Conformal and Killing Vector Fields on Complete Non-compact Riemannian Manifolds

Shinsuke Yorozu

0. In this note, we introduce the notion of vector fields with finite global norms, in order to discuss the vector fields on non-compact Riemannian manifolds. It should seem to be natural notion because we have some generalizations of well-known results for compact Riemannian manifolds (cf. [3], [9]). These generalizations are our main results. Our discussions are restricted to conformal and Killing vector fields. We show some examples in which the relations between the volumes of complete non-compact Riemannian manifolds and the global norms of Killing vector fields are discussed. For Killing vector fields with finite global norms, the case of complete non-compact Riemannian manifolds without boundary has stated in [11], and the case of non-compact Riemannian manifolds with boundary has stated in [12]. Our idea is based on in [1], [4], [6] and [10]. The case of affine and projective vector fields with finite global norms may be discussed similarly, but this case is not stated in this note (cf. [13]).

The discussions of different point of views appeared in [5] and [7].
We shall be in C^{∞}-category. The manifolds considered are connected and orientable.

1. Let M be a complete non-compact Riemannian manifold (without boundary) of dimension m. We denote the Riemannian metric (resp. the Levi-Civita connection) on M by g (resp. ∇). Let $g_{i j}$ denote the components of g with respect to a local coordinate system (x^{1}, \cdots, x^{m}), and $\left(g^{i j}\right)$ denotes the inverse matrix of the matrix $\left(g_{i j}\right)$. We set $\nabla_{i}=\nabla_{\partial / \partial x^{i}}$ and $\nabla^{i}=g^{i j} \nabla_{j}$.

For two ($0, s$)-tensor fields T and S on M, we denote the local scalar product (resp. the global scalar product) of T and S by $\langle T, S\rangle$ (resp. $\langle\langle T$, $S\rangle$), that is,

$$
\langle T, S\rangle=\frac{1}{s!} T_{i_{1} \ldots i_{s}} S^{i_{1} \cdots i_{s}}
$$

$$
\langle T, S\rangle\rangle=\int_{M}\langle T, S\rangle d v o l
$$

where $T_{i_{1} \cdots i_{s}}$ and $S_{j_{1} \cdots j_{s}}$ denote the components of T and S respectively, and

$$
S^{i_{1} \cdots i_{s}}=g^{i_{1} j_{1}} \cdots g^{i_{s} j_{s}} S_{j_{1} \cdots j_{s}} .
$$

We set $\|T\|^{2}=\left\langle\langle T, T\rangle\right.$ and we remark that $\|T\|^{2} \leqq+\infty$.
Let $T \otimes S$ denote the tensor product of two tensor fields T and S, for example,

$$
(T \otimes S)_{i j}=T_{i} S_{j}
$$

for two (0,1)-tensor fields T and S.
We denote the space of all s-forms on M by $\Lambda^{s}(M)$, and let $\Lambda_{0}^{s}(M)$ denote the subspace of $\Lambda^{s}(M)$ composed of forms with compact supports. Let $L_{2}^{s}(M)$ be the completion of $\Lambda_{0}^{s}(M)$ with respect to the scalar product $《, \geqslant$. The operator $d: \Lambda^{s}(M) \rightarrow \Lambda^{s+1}(M)$ denotes the exterior derivative and $\delta: \Lambda^{s}(M) \rightarrow \Lambda^{s-1}(M)$ is defined by

$$
\delta=(-1)^{s m+m+1} * d *
$$

where $*$ denotes the star operator. Then we have

$$
\langle\langle d \xi, \eta\rangle\rangle=\langle\langle\xi, \delta \eta\rangle\rangle
$$

for any $\xi \in \Lambda^{s}(M)$ and $\eta \in \Lambda^{s+1}(M)$, one of which has compact support. The Laplacian operator Δ is defined by

$$
\Delta=d \delta+\delta d
$$

For a 1 -form ξ, we have

$$
\begin{align*}
& (d \xi)_{i j}=\nabla_{i} \xi_{j}-\nabla_{j} \xi_{i} \tag{1}\\
& (\delta \xi)=-\nabla^{i} \xi_{i} \tag{2}\\
& (\Delta \xi)_{i}=-\nabla^{j} \nabla_{j} \xi_{i}+R_{i}^{j} \xi_{j}
\end{align*}
$$

where $R\left(\partial / \partial x^{i}, \partial / \partial x^{j}\right) \partial / \partial x^{k}=R_{k i j}^{h} \partial / \partial x^{h}, R_{k i}=R_{k n i}^{h}, R_{i}^{j}=g^{j k} R_{k i}$ and $R_{k i}$ denote the components of the Ricci tensor of \bar{D}. Here and hereafter, we use the Einstein summation convention.

Through this note, we identify the vector fields on M and its dual 1 -forms with respect to g and they are represented by the same letters. For a vector field $\xi=\xi^{i} \partial / \partial x^{i}$ on M, we have its dual 1 -form $\xi=\xi_{j} d x^{j}=$ $g_{j i} \xi^{i} d x^{j}$.

Definition 1. A vector field ξ on M is called a vector field with finite global norm if its dual 1-form with respect to g belongs in $L_{2}^{1}(M) \cap \Lambda^{1}(M)$, i.e. $\xi \in L_{2}^{1}(M) \cap \Lambda^{1}(M)$.

Definition 2. A vector field ξ on M is called a conformal vector field with characteristic function λ if

$$
\begin{equation*}
\mathscr{L}_{\xi} g=2 \lambda g \tag{4}
\end{equation*}
$$

where \mathscr{L} denotes the Lie derivative operator and λ is a function on M. If λ is vanishes identically, ξ is called a Killing vector field, that is,

$$
\begin{equation*}
\mathscr{L}_{\xi} g=0 . \tag{5}
\end{equation*}
$$

We have that (4) and (5) are expressed locally by

$$
\begin{equation*}
\nabla_{i} \xi_{j}+\nabla_{j} \xi_{i}=2 \lambda g_{i j} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{i} \xi_{j}+\nabla_{j} \xi_{i}=0 \tag{5}
\end{equation*}
$$

respectively.
2. Let o be a point of M and fix it. For each point $p \in M$, we denote by $\rho(p)$ the geodesic distance from o to p. We set

$$
B(r)=\{p \in M \mid \rho(p)<r\}
$$

for any $r>0$. We may choose a C^{∞}-function μ on \boldsymbol{R} satisfying

$$
\begin{array}{ll}
0 \leqq \mu(t) \leqq 1 & \text { for any } t \in \boldsymbol{R} \\
\mu(t)=1 & \text { for } t \leqq 1 \\
\mu(t)=0 & \text { for } t \geqq 2 .
\end{array}
$$

For every $r>0$, we set

$$
w_{r}(p)=\mu(\rho(p) / r)
$$

for any $p \in M$, and then w_{r} is a Lipschitz continuous function on M. The function w_{r} has the following properties:

$$
\begin{array}{lr}
0 \leqq w_{r}(p) \leqq 1 & \text { for any } p \in M \\
\operatorname{supp} w_{r} \subset B(2 r) & \\
w_{r}(p)=1 & \text { for any } p \in B(r)
\end{array}
$$

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} w_{r}=1 \\
& \left|d w_{r}\right| \leqq \frac{C}{r} \quad \text { almost everywhere on } M
\end{aligned}
$$

where $C>0$ is a constant independent of r (cf. [1], [4], [10]). Then we have

Lemma 1 (cf. [1], [4]). For any $\xi \in \Lambda^{s}(M)$, there exists a positive constant A independent of r such that

$$
\begin{aligned}
& \left\|d w_{r} \otimes \xi\right\|_{B(2 r)}^{2} \leqq \frac{A}{r^{2}}\|\xi\|_{B(2 r)}^{2} \\
& \left\|d w_{r} \wedge \xi\right\|_{B(2 r)}^{2} \leqq \frac{A}{r^{2}}\|\xi\|_{B(2 r)}^{2} \\
& \left\|d w_{r} \wedge * \xi\right\|_{B(2 r)}^{2} \leqq \frac{A}{r^{2}}\|\xi\|_{B(2 r)}^{2}
\end{aligned}
$$

where $\|\xi\|_{B(2 r)}^{2}=\left\langle\langle\xi, \xi\rangle_{B(2 r)}=\int_{B(2 r)}\langle\xi, \xi\rangle d\right.$ vol.
Now we remark that, for any $\xi \in L_{2}^{s}(M) \cap \Lambda^{s}(M), w_{r} \xi$ is an s-form with compact support and $w_{r} \xi \rightarrow \xi(r \rightarrow+\infty)$ in the strong sense. We have

$$
\begin{equation*}
d\left(w_{r}^{2} \xi\right)=w_{r}^{2} d \xi+2 w_{r} d w_{r} \wedge \xi \quad \text { almost everywhere on } M \tag{6}
\end{equation*}
$$

(7) $\delta\left(w_{r}^{2} \xi\right)=w_{r}^{2} \delta \xi-*\left(2 w_{r} d w_{r} \wedge * \xi\right) \quad$ almost everywhere on M for any $\xi \in \Lambda^{1}(M)$.

Lemma 2. For any $\xi \in \Lambda^{1}(M)$,
$4\left\langle\left\langle w_{r} d w_{r} \otimes \xi, \nabla \xi\right\rangle_{B(2 r)}+\left\langle\left\langle w_{r} \nabla^{2} \xi, w_{r} \xi\right\rangle_{B(2 r)}+2\left\langle\left\langle w_{r} \nabla \xi, w_{r} \nabla \xi\right\rangle_{B(2 r)}=0\right.\right.\right.$,
where $\left(\nabla^{2} \xi\right)_{i}=\nabla^{j} \nabla_{j} \xi_{i}$ and $(\nabla \xi)_{i j}=\nabla_{i} \xi_{j}$.
Proof. We consider a 1-form η defined by

$$
\eta=\left(\nabla_{i} \xi_{j}\right) \xi^{j} d x^{i}
$$

Then the form $*\left(w_{r}^{2} \eta\right)$ is an $(m-1)$-form with compact support in $B(2 r)$. By the Stokes' theorem which is applicable to Lipschitz continuous forms (cf. [4], [10]), we have

$$
\int_{M} d\left(*\left(w_{r}^{2} \eta\right)\right)=0
$$

On the other hand, we have

$$
d\left(*\left(w_{r}^{2} \eta\right)\right)=-* \delta\left(w_{r}^{2} \eta\right) .
$$

Thus we have

$$
\int_{M} * \delta\left(w_{r}^{2} \eta\right)=\int_{B(2 r)} * \delta\left(w_{r}^{2} \eta\right)=0 .
$$

By (2) and (7), we have

$$
\delta\left(w_{r}^{2} \eta\right)=-w_{r}^{2}\left(\nabla^{i} \nabla_{i} \xi_{j}\right) \xi^{j}-w_{r}^{2}\left(\nabla_{i} \xi_{j}\right)\left(\nabla^{i} \xi^{j}\right)-*\left(2 w_{r} d w_{r} \wedge * \eta\right)
$$

and

$$
\begin{aligned}
*\left(d w_{r} \wedge * \eta\right) & =\left(d w_{r}\right)_{i} \eta^{i} \\
& =\left(d w_{r}\right)_{i}\left(\nabla^{i} \xi_{j}\right) \xi^{j} \\
& =\left(d w_{r}\right)_{i} \xi_{j}\left(\nabla^{i} \xi^{j}\right) \\
& =\left(d w_{r} \otimes \xi\right)_{i j}\left(\nabla^{i} \xi^{j}\right) \\
& =2\left\langle d w_{r} \otimes \xi, \nabla \xi\right\rangle .
\end{aligned}
$$

Therefore we have

$$
4\left\langle\left\langle w_{r} d w_{r} \otimes \xi, \nabla \xi\right\rangle_{B(2 r)}+\left\langle\left\langle w_{r} \nabla^{2} \xi, w_{r} \xi\right\rangle_{B(2 r)}+2\left\langle\left\langle w_{r} \nabla \xi, w_{r} \nabla \xi\right\rangle_{B(2 r)}=0\right.\right.\right.
$$

From (3), (6) and (7), we have
Lemma 3. For any $\xi \in \Lambda^{1}(M)$,

$$
\begin{aligned}
\left\langle\left\langle w_{r} \mathscr{R} \xi,\right.\right. & \left.w_{r} \xi\right\rangle_{B(2 r)} \\
= & \left\langle\left\langle w_{r} \nabla^{2} \xi, w_{r} \xi\right\rangle_{B(2 r)}+\left\langle\left\langle w_{r} d \xi, w_{r} d \xi\right\rangle_{B(2 r)}+2\left\langle\left\langle w_{r} d \xi, d w_{r} \wedge \xi\right\rangle_{B(2 r)}\right.\right.\right. \\
\quad & +\left\langle\left\langle w_{r} \delta \xi, w_{r} \delta \xi\right\rangle_{B(2 r)}-2\left\langle\left\langle w_{r} \delta \xi, *\left(d w_{r} \wedge * \xi\right)\right\rangle\right\rangle_{B(2 r)}\right.
\end{aligned}
$$

where \mathscr{R} denotes the Ricci transformation on $\Lambda^{1}(M)$ defined by $(\mathscr{R} \xi)_{i}=R_{i}^{h} \xi_{h}$.
Lemma 4. For a conformal vector field ξ with characteristic function λ on M,

$$
\begin{aligned}
& \left\|w_{r} d \xi\right\|_{B(2 r)}^{2}=4\left\|w_{r} \nabla \xi\right\|_{B(2 r)}^{2}-2 m\left\|w_{r} \lambda\right\|_{B(2 r)}^{2} \\
& \left\|w_{r} \delta \xi\right\|_{B(2 r)}^{2}=m^{2}\left\|w_{r} \lambda\right\|_{B(2 r)}^{2} .
\end{aligned}
$$

Proof. We have

$$
\langle d \xi, d \xi\rangle=\frac{1}{2}\left\{\left(\nabla_{i} \xi_{j}-\nabla_{j} \xi_{i}\right)\left(\nabla^{i} \xi^{j}-\nabla^{j} \xi^{i}\right)\right\}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left\{4\left(\nabla_{i} \xi_{j}\right)\left(\nabla^{i} \xi^{j}\right)-4 \lambda \nabla^{j} \xi_{j}\right\} \\
& =4\langle\nabla \xi, \nabla \xi\rangle-2 m \lambda^{2} \\
\langle\delta \xi, \delta \xi\rangle & =\left(\nabla^{i} \xi_{i}\right)\left(\nabla^{j} \xi_{j}\right) \\
& =\lambda^{2} m^{2} .
\end{aligned}
$$

Thus we have the assertions.
Let ξ be a conformal vector field on M with characteristic function 2. Then we have, by the Schwarz inequality, Lemma 1 and Lemma 4,

$$
\begin{aligned}
& \left|2\left\langle w_{r} d \xi, d w_{r} \wedge \xi\right\rangle_{B(2 r)}\right| \\
& \quad \leqq 2\left\|w_{r} d \xi\right\|_{B(2 r)}\left\|d w_{r} \wedge \xi\right\|_{B(2 r)} \\
& \quad \leqq \frac{1}{4}\left\|w_{r} d \xi\right\|_{B(2 r)}^{2}+4\left\|d w_{r} \wedge \xi\right\|_{B(2 r)}^{2} \\
& \quad \leqq\left\|w_{r} \nabla \xi\right\|_{B(2 r)}^{2}-\frac{1}{2} m\left\|w_{r} \lambda\right\|_{B(2 r)}^{2}+\frac{4 A}{r^{2}}\|\xi\|_{B(2 r)}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\mid 2\left\langle\left\langle w_{r} \delta \xi, *\left(d w_{r} \wedge * \xi\right)\right\rangle_{B(2 r)}\right| & \leqq 2\left\|w_{r} \delta \xi\right\|_{B(2 r)}\left\|d w_{r} \wedge * \xi\right\|_{B(2 r)} \\
& \leqq \frac{1}{5}\left\|w_{r} \delta \xi\right\|_{B(2 r)}^{2}+5\left\|d w_{r} \wedge * \xi\right\|_{B(2 r)}^{2} \\
& \leqq \frac{1}{5} m^{2}\left\|w_{r} \lambda\right\|_{B(2 r)}^{2}+\frac{5 A}{r^{2}}\|\xi\|_{B(2 r)}^{2} .
\end{aligned}
$$

Thus we have, from Lemma 2 and Lemma 3,

$$
\begin{aligned}
\left\langle w_{r} \mathscr{R} \xi,\right. & \left.w_{r} \xi\right\rangle_{B(2 r)} \\
= & -4\left\langle\left\langle w_{r} d w_{r} \otimes \xi, \nabla \xi\right\rangle_{B(2 r)}-2\left\langle\left\langle w_{r} \nabla \xi, w_{r} \nabla \xi\right\rangle_{B(2 r)}\right.\right. \\
& +\left\langle\left\langle w_{r} d \xi, w_{r} d \xi\right\rangle_{B(2 r)}+2\left\langle w_{r} d \xi, d w_{r} \wedge \xi\right\rangle_{B(2 r)}\right. \\
& +\left\langle\left\langle w_{r} \delta \xi, w_{r} \delta \xi\right\rangle_{B(2 r)}-2\left\langle\left\langle w_{r} \delta \xi, *\left(d w_{r} \wedge * \xi\right)\right\rangle_{B(2 r)}\right.\right. \\
\geqq & -\frac{1}{2}\left\|w_{r} \nabla \xi\right\|_{B(2 r)}^{2}-\frac{8 A}{r^{2}}\|\xi\|_{B(2 r)}^{2}-2\left\|w_{r} \nabla \xi\right\|_{B(2 r)}^{2} \\
& +4\left\|w_{r} \nabla \xi\right\|_{B(2 r)}^{2}-2 m\left\|w_{r} \lambda\right\|_{B(2 r)}^{2} \\
& -\left\|w_{r} \nabla \xi\right\|_{B(2 r)}^{2}+\frac{1}{2} m\left\|w_{r} \lambda\right\|_{B(2 r)}^{2}-\frac{4 A}{r^{2}}\|\xi\|_{B(2 r)}^{2} \\
& +m^{2}\left\|w_{r} \lambda\right\|_{B(2 r)}^{2}-\frac{1}{5} m^{2}\left\|w_{r} \lambda\right\|_{B(2 r)}^{2}-\frac{5 A}{r^{2}}\|\xi\|_{B(2 r)}^{2}
\end{aligned}
$$

$$
=\frac{1}{2}\left\|w_{r} \nabla \xi\right\|_{B(2 r)}^{2}+\frac{4}{5} m\left(m-\frac{15}{8}\right)\left\|w_{r} \lambda\right\|_{B(2 r)}^{2}-\frac{17 A}{r^{2}}\|\xi\|_{B(2 r)}^{2}
$$

Thus we have
Lemma 5. Let ξ be a conformal vector field on M with characteristic function λ and with finite global norm. If $\limsup _{r \rightarrow+\infty}\left\langle\left\langle w_{r} \mathscr{R} \xi, w_{r} \xi\right\rangle_{B(2 r)}<+\infty\right.$, then

$$
\lim _{r \rightarrow+\infty}\left\langle\left\langle w_{r} \mathscr{R} \xi, w_{r} \xi\right\rangle_{B(2 r)} \geqq \frac{1}{2}\|\nabla \xi\|^{2}+\frac{4}{5} m\left(m-\frac{15}{8}\right)\|\lambda\|^{2} .\right.
$$

From this lemma, we have
Theorem 1. Suppose that a complete non-compact Riemannian manifold M has non-positive Ricci curvature. Then every conformal (or Killing) vector field on M with finite global norm is a parallel vector field. Moreover, if M has negative Ricci curvature, then there is no non-zero conformal (or Killing) vector field on M with finite global norm.

Remark. The Killing vector field case of the above theorem was given in [11]. The above theorem is a generalization of well-known compact case (cf. [3], [9]).

Since the length of a parallel vector filed is constant, we have
Corollary 1. Let M be a complete non-compact Riemannian manifold with non-positive Ricci curvature. If there exists a non-zero conformal (or Killing) vector field on M with finite global norm, then the volume of M is finite.

Remark. Recently, H. Wu has proved the following theorem:
Theorem ([8]). Let M be a complete non-compact Riemannian manifold which satisfies

$$
\text { Ricci curvature } \geqq \frac{-\tilde{A}}{\rho^{2+\varepsilon}}
$$

where ρ denotes the distance from a fixed point of M and \tilde{A} and ε are positive constants. Then M has infinite volume.

This Wu's theorem is a generalization of the result of S.T. Yau [10]. From Corollary 1, we have

Corollary 2. Let M be a complete non-compact Riemannian manifold
with non-positive Ricci curvature. If there exists a non-zero Killing vector field on M with finite global norm, then the group of isometries of M is compact.

Proof. The group of isometries of a complete Riemannian manifold having finite volume is compact (cf. [2]). Thus, by this fact and Corollary 1 , we have the assertion.

We have an example:
Example 1. Let r_{0} be a fixed positive number and f a function on \boldsymbol{R} satisfying

$$
f(r)=|r|^{-3 / 8} \quad \text { for } r_{0}<|r|
$$

Then $\int_{-\infty}^{+\infty} f^{2}(r) d r=+\infty$ and $\int_{-\infty}^{+\infty} f^{4}(r) d r<+\infty$. Let M be a warped product Riemannian manifold $R \times{ }_{f} S^{2}$, that is, $d s^{2}=d r^{2}+f^{2}(r)\left\{d \theta^{2}+\right.$ $\left.\sin ^{2} \theta d \varphi^{2}\right\}$. Then

$$
\text { the volume of } \begin{aligned}
M & =\int_{-\infty}^{+\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} f^{2}(r) \sin \theta d r d \theta d \varphi \\
& =+\infty
\end{aligned}
$$

A vector field $\xi=f(r) \partial / \partial r$ on M is a conformal vector field. And, we have

$$
\begin{aligned}
\|\xi\|^{2} & =\int_{-\infty}^{+\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} f^{4}(r) \sin \theta d r d \theta d \varphi \\
& <+\infty
\end{aligned}
$$

By the method given in [6], we have
Theorem 2. Let M be a complete non-compact Riemannian manifold having finite volume. If ξ is a conformal vector field on M with non-negative (or non-positive) characteristic function λ and with finite global norm, then ξ is a Killing vector field.

Proof. We have, for any r,

$$
\begin{aligned}
\frac{1}{r} \int_{B(2 r)}|\xi| d v o l & \leqq\left(\int_{B(2 r)}\langle\xi, \xi\rangle d v o l\right)^{1 / 2}\left(\int_{B(2 r)}\left(\frac{1}{r}\right)^{2} d v o l\right)^{1 / 2} \\
& \leqq\|\xi\|_{B(2 r)} \cdot \frac{1}{r}(\operatorname{Vol}(M))^{1 / 2}
\end{aligned}
$$

where $|\xi|=\sqrt{\langle\xi, \xi\rangle}$ and $\operatorname{Vol}(M)$ denotes the volume of M. Thus we have

$$
\liminf _{r \rightarrow+\infty} \frac{1}{r} \int_{B(2 r)}|\xi| d v o l=0
$$

On the other hand, we have

$$
\left|\int_{B(2 r)} w_{r}^{2} \operatorname{div} \xi d v o l\right| \leqq \frac{C}{r} \int_{B(2 r)}|\xi|^{\prime} d v o l
$$

and

$$
\operatorname{div} \xi=-m \lambda
$$

Therefore, we have

$$
m \int_{M} \lambda d v o l=0
$$

that is, $\lambda \equiv 0$.
Remark. Theorem 2 holds without the finiteness of global norm of ξ. This is pointed out by Professor T. Sunada. His method differs from our method.
3. For a vector field ξ on M, we set

$$
B_{i j}=\nabla_{i} \xi_{j}+\nabla_{j} \xi_{i}-\frac{2}{m}\left(\nabla^{k} \xi_{k}\right) g_{i j}
$$

and

$$
\hat{\eta}=B_{i j} \xi^{j} d x^{i} .
$$

Then we have
Lemma 6. It holds that

$$
\begin{aligned}
& B_{i j}=B_{j i}, \quad g^{i j} B_{i j}=0, \\
& B_{i j} \nabla^{i} \xi^{j}=\langle B, B\rangle, \\
& \nabla^{k} B_{k j}=\nabla^{k} \nabla_{k} \xi_{j}+R_{j}^{k} \xi_{k}+\left(1-\frac{2}{m}\right) \nabla_{j} \nabla^{k} \xi_{k} .
\end{aligned}
$$

By (2) and (7), we have

$$
\begin{aligned}
\delta\left(w_{r}^{2} \hat{\eta}\right) & =w_{r}^{2} \delta \hat{\eta}-*\left(2 w_{r} d w_{r} \wedge * \hat{\eta}\right) \\
& =-w_{r}^{2}\left(\nabla^{k} B_{k j}\right) \xi^{j}-w_{r}^{2} B_{k j}\left(\nabla^{k} \xi^{j}\right)-*\left(2 w_{r} d w_{r} \wedge * \hat{\eta}\right) .
\end{aligned}
$$

Since $\int_{M} * \delta\left(w_{r}^{2} \hat{\eta}\right)=0$, we have
Lemma 7. For a vector field ξ on M,

$$
\left\langle w_{r} \hat{B}, w_{r} \xi\right\rangle_{B(2 r)}+\left\langle\left\langle w_{r} B, w_{r} B\right\rangle_{B(2 r)}+4\left\langle w_{r} d w_{r} \otimes \xi, B\right\rangle_{B(2 r)}=0\right.
$$

where $(\hat{B})_{j}=\nabla^{k} B_{k j}$.
Thus we have
Theorem 3. Let M be a complete non-compact Riemannian manifold of dimension $m(\geqq 3)$ and ξ a vector field on M with finite global norm. ξ is a conformal vector field if and only if ξ satisfies

$$
\begin{equation*}
\nabla^{k} \nabla_{k} \xi^{i}+R_{k}^{i} \xi^{k}+\left(1-\frac{2}{m}\right) \nabla^{i} \nabla_{k} \xi^{k}=0 . \tag{8}
\end{equation*}
$$

Proof. If ξ satisfies (8), then, by Lemma 1 and Lemma 7, we have

$$
\begin{aligned}
\left\|w_{r} B\right\|_{B(2 r)}^{2} & =-4\left\langle\left\langle w_{r} d w_{r} \otimes \xi, B\right\rangle_{B(2 r)}\right. \\
& \leqq 4\left\|d w_{r} \otimes \xi\right\|_{B(2 r)}\left\|w_{r} B\right\|_{B(2 r)} \\
& \leqq 2\left\{4\left\|d w_{r} \otimes \xi\right\|_{B(2 r)}^{2}+\frac{1}{4}\left\|w_{r} B\right\|_{B(2 r)}^{2}\right\} \\
& \leqq \frac{8 A}{r^{2}}\|\xi\|_{B(2 r)}^{2}+\frac{1}{2}\left\|w_{r} B\right\|_{B(2 r)}^{2} .
\end{aligned}
$$

Thus we have

$$
\frac{1}{2}\left\|w_{r} B\right\|_{B(2 r)}^{2} \leqq \frac{8 A}{r^{2}}\|\xi\|_{B(2 r)}^{2}
$$

Letting $r \rightarrow+\infty$, we have $\|B\|^{2}=0$. Therefore, we have $B=0$, that is, ξ is a conformal vector field on M. The converse is trivial.

The following theorem is a corollary of the above theorem.
Theorem 4. Let M be a complete non-compact Riemannian manifold and ξ a vector field on M with finite global norm. ξ is a Killing vector field if and only if ξ satisfies

$$
\nabla^{k} \nabla_{k} \xi^{i}+R_{k}^{i} \xi^{k}=0 \quad \text { and } \quad \nabla_{i} \xi^{i}=0
$$

Example 2. In the Euclidean 3-space E^{3}, (8) is changed into

$$
\begin{equation*}
\sum_{k=1}^{3} \frac{\partial^{2} \xi^{j}}{\left(\partial x^{k}\right)^{2}}+\frac{1}{3} \frac{\partial}{\partial x^{j}}\left(\sum_{k=1}^{3} \frac{\partial \hat{\xi}^{k}}{\partial x^{k}}\right)=0 \quad(j=1,2,3) \tag{8}
\end{equation*}
$$

Thus, we may consider a vector field ξ on E^{3} defined by

$$
\xi=\xi^{1} \partial / \partial x^{1}+\xi^{2} \partial / \partial x^{2}+\xi^{3} \partial / \partial x^{3}
$$

where

$$
\begin{aligned}
& \xi^{1}=\left(x^{1}\right)^{2}-\frac{2}{3}\left(x^{2}\right)^{2}-\frac{2}{3}\left(x^{3}\right)^{2}+1 \\
& \xi^{2}=-\frac{2}{3}\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}-\frac{2}{3}\left(x^{3}\right)^{2}+1 \\
& \xi^{3}=-\frac{2}{3}\left(x^{1}\right)^{2}-\frac{2}{3}\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}+1 .
\end{aligned}
$$

Then we have $\|\xi\|^{2}=+\infty$, and ξ satisfies (8$)^{\prime}$, but ξ is not a conformal vector field on E^{3}.

Remark. Theorem 3 and Theorem 4 are generalizations of wellknown results in the compact cases (cf. [9]).
4. We show some examples in which the relations between the volume of manifolds and the norms of Killing vector fields are discussed.

Let M be a warped product Riemannian manifold $R \times{ }_{f} N$ of a 1 dimensional complete non-compact Riemannian manifold \boldsymbol{R} and an $m-1$ dimensional compact Riemannian manifold N, where f is a positive function on \boldsymbol{R}. Let $\left(x^{1}, x^{2}, \cdots, x^{m}\right)$ denote a local coordinate system on M such that $\left(x^{2}, \cdots, x^{m}\right)$ denotes a local coordinate system on N. The components $g_{i j}$ of the metric tensor field g on M are expressed by

$$
\left(g_{i j}\right)=\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & f^{2}\left(x^{1}\right) h_{\alpha \beta}
\end{array}\right) \quad(2 \leqq \alpha, \beta \leqq m),
$$

where $h_{\alpha \beta}$ denote the components of the metric tensor field h on N. Then we have

$$
\text { the volume of } \quad M=\int_{M} f^{m-1}\left(x^{1}\right)\left(\operatorname{det}\left(h_{\alpha \beta}\right)\right)^{1 / 2} d x^{1} d x^{2} \cdots d x^{m}
$$

We consider a vector field ξ on M, that is,

$$
\xi=\xi^{1}\left(x^{1}, x^{2}, \cdots, x^{m}\right) \frac{\partial}{\partial x^{1}}+\xi^{\alpha}\left(x^{1}, x^{2}, \cdots, x^{m}\right) \frac{\partial}{\partial x^{\alpha}}
$$

and we have

$$
\begin{equation*}
\xi_{1}=\xi^{1}, \quad \xi_{\alpha}=f^{2}\left(x^{1}\right) h_{\alpha \beta}\left(x^{2}, \cdots, x^{m}\right) \xi^{\beta} . \tag{9}
\end{equation*}
$$

Lemma 8. A vector field $\xi=\xi^{1} \partial / \partial x^{1}+\xi^{\alpha} \partial / \partial x^{\alpha}$ on M is a Killing vector field if and only if it holds that

$$
\begin{aligned}
& \partial \xi^{1} / \partial x^{1}=0 \\
& f^{2} h_{\alpha \beta} \partial \xi^{\beta} / \partial x^{1}+\partial \xi^{1} / \partial x^{\alpha}=0 \\
& f h_{\alpha \gamma}\left(\partial \xi^{r} / \partial x^{\beta}+\Gamma_{\beta r}^{\gamma} \xi^{\tau}\right)+f h_{\beta r}\left(\partial \xi^{\tau} / \partial x^{\alpha}+\Gamma_{\alpha \tau}^{\gamma} \xi^{\tau}\right)+2 f^{\prime} h_{\alpha \beta} \xi^{1}=0,
\end{aligned}
$$

where $\Gamma_{\alpha \beta}^{\gamma}$ denote the components of the Levi-Civita connection on N with respect to a local coordinate system $\left(x^{2}, \cdots, x^{m}\right)$ and f^{\prime} denotes $d f\left(x^{1}\right) / d x^{1}$.

Proof. A vector field ξ on M is a Killing vector field if and only if it holds (5) , that is,

$$
\begin{aligned}
& \nabla_{1} \xi_{1}=0 \\
& \nabla_{1} \xi_{\alpha}+\nabla_{\alpha} \xi_{1}=0 \\
& \nabla_{\alpha} \xi_{\beta}+\nabla_{\beta} \xi_{\alpha}=0 .
\end{aligned}
$$

From the above facts and (9), we have the assertion.
Example 3. Let f be the function on \boldsymbol{R} defined by $f\left(x^{1}\right)=e^{x^{1}}$, and $M=\boldsymbol{R} \times{ }_{f} N$. Let $\tilde{\xi}=\xi^{\alpha} \partial / \partial x^{\alpha}$ be a non-zero vector field on N satisfying $\tilde{\boldsymbol{V}}_{\alpha} \tilde{\xi}_{\beta}+\tilde{\nabla}_{\beta} \tilde{\xi}_{\alpha}=-a h_{\alpha \beta}$ where $\tilde{\nabla}$ denotes the Levi-Civita connection on N and a is a constant number. Then a vector field $\xi=a \partial / \partial x^{1}+\tilde{\xi}$ on M is a Killing vector field. We have that $\operatorname{Vol}(M)=+\infty$ and $\|\xi\|^{2}=+\infty$.

Example 4. Let f be the function on \boldsymbol{R} defined by $f\left(x^{1}\right)=\exp \left(-\left(x^{1}\right)^{2}\right)$, and $M=\boldsymbol{R} \times{ }_{f} N$. We take a non-zero Killing vector field $\tilde{\xi}=\xi^{\alpha} \partial / \partial x^{\alpha}$ on N. Then the vector field $\xi=\xi^{\alpha} \partial / \partial x^{\alpha}$ on M is a Killing vector field. We have that $\operatorname{Vol}(M)<+\infty$ and $\|\xi\|^{2}<+\infty$.

Example 5. Let r_{0} be a fixed positive number, and let m_{0} be a fixed positive number such that

$$
\frac{1}{m+1}<m_{0}<\frac{1}{m-1}
$$

Let f be a function on \boldsymbol{R} satisfying

$$
f\left(x^{1}\right)=\left|x^{1}\right|^{-m_{0}} \quad \text { for } r_{0}<\left|x^{1}\right|
$$

We remark that

$$
\int_{r_{0}}^{+\infty} f^{m-1}\left(x^{1}\right) d x^{1}=+\infty, \quad \int_{r_{0}}^{+\infty} f^{m+1}\left(x^{1}\right) d x^{1}<+\infty
$$

Let $\tilde{\xi}=\xi^{\alpha} \partial / \partial x^{\alpha}$ be a non-zero Killing vector field on N. Then $\xi=\xi^{\alpha} \partial / \partial x^{\alpha}$ is a Killing vector field on $M=\boldsymbol{R} \times{ }_{f} N$, and we have that $\operatorname{Vol}(M)=+\infty$ and $\left\|\xi^{2}\right\|<+\infty$.

Example 6. Let n_{0} be a fixed positive integer and ε a number such that $0<\varepsilon<2 /(m-1)$. We remark that

$$
\begin{aligned}
& \sum_{n=n_{0}}^{\infty} n^{-(2+\varepsilon)}\left(n^{1 /(m-1)}\right)^{m-1}=\sum_{n=n_{0}}^{\infty} n^{-(1+c)}<+\infty \\
& \sum_{n=n_{0}}^{\infty} n^{-(2+\varepsilon)}\left(n^{1 /(m-1)}\right)^{m+1}=\sum_{n=n_{0}}^{\infty} n^{-(1+\varepsilon-2 /(m-1))}=+\infty .
\end{aligned}
$$

We consider a function \hat{f} on \boldsymbol{R} such that, for each integer $n\left(>n_{0}\right)$,

$$
\begin{array}{ll}
0 \leqq \hat{f}\left(x^{1}\right) \leqq n^{1 /(m-1)} & \left|x^{1}\right| \in(n, n+1] \\
\hat{f}\left(x^{1}\right)=n^{1 /(m-1)} & \left|x^{1}\right| \in\left[n+n^{-(2+\varepsilon)} / 10, n+9 n^{-(2+\varepsilon)} / 10\right] \\
\hat{f}(x=0 & \left|x^{1}\right| \in\left(n+n^{-(2+\varepsilon)}, n+1\right] .
\end{array}
$$

Then we have

$$
\begin{aligned}
& \frac{8}{10} \times n^{-(1+\varepsilon)} \leqq \int_{n}^{n+1} \hat{f^{m-1}}\left(x^{1}\right) d x^{1} \leqq n^{-(1+\varepsilon)} \\
& \frac{8}{10} \times n^{-(1+\varepsilon-(2 /(m-1))} \leqq \int_{n}^{n+1} \hat{f}^{m+1}\left(x^{1}\right) d x^{1} \leqq n^{-(1+\varepsilon-2 /(m-1))}
\end{aligned}
$$

We also consider the function \tilde{f} on \boldsymbol{R} defined by $\tilde{f}\left(x^{1}\right)=\exp \left(-\left(x^{1}\right)^{2}\right)$. Then we consider a function f on \boldsymbol{R} such that, for each integer $n\left(>n_{0}\right)$,

$$
\begin{array}{ll}
0<f\left(x^{1}\right) \leqq n^{1 /(m-1)} & \left|x^{1}\right| \in(n, n+1] \\
f\left(x^{1}\right)=n^{1 /(m-1)} & \left|x^{1}\right| \in\left[n+n^{-(2+\varepsilon)} / 10, n+9 n^{-(2+\varepsilon)} / 10\right] \\
f\left(x^{1}\right)=\tilde{f}\left(x^{1}\right) & \left|x^{1}\right| \in\left(n+n^{-(2+\varepsilon)}, n+1\right] .
\end{array}
$$

Let $M=\boldsymbol{R} \times{ }_{f} N$, and a Killing vector field $\xi=\xi^{\alpha} \partial / \partial x^{\alpha}$ on N induces a Killing vector field $\xi=\xi^{\alpha} \partial / \partial x^{\alpha}$ on M. We have that $\operatorname{Vol}(M)<+\infty$ and $\|\xi\|^{2}=+\infty$.

References

[1] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Etudes Sci. Publ. Math., 25 (1965), 313-362.
[2] G. Averous and S. Kobayashi, On automorphisms of spaces of nonpositive curvature with finite volume, Differential Geometry and Relativity (Eds. Cahen and Flato), 19-26, D. Reidel Publ. Company, Dordrecht Holland, 1976.
[3] S. Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc., 52 (1946), 776-797.
[4] J. Dodziuk, Vanishing theorems for square-integrable harmonic forms, Geometry and Analysis, Papers dedicated to the memory of V. K. Patodi, 21-27, Springer-Verlag, 1981.
[5] G. Gigante, Remarks on holomorphic vector fields on non-compact manifolds, Rend. Sem. Mat. Univ. Padova, 52 (1974), 211-218.
[6] L. Kaup, On Stokes' thorem for noncompact manifolds, Proc. Amer. Math. Soc., 82 (1981), 487-490.
[7] H. Wu, A remark on the Bochner technique in differential geometry, Proc. Amer. Math. Soc., 78 (1980), 403-408.
[8] ${ }^{71}$, On the volume of a noncompact manifold, Duke Math. J., 49 (1982), 71-78.
[9] K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker, INC., New York, 1970.
[10] S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), 659-670.
[11] S. Yorozu, Killing vector fields on complete Riemannian manifolds, Proc. Amer. Math. Soc., 84 (1982), 115-120.
[12] -, Killing vector fields on non-compact Riemannian manifolds with boundary, Kōdai Math. J., 5 (1982), 426-433.
[13] - Affine and projective vector fields on complete non-compact Riemannian manifolds, Yokohama Math. J., 31 (1983), 41-46.

Department of Mathematics

College of Liberal Arts
Kanazawa University
Kanazawa 920, Japan

