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Introduction

The classical class field theory studies abelian extensions of algebraic
number fields. Since it was constructed by Takagi [23], it has been a
fundamental tool in the study of algebraic number fields. In the modern
number theory, it became recognized that finitely generated fields over the
prime fields, which we call arithmetical fields, are important as their clas-
sical example, the algebraic number field. Recent development of alge-
braic K-theory enables us to begin the construction of the class field theory
of general arithmetical fields. Is the generalized class field theory powerful
as the classical one, in the study of arithmetical fields of higher dimen-
sions? In this paper, we construct the class field theory of a two dimen-
sional arithmetical field K, that is, an arithmetical field of transcendental
degree one over Q, or of transcendental degree two over F,. Take a
regular connected scheme X with function field K which is proper over Z.
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104 Kazuya Kato and Shuji Saito

Then, the class field theory of K is stated as follows (cf. Chapter II Section
3 Theorem 4 and Section 4 Theorem 5). We do not explain here the
definitions of the modulus and of the idele class groups C,,(X) and C,(X)
with modulus m, but we remark that these groups are defined by using
K,-groups of various “local fields” of K. Lét K*® be the maximum abelian
extension of K.

Theorem 1. (1) Assume ch (K)=0. Then, there exists a canonical
isomorphism

lim C,,(X)=Gal (K*/K)

m

where m ranges over all admissible moduli on X.

Q) Assume ch(K)=p>0, and let Gal(K*®/K) be the dense sub-
group of Gal (K**/K) defined to be the inverse image of the subgroup of
Gal (F,/F,) consisting of all integral powers of the Frobenius automorphism.
Then, there exists a canonical isomorphism

lim C,,(X)=Gal (K*/K)
<«

m

where m ranges over all moduli on X.

Let U be a two dimensional regular connected scheme of finite type
over Z. Then, the class field theory of unramified abelian coverings of U
is described in a similar way. Take a regular scheme X proper over Z
which contains U as a dense open subscheme. Then, we shall show that
the theorem above also holds when we replace Gal (K**/K) by the abelian
fundamental group #2*(U) of U, and restrict the moduli i to those with
supports outside U.

For this global class field theory, we need one “purely local” theory
and three ““semi-global” theories. The first one is the class field theory of
a complete discrete valuation field whose residue field is a usual local field.
The three semi-global theories are, the class field theory of a complete
discrete valuation field whose residue field is a usual global field, that of
the field of fractions of a two dimensional arithmetical complete local
ring, and that of a function field in one variable over a usual local field.
These theories were studied in Bloch [3], Kato [S] and Saito [17] [18], and
we shall review these theories in Chapter I adding some necessary com-
plements and reformations. The global class field theory will be obtained
in Chapter II by gluing these local theories together, and by applying the
two dimensional unramified class field theory which was mainly accompli-
shed by Bloch [3] and completed by our previous paper [8].
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The K-theoretic generalization of class field theory was first studied
by A.N. ParSin ([26], [27]). There have been various accomplishments
without K-theory in the generalization of the class field theory. An im-
portant one is the class field theory of varieties over finite fields by Lang
([91[10]1[20]). In Chapter I1I, we study the relation of this theory with ours.

We express our sincere gratitudes to Professor Y. Thara for his hearty
encouragements.

Conventions

For a scheme X, X, denotes the set of all points x of X such that the
closure {x} is of dimension i. For x e X, £(x) denotes the residue field of
x. H*(X, ) means the étale cohomology unless the contrary is explicitly
stated, and #*(X) means Hom (HY(X, Q/Z), Q/Z). If X=Spec (4),
H*(X, ) is often denoted by H*(4, ).

For a field k, ch (k) denotes the characteristic of k, k** denotes the
maximum abelian extension of k, k, denotes the separable closure of k%,
and k& denotes the algebraic closure of k.

For a discrete valuation field (resp. an algebraic number field) k, O,
denotes the ring of integers in k.

Rings are always assumed to be commutative except graded rings.
For a ring R, R* denotes the group of all invertible elements in R.

Chapter 1. Local theories

As is explained in the introduction, the nature of this chapter is a
review of previous papers, and we give here only the proofs of new com-
plementary results.

§ 1. Preliminaries

In the generalization of class field theory, two types of abelian groups
associated with arbitrary fields play important roles.
The first is Milnor’s K-group K} (k) (9=0) of k. It is defined by

K=z, K{(k)=Fk",
KX(k)=Fk"®- - -Qk¥)/J  for ¢=2
q times

where J is the subgroup of the tensor product generated by elements
a,®- - -Qaya, - - -, a, € k*) such that a,+a;=1 for some indices i3g ;.
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(Cf. Milnor [14].) An element ¢,® - - - ®a, mod J of K¥(k) is denoted by
{a, -+ -,a,}. We denote the group law of K} (k) additively. The direct
sum @,., K¥(k) has a natural ring structure and is called the Milnor ring
of k. In the case g<2, we shall often use the notation K, instead of K,
for Milnor’s K-group coincides with the standard K-group K, of Quillen
in this range of ¢.
The second is a sequence of torsion abelian groups H%k) (¢=0, k is
a field), which contain as members important groups such as the Brauer
group Br (k) of k. If ch(k)=0, Hk) is defined to be the Galois coho-
mology group lim H%(Gal (k/k), p©“-"), where y, denotes the group of
—

all n-th roots of 1 in the separable closure k, of k, y2@-Y denotes its
(g—1)-th tensor power over Z/nZ, n ranges over all integers >1, and the
transition maps of the inductive system are the homomorphisms induced
by the canonical injections p®“-Y—u8@- given in the case n|m. If
ch(k)=p>0, let

HYk)=lim H%Gal (k/k), p2-")Dlim HL(k)
— —

n r

where n ranges over all integers 1 which are prime to p, r ranges over all
integers >0, and where H%(k) is defined as follows. (Cf. [5] II Section
3.2. An alternative definition is HZ.(k)=H"(Gal(k,/k), W24 1..). Let
W.(k) be the group of all p-Witt vectors of length r over k (Serre [21]
Chapter II Section 6). Let

HL (k)= (W, ()Qk*® - - - @k*)|J

q-1 times

where J is the subgroup of the tensor product generated by elements of
the following forms (1)—(3).

1) WP—wRbQ---Qb,_, We Wik), by, ---,b,_, € k*) where
for w=(ay. - - -, a,_,), w® denotes (a, - - -, a’_,).

@ ©,---,0,b,0,:--,000b6,--®b,_, (0=Zi<r,b,, ---,b, €

T iimes

k).

3) w®b®---®b,_, such that b,=b; for some indices i2j (we
Wr(k)’ bu Tt bq—l € kx)

We define H(k)=0. An element w®b,®- - -®b,_, mod J of HZ(k)
is denoted by {w, b, - - -, b,_;}. The transition maps are the homomor-
phisms HZ(k)—H?,..(k);

{(am ) ar-‘l)a bl: R bq—l}’_){((), Aoy = ° ar—-l), bl, ) bq—l}-

For any field k, H'(k) is isomorphic to the group of all continuous
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homomorphisms Gal (k**/k)—>Q/Z where k* denotes the maximum abelian
extension of k, and H*(k) is isomorphic to the Brauer group of k.

The direct sum @,,,H%k) has a structure of a graded right
@20 K¥(k)-module. Indeed, if n is an integer invertible in k, the canonical
isomorphism

k> (kY ——>H(k, 1)

induced by the exact sequence

0 o kX kX 0
is uniquely extended to a homomorphism of graded rings

@ KY(R)—> @ H'lk, 2.

qz0

Via this homomorphism and the cup product from right, @, ., KX(k) acts
on Dz, lim Hk, p2“-Y) where n ranges over all natural numbers in-
—>

vertible in k. On the other hand, if ch(k)=p>0, ®,», Hi(k) has a
structure of @, K¥(k)-module characterized by

{Wy bl, Y bq—l}’{cla Tt Cn}z{wa bn Y bq—ls Cip o0 0y cn}'

(Cf. [5] IT Section 3.2.)

Now, let K be a discrete valuation field with residue field 7. In the
following, we analyze the groups K(K) and H%K) by using various groups
associated with F.

In this paper, we use the following notations. Let

ord, be the normalized additive discrete valuation of X,
Ox={x e K; ord;(x)=0} the valuation ring of X,
mi={x e K; ord(x)>i} forie Z,

mg=mY the maximal ideal of Oy,

U =Ker ((O)*—>(0x/mi)*) for i =0,
Upe=UQ=(0)".

For g=1 and i>1, let U'K¥(K) be the image of

UK (K) L KH(K),

On the other hand, let U°K¥(K) be the image of
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U,®- - QU SKH(K).
———— e~

¢ times

Then, we have inclusions
KX K)DUKY(K)DU'KX(K)DUKJ(K)D - - -.

Proposition 1 (Bass and Tate [1] Chapter I Proposition 4.3). Let K
be a discrete valuation field with residue field F. Then,

(1) KXE) UK EK) =KX (F).

@ UKIKUKNK)=K](F).

The isomorphism in (1) sends {a,, - -+, a,_,} € KL ,(F) to the class of
{d, -+, d,.,, 7} ¢ KY(K) where @ denotes any llftmg to O, of an element
a of F, and = denotes any prime element of K. The isomorphism in (2)
sends {a, - - -, aq,} € KJ(F) to the class of {4, ---,d,}. The surjective
homomorphlsm 0: K¥(K)—K} (F) given by (1) is called the tame symbol.

For a field & and =0, let £¢ be the g-th exterior power over k of
the absolute differential module £2¢,,. The following result is contained
in Bloch [2] (in the positive characteristic case) and in [5] IT Section 1.3.

Proposition 2. Let K and F be as in Proposition 1 and let i=1. Fix
a prime element « of K. Then, there is a well defined surjective homomor-
phism

QI @4 *—> UK (K)/ U K (K)

( BN A QI0>'—>{1+5771551""’5‘1"1}

q 1

< dbl/\ ‘A “)'_’{1—14175 by, - -y bys 7}
q 2

(aeEbla "')bq—leFX)'
Next we consider the group HYK). If K is complete, there is a

canonical injection i: HY(F );H Y(K) defined in a standard manner ([5]
IT Section 3.2 Definition 2). The following Theorem 1 (1) is a well known
result, and (2) is proved in [6]. In the following, for a torsion abelian
group A and a prime number p, A{p} denotes the p-primary part of 4.

Theorem 1. Let K be a complete discrete valuation field with residue
field F. Let p be a prime number.
(1) If ch (F)p, there is an exact sequence

0> H(F){ p}——> H(K){ p}——> H*~ (F){ p}—>0
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in which 9 is characterized by the property that d({i(X), z})=X for any %
H*'(F){p} and any prime element = of K.

Q) Assume ch(F)=p>0 and [F: F*]=p"<oo. Then, H**(K){p}
and H(F){ p} vanish for g>n--1, and there exists a canonical isomorphism

8: H¥(K){p}= H"*'(F){p}

characterized by o({i(X), x})=2X for any X e H**(F){p} and any prime ele-
ment © of K.

Remark 1. If ch(F)=p>0 and 0<qg<log,([F: F?]), H**'(K){p} is
very big and it can not be presented in terms of the groups H*(F).

§2. Higher dimensional local fields

In this section, we call a field K an n-dimensional local field if a

sequence of fields k,, - - -, k, are given satisfying the following conditions.
(1) k, is a finite field.
(2) Fori=1,...,n, k, is a complete discrete valuation field with
residue field k,_,.
3) k,=Kk.

If n=0, K is a finite field. In this case, there is a canonical isomor-
phism

H\(K)=Q/Z

in which an element X of H'(K) regarded as a continuous homomorphism
Gal (K**/K)—Q/Z corresponds to X(Fy) € Q/Z, where F,, denotes the Fro-
benius automorphism in Gal (K**/K). For n arbitrary, by Section 1 Theo-
rem 1 and by induction on n, we obtain a canonical isomorphism

hy: H"(K)=0/Z

for an n-dimensional local field K. This isomorphism induces the canon-
ical pairing

H*-9(K) X KX(K)—>Q/Z

for 0=<g=<n-1 by the right @, K¥(K)-module structure on @ ., H4(K).

In the following theorem, the word ‘“‘continuous” is used in a topo-
logical sense only in the case n<2. In the case n=>3, the group K¥(K)
seems to have no appropriate topology, and we define the continuity in
this theorem from a new point of view ([7]).

Theorem 2 ([7]). Let K be an n-dimensional local field. Then, H(K)



110 Kazuya Kato and Shuji Saito

=0 for g>n+1. For 0<q<n+1, H***~4K) is isomorphic to the group
of all “continuous™ homomorphisms K} (K)—Q|Z of finite orders.

Proposition 3. ([5] IT Section 3) Let K be as above.

(1) For a finite extension L of K, the canonical map H"**~(K)—
H"™'-Y(L) (resp. the trace map H"*'~Y(L)—H"*'~%K)) corresponds to the
norm map Ng,: K¥(L)—K¥(K) (resp. to the canonical map K} (K)—
K}(L)) in the duality of Theorem 2.

() If n=1 and F is the residue field of K, the canonical injection
it H"*'-9(F)—>H"*'-%K) corresponds to the tame symbol 9: K)Y(K)—
KX (F).

Corollary. Let K and F be as in (2) above, and let X ¢ H'(K). Then,
X is unramified (i.e. the corresponding cyclic extension of K is unramified) if
and only if the homomorphism K¥(K)—Q/Z induced by x factors through the
tame symbol 0: KX(K)—KX* (F).

Because only the case n=2 and g=2 of these results is used in this
paper, we do not explain the definition of the continuity in Theorem 2 for
the general case. In the following, we give the precise form of Theorem 2
in the case n=2 and ¢g=2 (see Theorem 3 below). To treat similar fields
R((T)) and C((T)) in a uniform manner, throughout the rest of this section,
K denotes a complete discrete valuation field whose residue field F is a
non-discrete locally compact field. We define the topologies of K*/UY
and K(K)/U'K,(K) (i=0) as follows.

Case 1. Leti=1 and assume that F is non-archimedean. Suppose
that we are given a subring 4 of O,/m satisfying the following conditions
M ® 6.

(1) A is a Noetherian complete local ring.

(2) The image of 4 in Ox/m,=F is an open subring of O,.

(3) The total quotient ring of 4 is O/mk.

Then, we endow K*/UY with the unique topology Wthh is compatible
with the group structure and for which A* is an open subgroup with its
m~adic topology (m, denotes the maximal ideal of A4). We endow
K(K)]U'Ky(K) with the finest topology which is compatible with the group
structure and for which the map

KX|UP X KX |UQ—>K(K)|UK(K); (a, b)—{a, b}

is continuous. Such ring A always exists, and is often given canomcally
in each example treated in this paper.

Case 2. Next assume that we are given a subfield k of Oy such that
Fis a finite extension of k via k—Ox/m;=F. Then, O./m% is a vector



Two Dimensional Class Field Theory 111

space over k of finite rank and hence has a natural topology. We endow
K*/UP with the unique topology which is compatible with the group
structure and for which U,/U is an open subgroup having the topology
as a subspace of O/m%. Foriz1, we define the topology of K,(K)/U*K,(K)
by the same method as in Case 1. Such field & exists if and only if ch(K)

=ch(F). If k—i::—»F; the topology of K*/U$ defined above has a very
simple description; the map

ZXk*XkX -  Xk——K*|UY
-1 times

n,a, b, -, b, y—>r"a(l4+-bx4 ... +b,_ 7t

is a homeomorphism for any fixed prime element = of K.

In both Case 1 and Case 2, we endow K(K)/U°K,(K) with the quo-
tient topology. Then, the isomorphism K,(K)/U’K,(K)= F* of Section 1
Proposition 1 (1) becomes a homeomorphism.

We have to add remarks concerning the question whether the topo-
logies of K*/U%¥ and K(K)/UK,(K) defined above are independent of
the choice of 4 or k. If ch (F)=¢0, it is easily seen that they coincide with
the topologies defined in [5] I Section 7 and hence independent of the
choice of 4 or k. If ch(F)=0 and i=>2, they actually depend on the
choice of 4 or k. However, in each example such that ch (F)=0 in the
latter applications in this paper, we are always given a canonical choice
of k, and furthermore, if 4 is also given in such example, 4 is finite over
an open subring of O, and the topologies given by A will coincide with
those given by k. Even in case ch (F)=0, the topology induced on the
quotient K,(K)/U'K,(K) is independent of the choice of 4 or k.

The precise form of the case n=g=2 of Theorem 2 is the following
Theorem 3. In the case F=R or C, let 2 be the composite map

a h .
HYK)—>H Z(F)—F>Q/Z, where 4, is the well known Hasse invariant.
This induces the canonical pairing H'(K) X K,(K)—Q/Z, which is the zero
map in the case F=C.

Theorem 3 ([511, II). Let K be a complete discrete valuation field
whose residue field F is a non-discrete locally compact field. Concerning the
homomorphism H'(K)—Hom (Ky(K), Q/Z) induced by the canonical parir-
ing, we have;

(1) Assume ch(F)x0. Then, H'(K) is isomorphic to the group of
all homomorphisms ¢: K(K)—Q/Z such that o(U'Ky(K))=0 for some i and
such that the induced map K(K)|U*K(K)—~Q|Z is continuous.

(2) Assume ch(F)=0 and FxC. Then, H'(K) is isomorphic to the
group of all homomorphisms K(K)—Q/Z of finite orders.
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Remark 2. In the case ch (F)=0, the group U'K,(K) is divisible and
annihilated by any homomorphism K,(K)—Q/Z of finite order. In this
case, for i==0, any homomorphism K,(K)/U*K,(K)—Q/Z of finite order is
continuous for the topology on K,(K)/UK,(K) defined by any choice of 4
or k.

The following lemma would be a slightly better description of the
topology.

Lemma 1. Assume F is non-archimedean, let ACOz/mi be as in
Case 1, and let © be a fixed prime element of K. Then, the topology on
G=K,(K)/UK(K) defined above with respect to A coincides with the finest
topology I which is compatible with the group structure and for which the
maps A* X A*—G; (a, by—{a, b} and A*—G; a—{a, z} are continuous.

Proof. 1t is sufficient to prove that for each ge K* and for each
neibourhood U of 0 in G for the topology .7, there is a neighbourhood V'
of 1 in 4> such that {V,g}CU. Since K*/U$ is generated by = and
ANUL/ UL COx/mi, we may assume ge ANUL/UP. Then, the sub-
groups 14-g"A(n=>1) form a fundamental system of neibourhoods of 1 in
A*.  Let U’ be a neighbourhood of 0 in G for the topology  such that
U4+U+U'+U'CUand U'=—U’. Then, {14g"4, 1+g"4}C U’ for
somen=>1. Weclaim{14g***'4, g}CU. Indeed,foreachae 14g*"'4,
we can take elements b,, b,, ¢,, ¢, € 14+-g"A4 such that

a=(1—g"b)(1—g"b)=(1—g""'c (1 —g"""cy).
Then, we have
n{a, g} =n{l—g"b,, g}+n{l —g"b,, g}

:{l—g"bl, gn}+{1 '—gnbza gn}
=—{l—g"b, bl}——{l——g"bi, be U+ U

Similarly,

(n+D{a, g}=@m+1){1—g ¢, g}+m+ {1l —g"*'c;, g}
e U+ U.

These prove {a, g} € U as is claimed.

§ 3. Local fields with global residue fields

From this section, we call the fields R((T)) and C((T)) also two
dimensional local fields.
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Let F be an A-field in the sense of Weil [25]. That is, Fis an alge-
braic number field, or an algebraic function field in one variable over a
finite field. Let P be the set of all places of F. For each ve P, let F, be
the completion of F at v.

In this section, K denotes a complete discrete valuation field with
residue field F. To describe the class field theory of K, we define a family
{K.},e» of two dimensional local fields which are called the “local fields of
K.

First, assume ch (F)=0. Then, Oy contains a unique subfield k£ such
that [k~—Og/m,=F is a bijection. We identify k with F, and for each
ve P, let

OKvE lim F,,®FOK/m§{, de:efOKu®0KK'
<

T

Then, K, is a complete discrete valuation field with residue field F, and
with valuation ring Of,. Because F, is canonically embedded in O, we
obtain a canonical topology of Ky(K,)/U*K(K,) (Section 2 Case 2).

Next, assume ch (F)2:0. Then, there exists a unique two dimensional
local field K, containing K having the following properties (1) (2).

(1) OxCOg, and Ok, -mg=my,.

(2) The residue field of K, is identified with F, as a complete discrete
valuation field containing F.

(Cf. [5] II1.) As is explained in Section 2, K,(K,)/U'K,(K,) has a canonical
topology also in this case.

For i =0, we define the idele group I,;(K) and the idele class group
C,(K) of modulus i as follows. First, assume i 1. Take an irreducible
scheme Y with generic point 7 which is of finite type over Z and which
has an isomorphism 0y ,=O,/mk. (The existence of Y is clear.) Ifwvis
a closed point of Y such that the reduced part Y, of Y is regular at v,
we identify v with the corresponding place of F. For such v, we have a
canonical isomorphism

Oy, v®ay ,UOK/me' = OKv/m}'(v

where @yﬂ, denotes the completion of @y ,. Furthermore, the image of
Oy, in Oy, /mi, satisfies the condition of 4 in Section 2 Case 1. Fix a
prime element  of K and a non-empty regular open subset U of Y.
For each v e U(U, denotes the set of all closed points of U, see Conven-
tions), let H, be the subgroup of K,(K,)/U'K,(K,) generated by elements
of the forms {a, b} and {a, x} such that a, b ¢ Image (y,,)*—(O 1, /%))
By Section 2 Lemma 1, H, is an open subgroup of K,(K,)/U'K,(K,). Now,
let 7,,(K) be the subgroup of the direct product [],.pr Ki(K,)/U*KA(K,)
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consisting of all elements (@,),cr such that a, e H, for almost all v e U,.
We endow [,,(K) with the unique topology which is compatible with the
group structure and for which

n Hv X n KZ(Kv)/ UiKZ(Kv)
veUo vEP-To
is an open subgroup with the product topology. It is easily seen that the
group I,(K) and its topology thus defined is independent of the choices
of Y, n, and U.

The diagonal image of Ky(K) in [[,.r Ki(K,)/ UKy (K,) is contained -
in I,(K). Let

C»(K)=Coker (K(K)—>1,(K)),

and define the topology of C,(K) to be the quotient of the topology of
I,(K). Let C(K)=Ilim C,(K), and endow it with the inverse limit to-
—

pology. '
Let I,,,(K) be the idele group of F and let C,(K) be the idele class

group of F with their natural topologies. Then, via tame symbols, I, (K)
(resp. C,,(K)) is regarded as a quotient topological group of I;,(K) (resp.

Ci»(K)) for i=1.
For 0=i<, let U, (K)=Ker (I;,(K)—1,(K)) and U'Cy,(K)=
Ker (C;,(K)—C»(K)). Foriz=0, let

UiC(K)=Ker (C(K)—>C,(K))=lim U*C,;,(K).

Now, we state the class field theory of K. First, consider the com-
mutative diagram

0—> HajF) —> HYK) —> HXF) —>0
2
0—> @ HY(F)—> @ H'K) —> @ HF)—>0

veEP vEP
(hKv) v\ (h[«',,) v

0/z

v

0
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in which the two horizontal sequences are exact sequences given by Section
1 Theorem 1, and the vertical sequence in the right side is the well known
Hasse’s exact sequence. The left vertical arrow is bijective by Tate [24]
Theorem 3.1 (¢). From this diagram, we obtain an exact sequence

0——> HY(K)—> @& HYK,) 5501z 0.
vVEP

Let X ¢ H'(K). Then, there is an integer i >0 such that the image
Xg, of X in H'(K,) annihilates U’Ky(K,) for all v e P ([5] IIT Section 3 Lemma
10). Furthermore, if 7 is such integer and (a,),¢» € 1(,(K), A ({Xx,, a,}) €
Q/Z is zero for almost all v e P by [5] IIT Section 3 Lemma 9. Hence X
defines a homomorphism

I,(K)—0Q/Z; (av)v’—‘)w;‘.n hKv({XKv’ av})'

By the above exact sequence, this homomorphism factors through C,(K)
and hence we obtain a canonical pairing

H'(K)X C(K)——0Q/Z.

Theorem 4. Let K be a complete discrete valuation field whose residue
field is an A-field. Then, H'(K) is isomorphic to the group of all continuous
homomorphisms C(K)—>Q/Z of finite orders.

In this class field theory, the analogue of Section 2 Proposition 3 holds
if we replace the K¥-groups by the idele class groups. In particular, X ¢
H*(K) is unramified if and only if it annihilates U°C(K), i.e. if and only if
the homomorphism C(K)—Q/Z induced by X factors through the idele
class group of F.

The above Theorem 4 is proved in [5] III in the case ch (F)x0. In
the case ch(F)=0, this result is easily deduced from the following
theorem of Moore. For a field £, let p(k) be the group of all roots of 1
in k.

Theorem (Moore [15]). (1) Let k be a non-discrete locally compact
field and assume k2 C. Then, the Hilbert symbol 8,: Ky(k)—p(k) is sur-
Jective and its kernel is a divisible group. For any discrete abelian group G,
a homomorphism f: K(k)—G factors through p(k) if and only if the map

X k*—>G; (a, by—>f({a, b})

is continuous.
(2) Let k be an A-field. Then, Ker (0,)= K,(O,,) for almost all non-
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archimedean places v of k. Let P'(k) be the set of all places v of k such
that k,>xC. For each ve P'(k), let n,=[u(k,): p(k)] and let n,: p(k,)—
(k) be the homomorphism x—x". Then the sequence

KL @ k)8 u—>0

€ P/ (k)
is exact.

Now, we prove the case ch(F)=0 of Theorem 4. By Section 1
Theorem 1 (1), we have an exact sequence

A) 0——> H'(F)—>HY(K)—> H(F)—>0.

Note H(F)=Hom (u(F), Q/Z). On the other hand, U'C(X) is a divisible
group in this case, and is annihilated by any homomorphism C(K)—Q/Z
of finite order. Furthermore, the group C;,(K) has the following structure.
Let [];er Ko(F,) be the subgroup of the product [],» K(F,) consisting of
all elements (a,),¢» such that a, € K,(O5,) for almost all non-archimedean
places v. Let R, be the cokernel of Ky(F)—[]4c» Ky(F,), and let C; be
the idele class group of F. Then, we have an exact sequence

®) 0——>Rp——> Ciy(K)—> Cp——>0.

Compare the exact sequences (A) and (B). By Moore’s theorem, H(F)
is isomorphic to the group of all continuous homomorphisms R,—Q/Z,
and by the class field theory, H'(F) is isomorphic to the group of all
continuous homomorphisms C,—Q/Z of finite orders. Theorem 4 for
the case ch (F)=0 follows easily from these facts.

The following lemma will be used in Chapter II.

Lemma 2. If ch(F)=0, a discrete quotient group of U°C(K) is finite.
If ch (F)=0, a discrete quotient group of U°C,(K) is finite.

Proof. Let i be any non-negative integer in the case ch (F)=0, and
let i=0 in the case ch(F)=0. Let G be a discrete quotient group of
UiC,;,(K). It suffices to prove that G is finite.

First, we consider the case i =0. Let R, be the “K;-idele class group”
of F defined as above. By Moore’s theorem, the composite Rr= U°C,,(K)
—G factors through the canonical surjection R,—p(F), and this shows
that G is finite.

Next, assume i >1 and ch(F)=p>0. Take an element g of Uy
such that the residue class of g in F is not contained in F?, and let = be a
prime element of K. By Section 1 Proposition 2, we have a continuous
surjection for each v e P;
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F,@F,—>U'Ky(K,)/ U KA(K,)
(a, b)—>{1+an’, g} + {1+ b, z).
Take Y and U as before. Then, the image of g (resp. z) in Ok /my, is

contained in the image of (dy,,)* (resp. dy,,) for almost all ve U,. This
fact shows that there is a continuous surjection

l;[P, Fv® UP/ Fv—_—>UiI(i+l)(K)
(@) B))—>{1+a,7, gt +{1+b,a, 7D,

where [[;¢» F, denotes the adele group of F. This induces a continuous
surjection

(I FAF@([I! F)F—>U'Ce.(K).

Since ([[ser Fo)/F is compact, a discrete quotient group of U*C,,,(K) is
isomorphic to a discrete quotient of a compact group, and hence is finite.

§ 4. Arithmetical two dimensional local rings

Let 4 be a normal complete Noetherian local domain with finite re-
sidue field k, and let K be the field of fractions of 4. Let P be the set of
all prime ideals of height one of A. For each z e P, let K, be the z-adic
completion of K, which is a two dimensional local field.

The second semi-global theory is the class field theory of K. To de-
scribe this, we define the idele group I,(K) and the idele class group
C,.(K) with modulus m.

Definition 1. Let X be a normal Noetherian scheme. A modulus m
on X is a family (m(z)), of non-negative integers m(z) given for each point
z of codimension one of X, such that m(z)=0 for almost all z.

For a modulus m on Spec (4), let

Im(K) = C_DP KZ(Kz)/ Um (Z)KZ(Kz):
C,(K)=Coker (K(K)—1,(K))

(the map K,(K)—I,(K) is the diagonal map). The complex of Bloch-
Gersten-Quillen

K(K)—> @ Ki(x(2))—>Ky(k)—>0

and the tame symbols K,(K,)—K,(x(z)) give a canonical homomorphism
d,: C,(K)—Kk)=Z, which is an isomorphism if m=(0) and 4 is regular.
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Let C(K)=1lim C,(K) where m ranges over all moduli on Spec(A4).
- ;

We endow C,(K) with the discrete topology, and C(K) with the topology
as the inverse limit. These topologies are appropriate because;

Lemma 3. For any modulus m and z € P, the canonical homomorphism
K(K)| U™ K(K,)—C,(K) is continuous for the discrete topology on C,(K).

Here, the topology of K,(K,)/UK,(K,) is defined with respect to the
image of 4 in Oy, [mk, (cf. Section 2 Case 1).

Proof. Fix a modulus m and ze P. By Lemma 1, it suffices to
prove the following fact: For each element 2 of K*, there is an open
neighbourhood V of 1 in 4* such that all elements of K,(K,)/U*K,(K,) of
the forms {a,b} (aec V, be AX) and {a, h} (ae V) have zero images in
C,(K). Indeed, let J, be the ideal of A consisting of all elements a satis-
fying the following conditions (1) (2).

(1) ordg (a)=m(Z)if 2’ e P—{z}.

(2) ordg (a)=1if 2z’ e P—{z} and ord,(h)=0.

On the other hand, let J, be the ideal of 4 consisting of all elements a
such that ord.,(a)=Sup (m(z), 1). Let G,=Ker(4*—(4/J))*) fori=1, 2.
Then, for z’ ¢ P—{z},

{a, b}={a, K}=0 in K(K,)/ U™ K,(K,.)
for any a € G, and b e A*. Hence, the images in C,.(K) of
{a,b),{a, h} e K(K,) (ae GG, beAY)

vanish by the definition of C,(K). But the subgroup G,G, is open in A*.
Q.E.D.

We explain the class field theory of K. First, the group H*(K) satis-
fies the following reciprocity law: The image of H¥(K)—[]..p H(K,) is

contained in @, HY(K,) and the composite H\(K)—>@®, ¢, HY(K,)1X%

Q/Z is the zero map (cf. Saito [24] Chapter I). Let X ¢ H(K). Then,
the image X, of X in H'(K,) induces a homomorphism K,(K,)/U'K,(K,)—
Q/Z for some i (which depends on z), and annihilates U°K,(K,) if X, is
unramified (Section 2 Corollary to Proposition 3). Since X, is un-
ramified at almost all z, there exists a modulus m such that % defines a
homomorphism 7,,(K)—Q/Z. The above reciprocity law shows that this
homomorphism induces C,(K)—Q/Z. Thus we obtain the canonical
pairing
HY{K)X C(K)—>Q/Z.
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The induced diagram

C(K)—> Gal (K*™/K)
d
Z -S> Gal(k/k)=2.

is commutative, where the right vertical arrow is induced by the restriction
to the unramified part.

Theorem 5. The image of H'(K)—Hom (C(K), Q/Z) consists of all
continuous homomorphisms of finite orders, and its kernel is isomorphic to
the direct sum (Q/Z)" of r copies of Q/Z for some non-negative integer r.
If A is regular, we have r=0.

The part of this theorem concerning the kernel was proved in Saito
[18], and the part concerning the image was proved under a certain con-
dition on A also in [18]. (In [18], a restricted product [].., Ky(K,) is used
instead of the above idele group 7,,(K).) This complete form of the theorem
is proved by using a recent result of Merkuriev-Suslin [12]. In fact, the
complete form of Theorem 5 is not necessary for the purpose of this paper.
We need in Chapter II only the existence of the canonical pairing and
some other facts explained in this section.

§ 5. Curves over local fields

Let k& be a non-discrete locally compact field, X a regular proper
connected curve over k, and let K be the function field of X. The third
semi-global theory is the class field theory of K. (We call the fields K
treated in Section 3,4 and 5 semi-global fields.) Let P be the set of all
closed points of X. For ue P, let K, be the u-adic completion of K,
which is a two dimensional local field. Since the residue field of K, is a
finite extension of k, we obtain the topology of K(K,)/UK,(K,) with re-
spect to k (Section 2 Case 2). Let m be a modulus on X in the sense of
Section 4 Definition 1. We define

I(K)= @ KK/ U™ K(K,),
C,.(K)= Coker (Ky(K)—>1I,,(K)).

Since Ky(K,)/U°K(K,)=r(u)*, C,(K) is isomorphic to the group which is
usually denoted by SK(X). We endow C,(K) with the finest topology
which is compatible with the group structure and for which the canonical
maps Ky (K,)/ UK, (K,)—C,(K) are continuous for all ue P. Lét
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C(K)=1lim C,(K) with the inverse limit topology.
<«

The group H3*K) satisfies the following reciprocity law; for each
X e HY(K), hg (Ax,) € Q/Z are zero for almost allu e P,and >, p hx, (Xx,)
=0 (X, denotes the image of X in H*X,)). This fact is proved in [17] in
the case where k is non-archimedian and X is smooth over k. 1In the case
ch (k)=0 (which contains the cases k=R, C), this reciprocity law follows
from the exact sequence

H(K)—> @ Hi(X, Q/Z(2)—>H'(X, Q/Z(2)

((2) denotes the Tate twist) and from the fact that /1, coincides with the
composite

HY(K,)—>H\(X, Q| Z(2))—> H*(X, Q| Z(2))
—>H¥k, H(X®,k,, Q| Z(2)))—> H(k)C Q| Z.

If ch (k)=p>0, by using the trace map of H*(cf. [S] II Section 3.2), the
reciprocity law is reduced to the case X is smooth (even to the case X= P}).
Just as in Section 4, we obtain the canonical pairing

HY(K)X C(K)—>Q/Z.

Theorem 6. The image of the homomorphism H'(K)—Hom (C(K),
Q/Z) consists of all continuous homomorphisms of finite orders. If k is non-
archimedian, its kernel is isomorphic to (Q]Z)" for some interger r=0, and
r=0 if X has good reduction.

The part of Theorem 6 concerning the kernel was proved in [24].
(In the good reduction case, it is due to Bloch [4].) Partial results con-
cerning the image were proved in [4][14], and again the result of Merkuriev-
Suslin enables us to complete them. We do not use this theorem in this
paper though some partial precise results in Theorem 6 were necessary in
[3] [8] for the study of the two dimensional unramified class field theory.

The following result is also not used in this paper, but is stated here
to complete the description.

Theorem 7. Let K be a field of the type considered in Section 4 (resp.
in Section 5 and assume that k is non-archimedean). Then, we have an exact
sequence

0—(Q/Zy—>H¥K)—> P H¥K,)—>Q/Z—>0.

Here, r is the integer in Theorem 5 (resp. Theorem 6).
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Chapter II. Glebal theory

§ 1. Localizations

Let k be an A-field, i.e. an algebraic number field or an algebraic
function field in one variable over a finite field. In the former case, let S
be a non-empty open subscheme of Spec (O,). In the latter case, let S be
a smooth connected (not necessarily proper) curve over a finite field with
function field k. In both cases, denote by P(k) the set of all places of &,
and let 3 be the finite set of all places of k which are not contained in S.

Let X be a proper flat S-scheme which is normal, connected, and of
dimension two. We assume that X, =X®k is geometrically irreducible
over k. The main purpose of our global class field theory is to describe
the abelian fundamental groups z2°(U) of regular open subschemes U of
X, and the maximum abelian Galois group Gal (K**/K) of the function
field K of X, by using the K,-idele class groups of X. In this section, we
observe how two dimensional local fields and semi-global fields of Chapter
I are associated with X. As in Conventions, for a scheme T and i >0, T,
denotes {t ¢ T; dim {t}=i}.

1°. Foreachye X, let 0, , be the completion of the dxscrete valua-
tion ring 0y ,, and let K, be the field of fractions of dy,,. Then, K, is a
“semi-global field” of Chapter I Section 3 whose residue field is the global
field ().

Next, for each x € X, let 0, be the completion of the two dimen-
sional local ring 0y ,, and let K, be the field of fractions of @y ,. Then, 0y ,
is normal by EGA., Chapter IV Section 7.8, and K, is a semi-global field
studied in Chapter I Section 4. Each z e Spec (0y,,), defines the two-
dimensional local field Ky ,, the z-adic completion of K.

Lastly, for each v e P(k), let K, be the function field of X,,=X®;k,
(k, denotes the completion of k at v.) It is a semi-global field of Chapter
I Section 5. Each u e (X,,), defines a two dimensional local field X, ,,
the u-adic completion of K,.

2°. We next observe how the two dimensional local fields K , and
K, are related to the semi-global field K, (y € X)).

For x € X, and y e X, let the set y(x) be the inverse image of y under
the map Spec (0y,,)—X. This set y(x) is not empty if and only if x € {J}.
It is a finite subset of Spec (0y.,);, and is identified with the set of “bran-
ches” of {y} at x (Figure 1). For each z & y(x), the residue field #(z) of z
is the completion of k() at some place, and in this way, we identify y(x)
with a subset of P(k(»)) (P(x()) is the set of all places of £(y)). The field
K. .. (z € y(x)) is thus identified with the “local field” K, , of K, defined in
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Chapter I Section 3.

For ve P(k) and y e X,, let the set y(v) be the inverse image of y
under the map X, —X. It is not empty if and only if ry—} is a horizontal
divisor of X with respect to the fibration X—S. For each z € y(v), £(z)
is a completion of £(y) at some place, and we thus identify y(v) with the
finite subset of P(x(»)) consisting of all extensions of v to x(y). The field
K, (u € y(v)) is thus identified with the “local field” X, , of K, defined in
Chapter I Section 3.

For example, let k=0, S=Spec(Z), and X=PL=Spec(Z[T]) U
Spec (Z[T-']. If y is the point in X, corresponding to the prime ideal
(T) of Z[T], we have K,=Q((T)). If p is a prime number and x is the
point in X, corresponding to the maximal ideal (p, T) of Z[T], K, is the
field of fractions of Z,[[T]] and the 7-adic completion of K is the local
field Q, (1)) of K,. If v is the place of Q, K,=0,(T) and the T-adic
completion of K, is the local field Q,((T")) of X,.

For y e Y, the set P(x(»)) is the disjoint union of the subsets y(x)
and y(v), where x ranges over all closed points of {3} and v ranges over
2=Pk)—S, If {)7} is horizontal, P(x(»)) is also the disjoint union of sub-
sets y(v) where v ranges over P(k). If {y} is vertical, P(x()) is the disjoint
union of y(x) (x e {T}}o). In any case, we obtain a complete system
K,,.(z € P(x(»))) of local fields of the semi-global field X,

3°, Lastly, we observe that for v € S,, some of the two dimensional
local fields K, , are regarded as local fields of the semi-global field K,.
Let Y, be the fiber XQx(v) of X on v, which we identify with the closed
fiber of the scheme X®;0,, over O,. For x ¢ (Y,),, Oy,, is isomorphic to
the completion of the local ring of X®;0, at x, and hence, we have a
morphism Spec (@X,I)—>X®30kv. Let v(xX);e, (resp. v(x)y.,) be the inverse
image in Spec (0y,,), of the closed fiber ¥, (resp. the generic fiber X; ) Of
X®s0,, The set v(x),,, is finite, and we have

V(X)ver=_ ] 2(x).

YE€(Yol1

On the other hand, we have a canonical bijection

I v k,,)o-

z€(Yop)o

If z € v(x)y,, and u is the corresponding point in (X, ),, the natural homo-
morphisms K,—K,— K , induce a canonical isomorphism

K, .=K,,, (Figure 2).
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V(X)ser={2", 2}

U(X)sor! {

.- -

y@)={z, 2%}

Spec(0y,.)

& T
Spec (k,)  Spec (x(v))
Spec (0,

Fig. 1 Fig. 2

§ 2. The idele class group

Let k, S and X be as in Section 1. Let m=(m(y)),cx, be a modulus
on X in the sense of Chapter I Section 4 Definition 1. We define the support
Supp(m) of m to be the closure in X of the finite set {y e X;; m(y)0}
In this section, we define the K, -idele class group C,(X/S) of X with

“modulus m. This group will be related to the class field theory of abelian
coverings of X which are unramified outside Supp (m).

For each x ¢ X;, m induces a modulus m, on Spec (@X,,) as follows.
If the image of z e Spec (0y,,), in Xis y € X, let m(z)=m(y). If the image
of zin X is the generic point of X, let m(2)=0. (The second situation
actually occurs. For example, if S=Spec(Z), X=P} and 0y ,=Z,[[T]]
as in the example in Section 1, the image in X of the prime ideal (T—a) of
Oy, for a e pZ, is the generic point of X if a is transcendental over Q.)
Define

Cm(x) = me(Kx),

which is the idele class group of K, with modulus m, defined in Chapter I
Section 4. In the case 0y, , is regular and x & Supp (m), we identify C,,(x)
with Z=K,(x) as in Chapter I Section 4.

For v e P(k), m induces a modulus m, on X, as follows. Forue
X )o» let m,(u)=m(y) if the image of u in X is y € X,, and m,(u)=0 if the
image of u in X is the generic point of X. Let

Cm(v) = Cmv(Kv)
(see Chapter I Section 5). We have C,,(v)=SK(X,,) if Supp () has only
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vertical components.
Let y e {x}. As was explained in Section 1,

PEO)=(1] y@) 11 ([ ) =PER-S).
This gives a homomorphism

Kz(Kz/,v)/ Um(y)Kz(Ky,v)

VEP(k(y))

= ﬂ H K, Kz,z)/UmMz)Kz(Kz,z)

z€Xo zE€Y(x)

@ ]_[ H KZ(Kv,u)/UmO(u)KZ(Kv,u)

veEX uey)

—:IGL Cm(x)@v];[s Cn(v).

Lemma 4. The image of the idele group I,,.,,(K,) (Chapter I Section
3) in HIEXO Cm(x)C_B H vES Cm(v) is Contained in @xeXa Cm(x)ED @UGE Cm(v)‘
The first projection I, (K,)— @cx, Cu(x) is continuous if we endow
Dazexo Cnlx) with the discrete topology.

Definition 1. Let C,,(X/S) be the cokernel of the composite map

D KK)—> D Linipy)(K)——>(D C.(xND(D Cr(v)).
YyE€X1 YyeX1 r€Xo vES

We endow C,,(X/S) with the finest topology which is compatible
with the group structure and for which the canonical maps C,,(v)—C,.(X)
are continuous for all v e > (C,(v) has the topology defined in Chapter I
Section 5). We obtain canonical homomorphisms

C(m(g/))(K)—_)Cm(X) (y € Xl)
which are continuous by Lemma 4.

Proof of Lemma 4. Let I be the ideal of @, defining the reduced
closed subscheme {—y} of X. Then, the closed subscheme Y=Spec (05/I%)
of X satisfies the condition of Y in Chapter I Section 3. Take an element
= of K which is a prime element in K,, and take a sufficiently small non-
empty regular open subset U of Y, satisfying the following condition:
If y e X,—{y} and if )’ satisfies either ord,, ()0 or m()')0, then
U ﬂ{_y—’}———gﬁ. For any xe U, and the unique element v of y(x), the
elements

{a? b}’ {a> n'} € KZ(Ky,v)/Um(y)K‘z(Ky,v) (a, b € (@X,x)x)

have zero images in C,,(x) (see the proof of Chapter I Section 4 Lemma 3).
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By the definitions of I,,,,(K,) and its topology, and by Chapter I Lemma
3, this fact shows that the image of I, (,),(K}) in [] ¢ x, Cn(¥) is contained
in @, ¢y, Cn(x), and that the image of some open subgroup of I, (K,)
in @, ¢x, Cn(x) is zero. Q.E.D.

Lastly, we vary the base S. Let S’ be a non-empty open subscheme
of S, let X, =X X 4S’, and denote the restriction of m (as a function on X,)
to (Xg), also by m. Then, we obtain a surjective continuous homo-
morphism

Co(Xs/S)—>Cu(X]S)

as follows. For each ve S, let ¥,=X®x(v), and let C,(v) be the
cokernel of

@® K(K)— P Cp(x).

YE(Y o)1 Z€(¥Yv)o

Then, C,,(X/S) is isomorphic to the cokernel of
D KK)—(D C.)&( D Cn(v)
vE€So vEP(k)~-S

Y€ (X1)hor 0

and C,,(X,/S") is isomorphic to the cokernel of
@ KZ(KQ/)—_)(”G@,) ém(v))(-B( (‘B Cm(v))a

Y€ (X1)hor VEP(Kk)—(S)o

where (X)),.. denotes the subset of X, consisting of all points y such that
{»} are horizontal divisors. The desired homomorphism C,(Xs/S")—
C,(X/S) is induced by the surjective homomorphisms C, (v)— C,.(v)
defined as follows.

Letve S, Forxe(Y,), let

SpeC (@X ,z)l = v(x)ver U v(x)hor
be the decomposition given in Section 1, 3°. Since v(x),., is a finite set,
the projection

KZ(KJ:)_—> @ KZ(K.Z',Z)/ Umx(z)KZ(Kx,z)

2€v(ZT)ver

is surjective by the usual approximation theorem for a finite family of
valuations. Hence,

@ KZ(K:;, z)'__) Cm (X)

2€v(Z)hor

is surjective. The commutative diagram



126 Kazuya Kato and Shuji Saito

KZ(Kv) —> @ K2(Kv, u)/ Um')(u)KZ(Kv, u)

u € (Xpy)o 2

KZ(Kx, z)/ Umx(z)KZ(Kz,z)

Z€(Yp)o 2€0(2)hor
D KK)—> D Cnx
ye(Tp)1 L€ (Yo

defines a surjective homomorphism between the cokernels of the two
horizontal arrows; C,,(v)—C,(v). It is continuous by Chapter I Section
4 Lemma 3.

§ 3. The class field theory

In this section, we prove main results of this paper. Let S and X be
as in Section 1. For a commutative topological group G, let G* be the
group of all continuous homomorphisms G—Q/Z of finite orders.

Theorem 1. Let U be a non-empty regular open subscheme of X.
Then, there exists a canonical isomorphism

H'(U, Q| Z)=) C,(X]S)*
where m ranges over all moduli on X such that U N Supp (m)=¢.

Theorem 2. Let K be the function field of X. Then, there exists a
canonical isomorphism

H(K)=) C,(X]S)*

where m ranges over all moduli on X.

In these results, if m and m’ are moduli such that m’=m, we regard
C,(X/S)* as a subgroup of C, (X/S)* in the natural way.

1°. First, we define a homomorphism

H\(U,Q/Z)—> U  C,(X]S)*,

UNSupp(m)=¢

or equivalently, a continuous homomorphism

lim  C,(X/S)—>z®U)

UNSupp(m)=¢
for a non-empty open subscheme U of X.  The definition of

HY(K)—> ) C,(X]S)*

allm
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will follow from this, for H(K)=\Jy H'(U, Q/Z).

Let xe H(U,Q/Z). For ye X, xeX,, and ve XY=P(k)—S,, by
the class field theories of K,, K,, and K, (Chapter I Sections 3, 4, 5), X
induces elements of C(K,)*, C(K,)* and C(K,)* respectively. Since X is
unramified over U, the induced element of C(K,)* annihilates U°C(K,)
for any ye U,. For ye U, let m(y)=0, and for y € X,— U, let m(y) be
any positive integer such that the induced element of C(KX,)* factors
through C,(,(K,). Let m be the modulus (#()),cx,. Then, by the
identifications of “local fields” of K,, K, and K, explained in Section 1, 2°,
the induced elements of C(X,)* and C(K,)* factor through C,,(x) and C,,(v),
respectively. The induced homomorphism B, x, Cn(¥)D Pye s Cn(V)—
Q/Z annihilates the images of K,(K,) (¥ € X)), and hence it defines an ele-
ment of C,(X/S)*. ‘

By this definition, we see

Lemma 2. For x e U, such that Oy, , is regular, the image of 1 e Z
under

zZ = lim C,(x)—> 1lim C,(X/S)—>a™U)

UNSupp(m)=¢ UnSupp(m)=¢

coincides with the Frobenius substitution of x.
2°, Let U be a non-empty open subscheme of X. We prove that

the homomorphism
H'(U,Q/Z) —> U  C(X/S)*

UNSupp(m)=¢
is injective. Indeed, an element X of H'(U, Q/Z) of order r defines a
cyclic étale connected covering U, of U of degree r. If X is in the kernel
of this homomorphism, Lemma 2 shows that the covering U,/U splits
completely over any closed point of a non-empty regular open subscheme
U’ of U. This implies that the Hasse-Zeta functions of U;= U, X ,U’ and
U’ (cf. Serre [22]) satisfy

Z(U,, s)y=2Z(U', sy in Re (s)>2.

Since both Z(U}, s) and Z(U’, 5) are analytically continued to the range
Re (s)>>3/2 and have simple poles at s=2 ([22] Theorem 2, Theorem 3),
we have r=1 and hence X=0. (Cf. Lang[10] for this method using

Zeta functions.)
3°. Let U be as above and let U,=U®sk. We obtain a canonical

homomorphism
H\U, Q/Z)—> ) Co(Xs/S)*
m,S’
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where X5 =X X ¢S’, m ranges over all moduli on X such that U N Supp ()
=¢, S’ ranges over all non-empty open subschemes of S, and where we
define the inclusion C, (X, /S))*CC, (Xs./S")* for S/ C S’ as at the end
of Section 2. Since the group |, s Cn(Xs/S)* depends only on the
curve U, over k, we denote it simply by D(U,). We now prove

Theorem 3. H'(U,, Q/Z)—>D(U,).

By 2°, it suffices to prove the surjectivity.

First, we consider the case U,=X,. The unramified class field theory
of X, is studied in Bloch [3] Section 4 and Kato-Saito [8] Section 6. We
proved in [8] that there exists a canonical isomorphism

H'(X,,, Q| Z)=(Cx)*

assuming that X is smooth over k (this condition is automatically satisfied
in the case ch (k)=0), where Cy, is the idele class group defined as follows.
We shall soon see that this isomorphism is extended to the case where X,
is not necessarily smooth. Let [[,cru) SKi(X;,) be the subgroup of the
direct product [],cpa SKi(X;,) consisting of all elements (a,),cpu) Such
that a, belongs to the kernel of the (surjective) boundary map SK,(X; )—
CH(Y,) for almost all v e S;, where Y,=X®4x(v) and

CH(Y,)=Coker( @ r())*—> D 2Z).

YE(¥Yo)1 z€(¥yo

The definition of Cy, is

Cy,=Coker (SK,(X,)—> [’ SK(X.)).
vEP(k)

Assume ch (k)=p>0 and X, is not necessarily smooth. For some r >0,
the integral closure X’ of X, in the composite field KX-k?™" is smooth over
k?*~". We have a commutative diagram

by norm
H'(X', Q|Z) —> (Cx)*.

The left vertical arrow is bijective by SGA 1, Chapter IX Theorem 4.10,
and the right vertical arrow is injective since the norm homomorphism
Cx—Cy, is surjective as is easily seen. Thus, the bijectivity of the upper
horizontal arrow is reduced to that of the lower horizontal arrow.

Now, we show that in the case U,=X,, Theorem 3 is deduced from
the above unramified class field theory of X,. Take sufficiently small S’
such that X, is regular. Then, we have (cf. the last part of Section 2)
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Coy(Xg/S)=Coker ( &P /c(y)x—>(ve§?% C~<°>(U))®(v oD Co)

YE(X)o

=Coker (SK(Xe)—>( @ CH(YDS( D = SK(X.)).

VEP(k)y~(8’

This gives a canonical homomorphism

Cy,—> lim C,(X/S”)
-

St

having dense image. Thus, we obtain homomorphisms

H'(X,, QZ)——>D(X) =) Co(Xs/S)*—(C)*

whose composite is bijective and the second arrow is injective. This
proves the bijectivity of the first arrow.

Now, we consider the general case of Theorem 3. Let Y be the finite
set X, — U, which is regarded as a subset of X;. For each y ¢ Y, we have
a complete discrete valuation field K, with residue field #(y). If we take
S’ sufficiently small so that ¥=(X,.),—(Us);, we have an exact sequence

@ U'C(K,)—>Cr(Xs/S)—>C (XS )—>0
YeY
for any modulus m such that U N Supp (m)=4. Consider the following

commutative diagram, in which the above exact sequence gives the lower
horizontal complex except the part g(k)*.

0~ H'(X,, 0/2)— H(Us, 0/2) — & Hi(X,. 0/2)—>H{(X,, 0/2)
(A) | . al b
0—> D(X) —> DU) —> @ U CE)—> k)"

Here, the upper horizontal sequence is the localization sequence in étale
cohomology theory, and is exact. The lower horizontal sequence is exact
at D(X,) and D(U,), and p(k) denotes the group of all roots of 1 in k.
The definitions of the homomorphisms a, & and c are as follows. First,
the class field theory of K, defines a homomorphism H'(K,)—C(K,)* and
the unramified part H'(k(y)) of H'(K,) annihilates U°C(K,). Hence, the
exact sequence

0—>H'(e(y))—>H'(K,))—>H(X,, Q| Z)—>0
defines the homomorphism a. Next, the spectral sequence

H(k, H'(X,,, Q| Z))=—=H*(X,, Q| Z)
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_gives the homomorphism b;
H¥(Xy, Q| Z)—>H"(k, H*(X,,, Q| Z))= H(k)= p(k)* .

Lastly, let [[,era Ki(k,) and R, =Coker (Ky(k)— []4scru Ki(k,)) be asin
Chapter I Section 3. For y € Y, the family of diagonal homomorphisms

{Kz(kv) > E(-B( , UOKZ(Kv,u)}vEP(k)
uey(v

(y is regarded as an element of X,) induces a homomorphism [] /¢ pu, K(k,)

—U1,,(K,) (i=0), and furthermore, a homomorphism R,—U’C(K,).

By Moore’s theorem introduced in Chapter I Section 3, this last homo-

morphism induces

c: (UC(K,))*—>p(k)*.

Lemma 3. An element in the kernel of b is annihilated by the homo-
morphism H¥X,, Q/Z)——>H*(X,., Q/Z) for some finite Galois extension
k' of k, where X,,=X®,k’.

By using the spectral sequence, this is deduced from the fact that each
element of Hk, H"(X;,, Q/Z)) with ¢ >0 is annihilated by a finite Galois
extension of k.

Now, we prove the surjectivity of the homomorphism of Theorem 3
by using the diagram (A). Let ¢ € D(U,). For ye Y, via the homo-
morphism C(K,)—>C,(X,/S’) (cf. Section 2), ¢ induces an element of
C(K,)*. By the class field theory of K, (Chapter I Section 3), it comes
from H'(K,). Hence, i(p)=a(r) for some 7 e @,y Hi(X:, Q/Z). By
Lemma 3 and the diagram (A), we can take a finite Galois extension k’
of k such that the image of j(¥) in H*X,,Q/Z) is zero. Since the
diagram ’

Hl(Uln Q/Z)*——)HI(UK" Q/Z)

by norm
-

D(Uy) D(Uy)

is commutative (“by norm” means ‘“induced by norm homomorphisms of
K-groups™, see Chapter I Section 2 Proposition 3), the diagram (A) for X,
shows that the image ¢, =¢ onorm,., of ¢ in D(U,,) coincides with the
image of an element X of H'(U,, Q/Z). To prove that ¢ itself comes
from HY(U,, Q/Z), we may assume that the order of ¢ is a power of a
prime number p. Let H be a p-Sylow subgroup of Gal(k’/k), and let k,
be the fixed field of H in k’. By using the commutative diagram
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H(U,,, 0/Z)—> H\(U,, 0/Z)

by norm
—_

D(U) D(U,,) —> D(U,)

[Gal (k'/K): H]

(Tr means the trace map), we are easily reduced to the case k,=k. So,
assume that Gal(k’/k) is a p-group. We can take fields k=k,ck,C---
Ck,=k such that k,,, is a cyclic extension of degree p of k, for 0<i
<r—1. We show by descending induction on i that ¢,, comes from
HY(U,,, Q/Z). Let G=Gal(k,,,/k;). Since G is cyclic, the spectral se-
quence

HQ(G5 HT(Uki—H’ Q/Z))ﬁH*(Ukla Q/Z)

induces the upper horizontal exact sequence of the following commutative
diagram.

0——>G*—>HU,,, @/ Z)—>H Uy, ,, Q| Z)°—>0

Here, for a G-module M,
Mé={xe M;gx=x for all ge G}.

By the hypothesis of the induction, ¢,,,, is the image of an element ¥ of
H'(U,,,,,Q/Z). Since ¢,,,, is fixed by G and H'(U,,,,, Q/Z)—D(U,,.,)
is injective, X is also fixed by G. By this fact and by the diagram above,
we see it suffices to prove that the sequence

(B) 0 G* D(U,,) D(U,,..)

is exact. Let Y'=X,,—U,,. Forye Y’ let K] be the field of fractions
of @th,y. Let 4 be an element of D(U,,) which vanishes in D(U,,,,).
Then, 4 induces an element of C(X))* foreach y e Y’. Since this element
is annihilated by the unramified extension Kjk,,, of K, the class field
theory of K shows that +» annihilates U°C(K,) for all ye Y’. By the
lower horizontal sequence of (A) applied to X, this implies that «» comes
from D(X,,. Now, the exactness of (B) follows from the exactness of

0—>G*—D(X, )—>D(X,,.)
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which follows from the case U,=X, of Theorem 3. This completes the

proof of Theorem 3. ,
4°. We deduce Theorem 2 from Theorem 3. By making U smaller,

we have
HY(K)= ) D(U,).
Uké

But this isomorphism is the composite of two injective homomorphisms

Hl(K)—»a%Jm C,(X/Syt—> UEFJ;# D(U,).

Hence, the first homomorphism is bijective.

5°. Lastly, we prove Theorem 1. Let ¢ e C,(X/S)*, U anon-empty
regular open subscheme U of X, and assume UNSupp(m) =4 We
prove that ¢ comes from H(U, Q/Z). By Theorem 2, the image of ¢ in
Uit m Co(X/S)* is induced by an element X of HYK). It remains to
prove that X comes from HYU, Q/Z). Since U is regular, it suffices to
prove X is unramified at any y € U,. We have a commutative diagram

1e H((K) —>H'(K,)

pe U C(X/S)* —> C(K)*.
allm
Since m(y)=0 for y ¢ U,, the image of ¢ annihilates U°C(K,). By the class
- field theory of K, this proves that X is unramified at y e U,.

Remark 1. If ch (k)=0, any homomorphism of finite order Cm(v)—>
Q/Z is continuous, and hence any homomorphism of finite order C,,(X/S)
—Q/Z comes from H*.

Remark 2. What relation exists between the modulus of a ramified
abelian covering X’ of X and the conductors of associated L-functions?
It seems that the conductor of an L-function contains terms concerning
closed points of X, besides the terms m(y) which concern only the points
of codimension one.

Lastly, in the case k is a number field, S=Spec (0,), and X is regular,
we give more precise forms of Theorem 1 and Theorem 2. For a modulus
m on X, let C,,(X) be the quotient of C,,(X) defined to be the cokernel of

D KK CalND( D Calt))20a0)

where “real” means the real places of k. We call a modulus m on X
admissible if m(3)<1 for any y such that ch (x(»))=0.
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, Theorem 4.  Assume that k is an algebraic number field, S=Spec (0,),
and X is regular.
(1) For any admissible modulus m on X, the group C,(X) is finite.
(2) Let U be a non-empty open subscheme of X. Then, as a topolog-
ical group, z2*(U) is canonically isomorphic to lim C,(X) where m ranges
<«

over all admissible muduli such that U () Supp (m)=¢.

(3) As a topological group, Gal (K**/K) is canonically isomorphic to
lim C,,(X) where m ranges over all admissible moduli.
«—

m

This result is similar to the classical class field theory of Takagi-Artin.
We have the ray class group C,(X) which is a finite group generated by
canonical generators corresponding to closed points outside Supp (m), the
corresponding ray class field K,, which is a finite abelian extension of K
such that |J,, K, =K®", and the Artin isomorphism C,(X)=Gal(K,/K).

Proof of Theorem 4. 1f vis a complex place of k, C,,(v) is a divisible
group for any modulus m. If vis a real place of k, C,(v)/2C,(v) is dis-
crete as is easily seen, and the norm argument for the extension C/R shows
that 2C,,(v) is divisible, for any modulus m. Furthermore, if y € X, and
ch (£(»))=0, U'C(K,) is a divisible group. By cutting off these divisible
groups, Theorem 4 is reduced to Theorem 1 and Theorem 2 if we prove
the finiteness of C,,(X) for m admissible. For m=(0), the regularity of X
implies

Coker (D K(K))—> @ Cp(x))=Coker( D £(»)*~——> @ Z)
yeEX1 zxeXy yeXy xeXo

and the latter group is finite by Bloch [3]. On the other hand, for a real
place v of k, C)(v)/2C 4, (V) =SK(X},)/2SK,(X,,) is finite as follows. If
the residue fields of all closed points of X, are the complex number fields,
SK,(X,,) is divisible. If X, has a k,-rational point, there is an exact se-
quence

J (k) @ky—>SK (X)) 2SK\(Xyp ) —>k5 (k5 ) -—>0

([3]1}Section 1), where J(k,) is the group of all k,-rational points of the
Jacobian variety of X,. The finiteness of C,(v)/2C ,(v) follows from the
finiteness of J(k,)/2J(k,) and kX/(kX)?. Thus, we have shown that C(X)
is finite.

For any modulus m, we have an exact sequence

U°C,(K,)—>C ,(X)—>C(X)—>0.

yE€X1NSupp(m)
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Since C,(X) is discrete, the image of the first arrow is finite by Chapter I
Section 3 Lemma 2 if m is admissible. This reduces the finiteness of
C,.(X) to that of C,(X).

§ 4. The case of surfaces over a finite field

Let k£ be a field, and let X be a proper normal surface over k. Then,
we define the idele class group C,(X) for a modulus m on X as follows in
the way similar to Section 2.

For y € X,, let K, be the field of fractions of 0y ,. For x € X, let K,
be the field of fractions of @ ,, and for z e Spec (Ox.)0 let K, , be the
z-adic completion of K,. For a modulus m on X, the groups C,.(x) (x € X;)
and the homomorphisms K,(K,)—>@,cx, Cn(x) (¥ € X,) are defined in the
same way as in Section 2. Let C,(X) be the cokernel of the induced
homomorphism
&) KZ(Ky)—»xg—t}h C,.(x).

YEX1
If X is regular and m=(0),
Co(X)=Coker (P £(»)*—> @ Z)=CH|(X),
yeX) zreXo

where CH,(X) is the Chow group of zero cycles on X modulo rational
equivalence.

Most of topological arguments in the previous sections can be applied
to this situation. We define the topology of KK, .)/U‘K(K,,,) by using
the image 4 of 0y , in Oy, /m%, , (see Chapter I Section 2 Case 1). We
define the idele group of K, and its topology by using Y=Spec (0,/I*)
where I is the ideal of @, defining the reduced closed subscheme {7} (the
condition ““of finite type over Z”’ on Y in Chapter I Section 3 is replaced
here by “of finite type over k). We regard C,(X) and C,,(x) as discrete
groups, and then, all the homomorphisms Ky(K ,)/U™*®Ky(K,, ,)—C,(x)
and C,,(K,)—C,(X) are continuous.

Assume now that k is a finite field. Then, as in Section 3, we obtain
a canonical homomorphism

lim C,(X)—>z™(U)
&_
U NSupp(m) =

for any dense open subscheme U of X. If X is connected and K is the
function field of X, we obtain a canonical homomorphism

lim C(X)—>Gal(K*/K).
P

allm
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Theorem 5. Let X be a smooth projective geometrically irreducible
surface over a finite field k with function field K. Then,

(1) For any modulus m, the kernel C,(X)° of the degree map C,(X)
—Z is finite.

(2) Let U be a non-empty open set of X, and let n;*(U)’,be the kernel
of #*(U)—Gal (k/k). We have commutative diagrams of exact sequences

0—> lim C,(X)—> lm C,X)>% 2z 0

%_.
UNnSupp(m)=¢ UNSupp(m)=¢
Ul ﬂl
0—>  a(U)Y —> 7(U) —>Gal (k/k)—>0

0—> lim C,(X) —> lim C (X)—> Z ——0
allm all m
lel ﬂl
0—> Gal (K**/kK) —> Gal (K**/K) —>Gal (k/k)—>0.

in which the vertical arrows in the left sides are isomorphisms of profinite
groups.
Here, the degree map deg: C,,(X)—Z is the composite

d
C(X)—>Co(X) = CHy(X)—2> Z.
We begin with some elementary properties of C,,(X).

Lemma 3. Let X be a proper normal surface over a field k, m a mod-
ulus on X, and let U be any regular dense open subset of X such that UN

Supp (m)=¢. Then,
® Z= P C,(x)—>C,(X)

zelUo xeUo
is surjective.
Proof. Fix xe X. Let T be the subset of Spec (0y,,), consisting of
all points whose images in X are the generic point of X. Let M (resp. N)

be the subset of Spec (0 ,),— T consisting of all points z such that m,(z)
>1 (resp. m,(z)=0). Since M is a finite set, we see easily that

@ ""(Z)X_'% Cm(x)

ZENLT

is surjective. We prove further

Clain. @,y £(2)*—C,(x) is surjective.
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Indeed, fix # € T and let a be any element of x(¢)*. We show that
the image of a in C,(x) is contained in the image of @,y #(z)*. Take
an element % of K, which is a prime element in K, , and which satisfies

ordy, (h—1)=m.(2)

for any ze M. Let D={z e Spec(0y.,),; ordg, (7)=:0}, and let s be any
non-zero element of Oy, (not dy,,) such that ord x,,.(8)=0if ze D. Since
Oy ,Is71] is a Dedekind domain, there are b e 0 , and n e Z such that the
image of s*b in #(¢) is a, and its image in «(z) is 1 if ze D—{¢}. Let J
be the intersection of all the prime ideals in D. Since J+brity , (Fiy,, is
the maximal ideal of @x,z) is an open ideal of d, ,, there is an element ¢
of Oy,, such that

c=b mod (J+briry ).
This shows that

c=bumodJ  forsome ue (0 ) .

Forz e M [] T, the image of {s"cu~!, h} € K,(K,) in K(K,,.)/U™“K\(K,,.)
is aek(z)* if z=t, and is zero if z3:¢. By the definition of C,(x), this
proves the claim.

Now, we complete the proof of Lemma 3. By making m large and
U small, we may assume U=X—Supp (m). By the claim, C,(X) is gen-
erated by the images of the groups C,(X,) such that y e X, and m(y)=0.
For such ye X, if x is a closed point of {y}N U at which the reduced
scheme {y} is regular, the image in C,,(X) of the local factor of I(K,)
corresponding to x coincides with the image of Z=C,,(x)—C,.(X). Since
C(K,) is isomorphic to the idele class group of x(y) and C,(K,)—C,.(X)
is continuous, the image of C(K,) in C,(X) is generated by the images
of C,,(x) where x ranges over all regular closed points of {—37} NU.

Lemma 4. Let X be as in Lemma 3, and let - X'—X be a proper
birational morphism with X’ normal. Let m be a modulus on X, and let m’
be any modulus on X’ satisfying m'(y)=m(f(y)) for any y e (X"), such that
f(y) e X,. Then, there is a unique surjective homomorphism f*: C, (X)—
C . AX") such that; if Uis a regular dense open subscheme of X such that
Y U)Y=U via f, the following diagram is commutative.

bz —>C,(X)

x€Uo
I, I
Z—> C,(X).

z€f~HU)o
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Proof. Fixxe X, Let T=0, ,®,X’. Since T—Spec (0, ,) is pro-
per and birational, each z e Spec (¥y,,), determines a unique element ¢ of
T, havmg z as its image in Spec (& r,-)- The closure {t} in T is finite over
Spec (0y.,) and hence has a umque closed point s. Let x’ be the image
of s in X’. Then, 0,.,=0,, Since (DT , 18 isomorphic to the t-adic
completion of @, ,, we can regard ¢ as an element of Spec(d,,),. Let 2’
be the image of ¢ e Spec (,,,); in Spec (0y. ). We have

Kx’,z’T)Ks,t(_;—Kx,z'

The homomorphism f* is defined by collecting the isomorphisms

KK, | U ORAK,, ) > KK ) U O KA Ko, 2).

The well-definedness of f* is proved easily, and the uniqueness and the
surjectivity of f* follow from Lemma 3.

Lemma 5. Let f': X’—X and m, m’ be as in Lemma 4. Assume
that there is an open set W of X which contains Supp (m) and all points of
X at which X is not regular, and which satisfies f~(W)=W via f. Then,
f*: C.(X)—C,(X’) is bijective.

Remark 3. It is probable that the group lim C,(X) is a birational
<«

all m

invariant of X. This Lemma 5 is too weak to deduce this. If kis a finite
field, the class field theory affirms this fact for X regular.

Proof of Lemma 5. We define a homomorphism
f* : Cm’(X,)_)Cm(X)

as follows. For x e f~}(W),, let f,: C ,(x)——> '»(f(x)) be the canonical

isomorphism. For x € (X"),— f~'(W),, let d C..(x)—Z=Kx) be the
homomorphism defined by the Bloch-Gersten-Quillen complex for @ ,,
and let f: C,.(x)—C,(f(x)) be the composite

C..(x) d 7 [£(x) 2 £(f (x))] Z—=C,.(f().

The homomorphism f, is defined by collecting these homomorphisms
fo (x e (X"),). Itis easily seen that this homomorphism f;, is well defined.
By applying Lemma 3 to U and f~'(U) where U is any regular dense open
subscheme of X— Supp () such that f-%(U)= U, we see that f*of, and
[y of * are the identity maps.
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Now, we prove Theorem 5. Since X is regular, Cy,(X)=CH/(X).
By Milne [13] and Kato-Saito [8], CH,(X) is a finite group. By the proof
of Section 3 Theorem 4, we see that the kernel of C,(X)—C,(X) is finite
for any modulus m on X. Hence, Theorem 4 is a consequence of

Proposition 1. Let X be a projective normal connected surface over a
finite field k with function field K. Let U be a non-empty regular open
subscheme of X. Then, we have canonical isomorphisms

H(U,QIZ)—> U C.(X)*

UNSupp(m)=¢

H(K)— | C, (X)*
all m
Proof. The injectivity of these homomorphisms are proved just as
in the proofs of Theorem 1 and Theorem 2. We prove the surjectivity.
It suffices to treat the first homomorphism. Let ¢: C (X)—Q/Z be a
homomorphism of finite order such that U N Supp (m)=¢. To show that
¢ comes from H'(U, Q/Z), we may assume that the order of ¢ is a power
of a prime number p, and we may replace k by any finite extension k&’ of

k such that [k’: k] is prime to p. Take a projective embedding X S Py,
and let Y be a closed subset of X such that Y=X and X—UCY, so
that all the singular points of X are contained in Y. By taking an exten-
sion of the constant field of degree prime to p, we may assume that there
is a linear subvariety L of Py of codimension 2 which does not meet Y.
The hyperplanes H in P™ which contain L form a variety T which is iso-
morphic to P;. Let X’ be the subvariety of XX ,T of points (x, H) such
that x € H. Then, the first projection X’—X is proper and birational,
and satisfies the condition of Lemma 5 with respect to the modulus m.
Let »’ be the modulus on X’ defined by »'(»)=m(f(»)) if f(») € X, and
m'(»)=0if f(y) e X;,. Then, we have f,: C,(X)=C,(X) by Lemma 5.
Take the integral closure S of T in K. Then, the projection X'—T
induces a morphism X’/—S which satisfies the conditions at the beginning
of Section 1. We have C,,(X’/S)=C,(X’). Hence, in the commutative
diagram
H'(U,Q/Z) —> U Cr(X)*
UnSupp(m)=¢
n lby fa
H(f-'(U), Q/Z)——>f v, C(X7)*,

~HU)NSupp(m)=¢

the lower horizontal arrow is bijective by Theorem 1. Since f-(U)—U is
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proper and birational and U is regular, H(U, Q/Z)—H'(f-Y(U), Q/Z) is
bijective. This proves that ¢ comes from H'(U, Q/Z).

Chapter III. Relation with the class field theory of Lang

Let ¥V be a variety over a finite field £ with function field K. The
class field theory of Lang [9] [10] [20] constructs a group 4,(V) by using
commutative algebraic groups over k, and an isomorphism

Gal (K**/KY = A,(V) ([20] Chapter VI n° 16 Theorem 1)

where Gal (K?*/K)’ is the dense subgroup of Gal (K**/K) defined to be the
inverse image of the subgroup Z of Gal(k/k)=Z (1 e ZC Z corresponds
to the Frobenius). In this chapter, in the case where V' is a smooth proper
surface over k, we shall show that the composite of this isomorphism and
the isomorphism in Chapter II Section 4

lim C,(V)=Gal(K**/K) = A4,(V)

<
is given by the two dimensional version of the local symbol of [20] Chap-
ter 1.

First, we review the class field theory of Lang, following [20] with
slight modifications.

Let k be an arbitrary field. Let G be a commutative algebraic group
over k (i.e. a commutative group scheme of finite type over k). Then, a
principal homogeneous space H over G defines an exact sequence of com-
mutative group schemes over k;

0—>G—E,——Z—>0.

Precisely, E; is the disjoint union [],., H™ where H™ is the principal

homogeneous space H §< e §<H (n times) over G defined in the well-
known way for any ne Z. (In particular, H®=H and H®=G). The
group law of E, is defined by the canonical morphisms H™ x H™—
H™*™ (m,ne Z). The homomorphism E,—Z is the morphism which
is constant on each H™ with value n. (Another definition of the above
exact sequence is that H defines an element of

Hl(SpCC (k)fppﬁ G) = EXtépGC(k)fppf(Zﬂ G) >

where fppf means the fppf topology.)
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Let K be a field over a field k. We define the category My, as
follows. An object of My, is a triple (G, H, ) where G is a commutative
algebraic group over k, H is a principal homogeneous space over G defined
over k, and « is a K-rational point of H such that the image of a: Spec (K)
—H is dense. A morphism (G, H, ®)—(G’, H', &) is a pair (f, g) of a
k-homomorphism f: G—G’ and a k-morphism g: H—H’ such that go =
o’ and such that the diagram

oxaHYE o xm
H 25> m

is commutative. This category My, is essentially small (i.e. isomorphism
classes of objects in M, form a set) and co-filtered (its dual category is
filtered in the sense of Schubert [19] 9.3.4). Hence we can regard any
covariant (resp. contravariant) functor F: M, ,,—% from My, to a cate-
gory %, as a filtered inverse (resp. inductive) system {F(G, H, «)} in € with
the index category My,,. A general result of [20] is;

lim  Ext'(Eg Q/Z)=H'(K)

(G H,a)e M g%

where Ext'(E,, Q/Z) is the group of all classes of short exact sequences
0—Q/Z— x —E,—0 of fppf sheaves of abelian groups over Spec (k), and
lim means the inductive limit of the contra-variant functor (G, H, o) +—

—_
Ext'(Ey, Q/2).
Let
Agp= lm  Eg(k),

(G H,a) € MKk

where E,(k) denotes the group of all k-valued points of E,, which we re-
gard as a covariant functor (G, H, a)—E,(k). If K is the function field
of a variety V over k, this group A, coincides with the group 4,(¥) in
[20] as is easily seen.

Assume that k is a finite field. Then, an exact sequence 0—Q/Z
— % —E;—0 gives a homomorphism E,(k)=Hk, E,)—~>H'k, Q|Z)=
Q/Z, and this correspondence induces an isomorphism Ext(E,, Q/Z)=
Hom (E(k), Q/Z). Combining this fact with the above general result,
we have ,

Theorem. ([20] Chepter VI n° 16 Theorem 1) Let k be a finite field,
K a field over k, and let Gal (K**/K)' C Gal (K**/K) be the inverse image of
ZC Z=Gal(k/k). Then, there exists a canonical isomorphism
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Gal(K*/KY = A .
Our aim is to prove

Proposition 1. Let X be a projective smooth connected surface over a
field k, and let K be the function field of X. Then,
(1) There is a canonical homomorphism

Ty lim C,,(X)—>Ag,
<«

allm

having the following characterization. Let (G, H, &) be an object of My,
and assume that a comes from a morphism &: U— H for a non-empty open
subscheme U of X. Then, the corresponding homomorphism

lim C,(X)——>E,(k)
Nim

induced by Ty factors through C,(X) for some modulus m such that
UN Supp (m)=¢, and the composite

Z=C,()—>C, O 2BE () forxe U,

sends 1 € Z to Tr,,,,(@(x)). Here, &(x) is the composite morphism

Spec (£(x))——> U;&)H: HOCE,

regarded as a k(x)-rational point of Ey, and Tt,,,,; is the trace map E,(k(x))
—E, (k).

() Ifk is finite, this homomorphism 7 5 is bijective, and the following
diagram is commutative.

. h. 11 §4
lim C,,(X)-2118% Ga1 (kv y
St =
Tx = = |Lang
S\
K/x

We must explain the definition of the trace map. Let G be a com-
mutative group scheme over a field k and let E be a finite extension of k.
Then, we define the trace map

Ttz G(E)—>GKk)

as follows. Let E’ be the maximum separable subextension of k in E.
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Let Tr g, : G(E")—G(k,) be the homomorphism x— >, o(x), where ¢ ranges
over all k-homomorphisms E’—k,. Then, the image is fixed by Gal(k,/k)
and hence Try,,, is in fact a homomorphism G(E")—G(k). If ch(k)=p>0
and [E: E']=p" (r=0), we have

p'xe G(ENCG(E) for any x € G(E).

Indeed, let B be the fixed subring of A=E®,---®,E (p" times) by the
actions ¢,® - - - Qa,r >, ,® - - - ®a,,» of the permutations ¢ on the set
{1, ---,p"}. For x e G(E), let x, be the image of x in G(4) induced by

E—4;a—1Q-- - ®1R®a¥IR---Q1.

4—1 times

Then, x,+ - - - +x, € G(4) is contained in G(B). On the other hand, by
Serre [20] Chepter 111 #° 14 Lemma 11, the image of B under

0: A—>E; a®- - -Qa,—>a,- - -a,

is contained in kE?". Write the induced map B—E’ by . In G(E), we
have

Px=0(x,+ - - - +x,)=0"(x,+ - - - +x,.) € G(E").
Now we define Trg,,.: G(E)—G(k) by
x+——>Trg, ([E: E']-x).

To prove Proposition 1, we define the local symbols for higher dimen-
sional local fields. Let k be a perfect field, and let &, - - -, k,, be a sequence
of fields over k satisfying the following conditions (i) (ii).

(i) k,is a finite extension of k.

(i) Fori=1, ..., n, k,is a complete discrete valuation field with
residue field k,_,. Furthermore, kC O, , and the reduction map O,,—k,_,
is a k-homomorphism.

Let K=k,. We define a valuation ring ¥V as follows. Let V,=K
and define V, (1<7<n) inductively to be the inverse image of O,, ,,,
under V,_,—k,_;.,. Then, V,DV,D..-DV, and each V;is a valuation
ring of rank i with field of fractions K. We define V,=1V,. Then, the
residue field of V7 is k.

In the following, for a commutative algebraic group G over k, we
define a canonical pairing

() GEK) XK (K)—>G(k),
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which is a generalization of the local symbol of [20] Chapter III (see
Lemma 3 below). First, we assume that G is affine. We need some facts
from the localization theory in algebraic K-theory.

Let B be a ring and S a multiplicatively closed subset of B consisting
of non-zero divisors of B. Let H be the exact category of all the B-mod-
ule M such that S~'M =0 having a resolution of length one by finitely
generated projective B-modules. Then, we have a long exact sequence

0
Kq+1(B)—__)Kq+1(SMIB) Kq(H) Kq(B) Kq(S_lB)

for g = 0 (cf. Grayson [4]), where K, means Quillen’s K-group. If B is
flat over a ring 4 and if B/sB is a finitely generated projective A-module
for any s e S, any object of H is finitely generated and projective as an
A-module, and we obtain a homomorphism K (H)—K,(4).

Definition 1. Let 7 be a field, and let J be a complete discrete valua-
tion field containing 7 such that 7C O, and such that the residue field of J
is a finite extension of I. Then, for any ring A over 7 and any ¢=>0, we
denote by Res;,, the composite

3
Kq + 1(A®1])_'—>Kq(H)“—)Kq(A)
defined by taking B=A4®,0, and S=0,—{0}.

Let k and K be as above. For each i=1, - .., n, choose a k-homo-

morphism f;: k;,_,—0O,, such that the composite k,_, ff» 0., —0y./my, is
the identity map (such f; exists, for k,_, is formally smooth over the perfect
field k in the sense of EGA., Chapter O Section 19). For any ring R over
k, let Res,, ..., ;» be the composite map

CSkn/kn—1

Kn(R®kkn—l)‘—> ct

Resty/ky det
—1 KR ko) > Ky R)—>R*,

Kn + l(R®kK) R

where we regard k,_; as a subfield of &, via f; for each i.
For a ring R over k which is a k-vector space of finite rank, let GZ
be the algebraic group over k having the characterization

GE(A)=(R®,A)* for any ring A4 over k.

For an affine commutative algebraic group G, there is an exact sequence
0—G—>GE—GE for some R and R’. This shows that for any embedding
G CGE, the image of
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G(K)X K (K)—>GE(K) X K (K)

RCS(f1 .....

— (R®,K)* X K,(K) 3 K, (R®,K) /%) R* = GE(k)

is contained in G(k) and the induced pairing
(, )r: GK) XK (K)—>G(k)

is independent of the choices of R and the embedding G GZ.
It is probable that the homomorphism

Res(fl,...,fn): K,L“(R@kK)———)RX
and hence (, )g: G(K)X K (K)—>G(k)

are independent of the choices of f;, - - -, f,. In the positive characteristic
case, this can be proved by the same method in the proof of [5] IT Section
2 Lemma 12, which treated the case R=k[T]/(T%) (i=1) and used the
p-th power homomorphism. In the case ch (k)=0, we can prove at least
that the composite

G(K)X KM (K)—>G(K) X K (K)—>G(k),

which we shall denote also by ( , )g, is independent of the choices of
fi -+, fn- In this case, we may assume that k is algebraically closed,
and then we are reduced to the cases G=G,, and G=G,. In the case
G=0G,, ( , )¢ isinduced by the composite of tame symbols which are in-
dependent of f;, ---, f,. In the case G=G,, we have a commutative
diagram

@ {by - -, B} G.(K)x K2(K) 256,
NN o LA
b, b,

where the lower horizontal arrow “res” is characterized by the following
properties and is independent of f, - - -, f,..

(i) res(dQ%"H=0.

(i) Let V, be the valuation ring of rank n with residue field k, de-
fined above.. Then,

Tes (a%/\ .- -/\czb”>=a"({b1, <o, b, Tr (@
1 n

for all ae Vi and b, ---,b, e KX. Here, 0" denotes the composite of
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tame symbols K¥(K)—K(k,)=Z and a denotes the residue class of a.

Next, we extend the definition of ( , )x: G(K) X KX (K)—>G(k) to
any commutative algebraic group G. By Chevalley’s theorem, there is
an exact sequence

0—>G——>G G’ 0

such that G’ is smooth affine and G” is proper. Let V', be the valuation
ring defined above. Since G” is proper, we have G (V)= G’/ (K). Since
Vy is henselian and G’ is smooth, an element of G”(V%) is contained in
the image of G(V k') —>G"(V k') after a finite Galois extension k'/k.
These facts show that an element @ of G(K) is written in G(Kk’) in the

form o'+ 8 such that o’ ¢ G'(KKk’) and Be G(V k). If a=a'4f with
o' € G'(K) and 8 e G'(Vy), we define

(o, I+ K (K)——>G(k)
to be the sum of the following two maps

(@, )x: K (K)—>G' (k) C G(k),
KY(K)—>G(k); x—>0"(x)-Tryp,x(B)

where 6” is the composite of tame symbols K¥(K)—>K{¥(k)=2Z, Tt
is the trace map G(k,)—G(k), and B denotes the image of in G(k,). For
general a, (a, )it KX(K)—G(K’) is defined after a finite Galois extension
k’[k, but the image is invariant by Gal (k’/k) and hence contained in G(k).
It is easily seen that this determines a well defined pairing

(5 )x: GEYXKF(K)——>G (k).

Lemma 1. Let G be a commutative algebraic group over k, and let
a e G(K).

(1) There is an i =0 such that (@, )y annihilates U*KY(K).

Q) Ifae G(Oy), wecan take i=0. If @ ¢ G(Vy), we have (@, X)x=
9"(x)- Try o u(@).

(3) If G is of multiplicative type, we can take i=1.

(4) Let R be a ring over k which is a k-vector space of finite rank,
and let G=GE. Assume « is the unipotent element 1—c'a, where a is a
nilpotent element of RQ, 0y and ¢ € Ox—{0}. Then, if a” =0, we can take
i=N-.ord(c)+]1.

Proof. The assertion (2) follows easily from the definition of ( , )x.
For (3), we may replace k by its any finite extension, and we are reduced
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to the case G=G,,. Then, the residue map is induced by tame symbols
which annihilate U

We prove (4). Let r=ordg(c). As is easily seen, U™V *'K}(K) is
contained in the subgroup of KY(K) generated by elements of the form
{%, %1 -+, Yu_ys} such that xe UZ™ and y,, -+, y,., € Ug. Since a=
(c—a)c!, we are reduced to proving that

{c—a, UM} e Im (KAR®;0 ) —> K{(R®K)).

Let f € O and let

N-1
g=>,ca" "7 e R®,Ok.

Then,
{e—a, 1 —c*f}={c—a, 1 —(c—a)fg}.

The subgroup 1—(c—a)(R®,;0x) of (R®,K)* is generated by elements
1—(c—a)h such that 1 e (RQ,0x)*. But, for & e (R®,04)%,

{c—a, 1—(c—a)h}= —{h, 1 —(c—a)h} & Im (K(R®,0.)).

Lastly, an element @ € G(K) becomes a sum of elements of the types
(2) (3) (4) after a finite extension of k (by Chevalley’s thoerem introduced
above), which proves (1).

Lemma 2. Let K’ be a finite extension of K.

(D) (axs X)e=(, Ngyx(x)x (@ € G(K), x € K}/(K)).

@ (@, xg) e =Trgyx(@), Y)x  (a € GK'), x & K;/(K)).

Here, for & € G(K) (resp. x € K¥(K)), oy € G(K') (resp. xx € KX (K"))
denotes its canonical image.

This follows from formal properties of the norm homomorphism in
K-theory.

Lemma 3. Let F be an algebraic function field in one variable over a
perfect field k. Let a € G(F) (G is a commutative algebraic group over k).
Then, for any place v of F over k, the homomorphism (a, )z,: (F,)*—G(k)
defined above coincides with the local symbol of Serre [20] Chapter III.

Proof. 1t is sufficient to prove that the family {( , )r,}, satisfies the
characterizing condition of the local symbol in [20] Chapter III. By virtue
of Lemma 1 (2), what we must check reduces to

A) > (a, X)p,=0 for x e F*.

allv
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By Lemma 2, we are reduced to the case where x is transcendental over k
and F=k(x). Let 0—-G'—>G—G"”"—0 be an exact sequence such that G’
is affine and G” is proper. By [20] Chapter III n° 8 Lemma 7, we have
G"(k(x))=G"(k). From this, it follows that G(k(x)) is generated by
G'(k(x)) and G(k). For «a e G(k), the formula (A) above is nothing but
the well known formula

2. [k(v): k] - ordp, =0 on F*,
allv

Thus, we are reduced to the case G is affine, and hence to the case G=GZ.
In this case, the formula (A) follows from the residue formula

>3 Res g, (x)=0 in K, (R) for all x € K, ,,(R®,F).

allov
This formula is proved as follows. Let C be the regular proper curve
over k with function field F. Let H be the category of coherent sheaves
Z on R®,C having a resolution of length one by vector bundles such
that #®,,F=0. Then, the sum >, Res; ; is the composite

K, (R@F)— > K (H)—>K,(R),

but the second arrow factors as

K (H)— > K,(RR,C) "™ K (R®, P))—>K,(R),

and i00=0.

Now, we return to the smooth proper surface X over a field k£ and
prove Proposition 1. The uniqueness of 7 follows from Chapter II Sec-
tion 4 Lemma 3. To prove the existence of 7'y, an easy reduction shows
that we may assume that & is algebraically closed.

If k is algebraically closed, any principal homogeneous space H over
G has a k-rational point, and hence isomorphic to G itself. We have E,
=G X Z. Our task becomes to show that an element « of G(K) defines a
canonical homomorphism lim C,(X)——>G(K) having the property stated

<«

all m

in Proposition 1 (1) in which H and E,, are replaced by G. For x e X
and z e Spec ({y ,),, we have already a canonical homomorphism

(& x,,.: Kl K, )—>G(k).

We show that the collection {(«, )y, ,} defines a homomorphism C,,(X)—
G(k) for some modulus m. The fact that the obtained homomorphism
T, has the required property in Proposition 1 (1) will then follow from
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Lemma 1 (2). It suffices to prove the following Lemma 4 and Lemma 5,
in which G denotes a commutative algebraic group over a perfect field k.

Lemma 4. Let F be a function field in one variable over k. Let
K=F((T)), and K,=F,(T)) for each place v of F over k. Let a ¢ G(K).
Then,

(1) There exists an integer i =20 such that (e, )x,: G(K)—G(k) anni-
hilate U'K,(K,) for all v.

(2) For b e K(K), (a, b)=0 for almost all v, and 3,1, , (@, b}, =0.

Lemma 5. Let xe X, and a € G(K). (Here K is the function field
of X as before.) Then, for be K(K,), (a0, b)x, ,=0 for almost all z e
Spec (@X,z)l and Zallz (CV, b)K,t,EZO'

Proof of Lemma 4. We may assume that & is algebraically closed. By
Chevalley’s theorem, for some finite separable extension F’ of F, the image
of & in G(F'((T))) is expressed as a sum «’+ f such that o e G'(F'((T)))
for an affine subgroup G’ of G and 8 e G(F[[T]]). Let K'=F'((T)). An
easy study of the norm maps (K’)*—K* and (K}, )*—K} shows that

Ky{K)= Ny K(K') and U'K(K,)CNg,,(UK(K)) (iZ0),

where v/ is any place of F’ over k lying over v and K, =F,((T)) (k is
assumed to be algebraically closed). Hence, by Lemma 2, we may assume
K’=K. Thus, we may treat separately the case G is affine and the case
a e G(Og). Inthe affine case, we may assume G=GZ, and « is an element
of K*CGE(K) or an element of GE(K) of the form 1—c'a for some
nilpotent element a of R®), 0, and for some c e O,—{0}. Hence, Lemma
4 (1) for the affine case follows from Lemma 1. - For @ ¢ GE(K) and b e
Ky(K), (@, b)g, is the image of {«, b} under

esK/F Rest/;c

KR, K)—>Ky(R®, F)——>K(R)=R*.

Hence, Lemma 4 (2) for the affine case follows from the residue formula
D o Resg = 0 (see the proof of Lemma 3). In the case & € G(Oy), we
can take i=0 by Lemma 1. Let b ¢ K(K). Let a=a mod T e G(F),
and let 6(b) € F* be the image of b under the tame symbol. We have,

Z'. (o, b)x,= Z (@, 3(0))r,=0
where the last equation follows from Lemma 3.

Proof of Lemma 5. We may again assume that k is algebraically
closed. Let 0—-G'—G—->G""—0 be an exact sequence such that G’ is
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smooth affine and G” is proper. Then, G”(0y,,)=G"(X) by the proof of
Lang [11] Chapter IT Section 1 Theorem 2. Since k is algebraically closed
and G’ is smooth, G(0y ,)—~G"(0y.,) is surjective, and hence « is the sum
of &’ e G'(K,) and B e G(0y,,) in G(K,). The complex of Bloch-Gersten-
Quillen for the ring @y, and Lemma 1 (2) show >z (B b)g, ,=0 for
all b e K(K,). So, we may assume that G is affine and hence that G=GZ.
Since @y, is a finite extension of K[[7}, T;]], the norm argument reduces
us to proving the following

Lemma 6. Let k be a field, A=k[[T,, T,]], K the field of fractions of
A. Let p be the point of Spec (A), corresponding to the prime ideal (T,) of
A, and let D=Spec(4),—{p}. Let J=k((T;)), and denote T; by T. Then,
for any ring R over k and any q=0, the homomorphism K, .(R®,K)—
K,(R);

Resyry/w © ReSg ynian +Res 5 0 (Zb Resg,.1)
zZ€

is the zero map.
(Note K,=k((T1))((T;)).) To prove this we use

Lemma 7. Let S be the multiplicatively closed subset of J[T'];
{1+alT—l+ v +anT-n; nzoa Ay, -0, A, € mJ}7

and let I, =k[[T, TT;"Y, I.=S-J[T-'. (I,=T as above.) Then,
K (R®K) is generated by the images of

K(R®,1.), K,R®,L), and {K, (R®.J), T}.

Proof. Let H (resp. H’) be the category of all coherent sheaves F#
on R®,P: (resp. on Spec (R®,1,)) having a resolution of length one by
vector bundles such that J ®p1.# =0 (resp. K®,,# =0). Here, P} is

the projective line Spec (J[T]) USpec (J[T~']). Then, the natural functor
H—H’ is an equivalence of categories, and hence

K,(H)=K,/(H") for all g.

Hence, this lemma follows from the commutative diagram of exact se-
quences

oo —>K(H) —>K(R®P))—>K (RQ I )—>K, (H) —>- - -
Ul Ul
oo —>K(H)—>K(R®,I.) —> K (RQ K)—> K, (H)—>- -
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and from the structure theorem of the K-group of the projective line
(Quillen [16] Section 8.3).

Now, we prove Lemma 6. Note that D=Spec(l,), and (P}),=
Spec(1.), ]I Spec (I_),. Letae K, ,(R®,J). We have,

ReSKZ/J(Kq +Z(R®kl+)) = O
for z e D as is easily seen,

( ;DRGSKZ/J) (Ky o ROLI_))= —( 2. Res;r), MK, +2(R®,1.))=0

vESpec(f-)o

by the residue formula of J(T')/J where J(T), is the completion of J(T)
at v,

ReSK,/J({a, T})ZO forze D—{(T)} .
Res,,; o Resg,,;({a, TH=Res;,(a) for z=(T).
On the other hand,

Res, (/i © Rest/k((T))(Kq +2(R® 1)) CReS, (1) 1Ky -  ROK[TT)=0,
Res; (¢ © Rest/k((T))(Kq +2f(RQ L)) CTRES ((yy/6(Ky (RQK[T])=0

where the last identity follows from the residue formula of A(T)/k,

Res i /x © Resg yueern{a, TH= —Res,(a).

By Lemma 7, these affirm the formula in Lemma 6.
Thus, we have proved Proposition 1 (1).

Proposition 1 (2) follows from the following facts. Assume £ is finite.
Let U be a non-empty open set of X. Just as in Chapter II Section 3
Lemma 2, for x e U, the image of 1 ¢ Z under

Z= lim C,(x)—> lim C,(X)—>z®0)

—— <«
UnSupp(m)=9¢ UnSupp(m)=¢

is the Frobenius substitution over x. On the other hand, for a morphism
a: U—H, the homomorphism of Lang induced by a; Gal (K**/K) —E (k)
is unramified on U, and sends the Frobenius substitution of x e U, to
T, 1{a(x)) ([20] Chapter VI #° 24 Theorem 2).

Remark 1. If & is not assumed to be a finite field, the map

Ty lim C,(X)——> Ay
<

m
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may have a big kernel in general. For example, let k be a usual local
field. Then, for any proper normal connected surface X over k with
function field K, there is a canoncal pairing

HY(K)Xlim C (X)—>Q/Z,

m

which is an analogue of the pairing H'(K)xlim C,,(X)—Q/Z of the case
<«

k is finite studied in this paper. Let X=PZ, T, and T, are the canonical
variables on X, x € X, the point corresponding to the maximal ideal (T},
T,) of k[T,, T], and z e Spec ({y ,); the point corresponding to the prime
ideal (T,) of k[T, T,]l. Assume that k contains a primitive zn-th root £ of
1, and let X be the element of H*K)=Br (K) represented by the K-algebra

Ko’ with a"=T,, p"=T, af=C{pa.

0gi<n; 055 <n
Then, the composite

KO C K (k(T)(T) = KK, ) —>lim Co ()23 L 712
<« n

m

is nothing but the Hilbert symbol and hence is surjective. On the other
hand, 7x:lim C,(X)— Ay, annihilates the image of K (k)T KK, ).
<«

Thus, 7, annihilates an important element of lim C,(X).
<«

m
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