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Conformal and Killing Vector Fields on Complete 
Non-compact Riemannian Manifolds 

Shinsuke Yorozu 

o. In this note, we introduce the notion of vector fields with finite 
global norms, in order to discuss the vector fields on non-compact 
Riemannian manifolds. It should seem to be natural notion because we 
have some generalizations of well-known results for compact Riemannian 
manifolds (cf. [3], [9]). These generalizations are our main results. Our 
discussions are restricted to conformal and Killing vector fields. We 
show some examples in which the relations between the volumes of com­
plete non-compact Riemannian manifolds and the global norms of Killing 
vector fields are discussed. For Killing vector fields with finite global 
norms, the case of complete non-compact Riemannian manifolds without 
boundary has stated in [11], and the case of non-compact Riemannian 
manifolds with boundary has stated in [12]. Our idea is based on in [1], 
[4], [6] and [10]. The case of affine and projective vector fields with finite 
global norms may be discussed similarly, but this case is not stated in this 
note (cf. [13]). 

The discussions of different point of views appeared in [5] and [7]. 
We shall be in Coo-category. The manifolds considered are connected 

and orientable. 

1. Let M be a complete non-compact Riemannian manifold (without 
boundary) of dimension m. We denote the Riemannian metric (resp. the 
Levi-Civita connection) on M by g (resp. 17). Let gij denote the com­
ponents of g with respect to a local coordinate system (xl, ... , xm), and 
(gij) denotes the inverse matrix of the matrix (gij). We set l7i=17a/axi 
and l7i=giipj. 

For two (0, s)-tensor fields T and S on M, we denote the local scalar 
product (resp. the global scalar product) of T and S by < T, S) (resp. ((T, 
S»), that is, 
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«T, S))= ff[ <T, S> duol 

where Ti .... i , and Sh ... is denote the components of T and S respectively, 
and 

We set II T112= «T, T)) and we remark that II TW:::: + 00. 

Let T0 S denote the tensor product of two tensor fields T and S, for 
example, 

(T0S)ij=TiSj 

for two (0, I)-tensor fields T and S. 
We denote the space of all s-forms on M by A'(M), and let A~(M) 

denote the subspace of A'(M) composed of forms with compact supports. 
Let L~(M) be the completion of A~(M) with respect to the scalar product 
« ,)). The operator d: AS(M)~AS+\M) denotes the exterior derivative 
and 0: A'(M)~As-1(M) is defined by 

where * denotes the star operator. Then we have 

«dt;, 7)))= «t;, (57))) 

for any t; E A'(M) and 7) E As+ 1(M), one of which has compact support. 
The Laplacian operator LI is defined by 

(1) 

(2) 

(3) 

For a I-form t;, we have 

(dt;)ij = Vit;j - f7Ai 

(at;) = - Vit;i 

(Llt;)i= -VjVjt;i+R{t;j 

where R(a/axi, a/axj)a/axk=R~ij a/ax\ Rki=R~hi' R{=gjkRki and Rki 
denote the components of the Ricci tensor of V. Here and hereafter, we 
use the Einstein summation convention. 

Through this note, we identify the vector fields on M and its dual 
I-forms with respect to g and they are represented by the same letters. 
For a vector field t;=t;i a/axi on M, we have its dual I-form t;=t;j dxj = 
gjit;i dxj. 
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Definition 1. A vector field ~ on M is called a vector field with finite 
global norm if its dual I-form with respect to g belongs in L~(M) n Al(M), 
i.e. ~ E L~(M) n A1(M). 

Definition 2. A vector field ~ on M is called a conformal vector field 
with characteristic function A if 

(4) 

where if' denotes the Lie derivative operator and A is a function on M. 
If A is vanishes identically, ~ is called a Killing vector field, that is, 

(5) 

(4)' 

and 

(5)' 

if'<g=O. 

We have that (4) and (5) are expressed locally by 

f7i~j + f7 i~i= 2Agij 

respectively. 

2. Let 0 be a point of M and fix it. For each point P EM, we 
denote by pep) the geodesic distance from 0 to p. We set 

B(r)={p E Mjp(p)<r} 

for any r >0. We may choose a C=-function p on R satisfying 

For every r >0, we set 

O:S:p(t):S: I 

p(t)= 1 

p(t)=O 

for any t E R 

for t;;:;; I 
for t~2. 

for any p E M, and then Wr is a Lipschitz continuous function on M. 
The function W T has the following properties: 

O:S:WT(p):S: 1 for any p EM 

supp wT cB(2r) 

WT(p) = 1 for any p E B(r) 



462 

lim wr=I 

C 
Idwrl<­

r 
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almost everywhere on M 

where C >0 is a constant independent of r (cf. [1], [4], [10]). Then we 
have 

Lemma 1 (cf. [1], [4]). For any ~ E A'(M), there exists a positive 
constant A independent of r such that 

II dw r 0 ~ 1I~(2r) < ~ II ~ 1I~(2r) 
r 

where 1I~11~(2r)=«~' ~»B(2r)=f <~, ~> duol. B(2r) 

Now we remark that, for any ~ E L;(M) n A'(M), wr~ is an s-form with 
compact support and w r~-+~ (r -+ + 00) in the strong sense. We have 

(6) d(w;~)=w;d~+2wrdwrl\~ 

(7) o( w;~) = w;o~ - * (2w rdw r 1\ * ~) 
for any ~ E Al(M). 

Lemma 2. For any ~ E Al(M), 

almost everywhere on M 

almost everywhere on M 

4«wr dwr 0~, J7~» B(2r) + «wrJ72~, wr~» B(2r) +2((wrJ7~, wrJ7~)) B(2r) =0, 

where (J72~)i=J7jJ7j~i and (J7~)ij=J7i~j' 

Proof We consider a I-form r; defined by 

r;=(J7i~j)~jdxi. 

Then the form *(w;r;) is an (m-I)-form with compact support in B(2r). 
By the Stokes' theorem which is applicable to Lipschitz continuous forms 
(cf. [4], [10]), we have 



Conformal and Killing Vector Fields 

On the other hand, we have 

Thus we have 

f *o(W;r;)=f *O(w;'r;)=O. 
M B(2r) 

By (2) and (7), we have 

o(w;r;) = - W;(I7i/7i~jW - W;(I7i~j)(/7i~j) - * (2wrdwr/\ *r;) 

and 

Therefore we have 

* (dwr /\ * r;) = (dWr)ir;i 

=(dwrM/7i~j)~j 

=(dwrMi/7i~j) 

= (dwr ® ~)i//7i~j) 

=2<dwr®~' /7~>. 

463 

4«wrdwr®~' /7~»B(2r)+«Wr/72~, Wr~»B(21·)+2«wr/7~, Wr/7~»B(2r)=O. 0 

From (3), (6) and (7), we have 

Lemma 3. For any ~ E A\M), 

«wr31~, Wr~»B(2r) 

=«wr/72~, Wr~h(2r)+«wrd~, Wrd~»B(2r)+2«wrd~, dWr/\~»B(2r) 

+«Wro~, WrO~»B(2r)-2«wro~, *(dwr/\*~»)B(2r) 

where 3l denotes the Ricci transformation on Al(M) defined by (31~)i=R~~h' 

Lemma 4. For a conformal vector field ~ with characteristic function 
lonM, 

II wrd~I1~(2r) =411 wr/7~ 11~(2r) -2m II wrll1~(2r) 
II w rO~ 11~(2r) = m211 w rll1~(2r)' 

Proof We have 
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= 1- {4(l7i~j)(I7i~j) -4Al7j~j} 
2 

=4<17~, 17~>-2mA2 

<o~, o~>=(I7i~i)(l7j~j) 

=A2m2• 

Thus we have the assertions. o 
Let ~ be a conformal vector field on M with characteristic function 

A. Then we have, by the Schwarz inequality, Lemma 1 and Lemma 4, 

12«wrd~, dWr!\~»B(2r)1 

<211 wrd~IIB(2r) II dWr/\~IIB(2r) 

< ~ Ilwrd~1I1(2r)+41Idwr!\~II~( .. r) 

<llwrl7~111(2r) - ~ mIIWrAII~(2r)+-~111~1I~(2r) 

and 

12«wro~, * (dwr!\ *~)h(2r) 1::;;211 wro~IIB(2r) Iidwr /\ *~IIB(2r) 

< ~ IIwro~II~(2r)+51Idwr!\*~II~(2r) 

< ~ m21IwrAII~(2r)+ ~111~111(2r). 

Thus we have, from Lemma 2 and Lemma 3, 

«Wr~~' Wr~»B(2r) 

= -4«wrdwr®~' 17~»B(2r)-2«wrl7~, wrl7~»B(2r) 

+ «wrd~, wrd~» B(2r) +2«wrd~, dWr!\~» B(2r) 

+«wro~, WrO~»B(2r)-2«wro~, *(dwr/\*~))B(2r) 

> - ~ Ilwrl7~II~(2r) - ~111~1I~(2r)-2I1Wrl7~II~(2r) 

+411 wrl7~II~(2r) -:2m II wrAII~(2r) 

-llwrl7~II~(2r) + ~ mllwrAII~(2r) - :111~111(2r) 

+ m2 1IwrAI11(2r) - ~ m2I1wrAII~(2r) - ~111~11~(2r) 
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Thus we have 

Lemma 5. Let ~ be a conformal vector field on M with characteristic 
function A and with finite global norm. lflim sup «wrel~, Wr~))B(2r)< + 00, 

then r~+oo 

From this lemma, we have 

Theorem 1. Suppose that a complete non-compact· Riemannian mani­
fold M has non-positive Ricci curvature. Then every conformal (or Killing) 
vector field on M with finite global norm is a parallel vector field. More­
over, if M has negative Ricci curvature, then there is no non-zero conformal 
(or Killing) vector field on M with finite global norm. 

Remark. The Killing vector field case of the above theorem was 
given in [11]. The above theorem is a generalization of well-known com­
pact case (cf. [3],[9]). 

Since the 1eugth of a parallel vector filed is constant, we have 

Corollary 1. Let M be a complete non-compact Riemannian manifold 
with non-positive Ricci curvature. If there exists a non-zero conformal (or 
Killing) vector field on M with finite global norm, then the volume of M is 
finite. 

Remark. Recently, H. Wu has proved the following theorem: 

Theorem ([8]). Let M be a complete non-compact Riemannian mani­
fold which satisfies 

R . . >-.11 ICCI curvature _ --
- p2+' 

where p denotes the distance from a fixed point of M and A and s are positive 
constants. Then M has infinite volume. 

This Wu's theorem is a generalization of the result of S.T. Yau [10]. 
From Corollary 1, we have 

Corollary 2. Let M be a complete non-compact Riemannian manifold 
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with non-positive Ricci curvature. If there exists a non-zero Killing vector 
field on M with finite global norm, then the group of isometries of M is 
compact. 

Proof. The group of isometries of a complete Riemannian manifold 
having finite volume is compact (cf. [2]). Thus, by this fact and Corollary 
1, we have the assertion. 0 

We have an example: 

Example 1. Let ro be a fixed positive number andfa function on R 
satisfying 

f(r)=l r l- 3/ 8 for ro<lrl. 

Then f:: J2(r)dr= + 00 and s:: p(r)dr< + 00. Let M be a warped 

product Riemannian manifold RX,S2, that is, ds 2=dr2+f2(r){d02+ 
sin20dcl}. Then 

the volume of M = s:: f~ f:" f2(r) sin 0 dr dO dcp 

=+00. 

A vector field t;= f(r) alar on M is a conformal vector field. And, we 
have 

IIt;W= s:: f~ f:" f4(r) sin OdrdO dcp 

<+00. 

By the method given in [6], we have 

Theorem 2. Let M be a complete non-compact Riemannian manifold 
having finite volume. lj't; is a conformal vector field on M with non-negative 
(or non-positive) characteristic function;' and with finite global norm, then t; 
is a Killing vector field. 

Proof. We have, for any r, 

1.. f 1t;ldvol«f <t;, t;>dVOI)1/2(f (~)2 dVOI)1/2 
r B(2r) B(2r) B(2r) r 

< II t; IIB(2r) -~ (Vol (M»1/2 
r 
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where I~I=.J <~, ~)and Vol (M) denotes the volume of M. Thus we have 

lim inf ~J 1~ldvol=O 
r-+oo r B(2r) 

On the other hand, we have 

I J w; div ~ dvoll ~ C J I ~ [dvol 
B(2r) r B(2r) 

and 

div~= -mi.. 

Therefore, we have 

m J M i. dvol=O, 

that is, i.=0. o 
Remark. Theorem 2 holds without the finiteness of global norm of ~. 

This is pointed out by Professor T. Sunada. His method differs from our 
method. 

3. For a vector field ~ on M, we set 

and 

Then we have 

Lemma 6. It holds that 

Bil'i~J=<B, B), 

I7kBkJ=l7kl7k~J+RJ~k+( 1- ~JI7Jf7k~k' 

By (2) and (7), we have 

o(w;~) = w;o~ - * (2WT dWT 1\ *~) 

= - w;(f7k BkJ)~J - W;BktCl7k~1) - * (2w T dw T 1\ * ~). 
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Since fM *o(w;~)=O, we have 

Lemma 7. For a vector field I; on M, 

«wJ3, Wrl;»B(2r) + «wrB, wrB»B(2r)+4«wrdwr®l;, B»B(2r)=0 

where (B)j = PkBkj . 

Thus we have 

Theorem 3. Let M be a complete non-compact Riemannian manifold 
of dimension m (~3) and I; a vector field on M with finite global norm. I; is 
a conformal vector field if and only if I; satisfies 

(8) 

Proof If I; satisfies (8), then, by Lemma 1 and Lemma 7, we have 

II wrBI11(2r) = -4«wrdwr®l;, B»B(2r) 

~ 411 dw r ® I; IIB(2r) II W rB IIB(2r) 

:::;;:2{41I dWr®1;111(2r) + ~ IIWrBI11(2r)} 

:::;;: ~~ 111;111(2r)+ ~ IlwrBI11(2r). 

Thus we have 

Letting r-++ 00, we have IIBW=O. Therefore, we have B=O, that is, I; is 
a conformal vector field on M. The converse is trivial. D 

The following theorem is a corollary of the above theorem. 

Theorem 4. Let M be a complete non-compact Riemannian manifold 
and I; a vector field on M with finite global norm. I; is a Killing vector field 
if and only if I; satisfies 

PkPkl;i+Rke=O and Pil;i=O. 

Example 2. In the Euclidean 3-space E 3, (8) is changed into 

3 (J2l;j 1 a ( 3 ae) . 
(8)' ~1 (axkY +3" axj ~1 axk =0 (J = 1,2,3). 
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Thus, we may consider a vector field I; on E 3 defined by 

where 

1;1=(Xl)2_~(X2Y_~(X3y+ 1 
3 3 

1;2= _~(Xl)2+(X2)2_~(X3y+ 1 
3 3 

1;3= _~(Xl)2_~(X2Y+(X3)2+1. 
3 3 

Then we have II I; W = + ex) , and I; satisfies (8)', but I; is not a conformal 
vector field on E3. 

Remark. Theorem 3 and Theorem 4 are generalizations of well­
known results in the compact cases (cf. [9]). 

4. We show some examples in which the relations between the 
volume of manifolds and the norms of Killing vector fields are discussed. 

Let M be a warped product Riemannian manifold R X fN of a 1 
dimensional complete non-compact Riemannian manifold R and an m-l 
dimensional compact Riemannian manifold N, where f is a positive func­
tion on R. Let (xl, x2, .. " xm) denote a local coordinate system on M 
such that (x2 , •• " xm) denotes a local coordinate system on N. The 
components gij of the metric tensor field g on M are expressed by 

(2~a, ~~m), 

where ha~ denote the components of the metric tensor field h on N. Then 
we have 

We consider a vector field I; on M, that is, 

and we have 

(9) 
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Lemma 8. A vector field e=~l ajaxl+~a ajax« on M is a Killing 
vector field if and only if it holds that 

a~ljaxl=o 

PhaP ae jaxl + ael jaxa = 0 

fhaT(a~Tjaxp+r~z~Z)+ fhpr(a~rjaxa+r~z~Z)+2f'haP~I=O, 

where r~p denote the components of the Levi-Civita connection on N with 
respect to a local coordinate system (x2, •• " xm) andf' denotes df(xl)jdxl. 

Proof A vector field ~ on M is a Killing vector field if and only if 
it holds (5)', that is, 

P'lel=O 

P'1~a+P'a~I=O 

P'aep+p'pea=O. 

From the above facts and (9), we have the assertion. o 
Example 3. Let f be the function on R defined by f(xl) = eX" and 

M =RXfN. Let ~=~a ajaxa be a non-zero vector field on N satisfying 
t7 i p + j7 pt = - ahaP where j7 denotes the Levi-Civita connection on Nand 
a is a constant number. Then a vector field e=aajaxl+~ on M is a 
Killing vector field. We have that Vol (M)= + 00 and 1I~1I2= + 00. 

Example 4. Letfbe the function onR defined by f(xl)=exp (_(XI)2), 
and M =RXfN. We take a non-zero Killing vector field ~=~a ajaxa on 
N. Then the vector field ~=~a ajaxa on M is a Killing vector field. We 
have that Vol (M)< + 00 and II~W< + 00. 

Example 5. Let ro be a fixed positive number, and let mo be a fixed 
positive number such that 

1 1 
--<mo<--· 
m+l m-l 

Let f be a function on R satisfying 

for ro< Ixll. 

We remark that 

Jh fm+l(xl)dxl< + 00. 

ro 
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Let ~ = ~a ajaxa be a non-zero Killing vector field on N. Then ~ = ~a ajaxa 
is a Killing vector field on M = R X IN, and we have that Vol (M) = + 00 

and I\el\<+oo. 

Example 6. Let no be a fixed positive integer and s a number such 
that O<s<2j(m-l). We remark that 

00 00 I: n-(2 H)(nl/(m-I»)m-l= I: n-(IH)<+oo 
n=no n=no 

n=no n=no 

We consider a function! on R such that, for each integer n (>no), 

O~!(xl)<nlj(m-l) 

!(xl)=nl/(m-l) 

!(x=O 

Then we have 

Ixll E (n, n+l] 

Ixll E [n+n-(2+s)/lO, n+9n-(2+s)/lO] 

Ixll E (n+n-(2+,l, n+ 1]. 

8 sn+l A 10 X n- (1+s-(2/(m-I» < n fm+l(xl)dx l ;;:;;n-(I+s-2/(m-I». 

We also consider the function J on R defined by j(xl)=exp (-(xl)2). 
Then we consider a functionf on R such that, for each integer n (>no), 

O<f(xl)~nl/(m-l) 

f(xl)=nl/(m-l) 

f(x l) = J(xl) 

Ixll E (n, n+l] 

Ixll E [n+n-(2+')/lO, n+9n-(2+')/lO] 

Ixll E (n+n-(2+sl, n+ 1]. 

Let M = R X IN, and a Killing vector field ~ = ~a a jaxa on N induces a 
Killing vector field ~=~a a/axa on M. We have that Vol (M)< + 00 and 
I\~W=+oo. 
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