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Conformal and Killing Vector Fields on Complete 
Non-compact Riemannian Manifolds 

Shinsuke Yorozu 

o. In this note, we introduce the notion of vector fields with finite 
global norms, in order to discuss the vector fields on non-compact 
Riemannian manifolds. It should seem to be natural notion because we 
have some generalizations of well-known results for compact Riemannian 
manifolds (cf. [3], [9]). These generalizations are our main results. Our 
discussions are restricted to conformal and Killing vector fields. We 
show some examples in which the relations between the volumes of com
plete non-compact Riemannian manifolds and the global norms of Killing 
vector fields are discussed. For Killing vector fields with finite global 
norms, the case of complete non-compact Riemannian manifolds without 
boundary has stated in [11], and the case of non-compact Riemannian 
manifolds with boundary has stated in [12]. Our idea is based on in [1], 
[4], [6] and [10]. The case of affine and projective vector fields with finite 
global norms may be discussed similarly, but this case is not stated in this 
note (cf. [13]). 

The discussions of different point of views appeared in [5] and [7]. 
We shall be in Coo-category. The manifolds considered are connected 

and orientable. 

1. Let M be a complete non-compact Riemannian manifold (without 
boundary) of dimension m. We denote the Riemannian metric (resp. the 
Levi-Civita connection) on M by g (resp. 17). Let gij denote the com
ponents of g with respect to a local coordinate system (xl, ... , xm), and 
(gij) denotes the inverse matrix of the matrix (gij). We set l7i=17a/axi 
and l7i=giipj. 

For two (0, s)-tensor fields T and S on M, we denote the local scalar 
product (resp. the global scalar product) of T and S by < T, S) (resp. ((T, 
S»), that is, 
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«T, S))= ff[ <T, S> duol 

where Ti .... i , and Sh ... is denote the components of T and S respectively, 
and 

We set II T112= «T, T)) and we remark that II TW:::: + 00. 

Let T0 S denote the tensor product of two tensor fields T and S, for 
example, 

(T0S)ij=TiSj 

for two (0, I)-tensor fields T and S. 
We denote the space of all s-forms on M by A'(M), and let A~(M) 

denote the subspace of A'(M) composed of forms with compact supports. 
Let L~(M) be the completion of A~(M) with respect to the scalar product 
« ,)). The operator d: AS(M)~AS+\M) denotes the exterior derivative 
and 0: A'(M)~As-1(M) is defined by 

where * denotes the star operator. Then we have 

«dt;, 7)))= «t;, (57))) 

for any t; E A'(M) and 7) E As+ 1(M), one of which has compact support. 
The Laplacian operator LI is defined by 

(1) 

(2) 

(3) 

For a I-form t;, we have 

(dt;)ij = Vit;j - f7Ai 

(at;) = - Vit;i 

(Llt;)i= -VjVjt;i+R{t;j 

where R(a/axi, a/axj)a/axk=R~ij a/ax\ Rki=R~hi' R{=gjkRki and Rki 
denote the components of the Ricci tensor of V. Here and hereafter, we 
use the Einstein summation convention. 

Through this note, we identify the vector fields on M and its dual 
I-forms with respect to g and they are represented by the same letters. 
For a vector field t;=t;i a/axi on M, we have its dual I-form t;=t;j dxj = 
gjit;i dxj. 
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Definition 1. A vector field ~ on M is called a vector field with finite 
global norm if its dual I-form with respect to g belongs in L~(M) n Al(M), 
i.e. ~ E L~(M) n A1(M). 

Definition 2. A vector field ~ on M is called a conformal vector field 
with characteristic function A if 

(4) 

where if' denotes the Lie derivative operator and A is a function on M. 
If A is vanishes identically, ~ is called a Killing vector field, that is, 

(5) 

(4)' 

and 

(5)' 

if'<g=O. 

We have that (4) and (5) are expressed locally by 

f7i~j + f7 i~i= 2Agij 

respectively. 

2. Let 0 be a point of M and fix it. For each point P EM, we 
denote by pep) the geodesic distance from 0 to p. We set 

B(r)={p E Mjp(p)<r} 

for any r >0. We may choose a C=-function p on R satisfying 

For every r >0, we set 

O:S:p(t):S: I 

p(t)= 1 

p(t)=O 

for any t E R 

for t;;:;; I 
for t~2. 

for any p E M, and then Wr is a Lipschitz continuous function on M. 
The function W T has the following properties: 

O:S:WT(p):S: 1 for any p EM 

supp wT cB(2r) 

WT(p) = 1 for any p E B(r) 
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lim wr=I 

C 
Idwrl<

r 
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almost everywhere on M 

where C >0 is a constant independent of r (cf. [1], [4], [10]). Then we 
have 

Lemma 1 (cf. [1], [4]). For any ~ E A'(M), there exists a positive 
constant A independent of r such that 

II dw r 0 ~ 1I~(2r) < ~ II ~ 1I~(2r) 
r 

where 1I~11~(2r)=«~' ~»B(2r)=f <~, ~> duol. B(2r) 

Now we remark that, for any ~ E L;(M) n A'(M), wr~ is an s-form with 
compact support and w r~-+~ (r -+ + 00) in the strong sense. We have 

(6) d(w;~)=w;d~+2wrdwrl\~ 

(7) o( w;~) = w;o~ - * (2w rdw r 1\ * ~) 
for any ~ E Al(M). 

Lemma 2. For any ~ E Al(M), 

almost everywhere on M 

almost everywhere on M 

4«wr dwr 0~, J7~» B(2r) + «wrJ72~, wr~» B(2r) +2((wrJ7~, wrJ7~)) B(2r) =0, 

where (J72~)i=J7jJ7j~i and (J7~)ij=J7i~j' 

Proof We consider a I-form r; defined by 

r;=(J7i~j)~jdxi. 

Then the form *(w;r;) is an (m-I)-form with compact support in B(2r). 
By the Stokes' theorem which is applicable to Lipschitz continuous forms 
(cf. [4], [10]), we have 
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On the other hand, we have 

Thus we have 

f *o(W;r;)=f *O(w;'r;)=O. 
M B(2r) 

By (2) and (7), we have 

o(w;r;) = - W;(I7i/7i~jW - W;(I7i~j)(/7i~j) - * (2wrdwr/\ *r;) 

and 

Therefore we have 

* (dwr /\ * r;) = (dWr)ir;i 

=(dwrM/7i~j)~j 

=(dwrMi/7i~j) 

= (dwr ® ~)i//7i~j) 

=2<dwr®~' /7~>. 

463 

4«wrdwr®~' /7~»B(2r)+«Wr/72~, Wr~»B(21·)+2«wr/7~, Wr/7~»B(2r)=O. 0 

From (3), (6) and (7), we have 

Lemma 3. For any ~ E A\M), 

«wr31~, Wr~»B(2r) 

=«wr/72~, Wr~h(2r)+«wrd~, Wrd~»B(2r)+2«wrd~, dWr/\~»B(2r) 

+«Wro~, WrO~»B(2r)-2«wro~, *(dwr/\*~»)B(2r) 

where 3l denotes the Ricci transformation on Al(M) defined by (31~)i=R~~h' 

Lemma 4. For a conformal vector field ~ with characteristic function 
lonM, 

II wrd~I1~(2r) =411 wr/7~ 11~(2r) -2m II wrll1~(2r) 
II w rO~ 11~(2r) = m211 w rll1~(2r)' 

Proof We have 
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= 1- {4(l7i~j)(I7i~j) -4Al7j~j} 
2 

=4<17~, 17~>-2mA2 

<o~, o~>=(I7i~i)(l7j~j) 

=A2m2• 

Thus we have the assertions. o 
Let ~ be a conformal vector field on M with characteristic function 

A. Then we have, by the Schwarz inequality, Lemma 1 and Lemma 4, 

12«wrd~, dWr!\~»B(2r)1 

<211 wrd~IIB(2r) II dWr/\~IIB(2r) 

< ~ Ilwrd~1I1(2r)+41Idwr!\~II~( .. r) 

<llwrl7~111(2r) - ~ mIIWrAII~(2r)+-~111~1I~(2r) 

and 

12«wro~, * (dwr!\ *~)h(2r) 1::;;211 wro~IIB(2r) Iidwr /\ *~IIB(2r) 

< ~ IIwro~II~(2r)+51Idwr!\*~II~(2r) 

< ~ m21IwrAII~(2r)+ ~111~111(2r). 

Thus we have, from Lemma 2 and Lemma 3, 

«Wr~~' Wr~»B(2r) 

= -4«wrdwr®~' 17~»B(2r)-2«wrl7~, wrl7~»B(2r) 

+ «wrd~, wrd~» B(2r) +2«wrd~, dWr!\~» B(2r) 

+«wro~, WrO~»B(2r)-2«wro~, *(dwr/\*~))B(2r) 

> - ~ Ilwrl7~II~(2r) - ~111~1I~(2r)-2I1Wrl7~II~(2r) 

+411 wrl7~II~(2r) -:2m II wrAII~(2r) 

-llwrl7~II~(2r) + ~ mllwrAII~(2r) - :111~111(2r) 

+ m2 1IwrAI11(2r) - ~ m2I1wrAII~(2r) - ~111~11~(2r) 
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Thus we have 

Lemma 5. Let ~ be a conformal vector field on M with characteristic 
function A and with finite global norm. lflim sup «wrel~, Wr~))B(2r)< + 00, 

then r~+oo 

From this lemma, we have 

Theorem 1. Suppose that a complete non-compact· Riemannian mani
fold M has non-positive Ricci curvature. Then every conformal (or Killing) 
vector field on M with finite global norm is a parallel vector field. More
over, if M has negative Ricci curvature, then there is no non-zero conformal 
(or Killing) vector field on M with finite global norm. 

Remark. The Killing vector field case of the above theorem was 
given in [11]. The above theorem is a generalization of well-known com
pact case (cf. [3],[9]). 

Since the 1eugth of a parallel vector filed is constant, we have 

Corollary 1. Let M be a complete non-compact Riemannian manifold 
with non-positive Ricci curvature. If there exists a non-zero conformal (or 
Killing) vector field on M with finite global norm, then the volume of M is 
finite. 

Remark. Recently, H. Wu has proved the following theorem: 

Theorem ([8]). Let M be a complete non-compact Riemannian mani
fold which satisfies 

R . . >-.11 ICCI curvature _ --
- p2+' 

where p denotes the distance from a fixed point of M and A and s are positive 
constants. Then M has infinite volume. 

This Wu's theorem is a generalization of the result of S.T. Yau [10]. 
From Corollary 1, we have 

Corollary 2. Let M be a complete non-compact Riemannian manifold 
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with non-positive Ricci curvature. If there exists a non-zero Killing vector 
field on M with finite global norm, then the group of isometries of M is 
compact. 

Proof. The group of isometries of a complete Riemannian manifold 
having finite volume is compact (cf. [2]). Thus, by this fact and Corollary 
1, we have the assertion. 0 

We have an example: 

Example 1. Let ro be a fixed positive number andfa function on R 
satisfying 

f(r)=l r l- 3/ 8 for ro<lrl. 

Then f:: J2(r)dr= + 00 and s:: p(r)dr< + 00. Let M be a warped 

product Riemannian manifold RX,S2, that is, ds 2=dr2+f2(r){d02+ 
sin20dcl}. Then 

the volume of M = s:: f~ f:" f2(r) sin 0 dr dO dcp 

=+00. 

A vector field t;= f(r) alar on M is a conformal vector field. And, we 
have 

IIt;W= s:: f~ f:" f4(r) sin OdrdO dcp 

<+00. 

By the method given in [6], we have 

Theorem 2. Let M be a complete non-compact Riemannian manifold 
having finite volume. lj't; is a conformal vector field on M with non-negative 
(or non-positive) characteristic function;' and with finite global norm, then t; 
is a Killing vector field. 

Proof. We have, for any r, 

1.. f 1t;ldvol«f <t;, t;>dVOI)1/2(f (~)2 dVOI)1/2 
r B(2r) B(2r) B(2r) r 

< II t; IIB(2r) -~ (Vol (M»1/2 
r 
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where I~I=.J <~, ~)and Vol (M) denotes the volume of M. Thus we have 

lim inf ~J 1~ldvol=O 
r-+oo r B(2r) 

On the other hand, we have 

I J w; div ~ dvoll ~ C J I ~ [dvol 
B(2r) r B(2r) 

and 

div~= -mi.. 

Therefore, we have 

m J M i. dvol=O, 

that is, i.=0. o 
Remark. Theorem 2 holds without the finiteness of global norm of ~. 

This is pointed out by Professor T. Sunada. His method differs from our 
method. 

3. For a vector field ~ on M, we set 

and 

Then we have 

Lemma 6. It holds that 

Bil'i~J=<B, B), 

I7kBkJ=l7kl7k~J+RJ~k+( 1- ~JI7Jf7k~k' 

By (2) and (7), we have 

o(w;~) = w;o~ - * (2WT dWT 1\ *~) 

= - w;(f7k BkJ)~J - W;BktCl7k~1) - * (2w T dw T 1\ * ~). 
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Since fM *o(w;~)=O, we have 

Lemma 7. For a vector field I; on M, 

«wJ3, Wrl;»B(2r) + «wrB, wrB»B(2r)+4«wrdwr®l;, B»B(2r)=0 

where (B)j = PkBkj . 

Thus we have 

Theorem 3. Let M be a complete non-compact Riemannian manifold 
of dimension m (~3) and I; a vector field on M with finite global norm. I; is 
a conformal vector field if and only if I; satisfies 

(8) 

Proof If I; satisfies (8), then, by Lemma 1 and Lemma 7, we have 

II wrBI11(2r) = -4«wrdwr®l;, B»B(2r) 

~ 411 dw r ® I; IIB(2r) II W rB IIB(2r) 

:::;;:2{41I dWr®1;111(2r) + ~ IIWrBI11(2r)} 

:::;;: ~~ 111;111(2r)+ ~ IlwrBI11(2r). 

Thus we have 

Letting r-++ 00, we have IIBW=O. Therefore, we have B=O, that is, I; is 
a conformal vector field on M. The converse is trivial. D 

The following theorem is a corollary of the above theorem. 

Theorem 4. Let M be a complete non-compact Riemannian manifold 
and I; a vector field on M with finite global norm. I; is a Killing vector field 
if and only if I; satisfies 

PkPkl;i+Rke=O and Pil;i=O. 

Example 2. In the Euclidean 3-space E 3, (8) is changed into 

3 (J2l;j 1 a ( 3 ae) . 
(8)' ~1 (axkY +3" axj ~1 axk =0 (J = 1,2,3). 
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Thus, we may consider a vector field I; on E 3 defined by 

where 

1;1=(Xl)2_~(X2Y_~(X3y+ 1 
3 3 

1;2= _~(Xl)2+(X2)2_~(X3y+ 1 
3 3 

1;3= _~(Xl)2_~(X2Y+(X3)2+1. 
3 3 

Then we have II I; W = + ex) , and I; satisfies (8)', but I; is not a conformal 
vector field on E3. 

Remark. Theorem 3 and Theorem 4 are generalizations of well
known results in the compact cases (cf. [9]). 

4. We show some examples in which the relations between the 
volume of manifolds and the norms of Killing vector fields are discussed. 

Let M be a warped product Riemannian manifold R X fN of a 1 
dimensional complete non-compact Riemannian manifold R and an m-l 
dimensional compact Riemannian manifold N, where f is a positive func
tion on R. Let (xl, x2, .. " xm) denote a local coordinate system on M 
such that (x2 , •• " xm) denotes a local coordinate system on N. The 
components gij of the metric tensor field g on M are expressed by 

(2~a, ~~m), 

where ha~ denote the components of the metric tensor field h on N. Then 
we have 

We consider a vector field I; on M, that is, 

and we have 

(9) 
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Lemma 8. A vector field e=~l ajaxl+~a ajax« on M is a Killing 
vector field if and only if it holds that 

a~ljaxl=o 

PhaP ae jaxl + ael jaxa = 0 

fhaT(a~Tjaxp+r~z~Z)+ fhpr(a~rjaxa+r~z~Z)+2f'haP~I=O, 

where r~p denote the components of the Levi-Civita connection on N with 
respect to a local coordinate system (x2, •• " xm) andf' denotes df(xl)jdxl. 

Proof A vector field ~ on M is a Killing vector field if and only if 
it holds (5)', that is, 

P'lel=O 

P'1~a+P'a~I=O 

P'aep+p'pea=O. 

From the above facts and (9), we have the assertion. o 
Example 3. Let f be the function on R defined by f(xl) = eX" and 

M =RXfN. Let ~=~a ajaxa be a non-zero vector field on N satisfying 
t7 i p + j7 pt = - ahaP where j7 denotes the Levi-Civita connection on Nand 
a is a constant number. Then a vector field e=aajaxl+~ on M is a 
Killing vector field. We have that Vol (M)= + 00 and 1I~1I2= + 00. 

Example 4. Letfbe the function onR defined by f(xl)=exp (_(XI)2), 
and M =RXfN. We take a non-zero Killing vector field ~=~a ajaxa on 
N. Then the vector field ~=~a ajaxa on M is a Killing vector field. We 
have that Vol (M)< + 00 and II~W< + 00. 

Example 5. Let ro be a fixed positive number, and let mo be a fixed 
positive number such that 

1 1 
--<mo<--· 
m+l m-l 

Let f be a function on R satisfying 

for ro< Ixll. 

We remark that 

Jh fm+l(xl)dxl< + 00. 

ro 



Conformal and Killing Vector Fields 471 

Let ~ = ~a ajaxa be a non-zero Killing vector field on N. Then ~ = ~a ajaxa 
is a Killing vector field on M = R X IN, and we have that Vol (M) = + 00 

and I\el\<+oo. 

Example 6. Let no be a fixed positive integer and s a number such 
that O<s<2j(m-l). We remark that 

00 00 I: n-(2 H)(nl/(m-I»)m-l= I: n-(IH)<+oo 
n=no n=no 

n=no n=no 

We consider a function! on R such that, for each integer n (>no), 

O~!(xl)<nlj(m-l) 

!(xl)=nl/(m-l) 

!(x=O 

Then we have 

Ixll E (n, n+l] 

Ixll E [n+n-(2+s)/lO, n+9n-(2+s)/lO] 

Ixll E (n+n-(2+,l, n+ 1]. 

8 sn+l A 10 X n- (1+s-(2/(m-I» < n fm+l(xl)dx l ;;:;;n-(I+s-2/(m-I». 

We also consider the function J on R defined by j(xl)=exp (-(xl)2). 
Then we consider a functionf on R such that, for each integer n (>no), 

O<f(xl)~nl/(m-l) 

f(xl)=nl/(m-l) 

f(x l) = J(xl) 

Ixll E (n, n+l] 

Ixll E [n+n-(2+')/lO, n+9n-(2+')/lO] 

Ixll E (n+n-(2+sl, n+ 1]. 

Let M = R X IN, and a Killing vector field ~ = ~a a jaxa on N induces a 
Killing vector field ~=~a a/axa on M. We have that Vol (M)< + 00 and 
I\~W=+oo. 
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