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Residue Homomorphisms in Milnor K-theory

Kazuya Kato

In this paper, we give a generalization of the residue homomorphism
by using Milnor’s K-group [9], and study its relation with class field theory.
Our residue homomorphism provides a very plain definition of the p-
primary part of the reciprocity map in the local class field theory in cha-
racteristic p>0. This definition was used in Brylinski [4] for the study of
ramifications in abelian extensions of local fields of characteristic p>0
and those of surfaces over finite fields. Our residue homomorphism also
provides a description of the relation between the class field theory of a
higher local field and that of its constant field (Section 4 Theorem 2).

We express our sincere gratitudes to Professor Brylinski for his cor-
respondences on this subject. We also express our appreciation of the
hospitality of IHES during the writing of this article.

§ 0. Notations and preliminaries

Here we fix our notations and review some properties of Milnor’s K-
group. For a ring R, let R* be the multiplicative group of all invertible
elements of R. For a field %, let K (k) (9=0) be Milnor’s K-group of k
defined by generators {x;, - - -, x,} (x5, - - -, X, € k*) and certain relations
(cf. [9)). For a discrete valuation field k, let ord, be the normalized ad-
ditive discrete valuation of k. Let

O,={x e k; ord,(x)=0}, m,={x e k; ord (x)=1},
U,={x € k; ord,(x)=0}.

The residue class field of k is denoted by k. For x e O,, let X be the
residue class of x in k. Concerning the Milnor K-group of a discrete
valuation field k, for i>1, let ®,s, U'K (k) be the graded ideal of
@20k, (k) generated by elements a of k*=K,(k) such that ord,(e—1)=1i.
Let

R (k)=1lim K, (k)| UK (k),
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UK (k)=lim UK, (k)| U"K, (k) C K (k) .
v

?

The following lemma is proved easily, but it will play an essential role in
the definition of the residue homomorphism in Section 1.

Lemma 1. If k is a discrete valuation field and k is its completion,
the canonical homomorphism K, (k)— K, (k) induces isomorphisms

KRV K ()= K (UK, R (k)=K,k)

for any q=0 and iz 1.

The following “boundary” homomorphism 9§ and the norm homo-
morphism of Milnor’s K-group will be useful tools.

If k is a discrete valuation field, there exists a unique homomorphism

9: Ky (k)——>K (k) (9=0)
such that
({xy, -+, xp yD=o0rd, () - {3, - - -, X,}
for any xy, - - -, x, € U, and y € k* (cf. [9]). Note that
Lemma 2. Ifx, ---,x,¢e U, and y e K, k),
B(xs -2 X ) =% 5 000 in Ky, (R).

In particular, 8 annihilates U'K, (k).

For a field k and any finite extension k’ of k, there exists a canonical
norm homomorphism N, : K, (k")—K,(k) (cf. Bass and Tate [1] Chapter 1
Section 5 and Kato [7] Section 1.7). It has the following properties.
For a discrete valuation v of a field (resp. for a prime ideal p of a ring),
let £(v) (resp. £(p)) be the residue field of v (resp. p).

Lemma 3. Let k be a discrete valuation field and let k' be a finite ex-
tension of k. If the integral closure of O, in k' is a finitely generated O,-
module (cf. Bourbaki [3] Chapter V1 8.5; this is always the case if k is com-
plete), the following diagram is commutative.

Kq“(k/)@&g? K ()

Nk'/kl l(Nm)/:z)u
2 Y
K, . (k)—> K(k).

Here v ranges over all normalized additive discrete valuations of k' such
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that {x e k; v(x)=0}=0,.

Lemma 4. Let k be a field and K an algebraic function field in one
variable over k. Let P=P(K/k) be the set of all normalized additive di-
screte valuations v of K such that v(k*)=0. Then,

% N, ye(0,(x))=0 in K,(k), for any x e K, (K).

Indeed, Lemma 3 is reduced to the case where k is complete, and is
proved in this case in [7] Section 1.7. By Lemma 3, Lemma 4 is reduced
to the case K=k(X), the rational function field in one variable over k,
and in this case, this summation formula is essentially the very definition
of the norm homomorphism (cf. [1] Chapter I Section 5).

§ 1. The definition of the residue homomorphism

Let k be a complete discrete valuation field, and let M be the field of
fractions of O,[[X]]. Let M be the completion of M with respect to the
discrete valuation of M defined by the prime ideal O,[[X]]m, of height one
of O,[[X]]. Then, M is the field of all formal Laurent series > ,c 2, X"
over k such that ord,(a,) is bounded below and lim,__ . a,=0. The
valuation ordy is given by inf, {ord,(a,)}, and the residue field of M is
k(X))

The aim of this section is to define a homomorphism
res: Ifq“(M)—»qu(k)

called residue. For the relation with the usual residue of a differential,
cf. Section 3.

Let © be the set of all prime ideals p of O,[[X]] of height one such
that p=2xO,[[X]lm,. Let B=P*(X)/k) be as in Section 0 Lemma 4.
Then, by Weierstrass’ preparation theorem (cf. [3] Chapter VII 3.8), each
element of © is generated by an irreducible polynomial over O, of the
form

Xn+a1Xn_l+"'+an (nzls a, "'9anemk)

and thus we can identify & with the subset of {§ which corresponds to the
set of irreducible polynomials over k of this form. Let

A, =0,[[X]I®, .k,
A ={fek(X);v(f)=0  ifveP—-S—{co}}.

Here co denotes the unique element of ¥ such that co(X)=—1.
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When we consider the analogy with the analytic theory over the field of
complex numbers C, & corresponds to the open disk D°={z e C;|z| <1},
A, corresponds to the ring of all holomorphic functions on D°, 4_ corre-
sponds to the ring of all rational functions on C whose poles (in C) are
concentrated in D°, and M corresponds to the ring of all meromorphic
functions on D° which has only finite number of poles. Just as in the
complex case, we have exact sequences

0—>k[X]—>A,. A —>M—>0
0——>k*——>(4.)*®(A4 ) —> M*—>0.
The following Proposition 1 generalizes this latter sequence to Milnor’s
K-groups.

Let @,5 K, (4,) (resp. @,z K(4.)) be the sub-graded ring of
@20 K, (M) generated over Z=K (M) by (4,)*CK,(M) (resp. (4.)*C
K(M)). Forizl,let®,., UK, (4,) (resp. D s, UK (4.)) be the graded
ideal of @5, K, (4.) (resp. D,z K, (4.)) generated by elements fe (4,)*
(resp. (4.)*) such that ord;(f —1)=i.

Proposition 1.  For any g, the canonical map K (k)—K (M) is injective.
If we regard K (k) as a subgroup of K, (M), we have

Kq(M):Kq(A+)+Kq(A—)a Kq(k):Kq(A+) n Kq(A—):
UK (M)=UK(A)+ UK, UK®=UKLA)NUK(A)

for any q=0 and i =1, where U'K (M) is defined with respect to the discrete
valuation of M induced by ord .
Now let res: K, ,,(M)—K, (k) be the composite map

(@) Neewy/r)
Ko @ K@) 25K ().

Using the above proposition, we can prove;
Theorem 1. The homomorphism res: K, (M)— K (k) satisfies
res (UK, . (M))C UK (k) foranyiz=1,
and hence induces a homomorphism
res: Ifq WM = If'q . l(M)——)Ifq(k)

(cf. Section 0 Lemma 1). The latter homomorphism is the unique contin-
uous homomorphism (with respect to the topology defined by the filtrations
U?) which annihilates the image of K, .(A.) and elements of the form
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{1+aX-"'+-.-+a, X"y} (@, -+, a,em,yeK(4)),
and for which the composite

res

s i X} o - ’
K (k)——>K, (M)—>K (k)
coincides with the identity map. ‘

Proof of Proposition 1. As is easily seen, res: K, ,,(M)—K (k) gives
X
a left inverse of Kq(k)ii—;KqH(M ), and
res ({UK(4.), XPD=UK (k) foriz=1.

It follows that the canonical homomorphism K (k)—K,(M) is injective
and that

() UK (4,)N K (k)= UK (k).

Let ®,., Kj(4_) be the subgraded ring of @,., K (k(X)) generated over
Z=K k(X)) by (4.)*CK(k(X)). There is clearly a surjection K)(4.)—
K, (4.). By [9], the sequence

@) KWK B K, k()0

is exact. Hence we have
K (k)—>Ker (KA )—> g@@ K,_(k@))).

This proves K (4,) N K,(4_.)=K,(k). By the above (f), we have UK (4.)
NU'K(A)=UK (k).

Itremainstoprove K (M)=K,(4.)+ K, (4 )and UK (M)=U'K(4,)
+ U’K(A_). In the case g=1, these are deduced from Weierstrass’ pre-
paration theorem applied to the rings (O,/mi)[[X]] i=1). Forg=2,itis
clearly sufficient to prove

{Ki(4.), K(A )} CK(A.)+Ki(4),

{U'K\(4.), K(4 )} CUKA(4,)+U'KA4.),

{UiKl(A—)a KI(A+)}C UiKZ(A+)+ U1K2(A_)_
Let S be the set of all polynomials f(X) over O, such that f=1 or
f=X"+aX"'+-...-4+a, for somen=1landa, ---,a, em,. Then,any

element of (4.)* (resp. U*K,(A_)) is written in the form ch,/h; ' such that
cek* h, hye S (resp. ce U'K(k), h,, h,e S and h,=h, mod O [X]m}).
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On the other hand, if 2 ¢ S and =1, (4,)* (resp. UK,(4,)) is generated
by k* (resp. UK, (k)), elements of the form 1—f#k such that f e O,[[X]]
(resp. fe OJ[X]ImL), and elements of the form 1— Xf such that fe O,[X]
(resp. fe O,[XImi). Hence we are reduced to

Lemma 5. (1) Letfe OX1, h, h, e S, and let i =1. Unless f=
h=h=1, {1 —fhh, h;'} belongs to K(A4,). If f=0 mod O [[X]Im or
if hy=h, mod O,[X]m;, it belongs to UK,(A.).

) Let feOJlX), hy, hoeS. Then, {1—Xf, hh'} belongs to
K(A)+K(A4). If f=0 mod O [Xm. or if hy=h, mod O,[X]m:, it
belongs to U'K,(A,)+ UK, (A.).

The following lemma is useful for the proof.

Lemma 6. Le: k be a field and let x, ye k. Ifxx0,1, y=1, and
xy=c1, then

A—x, 1 —y}={l—xy, —x}+{l—xy, 1 —p}—{l—xy, 1 —x}.
Proof.

{1—x, 1—p}={1—x, x(1 —}={1—x, —(1—x)+ ({1 —xp)}
={l—=x, 1—(1—x)"'(1—xp)t={1—xpy, | —(1—x)""(1—xp)}.

Proof of Lemma 5. First, (1) follows from the equation
{I—xy, —x}={1—x, 1 —y}+{l —xp, 1 —x}—{1—xy, 1 -}

of Lemma 6 applied to the case x=h, and y=fh,, and to the case x=h,
and y=/fh,.
Next, we prove (2) by induction on (deg(f), max (deg (&,), deg (4,)))
e NX N, where we endow [N X N with the lexicographic order. Note that
any non-zero element of O,[X] is uniquely written in the form c¢(1 —Xf)h
such thatce 0, —{0}, fe O,]X]and he S. Forfe O,fX]and he S—{1},
define ¢, , € U'K(k), f;, € O,[X] and &, ¢ S by

X '—(X"—h) f=c, (1—-Xf)h, where n=deg (h).

Then, deg(f,)<<deg(f)iff%0, and deg(h,)=deg(#)—1. By Lemma 6
applied to the case x=Xf and y=1—X""h, we have the following for-
mula for 20 (n=deg (h)).

{1—Xf, h}=n{1—Xf, X}+{cf,h(1—th)fzfX1‘", —fhX'-~(1—-Xf)"'}.
If f=0 mod O,[XIm¢ (resp. if A, h, e S and h,=h, mod O, [X]m}), the
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preparation theorem for (O,/m}) [[X]] shows

c,,=1, f,=0, and h,=X""' mod O[X]m;
(resp. Crini=Cr,ny J1 = fr,» and (hl)fE(hZ)f mod O,[X]m}).

Hence, by the above formula and by the hypothesis of our induction, we
are reduced to the case ;=X and A,=1 of Lemma 5 (1).

Proof of Theorem 1. By Proposition 1, UK, (M) is contained in the
subgroup of K, (M) generated by K, (4.,), {U*K,(k), X} and by elements
z of the form {14-a, X'+ ---4+a,X ", y} such that n>0, a, - - -, a, € my,
and ye K, (4.). But res: K, ,(M)— K, (k) satisfies res(K,,,(4,))=0,
res {UK, (k), X})= UK, (k), and

res@)=— 2. Newnl(@2)=0

by Lemma 4 and Lemma 2.

Remark 1. Each homomorphism N, ¢ 8,: K, (M)—K (k) (h ¢ &)
is not continuous for the filtrations U?. It is only the sum >, .o Nyw/x © 9,
that can be extended to Ifqﬂ(M )-—>I€q(k).

The following result is deduced from Theorem 1, and implies that
the norm homomorphism in Milnor K-theory is continuous for complete
discrete valuation fields.

Proposition 2, Let k be a complete discrete valuation field and k' a
finite extension of k. Then,

Ny (UK (k') C UK (k) Jorany i=1,
where ey, is the index of the ramification of K'[k.

Let cem} (i=1) and a e O,. It is sufficient to prove N, (1+ca,
K, (K)HC UK, (k) assuming k'=k(a) and a=c0. Let v, be the element
of P=LR(k(X)/k) corresponding to the irreducible polynomial of a=' over
k. Then, a e O, implies v, & ©. By the exactness of the sequence (#%)
in the proof of Proposition 2, for each y ¢ K, (k") =K, _,(x(v,)), there is an
element 7 of K, (k(X)) such that

3,(7)=0 if ve P—{v}—{oo}, and A, (N =y
We have

-Z\rk’/lc({1 +Ca9 J’})szo)/k ° avu({l +CX_13 _}7})
= —TI¢€§ ({1+CX_19 j}})_ G%_‘@L‘—L{ . NIC(U)/]C oav({1+CX_ls J7})
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by Lemma 4. Since {1+cX ', 7} € UK, (M), the first term belongs to
U'K,(k) by Theorem 1. But the second term is zero by Lemma 2.

§ 2. The rigidity of the residue homomorphism

In Section 1, we defined the residue homomorphism [fq“(M )—>Ifq(k)
using the variable X, but if the characteristic ch (k) of the residue field k&
of k is not zero, we can show that it is in fact independent of the choice of
the “coordinates”.

Let £ and L be complete discrete valuation fields such that

(1) kis a subfield of L satisfying O, C O, and m,Cm,;.

(2) The residue field L of L is a complete discrete valuation field such
that £k Oy and such that its residue field L is of finite degree over k.

A standard example of the pair (k, L) is the pair (k, M) of Section 1.

We shall show that in the case ch (k)=:0, these data define a canonical
homomorphism

reS; If'qH(L)——)IQ(k).

Assume ch (k)=c0, and let P be the set of all elements x of U, such that
X emg. Foreach x e P, let ¢,: O J[X]]—O, be the unique homomorphism
over O, such that ¢ (X)=x and such that the induced map k[[X]]—L is
D inz0 @n X ™D 150 a,X" (a, € k). The existence and the uniqueness of ¢,
follows from the fact that O,[[X]] is formally étale over O,[X] with respect
to the O,[X]m,-adic topology (Grothendieck [6] Chapter 0 Section 19) in
the case ch (k)2:0. Let M and M be as in Section 1. Then, ¢, induces
a homomorphism M—L, which we denote also by ¢,, and L becomes a
finite extension of go,(M ). Letres, ;. (or simply res,) be the composite
res

A norm . A Oz A ~ A
Kq + I(L)”——)Kq+ l(gox(M))——)Kq-x»l(M)_—-)Kq(k)
Here the first arrow is defined by Section 1 Proposition 2.
Proposition 3.  The homomorphism res,,, ;. is independent of x e P.

Corollary 1. Let « be an automorphism of M over O, such that
ordy oo=ordy; and such that the induced map on the residue field k(X))
also preserves the valuation. Then, if ch (k)=:0,

res o g=res; K, (M)—>K (k).

To prove this proposition, we need define similar homomorphisms
res, and res, ;.. Letk be a complete discrete valuation field and let 4
be a ring over O, such that
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(3) A4 is a Noetherian normal complete local ring of dimension 2.

(4) A has only one prime ideal which is of height one and contains
my,.

A standard example of the pair (k, 4) is (k, O[[X]]). Let M, be the
field of fractions of 4, M, the completion of M, with respect to the dis-
crete valuation defined by the above prime ideal, and &, the set of all
prime ideals p of 4 of height one such that pym,. Then,

Lemma 7. There is a unique continuous homomorphism
res,: K, (M )—>K (k)
such that the induced composite
resq

K, (M )—>K, (M )—>K, (k)

coincides with 3 e, Negym © Oy

Proof. We can regard A as a finite extension of Q. [[X]]. By apply-
ing Section 0 Lemma 3 to the extension M ,/M, we see that the desired
homomorphism is the composite

Ry M55 K (M5 R ().

Now let k and L be complete discrete valuation fields satisfying (1),
(2), and let 4 be a subring of O, containing O, which satisfies (3) (4) and
the following condition.

(5) Leth: A—O,/m,=L be the canonical map. Then, H(A)CO;
and h(m ) Cmg, where m, is the maximal ideal of A4.

We denote by res, ., (or simply by res,) the composite

norm res,

Kyl D——K (M )—5K (k)
regarding L as a finite extension of M.
Now we prove Proposition 3. Assume ch(k}=p>0. From the

above construction of res,, we have,

Claim 1. res,=res,: Ifq+1(L)—+I€q(k) for any xe ANP. In partic-
ular, res,=res,, for any x ¢ P and n>1.

Claim 2. Fix x e P, and assume that L is separable over ¢,(M).
Then, for each i>1, there exists an integer n=>1 such that if y € P and
y=x mod m?%, then the composite

resy—resy

K,.(L) > K, (k) K, (k)| UK (k)
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is zero for any g=>1.

Proof. Let a be an element of O, such that ngox(M )e), and let
a, - - -, ad, be elements of Oy such that X™+o (@)X™ '+ - - 4o,(a,)
is the irreducible polynomial of & over gox(]\‘l ). If y is sufficiently near to
x with respect to the valuation of L, ¢ (a,) (1= j<m) becomes sufficiently
near to ¢,(a,). Since « is separable over goz(]\‘l ), the equation X™-
pa)X™ '+ - .- +o,(a,) becomes having a solution 8 in L which is suffi-
ciently near to «. We can define a homomorphism z: L—L such that
ToQ, =0, M—L and (@)=p8. If y is sufficiently near to x, = satisfies
z(b)b~t e Uzm K (L) for all b e L*, where e,,, is the integer such that
m,0,=m* This implies z(b)—b e UtzwK (L) for any g and be
K,.(L). We have, for any b € K, (L),

res,(b) =res (z(b))=res (c(b) —b)+res (b) e U K, (k)+ res,(b)
by Theorem 1 and Proposition 2.

Claim 3. Assume that x e P and L is separable over gDI(M ). If4
is a subring of O, containing O, which satisfies the conditions (3) (4) (5)
and the condition M, =L, we have res,=res,.

Proof. Tt suffices to prove res,=res, mod U ilfq(k) for any i=1.
Choose n>1 in Claim 2 for a fixed 7. As is easily seen, for sufficiently
large N>1, we have x¥ e A+m%. Take N prime to p, and write x¥ =
a-+b, ae A, bem?. Then, there exists an element y of O, such that
y¥=a and y=x mod m}. But res,=res,=res, by Claim 1, and res,=
res, mod UK, (k) by Claim 2.

Now we can finish the proof of Proposition 3. Letx,ye P. LetL’
be the separable closure of gox(M ) in L and let [L: L']=p°. Let y' =y*".
Then, 3’ € L’ and hence gay,(M YCL’. Let L” be the separable closure of
o, (M) in L/, and let [L': L”]=p®. Let X’=x**. Then, ¢, (M)CL".
Since [gDZ(M ): gpx,(M )=p?, L’ is separable over gom,(M ). Thus we may
assume that L is separable over both gox(M ) and goy(M ).

Let @ be an element of L generating L over ¢y(M). If a monic
polynomial f over ¢,(M) is sufficiently near to the monic irreducible poly-
nomial of & over goy(M ), fhas a root 8 in L and thus we have

2, (M)B)®,, upy(M)=L.

Let A4 be the integral closure of ¢ (O [[XT]) in ¢, (M)(B). Then, 4 satisfies
the conditions (3) (4) (5) and M,=L. We have res,=res =1res, by
Claim 1 and Claim 3.
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Since we have proved Proposition 3, we denote res, ;/, (x € P) by
res;,. It has the following properties.

Corol[ary 2. resy; @gs Ifq(L)—>®q;0 If'q(k) is a iﬁomomorphisnf of
left @,z K (k) -modules. The homomorphism res;,: K(L)=L*—K, (k)
=Z is the unique homomorphism such that res;,,(k*)=0 and such that

resL,k(x)=eL,k[f,: k] ord (%)
for any x e U,. Here e, is defined by m,0,=mez",

Remark. We can show that if ch (k)=0, res,: If'q“(L)—)If'q(k) actu-
ally depends on the choice of 4, and Corollary 1 to Proposition 3 does
not hold any more. Indeed, suppose ch(k)=0, and let f be an element
of O,[[X]] such that f mod O,[[X]]m, is transcendental over k(X). Then,

for any g e my, there is an O,-automorphism ¢ of M which satisfies the
assumption of Corollary 1 such that ¢(X)=X and o(f)=f+g. Then,

res, -1 ourrin (/s XD —resoan({f; XD
=resoo({f, XD —res({f, XD=res ({1+gf!, X})

need not be zero.

§ 3. The relation with the residues of differentials

For a field F, let @5, 24 be the exterior algebra of the F-module
2%, of absolute differentials. For g, i>1, there exists a well defined ho-
momorphism (cf. Bloch [2])

pi: Q57— UK (F(I)))/ U K(F(T))

pz<x6—1&/\ e /\%):{1—}—)(1”’ B 2T yq-l}'
N Ya-1

Let K be a complete discrete valuation field such that FC O, and
such that Oy/m, is of finite degree over F. By Section 2 Lemma 7 applied
to the case k=F((T)) and A= O4[[T]], there is a unique homomorphism

res: K, (K(T)—>KF(T))
such that the composite

K, (M)—R, (K(T))—ELF(T)) is 23 Newrrean 0

where K, are defined for the T-adic valuations, M is the field of fractions
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of O.[[T]], and © is the set of all prime ideals of O.[[T]] of height one
distinct from (7). As is easily seen, the diagram
2% > F
oi lllpi
URK(DN U RAK(TH)—> URF(T)))/ U R (F(T)))

commutes, where the upper horizontal arrow is the usual residue homo-
morphism.

Next, let C be a proper regular irreducible curve over F, and K the
function field of C. For each v e B(K/F) (cf. Section 0 Lemma 4), let K,
be the completion of K at v. As above, we have the residue homomor-
phism res,: K, (K,((T)))—> K (F((T))). We can prove the residue
formula:

Proposition 4. For each y e Ifq” (K((T))), the infinite sum
> wenw/m €S, (V) converges to zero in the topological group K,(F((T))).

Proof. Let X=CQ,F[[T]l, X=C&,F(T)), and let J be the func-
tion field of X. Since J is dense in K((7)), it is sufficient to prove that
for each y € K, (J), res,(»)=0 for almost all v, and >, ¢ px/m T€S, (3)=0.

Each w e 3(J/F((T))) corresponds to a closed points of X and hence
to a closed integral subscheme X(w) of X of codimension one. Since X is
proper over F[[T]], X(w) is finite over F[[T]], and hence contains only
one closed point w. Since the closed points of X are contained in C=
XQpprrpF, we have a map

53 BUIF(TN)—>B(K]F); w—>.
On the other hand, for each v e B(K/F),
res,= 3 Newyrn 8wt Keaal)—>KF(D)).

weSs—1(v)
Thus,

res,= 3. Nuwrur©0,=0 on K,.,(J)
ve$&/P) weBWITF(T)

by Section 0 Lemma 4.

§ 4. Relations with local class field theory

A field K is called a local field of dimension n, if a sequence of fields
ky, - -+, k, is given satisfying the following conditions: (i) k, is a finite
field, (ii) for i=1, .- -, n, k, is a complete discrete valuation field with
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residue field k,_,, and (iii) k,=K. Let K*® be the maximum abelian ex-
tension of an n-dimensional local field K. Then, as in [7] [8], there is a
canonical homomorphism

Uy K, (K)——>Gal (K*/K),

which generalizes the reciprocity map in the usual local class field theory.

In this Section 4, we first show that in the case ch (K)=p>0, the p-
primary part of this reciprocity map is given by using the residue homo-
morphism of this paper. We shall next show that the residue homomor-
phism describes the relation of the class field theories of two higher local
fields k£ and L which satisfy the conditions (1) (2) of Section 2 (cf. Theo-
rem 2).

First, assume that K is an xn-dimensional local field of characteristic
p>0, and take a homomorphism s,: k,_,—0O,, for each i, such that the
composite k, ,—O, /m,, =k, , is the identity map. By Section 3, the

embeddings s,: ki_l—EOki (1<i<n) give residue homomorphisms
Kk (T))—> Kl (T))).-

We denote by Res, the composite

res res

Ry KON Ko sl (TN -+ - > Kyl (T)))

——>K(F, (1) (F,=Z|pZ).

On the other hand, for a field k of characteristic p >0, let W{(k) (resp.
W,(k)) be the ring of p-Witt vectors over k of infinite length (resp. of length
r). Then, W(k) is embedded as a topological group in k((7))* by the
Artin-Hasse exponential

W) ——k(T)); (@, ay, - - )= [] Eda)

where E(X)=[] (0, ;=1 1 —(xT?)")-#™/" (u(n) is the MSbius’ function).
For q, r=1, let T{"(k) be the closure in K (k((T))) of the subgroup gener-
ated by elements of the forms

{Ei(x)9 Vi« '9yq—1}9 {Ez(x)a Vi ot ',yq—27 T}

such that i>r, xek and y,, - -+, y,_; € k*. In particular, T{"(k)= W(k)
and TOWK)/ TV (k)= W (k).

Proposition 5. (1) Let F be a field of characteristic p>0, and let K
be a complete discrete valuation field such that FC O, and such that O /my
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is of finite degree over F. Then,
res (TH(K) C T (F) for any q and r.

(2) Let K be a local field of dimension n of characteristic p>>0, and
let Resy: K, . (K(TY)—K,(F, (1)) be the homomorphism defined above.
Then we have isomorphisms

UR, (KA DIF— DU, (KD URE(T)
] U
TOKF-DTO(K) 2225 WE) =2,

where F: K, , (K(T)—K, . (K(T))) is the norm associated with the K-
homomorphism of degree p; K(T)—K(T)); T——>T>.
(An explicit computation shows that T¢” is stable under the action

of F.)
By this proposition, we have a canonical pairing

W (K)/(F— D)W (K) X K (K)—> T (KT O(K) +(F— DTEH(K))
R
S O TO(F )= WAF,)=ZIp Z,
in which the first map j is ((xp - -+, X,_1), Y)=>[[12{ELx,), ¥}, and
F: W.(K)—W,/(K) is the homomorphism (x,, - - -, x,_)—>(xZ, - - -, x2_)).
By the theory of Artin-Schreier and Witt, for any field & of characteristic
p>0, the pro-p-part Gal (k**/k) (p) of Gal (k**/k) is isomorphic to

lim Hom (W (k){(F—1)W k), Z|p"Z).

Hence the above pairing induces a homomorphism
V(p): K (K)——>Gal(K*/K) (p) .

Proposition 6 below shows that this homomorphism coincides with the
pro-p-part of the reciprocity map ¥ .: K, (K)—Gal (K**/K) (p) defined in
[7] by using the residue homomorphism in Quillen’s K-theory.

Remark 3. From our point of view, the p-primary part of the recip-
rocity law in the global class field theory in characteristic p >0 follows
from the residue formula Proposition 4.

Proof of Proposition 5. Though this proposition can be proved using
the explicit definition of the residue homomorphism, we prove it here
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using the result of [7] for the brevity, relating the residue homomorphism
in Milnor K-theory to that in Quillen’s K-theory defined in [7] Section 2.
We use

Proposition 6. (1) Let k be a field of characteristic p>0, and let
SéKq(k) and filt” TéKq(k) (g, r =0) be the groups defined in Bloch [2} Chapter
I using Quillen’s K-theory. Then, the canonical homomorphism from
Milnor’s K-group to Quillen’s K-group for the field k((T)) induces isomor-
phisms

UR ((T)—>SCK k),  T()—>filtr TCK,(K).

(2) Let K and F be as in the hypothesis of Proposition 5 (1). Then
the following diagram is commutative, where the left (resp. the right) vertical
arrow is the residue homomorphism defined in this paper (resp. in [7] Sec-
tion 2).

UK i(K(T))—>SCK, AK)
res res
UR(F(T)) ——>SCK,(F)

Proof. The assertion (1) follows from the determination of the struc-
tures of SCK, (k) and TCK, (k) in Bloch [2] Chapter II (the hypothesis
g<p in [2] is eliminated by [7] Section 2.2 Proposition 2.). Indeed, let ¢,
be the surjective homomorphism

Q@R > UK (k(T))) UK (K(T)))
W, w—>0,W)-+{p,("), T} (cf. Section 3).
Let U'SCK, (k) be the image of UK, (k((T))) in SCK, (k). Then, by the

structure theorem of USCK,(k)/U*'SCK (k) in [2], we can easily verify
that the kernel of the composite map

Q- ®R1>— U'SCK (k)| U+ 'SCK (k)

is contained in the kernel of ¢;, and hence we have

UR (TN U R (l(T))—> U*SCK (k)| U***SCK (k).

This proves the first isomorphism of (1), and the second is proved in the

same way.
Next we prove (2). Recall the definition of the residue homomor-
phism for Quillen’s K-group in [7]. Let K¢ be Quillen’s K-group. Let B
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be a (commutative) ring, S a multiplicatively closed set of non-zero divi-
sors of B, and let H be the category of all B-modules X having a resolu-
tion of Iength one by finitely generated projective B-modules such that
sX=0 for some s € S. By Grayson [6], we have an exact sequence

- ——>K? (B)——K?, (S7'B)—>KUH)—>KHB)—>- - .

Assume further that Bis a flat ring over a ring R and that for any s ¢ S,
B/sB is finitely generated and projective as an R-module. Then, all
objects of H are finitely generated and projective over R, and the restric-
tion of scalars defines a homomorphism KJ(H)—K&(R). Let 8, s be
the composite K2, ,(S~'B)— K% H)—KJ(R). We consider the following
cases. Let K and F be as in (2).

(1) R=F[TI(T™), B=O«TI(T") (n=1) and S=Ox—{0}.

(ii) R=F((T)), B=O[[TIIT ] and S=B—{0}.

(iii) R=F[[T], B=OL[[T]] and S=B—(T) (T) denotes the ideal
of B generated by T).

Let M be the field of fractions of Of[[T]], and I the local ring of
OL[[T]] at the prime ideal (T), and let k=F((T)). Let

0, KE(K[TI(T™)—>KF[TI(T™)),
I K (M)—>K (k) =KG(F(T)),
g: K¢, (D—>KYFI[TTD)

be the homomorphism 3, , ¢ in the above cases (i) (ii) (iii), respectively.
The residue homomorphism in [7] is defined as the inverse limit of 4,,.
We have a commutative diagram

KyiM)——>K2.,(M)«— K§..(I) —>K2 (K[T](T™)
pezs Neyio0y f g n
Kk) —> K3(k) «—KUFIT)—>KYFITINT™),

which proves (2).

By Proposition 6, Proposition 5 follows from the corresponding results
for Quillen’s K-group proved in [7] Section 2 and Section 3.

The next aim of this section is to prove

Theorem 2. Let k and L be fields which satisfy the conditions (1) (2)
in Section 2, and assume that k is a local field of dimension n=1. Then, L
is a local field of dimension n+1. If we denote by U, and W', the recipro-
city maps in the class field theory of L and k respectively, the following
diagram is commutative for any element x of U, such that X e m;.
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L2
K, (L)—">Gal (L*/L)
—T€S4,L/k
(2
K, (k) —>Gal (k**/k).
Here the right vertical arrow is the natural restriction. Recall that if

ch (k) =0, res,, ;,, is independent of the choice of 4 by Proposition 3, and
is written as res .

Proof. By using the commutative diagram

A T
R, . (L)—>Gal (L*/L)
Nz
A ~ TUa - .
Kn+l(M)_—)Gal (Mab/M)
defined by the finite extension L/M corresponding to the choice of 4 ([7]
Section 3 Cor. 1 to Proposition 1), we are reduced to the case L=M.

Since the image of K, ,(M) is dense in K, (M) for the filtration U?, it is
sufficient to prove that the following diagram is commutative.

K, o (M)~ Gal (411 7)
— 2 Natw/xo0
peESG 7,
K, (k) —>Gal (k*/k).
Let =& U {O[[X]m,} be the set of all prime ideals of height one of
O,[[X]]. For p e &, let M, be the completion of M with respect to the p-
adic valuation. If p=2x O, [[X]]m, (i.e. if p € ©), the abelian extension k**/k

induces an unramified abelian extension of M, and the unramified part
of the class field theory of M, shows that the diagram

wM” ab
K, (M)—>Gal ((Mp) /M)
N /500y

K.(k) —*>Gal (k)

is commutative (cf. [7] Section 3 Corollary 2 to Proposition 2). Thus, it
is sufficient to prove that for each x e K,,,,(M), the sum of the images of
x under the composite maps

K, .(M )—wﬂ)Gal ((M,)*/M,)—>Gal (k**/k)

converges to zero in Gal (k®/k) where p ranges over &. This fact is
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contained in the following reciprocity law (take F to be the residue field
of k, and N=n—1).

Proposition 7. Let N=0, and let F be a local field of dimension N.
Let A be a two dimensional complete normal noetherian local ring with residue
field F, and let M be the field of fractions of A. Let x € Ky ,(M). Then,
when  range over all prime ideals of height one of A, the sum of the images
of x under the composite maps

7,
Ky o o(M)—3Gal (M) M,)—>Gal (M*] M)
converges to zero in Gal (M**/M).

This reciprocity law is stated in Par3in [10] (in the case N=0) without
proof. My proof will be introduced in Saito [11] in the case N=0, and
that proof is valid for any N without essential change. Here we assume
ch (M)=p>0, and by using the residue, we give a proof of the fact that
for each x e K,,(M), the sum of the images of x under K, (M)
Gal (M,)**/ M )—~Gal (M*/M) (p) converges to zero. By the definition
of the pro-p part of the reciprocity map given in this section, it is sufficient
to prove the following lemma.

Lemma 8. Let F, A, and M be as in Proposition 7, and assume
ch(M)=p>0. Then,forxe U 1K v o M((T))), when p ranges over all prime
ideals of height one of A, 3, Resy (x) converges to zero in U ‘Ifl(Fp((T N).

Proof. By using the norm homomorphism, we may assume 4=

F[[X, Y]]. Let k=F((Y)), and identify 4 with O,[[X]]. Let © and &
be as before. Then, if p=(Y)=Am, (1 e.if p & ©), Res,,: UIKN+3(M (8)
—U'R(F,((T))) is written as Resy o 720 rl, where

Fl=1¢8 (onrionan: UKy o M(TN)—> UKy o(F(X)NAD)),
Fa=TESp((xy) () /F Ty - UIKN+2(F((X))((T)))—_> UIKN+1(F((T)))-

(Note M,=F((X))(Y)).) Ifpe S, Resy,=Resyor;or; where
ri=reSy onmurn’ UKy ool M(T))—> UKy o(k(T))),
Fy=TeS:ryrurnt U KN+z(k((T)))—> UIKN+;(F((T)))

(cf. [7] Section 3 Lemma 12). So it suffices to prove that for any ¢ and
any x € U'K,,(M((T))), >,e5 720 ri(x) converges to zero in UK, (F((T))).

Let b,, - - -, by be a p-base of F over F, (cf. [6] Chapter 0 Section 12).
Then, the M-vector space 2%, has a base (db, (1<i<N), dX, dY). Since
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Q> UK, (M(T))/ UK, o(M((T)))
(W, W’)F—‘—>‘0,I(W)—|— {Pz(W/), T}
is surjective for any i >1, and since
M=A,+A_=A,+(4.), where (4_),={f e 4_; ord..(f)>0},

it follows that U'K,, (M ((T))) is topologically generated by elements of
the forms

{e; 1+4+aT? X, Y}, {¢/, 14aT", X}, {c’,14-aT’ Y}

such that ¢ ¢ K, _(F((T))), ¢’ e K(F((T))), i=1, and a is either in 4, or
(4.),. Since rior}is a homomorphism of left @, ., K(F((T))) -modules
and

rye r(UR(M (D) C U'R(F(T))=0
for any p € S, we are reduced to proving

ST rleri{l4aTh X, YP=0  in K(F((T))

ve&
forae A, and ae (4_),. First, assume a € 4, and write g in the form

a= 3 a(0)Y  with a(X) e FX]
Then, ri({1 +aT", X] Y}) =0 unless p=(X) or (¥). If p=(¥),
r2ori({1+aT" X, YD =r{1+a(X)T, X})
={1+a0)T*} e K,(F(T)))-
If p=(X),
ryor({l+aT?, X, Y= —r({1+ ,»Z_]m a,(0)Y'T", Y})
=—{1 +ao((]))T i} e K(F((T))

(here for u € F((T))*, {u} denotes the corresponding element of K(F(T))),
so, {uv}={u}+{v}). Next, assume a € (4_),, and write

a= 3, a(X)Y’ with a,(X) e X 'k[X -]

ir=e
We have, for p=(Y),
riori({l+aT", X, YD =ri({l+a()T*, X})=0
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(cf. Theorem 1). On the other hand,
ST {1 +4aTt, X, YD=— 57 res,(1{+aT% X, Y})

PES VEP(K(X)/E)-8

=0 in Kk(T))

by the residue formula.
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