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On the Manifolds of Periodic Geodesics 

Hajime Sato 

Let sn be the n-dimensional sphere with a Riemannian metric g. If 
all geodesics are periodic with the same period I, we say that the Rieman­
nian manifold (sn, g) is a Cz-manifold, or g is a Cz-metric on sn. (For 
detail see Besse [2]). Let go be the canonical metric of sn. Then (sn, go) 
is a Cz~-manifold. There are some examples of Cz-metric on sn (Zoll [101, 
Weinstein [2], Guillemin [5]) other than the canonical metric. These ex­
amples are all obtained from deformations of go in the space of Cz-metrics. 

Let T1(sn, g)= TI(sn) denote the tangent sphere bundle of radius 1 
of a Cz-manifold (sn, g). Then the geodesic flow induces a free Sl-action 
on T1sn. Since the geodesic flow vector field is a contact vector field on 
T1Sn, the quotient space T1sn/SI is a (2n-2)-dimensional symplectic 
manifold. We call T1sn/SI the manifold of geodesics and denote by 
Geod (sn, g). The manifold Geod (Sn, go) is symplectically diffeomorphic 
to the Kahler manifold Qn-\ called hyperquadric and defined by the 
equation 

z~+z~+··· +Z~=O 

in cpn. Since every known example of Cz-manifold (sn, g) is a deforma­
tion of (sn, go), the manifold of geodesics Geod(Sn, g) for such manifold 
is symplectically diffeomorphic to Qn -I. 

A result of Weinstein [7] says that, if Geod (sn, gl) and Geod (sn, gz) 
are symplectically diffeomorphic, then the eigenvalues of the Laplacian on 
two Cz-manifolds (sn, gl) and (sn, gz) are asymptotically similar. 

Our problem is as follows. For any Cz-metric g on Sn, is Geod (Sn, g) 
diffeomorphic to Qn-I? In this paper we study the tangent bundle of 
Geod (sn, g) and its characteristic classes. 

Since Sp(n-l, R) is homotopy equivalent to U(n-l), the symplectic 
manifold Geod (sn, g) has the unique almost complex structure up to 
homotopy. 

Let r denote the complex line bundle associated to the SI-principal 
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bundle TIS"'---+Geod (S"', g). Recall the structure of the tangent bundle '<L 

of Geod (S"', go)=Qn~l. We have 

where r* is the dual ofr and en +l is the trivial (n+ I)-dimensional complex 
vector bundle over Qn-l. LetgeH2(Geod(Sn,g);Z) be the class re­
presented by the symplectic form. For the Chern class C i of '<lI9r, we 
have 

{o i: odd 
C;('<o@r)= . 

gi z: even. 

The characterictic class of Geod (S"', go) is determined by this equation. 
The bundle rEBr* is isomorphic to r R®R C, where r R denote the underly­
ing real vector bundle of r. 

By a stable class of a bundle 1), we mean the Whitney sum of 1) with 
a trivial bundle of sufficient dimension. We write 1)st for the stable class 
of 1). 

Our main result is as follows. 

Theorem. Let (S"', g) be a Cz-manifold and let '< be the tangent bundle 
of Geod (sn, g). Then there exists a real vector bundle ~ over Geod (sn, g) 
such that 

Remark that there are many examples of free Sl-action on TIsn, not 
coming from a geodesic vector field, such that the tangent bundle of the 
orbit space does not satisfy the relation in Theorem. 

The cohomology ring H*(Geod(S"', g); Z) is known to be isomor­
phic to H*(Q"'-l; Z) which has no torsion (Yang [9]). 

Corollary 1. Every odd dimensional Chern class of the bundle ,<@r 
vanishes. 

If n<4, then the non-zero Chern class of ,<@r is only C2('<@r) e 
H'(Geod(S"', g); Z). The (n-l)-dimensional Chern class Cn-l('<) of '< is 
representable by C2('<@r), which must be equal to the Euler class. 

By identifying the isomorphic cohomology rings H*(Geod (S"', g); Z) 
and H*(Qn-l; Z), we have the following. 

Corollary 2. If n<4, then the Chern classes of the manifold 
Geod (S"', g) are equal to that of Geod (S"', go). 
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S. Sasao has shown the author the following result. 

Proposition. Let M be a simply connected 6-dimensional closed mani­
fold with cohomology ring H*(M; Z) isomorphic to H*(Qs; Z). If the 
second Stiefel class wz(M)*O, then M is homotopy equivalent to QS. 

By using the Browder-Novikov's surgery technique, we obtain 

Corollary 3. For any Cz-metric g on S\ the manifold Geod (S\ g) is 
diffeomorphic to QS. 

For the proof of Theorem, we need an inverse of Thom isomorphism 
in K-theory, a global Jacobi equation written in terms of the horizontal 
lift of connections and a topological study of Sturm-Liouville equations 
1::>Y means of Morse theory. 

We outline our argument. Detailed proof will appear elsewhere. 

I. Topological Preliminaries 

1. Projectable bundles 

Let Xbe a smooth manifold and let 7t': L-.Xbe the projection of an 
Sl-principal bundle. 

Definition. A vector bundle p: E -. Lover L is projectable onto X, 
if there exists a vector bundle P: E-.X over X such that 7t'*E=E. The 
map 7t' induces the bundle map 7t'1: E-.E, which we call the projection. 
The bundle E is called the projected bundle. 

Let x be a point in X. For any a, b E 7t'-I(X)=St, we have a linear 
isomorphism 

of vector spaces defined by iPab(U) = V, where 7t'!(u)=7t'!(v). Then we have, 
for a, b, c E 7t'-I(X), 

(1) 

Let 7t'*L={(a, b) E LXL, 7t'(a)=7t'(b)} be the induced Sl-bundle over 
L from L. We have two projections 7t'1' 7t'z: 7t'* L-.L defined by 7t'1(a, b)=a 
and 7t'z(a, b)=b. Let 7t'tE (i= 1,2) be the induced vector bundle. The 
map iP: 7t'*L-.Iso(7t'tE, 7t'tE) defined by iP(a, b) = iPab is a continuous 
cross section of the bundle Iso (7t't E, 7t't E) over 7t'* L. 

We call iP the projecting isomorphism associated with the projectable 
bundle E. Given a cross section iP satisfying (1) and a vector bundle E 
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over L, we can regard E as a projectable bundle with (fj as the projecting 
isomorphism. 

Assume that the vector bundle p: E ->; L is isomorphic to the trivial 
bundle. Then we may regard (fj ab as an element of the general linear 
group GL. The bundle Iso (n[ E, n; E) is isomorphic to the trivial bundle 
GL X n* Lover n* L. The space n* L is naturally homeomorphic to SI XL. 
Let G be a subgroup of GL such that (fjab is contained in G for any (a, b) 
E n*L. Then (fj is a map from SIXL to G. Define a map i/): L->;LX 

QG by i/)(a)=(a, (fj(., a». We have the action of SI on L. On the loop 
space QG, the group SI acts by (tw)(s)=w(t+s)·w(t)-t, where t, s E SI, 
wE QG, and· denote the composition of G. Thus we have the product 
action of SI on LXQG. Using (1), we can easily see that i/) is SI-equi­
variant. The factor space LX Sl QG is the total space of a fiber bundle 
over X=LjSl. Thus i/) is a cross section of the bundle LXS1 QG, i.e. 
i/) E T(X, LX Sl QG). 

2. Homotopy theorem 

Let A denote the complex line bundle over X associated to L and let 
X A denote the Thorn space of A. Let Vect (XA) denote the set of isomor­
phism classes of vector bundles over X. Let II T(X, LX Sl QG) denote 
the set of homotopy classes of T(X, LX Sl QG). By taking the homotopy 
classes of i/), we have the set map 

(fj: Vect (XA)~IIT(X, L X QG). 
Sl 

N ow suppose that we are given an element f in T(X, LX SlQG). Let 
E be a trivial bundle over L. Then we naturally obtain a projecting iso­
morphism 1Jfj of E which satisfy (1). We write 1JfiE) for the projected 
bundle over X. 

Proposition. If ft, h in T(X, LX S' QG) are homotopic, then 1Jf /1(E) 
and 1Jf j,(E) are isomorphic vector bundles over X. 

3. Stable case 

Suppose that the dimension of the fiber of the trivial bundle E is 
sufficiently large. Let G=GL(R, 00), GL(e, 00) or GL(H, 00). Accord­
ing to Bott [4], the space QG is homotopy equivalent to the space of mini­
mal geodesics, on which SI acts trivially. 

Proposition. The fiber bundle LX Sl QG is homotopy equivalent to the 
trivial bundle Xx QG. 
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If G=GL(C, 00), then rII(X, LXsJJG)=K(X). The map f/) in 
Section 2 may be regarded as a map 

f/): K(XA)~K(X). 

Let r: K(X)4-K(XA) be the Thom isomorphism defined by r(x)= 
lAX, where lA e K(XA) is defined by the exterior algebra of A ([1]). 

Proposition. The map f/) is the inverse of r. 

Corollary. For fe reX, LXSl QGL(C, 00)), 

{1/riE)}=(I-[A]){f} e K(x). 

If G=GL(R, 00), then the projected bundle is isomorphic to the 
complexification of a real vector bundle. Let i: [X, QGL(R, 00)]4-
[X, QGL(C, 00)] be the natural homomorphism. 

Corollary. For any r e K(X) represented by a line bundle over X, and 
for any e e [X, QGL(R, 00)], there exists a real vector bundle f3 on X, such 
that 

{l-r)i(e)=f3e e K(X), 

where f3e is the complexification f3 (8) R C. 

ll. The Manifold of Geodesics 

4. Global Jacobi differential equation 

Let Ii' be a connection on the tangent bundle TM of a smooth mani­
fold M, and let Ii' H be the horizontal1ift of Ii' (Y ano~ Ishihara [8]). Then Ii' H 

is a connection on the tangent bundle TTM of TM. We decompose the 
tangent space TvTM, v e TM, as the sum of the horizontal part and the 
vertical part 

We write X =(~~) for X=xf+x;'" e TvTM, where Xl' x 2 e T~(v)M, xf and 

x;'" are horizontal and vertical lifts, 1C is the projection TM4-M. For a 
vector field X on M, by definition, we have 
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Let g be a Riemannian metric on M. For ve T",M, we define a linear 
symmetric transformation R~ of T.,M by 

R~w=R(w, v)v, 

where we T.,M and R is the curvature tensor of (M, g). To each ve 
TxM, we define a linear endomorphism p~ of T~TM by 

This defines a smooth cross section P of the bundle Hom (TTM, TTM) 
over TM. Let Z be the geodesic flow vector field. Then we have Z(v)= 

(g) for ve TM. We define a linear differential equation on TM by 

(2) 

where Y = (~:) is a time dependent smooth cross section of the bundle 

TTM over TM. We call (2) the global Jacobi differential equation. It is 
a second order differential equation. 

5. The tangent bundle of the manifold of geodesics 

Let (M, g) be a Cz-manifold. Then the geodesic flow is periodic and 
defines a free S1-action on the unit tangent sphere bundle T1M. The 
manifold of geodesics Geod (M, g) is the quotient space T1M/S1. We 
give the canonical metric on TM. Let F be the subbundle of TTM con­
sisting of vectors orthogonal to XH and XV at x e TM. Let F be the 
restriction of F on T1M. Then the global Jacobi equation (2) can be 
restricted on F and it defines a projecting isomorphism on F. Since the 
solution of the Jacobi equation is the integral curve of the complete lift 
([8]) of the geodesic flow vector field, we obtain 

Proposition. The projected bundle F defined by the global Jacobi 
differential equation is isomorphic to the tangent bundle TGeod (M, g) of 
Geod(M,g). 

III. Differential Equation and Morse Theory 

6. Sturm-Liouville equation and a symmetric space 

We want to study geometrically families of curves defined by vector­
valued Sturm-Liouville equations 
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(3) 

where y" means d2yjdt Z and qit) is a symmetric matrix-valued continuous 
function on t E R parameterized by a point x in a smooth manifold X. Put 

Z= (~/) and we obtain 

(4) ZI_(O 1)z=0. 
qx ° 

Since (~x ~) is contained in the Lie algebra ~jJ(m, R), the fundamental 

solution Wx(t) with Wx(O) = 1 is contained in the Lie group Sp(m, R). 
We embed GL +(m, R) in Sp(m, R) by regarding x E GL +(m, R) as 

(~ t~-l) in Sp(m, R). Let N be the subgroup of Sp(m, R) defined by 

Then Nn GU(m, R)=I and xNx- 1=N for all x E GU(m, R). Thus 
N· GL +(m, R)= GL +(m, R) ·N, which we denote by H. Let Q be the space 
of right cosets H\Sp(m, R) and let 

p: Sp(m, R)~Q=N·GU(m, R)\Sp(m, R) 

be the natural projection. Since U(m) n H =SO(m), we have SO(m)\ U(m) 
=H\Sp(m, R)=Q. We also denote by p the projection U(m)-+Q. Let 
fj be the Lie algebra of H and let ~ be the subspace of u(m)c~jJ(M, R) 
defined by 

Then we have 

~jJ(m, R)=~+fj, 

[~, ~o(m)]c~, 

u(m)=~+~o(m), 

[~, ~]c~o(m). 

The space Q has a U(m)-invariant metric such that Q is a Riemannian 
symmetric space. 

7. Sturm-Liouville curve 

We identify §jJ(m, R) with the right invariant vector field on Sp(m, R). 
Define a subspace stl (m) of ~jJ(m, R) by 
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We say that a smooth curve c: [0, 1]-+Sp(m, R) is a Sturm-Liouville curve 
(abbrev. SL-curve) if dc/df is contained in the set stl (m) for all f E [0, 1]. 
Let iXJC+ be the subspace of 9J( defined by 

For x E Sp(m, R), we write 9J(;- for the subspace of TxSp(m, R) corre­
sponding to 9J(+. If p(xl ) = p(x2) for Xl' X 2 E Sp(m, R), then 

For q E Q, we define a subspace p*(9J(+) of TqQ by p*(9J(;) for some X E 

Sp(m, R), p(x) = q. 
A smooth curve c; [0, 1]-+Q is called a positive curve (abbrev. (+)­

curve) if dc/df is contained in p*(9J(+) for all f E [0, 1]. The image c= 
pc: [0, 1]-+Q of a SL-curve c: [0, 1]-+Sp(m, R) is a (+ )-curve. Let us 
define a space Q+(Q) by the set of all piecewise smooth (+ )-curves c: [0, 1] 
-+Q with c(0)=c(1)=po, where Po={H} E Q. An element in Q+(Q) is 
called a (+ )-loop. We give a topology on Q+(Q) as the subspace of the 

loop space Q(Q). The energy function E is given by E(w) = f: II ~~ Wdf 

for WE Q+(Q). A (+ )-loop w in Q+(Q) is a critical point for the function 
E if and only if w is a geodesic ( + )-loop. Remark that a geodesic of Q 
emanating from Po is given by 

r xCt) = Po exp tX 

for X E 9J(. 

Remark that we can define the space of (+ )-curves in Q(U(m)) to be 
the inverse image of Q+(Q) by the natural projection Q(U(m))-+Q(Q). 
The following arguments are also valid. But for our purpose, the definition 
is sufficient. 

8. Morse theory on Q+(Q) 

We study the weak homotopy type of the space Q+(Q) by using the 
Morse theory, where Q=SO(m)\U(m). On Q=Q(Q), we have the energy 
function E defined by 
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for wE Q(Q). Given c>O, let Qc=QcCQ) denote the closed subset 
E-\[O, c))cQ(Q) and let lnt Qc denote the open subset E- 1([0, c)). Put 
Q,;-=QcnQ+(Q) and lnt Q,;-=lnt QcnQ+(Q). Regard SI as [0, 1]/{0}~ 
{1}. We can choose a subdivision 0= to<tl < ... <tk = 1 of [0, 1] so that, 
for any W E Qc, the geodesic connecting W(ti - 1) and w(ti ) is uniquely and 
differentiably determined by the two end points, for each i= 1,2, .. " k 
(cf. [6, § 16]). For any j EN, let 0= to<t1 < ... <t2j- 1k = 1 be the vertexes 
of the (j -1 )-th barycentric subdivision of the polyhedron [0, 1] with the 
vertexes to, tl> •. " tk • We define iQc to be the subspace of Q o consisting 
of loops w E Q c such that w b'--.'l,ti] is the geodesic for each i = 1, 2, .. " 
2J-1k. Put iQ,;-=iQcnQ+, and IntQ';-=lntJQcnQ+. We have the 
natural inclusions 

We study the homotopy type of JQ,;- and show that the inclusions 
are homotopy equivalences. Note that lnt JQc has the structure of a 
smooth finite dimensional manifold, and lnt JQ,;- is an open submanifold 
of lnt J Q c' Choose a Riemannian metric on lnt i Q c' and consider the 
gradient vector field grad ( - E) = - grad E. Let if>. be the associated 
local one-parameter group of transformations. The main result of this 
section is the following 

Proposition. For any wE lnt iQ;, the maximal integral curve if>.(w)for 
s>o of -grad E in lnt JQc is contained in lnt iQ';-. 

For the proof, we need the following. For a real symmetric (m xm)­
matrix A, we associate a real number a(A) defined by 

a(A) = min <Aa, a), 
llall~l 

where a E R m, and < ) is the usual inner product in Rm. 
Obviously we have 

Lemma. For any two real symmetric (m X m)-matrices A and B, we 
have 

a(A + B):?:a(A) + a(B). 

Letp be a point in Q. We can expressp by p=SO(m)g for some g 
in U(m). We identify TpQ with m= TpoQ by the right translation (Rg)*. 
Thus a vector X E TpQ is identified with A E m, where X = (Rg)*A. The 
space m is naturally identified with the set of real symmetric (m X m)­
matrices. We define a real number a(X) by 
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a(X) = a(A). 

Lemma. The value a(X) is independent of the choice of g in U(m). 

Thus a is a well-defined function on T/Q). Let h be an element of 
U(m). For any p E Q and X E TpQ, we have 

Now let w be an element in Int iQe. Then w is a broken geodesic 
with E(w) <c. Put Vt=dw/dt, and 

LIt V= Vt+ - Vt- = discontinuity in the velocity vector at t, where O<t< 1. 

Then LIt V =0 except for t= tl, t2, ... , t2j-lk-l. We define a real number 
a(w) by 

a(w) = min a(Vt,+). 
i=O,l,··o,2j- 1k-l 

Remark that a(Vt,+)=a(VtH1J=a(Vt) for ti<t<ti+l. Obviously a is a 
continuous function on the manifold Int 1De• More precisely, we have 
the following 

Lemma. For any smooth curve '0/: R~Int iDe, the function 'o/*a is a 
piecewise smooth function on R. 

Remark that w E Int j Q e is contained in Int 1 Q: if and only if a(w) > O. 
Let w be an element in Int iQ:, and let ¢: (-e, e)~Int 1Q: be the 

integral curve of the vector field - grad E with ¢(O) = w. 

Lemma. Suppose that ¢*a is smooth at O. Then we have 

(-grad E)",(a»O. 

The proof is given as follows. By the first variational formula, we 
have 

(-grad E)", = 2: Llti V. 
i 

We show that, for each i, (Llti V)(a) >0. The integral curve w(s)(t)=w8(t) 
of LltY with WO(t)=w(t) in Int iQ: for -e<s<e, e small, is given as fol­
lows. Let r;(t), O<t, be the geodesic with r;(O)=w(ti) such that dr;/dt(O) 
= LIt' V. We define the loop w8 by 

{
Wet) for O<t<ti_1 and ti+l<t<l, 

w'(t)= geodesic connecting W(ti_l) and r;(s) 

geodesic connecting r;(s) and w(ti+1) 

for ti_l<t<ti, 

for ti<t<t,+I. 
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Put V~=dWB/dt. By the definition of o{w), it is sufficient to show that 
lims_ o l/s(O'(V:,_)-O'(Vt,_))>O and 1ims-a l/s(O'(V:,+)-O'(Vtl+))>O. For 
fixed s, let aBet) (O:S:;t<s) denote the geodesic such that as(O)=w(tt-s) 
and aB(s)=1)(s). Let exp: u(m)~U(m) be the exponential mapping of 
the group U(m). Fix an identification of T .. (t,-s)Q with an and identify 
T .. (t,)Q with T .. (t'-B)Q by the action of exp (Vt,-). Then the velocity 
vector daBfdt(O) is given by p*{exp-l (exp (sLIt, V) exp (s Vt,-B))}' where 
p*: u(m)~an is the projection. Since Vtt -.= Vtt - by the identification, 
we have LIt,V + Vtt - B= Vtt+" Consequently we have 

where o(S3) denote a a(m)-valued function of order S3. Since O'(Vt,J >0, 
we have «daB/dt)(O))>O for small s>O. Let Exp=Exp~(,): T~(,)Q~Q 
be the exponential mapping of the symmetric space Q. In the vector 
space T~(,)Q, we have equalities 

da' EXp-l(W(ti-S)) = -Cit(s), EXp-l(W(ti_l))= - V~,_. 

Since 

we have 

Note that 

lim {EXp-l(W(ti-S))-Exp-\W(ti_1))} = Vt,- E T .. u,)Q 
8-0 

and 

( daB ) (daB ) 
0' Cit(s) = 0' Cit(O) . 

Consequently we have 

lim {O'(V:,_)-O'(Vtt_)}>O, 
8-0+ 

and 
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if it exists. The proof that 

is quite similar. 
Let Wi (i= 1,2, .. " p) be the collection of critical manifolds in 

Int JQ: (Bott [4]). Remark that these collections are equal for every 
j= 1, 2, .. '. Let ~i be the negative bundle of Wi ([4]). 

Corollary. For any j> 1, the space JQc is homotopy equivalent to the 
CW-complex 

Corollary. The inclusions 

are homotopy equivalences. 

j>1. 

Put PfQ:=lim JQ:. Then pfQ: is homotopy equivalent to JQ: for any 
j 

The following is easy to see. 

Proposition. For any compact topological space X, the inclusion 
i: PfQ:~Q: induces an isomorphism 

9. Degree and index of (+ )-loops 

For x E Q=SO(m)\U(m), we have the determinant det(x) E SI= 
{ZE C;llzll=I}. Foramapw: SI-+Q, the degree dew) is defined to be 
the winding number of the composition det·w: SI-+SI. Two elements 
WI and W2 in Q(Q) are contained in the same connected component if and 
only if d(wl)=d(w2)' For k E Z, put kQ(Q)={w E Q(Q); d(w)=k} and 
kQ + (Q) = Q + (Q) n kQ(Q). 

The following follows from results of Section 8. 

Proposition. Every (+ )-loop w is homotopic in Q+(Q) to a geodesic 
loop. 

Each geodesic issuing from Po={SO(m)} is written as Po exp tA for 
some A E m. Diagonalize A, and we obtain 
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Proposition. For Q=SO(m)\U(m), kQ+(Q) is non-vacuous if and only 
ifk>m. 

The critical manifold in mQ+(Q) consists of one point ro defined by 

t ( ° 1) Po exp 27r _ 1 0· 

Proposition. The space mQ+(SO(m)\U(m)) is contractible (up to weak 
homotopy type). 

Now to each (+ )-loop (/) E Q+(Q), we will associate a non-negative 
integer i«(/)) called the index of (/). Let II: 0j:>(m, R)=IDC+fj-+IDC be the 
projection. A (+ )-loop (/) E Q+(Q) is the image by fJ of a piecewise 
smooth curve 1;: [0, 1]-+Sp(m, R) satisfying the relations 

1;(0)=1, 1;(1)cH, 

II( ~~ (t)I;_I(t)) cIDC+ for all t E [0, 1]. 

We say that I; is a lifting of (/). Express the 0j:>(m, R)-valued function 
dl;/dt.I;-1 on [0,1] as 

~'--=(A B)I;. 
dt C _tA 

Then II(d(/dt·I;-I)cIDC+ if and only if B>O. The curve 

I;(t)=(~m iv~i)) 
is the fundamental matrix of the differential equation 

(5) 

We say that O<t::;: 1 is conjugate to ° if there exists a non-zero solution 

(~) of (5) such that 

(6) U(O) = U(t)=O. 

Thus t with 0< t< 1 is conjugate to ° if and only if det Y(t) = 0. The 
multiplicity of the conjugate point t is defined to be the dimension of the 

solutions (~) of (5) which satisfy (6). We define the k-th conjugate 

point by counting multiplicities. The index of the curve 1;: [0, 1]-+ 
Sp(m, R) is defined to be the number of conjugate points in (0, 1) counted 
with their multiplicities. 
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Bya (+ )-variation of the curve '(t)=~o(t), we mean a continuous 
mapping 

,: (-c, c) X [0, I]----+Sp(m, R) 

for some c>O, such that 
*) ,. is piecewise smooth, 

**) II((d'.!dt)(t)) E m+ for all s E (-c, c) and t E [0, 1], where we 
put '.(t) =,(s, t). 

By the classical method in the calculus of variations, we obtain 

Proposition. For a (+ )-variation, the k-th conjugate points vary con­
tinuously for all kEN. 

Suppose that ,. is a ( + )-variation of " such that '.(0) = e, and 01) 
E H for all s E (-c, c). Then the point 1 is conjugate to ° with multipli­

city equal to m. Since m is the maximum of possible multiplicities, con­
jugate points do not cross the point 1. 

Proposition. Suppose that a (+ )-variation ,. satisfies the relation '.(0) 
=e, '.(1) E H for all s E (-c, c). Then,for any s E (-c, c), the index of ,. 
is equal to the index of '0. 

For an element Q) E Q+(Q), we define the index i(Q)) to be the index 
of a lifting ,. Obviously we have 

Lemma. If Q)o and Q)I lie in the same arcwise connected component of 
Q+(Q), then i(Q)o)=i(Q)I). 

The sum of conjugate points in (0, 1] of a geodesic loop r E Q(Q) is 
equal to 2d(r). 

Lemma. For a geodesic loop r E Q+(Q), we have 

i(r)=2d(r)-m. 

Combining lemmas, we obtain 

Proposition. For a (+ )-loop Q) E Q+(Q), 

i(Q))=2d(Q))-m. 

IV. C1-metrics on sn 
10. A stable bundle 

Let g be a C1-metric on sn. We may assume that 1= 1. We embed 
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sn in Rn+' as the unit sphere. We give a Riemannian metric h on Rn+' 
such that h is equal to the product gXgo on a tubular neighborhood of sn 
in Rn+', where go is the standard metric on (-1,1). The metric h 
naturally induces the Riemannian metric h on TRn+'. 

Let L= T,sn be the unit tangent sphere bundle of sn. Define a 
(2n + 2)-dimensional vector bundle E over L by E = TT Rn + II L. Of course 
E is isomorphic to the trivial bundle. The geodesic flow defines a free Sl­
action on L such that the base space X is equal to Geod (sn, g). We give 
a projecting isomorphism f/J on E as follows. Let B be the (2n-2)­
dimensional subbundle of E consisting of tangent vectors of L orthogonal 
to the geodesic flow vector. Thus we have the orthogonal decomposition 

where A is the real 4-dimensional vector bundle isomorphic to the trivial 
bundle. Consider the following differential equation on E, 

(7) 

where t is the geodesic flow vector, and P is the linear endomorphism of 
E defined by, 

on A 

on B, 

where v E LcTRn+' and R is the curvature tensor of (Rn+1, h). Wewrite 

Pv = (~* ~) on E. Then all the solutions of (7) are periodic and it de­

fines a projecting isomorphism f/J on E. Remark that f/J can be restricted 
to sub bundles A and B. Let A and 13 be the projected bundle. Then the 
projected bundle E is isomorphic to the Whitney sum Affi13. The natural 
complex structure of the bundle TT Rn+ I induces the complex structure on 
E such that A and 13 are complex subbundles. By the result of Section 
5, 13 is isomorphic to the tangent bundle TX. 

Let r denote the complex line bundle associated to the S'-principal 
bundle Tlsn~x, and r* be the dual bundle. 

Proposition. The complex bundle A is isomorphic to the bundle 2r* 
=r*ffir*. 
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11. Proof of Theorem 

Let Zl, Z2, ... , Zn+l be a global orthonormal frame of (Rn+l, h). 
We have the horizontal and the vertical lifts 

Z{', Z!f, ... , Z{[+l, 

Z[, Zr, ... , Z:+l, 

on the manifold TRn+l. Define an (n+ 1) X (n+ I)-matrix valued function 
A = (aij) on L=T1sn by 

n+l 
P'tZj = L; aikZk , 

k~l 

where t is the geodesic flow vector field. Remark that aij = -aji" For 
unknown vectors Y1 and Y2, write 

Yt= L;ft j Z j , 
j 

Y~= L; gijZj' 
j 

The vector Y = (~) is represented by (2n + 2, n + 1 )-matrix (~). where 

F=(ft j ) and G=(gij)' Consider the following differential equation, 

(8) (Y, Z)'=(Y, Z)(-AO 0)+(0 I)(y, Z), 
-A P* 0 

where Yand Z are (2n+2, n+ I)-matrices and' means d/dt. The solutions 
Y and Z of (8) give the solutions of (7). Let U and V be the fundamental 
matrix of the differential equations 

U'=U(-AO 0) 
-A' 

Then the matrix equation W of (8) is given by 

W=VU. 

Since A E o(n+ 1, R), U is contained in SO(n+ 1, R). Since (~* ~) 
E £i1J(n+ 1, R), V E Sp(n+ 1, R). Thus W is contained in Sp(n+ 1, R). By 

the projection p: Sp(n+I, R)-+Q=H\Sp(n+I, R)=SO(n+I)\U(n+I), 
U is mapped trivially. Since W(O) = W(I)=e, we have pV(O)=pV(I)=po. 
Thus pV can be regarded as a map: X-+QQ. For W- 1= U- I V-I, we 
have p(W-I)=p(V-I). Since dim X=2n-2, the set of homotopy classes 
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[X, QSp(n+ I, R)] and [X, QQ] are abelian groups and p induces a homo­
morphism. As elements in [x, QQ], 

{pv} = _{P(V-l)} = -{p(W-1)}={pW}. 

Note that pVbelongs to Q+(Q). 
Using the fact that the index of geodesics of a C,-metric of sn is 

equal to n-I (Bott [3]), we obtain 

Lemma. The degree of the ( + )-loop p V is equal to n+ 1. 

From Section 8, it follows that the homotopy class of p V is trivial. 
The trivial homotopy class gives the bundle (n+ I)r*. 

The proof of the main theorem is given as follows. From Section 
10, we see that the equation (8) gives the projecting isomorphism (/) such 
that 

E=TX(JJ2r*. 

Let i: [X, QGL(R, oo)]--+K(X)=[X, QGL(C, 00)] be the natural homo­
morphism. The difference between iD(E) and the trivial class lies in the 
image of [X, QGL(R, 00)]. By Corollary of Section 3, we obtain 

E-(n+ l)r*=(l-r)i(e), 

for some e E [X, QGL(R, 00)]. Thus 

TX +2r*=(n+ l)r*+(I-r)i(e). 

Write 1: for TX. Tensoring r to both sides, we obtain 

1:0r=(n-I)+(1-r)ri(e). 

Since (1-r)r=(1-rZ)-(I-r), by Corollary in Section 3, we have real 
vector bundles ~l and ~z such that 

Thus we have 

for some real vector bundle ~ over X, which is the concluson of Theorem. 

Acknowledgement. The author thanks to Takashi Sakai for helpful 
remarks. 



230 H. Sato 

References 

[ 1] M. F. Atiyah, K-theory. Benjamin, 1967. 
[ 2 ] A. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Math., 

93 (1978), Springer. 
[ 3] R. Bott, On manifolds all of whose geodesics are closed, Ann. of Math., 60 

(1954),375-382. 
[ 4 ] R. Bott, The stable homotopy of the classical groups, Ann. of Math., 70 

(1959), 313-337. 
[ 5 ] V. Guillemin, The Radon transform on Zoll surface, Adv. in Math., 22 

(1976), 85-119. 
[6] J. Milnor, Morse theory, Ann. of Math. Studies, 51, Princeton University 

Press (1962). 
[7] A. Weinstein, Fourier integral operators, quantization, and the spectra of 

Riemannian manifolds, Geometrie symplectique et physique mathematique, 
Colloq. Intern. C.N.R.S., 237 (1976),289-298. 

(8] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, 
Inc., New York, 1973. 

[9] C. T. C. Yang, Odd-dimensional Wiedersehen manifolds are spheres, J. Dif­
ferential Geom., 15 (1980), 91-96. 

UO] O. Zoll, Dber FHichen mit Scharen Geschlossener Geodatischer Linien, Math. 
Ann., 57 (1903), 108-133. 

Department of Mathematics 
Tohoku University 
Sendai980 
Japan 


