., 52 (1946), 776–797.
- [4] J. Dodziuk, Vanishing theorems for square-integrable harmonic forms, Geometry and Analysis, Papers dedicated to the memory of V. K. Patodi, 21-27, Springer-Verlag, 1981.
- [5] G. Gigante, Remarks on holomorphic vector fields on non-compact manifolds, Rend. Sem. Mat. Univ. Padova, 52 (1974), 211–218.
- [6] L. Kaup, On Stokes' thorem for noncompact manifolds, Proc. Amer. Math. Soc., 82 (1981), 487–490.
- [7] H. Wu, A remark on the Bochner technique in differential geometry, Proc. Amer. Math. Soc., 78 (1980), 403-408.
- [8] —, On the volume of a noncompact manifold, Duke Math. J., 49 (1982), 71-78.
- [9] K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker, INC., New York, 1970.
- [10] S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), 659-670.
- [11] S. Yorozu, Killing vector fields on complete Riemannian manifolds, Proc. Amer. Math. Soc., 84 (1982), 115-120.
- [12] —, Killing vector fields on non-compact Riemannian manifolds with boundary, Ködai Math. J., 5 (1982), 426–433.
- [13] —, Affine and projective vector fields on complete non-compact Riemannian manifolds, Yokohama Math. J., 31 (1983), 41–46.

Department of Mathematics College of Liberal Arts Kanazawa University Kanazawa 920, Japan