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Standard Monomial Theory and the Work of Demazure 

C. S. Seshadri 

In collaboration with V. Lakshmibai and C. Musili (cf. [8], [9], [10], 
[12]), we have given a generalization of the classical Hodge-Young stand­
ard monomial theory (cf[4], [5]) of SL(n) to the case of an arbitrary semi­
simple linear algebraic group G. The purpose of this generalization is to 
give an explicit basis for the space HO(GjB, L) of sections of a line bundle 
L (associated to a dominant weight) on the flag variety GjB, or more 
generally for HO(X, L), where X is a Schubert variety in GjB. Our results 
provide a complete solution to this problem, when G is classical and only 
partial answers when G is exceptional. Recall that when the base field is 
of characteristic zero (Borel-Weil theorem) every irreducible G-module is 
of the form HO(GjB, L) (L as above), so that a particular case of this 
problem is to give an explicit basis for an irreducible G-module. A survey 
of our results, including its motivation and applications, has been given 
in [11]. 

Our first purpose here is to give a proof of the first theorem on 
standard monomial theory, namely the basis theorem for a fundamental 
representation (say the field is of characteristic zero), such that its highest 
weight Q) is of classical type (see Theorem 3). The proof of this theorem, 
given here, is not really different from the one given in GjP-IV (cf [9]). 
However, we have separated out many general considerations with which 
it is mixed up in [9] and this may be of help in understanding this theorem. 

The work of Demazure (cf [2]) is basic to the proof of the main results 
of standard monomial theory (cf. GjP-IV, [9]), especially his character 
formula which generalizes the Weyl character formula. Further, standard 
monomial theory can be considered as a refined version of a conjecture 
made by Demazure in [2] (see also Remarks 4, 5 and 6). Our second 
purpose here is to give a fairly self-contained exp03ition of the results of 
Demazure, relevant to standard monomial theory. Our exposition of this 
work of Demazure (see § 2) is basically the same as his; however, it avoids 
his big inductive machinery (which is perhaps necessary for the desingu­
larisation of Schubert varieties). Consequently, the proofs given here of 
his vanishing theorems and character formula for line bundles on Schubert 
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varieties, appear to be more transparent. We deduce also that Schubert 
schemes behave well under base change (see (ii) of Theorem, also Remark 
7). We do not know a simpler proof of this fact. We prove also that 
Schubert varieties are normal (over any field). This proof came as a mild 
surprise to us (see Remark 8). The projective normality of a Schubert 
variety over a general field (say with respect to any ample line bundle) is, 
however, not known; in fact this can be seen to be equivalent to the con­
jecture made by Demazure in [2] (see also Remarks 5 and 6)*). 

§ 1. Preliminaries 

Let Gz denote a semi-simple, simply-connected, Chevalley group 
scheme over the ring of integers Z (for many basic facts on Chevalley 
groups, cf. Steinberg [13]). We fix a maximal torus group scheme Tz and 
a Borel subgroup scheme Bz containing Tz . We talk of roots, weights 
etc. with respect to Tz and Bz . The Weyl group scheme N(Tz)/Tz (N(Tz) 
= normalizer of Tz ) is a constant group scheme and hence we talk of the 
Weyl group W of Gz . If A is any ring, we denote the objects obtained 
by the base change Spec A---+Spec Z with the suffix A (unless otherwise 
stated), e.g., GA , BA , TA etc. 

Let U (or to be more precise UQ) denote the enveloping algebra of 
Lie GQ-the Lie algebra of GQ. Let Uz (resp. Ui, resp. Ui) denote the 
canonical Z-form in U i.e. the Z-subalgebra of U spanned by XZ/n!, ex a 
root (resp. ex a positive root, resp. ex a negative root), where Xa denotes 
the usual element in the Chevalley basis of Lie GQ• We denote by Ua 

(resp. Ua,z) the Q-vector subspace (resp. Z-submodule) of U (resp.Uz) 
generated by XZ (resp. XZ/n!). Let Ga,Q or simply Ga (resp. Ga,z) denote 
the unipotent subgroup scheme isomorphic to Ga,Q (resp. Ga•z) of BQ (resp. 
Bz) which corresponds to ex. We see that Lie Ga,Q-:::::Q·Xa. 

Let V be a finite dimensional Q-vector space which is also a GQ-

module. Then a lattice Vz in V is said to be an admissible Z-form if any 
of the following three equivalent conditions is satisfied: 

(i) Vz is Uz-stable 
(ii) Vz is a Gz-Z-module, i.e., for every commutative ring D (with 1), 

VzQ9z D has a Gz(D)-module structure (Gz(D)=group of D-valued points 
of Gz) which is functorial in D. 

If V, D· .. etc. are as above, we observe that for dE D 

defines an automorphism of the D-module VzQ9z D. An important point 

*) Much of this work was done during a very pleasant stay in Japan for which the 
author would like to thank Professor Oda and many other Japanese colleagues. 
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is that, when we identify Ga,z(D) with D, the action of d on VzQ9z D is 
given by exp (dXa). If A is any ring, we set 

and the above definitions made for Z can be generalized to A. 
For a dominant weight A, let Vl denote the finite dimensional Q­

vector space which is the irreducible GQ-module with highest weight A. 
Fix a highest vector e=e. in Vl (determined up to a non-zero factor in Q). 
For 'C E W, we write 

where e,='C·e 

('C can be represented by a Z-valued point of Gz and we see that e, is well­
determined up to the factor ± 1). We write 

V.,z(wo) = V.,z, Wo the element of W of maximal length. 

One knows that 

V.,zQ9zQ= Vl 

and that V.,z is a Uz-stable Z-submodule of Vl or equivalently a Gz-Z­
module. We see that 

If A is any ring, we define 

V.,i'C) = Vl,z('C)Q9z A 

V.,A = Vl,zQ9z A. 

We observe that Vl,Q= V.. We note also that V •. A is a GA-A-module. It 
is not difficult to see that e is a primitive element in Vl,z, i.e., Ze is a direct 
summand in V •. z. Consequently we see that every e" 'C E W, is a primitive 
element in Vl,z. 

We have now the following: 

Lemma 1. Let f/J, 'C E Wand 

Then we have 

{
/('C)=/(f/J. )+ 1, I being the length function on Wand Sa 

the reflection associated to a simple root a. 

U-a,zV.,z(f/J) = Vl,z('C) 

(in particular V.,z(f/J)C V.,z('C)). 
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The proof of this lemma is quite straightforward. It is similar to 
that of Lemma 5.2, [9] and we refer to this. 

Let -r E W. Then jf A is any ring, we see that -r determines an A­
valued point of the generalised flag variety G A/ B A' which we denote by the 
same letter -r. Let now k be a field. Then we denote by Xi-r) the Schubert 
variety associated to -r, i.e., we define Xk(-r) to be the closed subvariety of 
Gk/Bk, which is the Zariski closure of Bk-r in Gk/Bk, endowed with the 
canonical reduced structure. Similarly, we define the Schubert subscheme 
X~(-r) as the closure of Bz-r in Gz/Bz, endowed with the canonical structure 
of a closed reduced Z-subscheme of Gz/Bz . We note that Xz(-r) is also 
the flat closure of Xa(-r) in Gz/Bz, i.e., the canonical morphism Xz(-r)-+ 
Spec Z is Z-flat and the generic fibre is Xa(-r). However, note that it is 
not a priori clear that the base change of Xz( -r) by Spec k-+Spec Z coincides 
with Xk(-r), where k is an arbitrary field. We shall prove this fact later. 
However, we see immediately that 

Xk(-r)=(XZ(-r)Xspecz Spec k)red. 

Let now mi' I ~ i ~ I, denote the fundamental weights, I being the rank 
of G. Let us now take A. to be of the form 

(1) 

We now take the projective space 

P(Vt,z)=Proj S(V1,z). 

One knows that if D is any ring 

P( Vt,z) (D) = the set of direct summands of V1,z of rank 1. 

If e is the choice of the highest weight vector in VA made as above, as we 
remarked before Ze is a direct summand in V1,z and we denote by e the 
point of P(Vt,z). We observe that we have a canonical action of Gz on 
P(V);z)· 

Lemma 2. The isotropy subgroup scheme of Gz at e is Bz (note that 
A. is of the form as in (1) above). 

The crucial point in the proof of this lemma is the following lemma 
due to Deodhar(cf. Lemma 5.8, [9]) .. 

Lemma 3. Let f3 be apositive root such that X_pe*O. Then X_pe is 
a primitive element in V1,z (for this lemma we need not suppose that A. 
satisfies (1) above; it cpuld be an arbitrary dominant weight). 
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It can be seen that X_pe*O, where [3 is any positive root (A satisfying 
(1) above). Then using Lemma 3 above, Lemma 2 follows by a fairly 
easy infinitesimal argument. The arguments are exactly similar to those 
given on p. 317-320, [9] and for the proof of Lemma 2 and Lemma 3, we 
refer to the details given there. 

Because of Lemma 2, we get a canonical closed immersion 

By base change, we obtain for any ring A, a canonical closed immersion 

jA: GAIBr-~P(V~A)· 

Let er(zo E W) be the element of P(vtz)(Z) corresponding to the direct 
summand Zer of V1,z. Recall that zo has been identified as an element of 
(GzIBz)(Z). Then we see thatj(zo)=er. We denote by L1,A the very ample 
line bundle on GAl B A' which is the restriction of the tautological ample line 
bundle on GAIBA. 

Suppose that A is a dominant weight which need not satisfy the con­
dition (1) above. By the same arguments as above, we see that the iso­
tropy subgroup scheme of Gz at e E P(V~z), is a parabolic group scheme 
Pz (Pz-:::;Bz). We have now canonical morphisms 

G AlB r-~G AlP A----+P(VtA)· 

The pull-back to GAIBA of the tautological ample line bundle on P(VtA) 
is denoted by L1,A. The Schubert schemes in GAIPA (i.e., the images of 
the Schubert schemes in GAIBA) are parametrized by WjWp (here P stands 
for PA, Pz). One sees that the line bundle L1,A on GAIBA is ample, if and 
only if A satisfies (1) above. Associated to A one has a canonical homo­
morphism Tr-*Gm,A and consequently a canonical homomorphism BA--+ 

Gm,A. Then we get a line bundle on GAIBA, associated to this homo­
morphism (in the sense of associated fibre spaces). It can be seen that 
this line bundle coincides with the L1,A which we just defined. 

Let zo, cp E W be of the form 

cp=sazo; l(zo) = l(cp) + 1, a' simple root. 

Then we say that Xz(cp) (resp. Xk(cp), k field) is a Schubert divisor in Xz(zo) 
(resp. Xk(zo» moved by a simple root a'. One knows that Xz(zo) is stable 
under G -a,Z. Of course every Schubert scheme is stable under G p,z ([3 any 
positive root) so that Xz( zo) is stable under G -a,Z and G a,Z and hence under 
the "SL(2)" corresponding to a'. 

Let k be afield. Since we have 

Xz( zo )(k) c P(Vtz)(k) = (V1,k - (O»jk* 
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we can talk of the k-linear subspace of Vl,1< generated by Xz(r)(k). We 
have a canonical linear map 

Vl,k(t') = Vl,z(r')0zk~Vl,z0z k= Vl ,1<' 

We denote by 1m Vl ,1«r) the image of the above map. If k is a field of 
characteristic zero, note that the above map is injective and we can identify 
Vl ,1«r) as a linear subspace of Vl .1<' We have then: 

Lemma 4. Let k be afield and A satisfy (1) above, i.e., Ll,z is ample 
on Gz/Bz . Then we have 

1m V.l,1«r)=k-linear subspace of Vl,k generated by Xz(r) (k). 

Proof. This is done by induction on the length l(r) of r. When l(r) 
=0, Vl,Z~Ze (a direct summand of Vl,z) and Xz(r)~Spec Z and we see 
easily that the lemma follows easily in this case. Let Xz(cp) be a Schubert 
divisor in Xz(r) moved by a simple root a. We suppose that the lemma 
is true for Xz(cp). 

We see easily that it suffices to prove the lemma when the field k is 
algebraically closed. 

Let q E Vl,z(cp) and lj the canonical image ofq in V.l,1«CP)~Vl,1<' 
Now Vl,z is a G-a,z or equivalently U_a,z-module and Vl,k is a G-a,k­
module or equivalently U-a,r.:= U- a,z0z k-module. The element t'lj, 
when we identify t with an element of G_a,z(k)~G_a,r.:(k)~k, is given as 
follows (as we remarked above): 

(*) t'lj=exp (tX_ a)lj=(1+tX_a+· .. +tn(X~a/n!»lj (we choose n 

such that (X~-://n+l)·lj=O). 

Since k is algebraically closed, we can find fl' .. " tn+1 E k such that the 
Vandermonde determinant 

I tl ••• tf 

det A=det =1=0 

Set 
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so that 

This implies that V m 

(X~a/m!)lj E k-linear subspace (of V.,k) spanned by G_a,z(k)lj. 

(We are in a sense repeating the argument of equivalence between a U-a,z­
module structure and that of a G _a,z-Z-module structure). Since Xz(r) 
is stable under G -a,Z, we see, by applying Lemma 1, that 

1m V.,k(~)ck-linear subspace of V.,k generated by Xz(~)(k). 
It remains to prove the inclusion 

k-linear subspace of V.,k generated by Xz(T)(k)clm V.,k(T). 

It is not difficult to see that the image of the map 

contains a non-empty open subset of Xk(T) (since the image contains Xiso) 
and ~ etc.). Hence the k-linear subspace of V.,k spanned by Xk(~)(k)= 
Xz(T)(k) is the k-linear subspace of V.,k spanned by G_a,z(k).Xz(SO)(k). 

We have 

G -,a,z(k) , Xz(SO)(k)cG -a,Z(k)(V.,z(so)0z k). 

It is obvious that the RHS of the above (see (*)) is contained in 

This concludes the proof of Lemma 4. 

Remark 1. In Lemma 4, one need not suppose that A satisfies (1). 
One should then work with Gz/Pz , where Pz is the isotropy subgroup 
scheme of Gz at e and the above proof easily goes through. 

Remark 2. We have a canonical isomorphism 

HO(P( V.;z), L.,z)~ V.;z· 

Now Lemma 4 says that the smallest projective subspace containing Xk(T) 
(recall Xk(~)=(Xz(T)Xspecz Spec k)red is (1m V.,k(T))*. Hence the above 
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canonical isomorphism induces a canonical k linear map 

and the image of this linear map can be canonically identified with 
(1m V.,~(T»*. If Char k=O, as we have observed before (Vl,~(T»*::; 
(1m V1,k(T»* and so in this case the map jk is injective. We see that if 
V1,z(T) is a direct summand in V1,z, the canonical map 

factors through a canonical Z-linear map 

jz: Vl~z(T)~HO(Xz(T), L1,z); 

further with this hypothesis we see that j~ is injective for every field k. 
Thus if V1,z(T) is a direct summand in V1,z, we conclude that jz identifies 
V.~z(T) as a direct summand of HO(XZ(T), L1,z); if moreover, say for k=Q, 

jk is an isomorphism (we shall prove this; see Theorem 1 below) it follows 
that V'~Z(T) is canonically isomorphic to HO(XZ(T), L1,z) (since the latter is 
a free module over Z). In particular, taking XZ(T) = Gz/Bz (for T=Wo), 

in which case V1,z(WO)= V1,z, we conclude that in this case jz is an iso­
morphism (using the well-known fact thatja is an isomorphism for T=Wo) 

and jk is injective for every field k (if one uses the vanishing theorem, cf. 
Kempf [7], Haboush [3] or Andersen [1], we see that in this case j~ is an 
isomorphism for every field k). 

§ 2. The work of Demazure 

Theorem 1. Let k be a field of characteristic zero. Then we have the 
following: 

( i ) There is a canonical isomorphism 

HO(Xk(T), Ll,k)~ V.,k(T)* 

(ii) Ht(Xk(T), L.,k)=O, i>O. 

Proof During the course of this proof we often drop the subscript k 
for the sake of simplicity of notation, e.g., Xk(T)=X(T) etc. 

Let X(~) be a Schubert divisor in X(T) moved by a simple root a. 
Let Pa be the minimal parabolic subgroup of G generated by Band G_ a 

(G±a denotes the subgroup of G isomorphic to Go" canonically associated 
to +a). Then one knows that (cf. Prop. 1.4, [8]) X(T) is stable under Pa. 
We denote by SL(2) the SL(2) in Pa generated by Ga and G_a. Let Ba 
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denote the Borel subgroup in SL(2) associated to a. Consider now the 
canonical morphism 

It: SL(2)XX(1:)----).GjB, 

Then we see that ImhcX(1:), so thath gives rise to the map 

(g,x)~g·x. 

This map has the . property 

f(gb, b-Ix)=f(g, x), 

Hence we get a canonical map 

We have obviously the commutative diagram 

SL(2) X X( 1:)----). X( 1:) 

J / 
SL(2) X X(rp). 

This yields the following diagram 

(If! denotes the canonical map SL(2)xBaX(rp)~X(1:». Let us identify pI 
with SL(2)jBa and denote by q the canonical map 

so that q is a principal fibre space with structure group Ba. Then SL(2) 
x BaX(1:) (resp. SL(2)X BaX(rp» is the fibre space with fibre X(1:) (resp. 
X(rp» associated to q and we denote the canonical projection maps onto 
pI as follows: 

,.: SL(2) X B,. X( 1:) = W ----). pI 

p: SL(2) X Ba X(rp) = Z----). pl. 

Set X =X(1:) and Y =X(rp). Since SL(2) operates on X(1:) =X (note that 
this is not the case for Y=X(rp); only Ba operates on Y), it is well-known 
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1;hat the fibration 7r: is trivial (in fact, we see that the map 0: SL(2) X Ba X ~ 
pi xX defined by (g, x)r+{g, gx), g=gBa admits an inverse, namely (Ii, x) 
~(h, h-Ix), li=hBa and hence 0 is an isomorphism). Identifying W with 
pi xX through 0, we see. that the map 0: W~X can be identified with the 
canonical projection P1XX~X. From this, it follows immediately that 
if (!Jw (resp. (!Jx) denotes the structure sheaf W{resp. X) we have: 

(1) 
i>O. 

The proof of the theorem is by induction on dim X{z-}. Hence we 
can assume that it is true for X{cp) = Y (we see also that the theorem is 
true when dim X(r) =0). Thus we suppose that 

We claim that to prove the theorem it suffices to prove the following: 

(3) HO{Z,M)~Vir)* and Ht{Z,M)=O, i>O 

where M =t*{L,) 

This assertion is a consequence of the following ingenious remark of 
Kempf who used itfor a similar purpose (cf. Lemmas 1 and 2, Section 2, 
[6] or Prop. 2, § 5, [2]). 

Lemma 5. Let W, X be proper schemes over a noetherian ring and L 
an ample line bundle on X. Suppose that we have a commutative diagram 

having the following properties: 
(a) O*(!Jw=(!Jx 

i a closed immersion 

(b) Ht{W, O*Ln) =0, i>O and n~O. 
(c) the canonical map 

H(W, O*P)~Ht{Z, t*P) 

is surjective Vi and n~O. 
Then we have the following: 
(i) t*{(!Jz) = (!Jx, 
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(ii) {Rq'lh«(!)z)=O, q>O 
RqO*«(!)w)=O, q >0 

(iii) if F is a vector bundle on X, the canonical maps 

are isomorphisms for q;> 0. 

365 

For the proof of Lemma 5, we refer to the papers of Kempf and 
Demazure quoted above. 

Now we shall show that in order to prove the theorem, it suffices to 
prove (3) above. Let us therefore suppose that (3) is true. Let us take A 
so that the line bundle L. on GjB is ample. We see then that for L=L., 
the hypotheses of the above Lemma are satisfied; in fact the hypotheses 
(a) and (b) are immediate consequences of the fact that 0 can be identified 
with the canonical projection map Xx pl-7X; for checking the hypotheses 
(c) we have only to check it for i=O, since (3), in particular, implies that 
Hi(Z, 'IfF*L1) =0, i>O and n~O. Now consider the canonical maps 

The inclusion X=--+P(Vn~) induces a canonical linear map 

and we have seen that the image of this map identifies with Vn~('Z") (cf. 
Remark 2). Further, since 0: Z-7X is dominant, we see also that the 
canonical linear map 

is injective. These considerations together with the fact that HO(Z, 'IfF * L1) 
::=(Vnl('Z"))* imply that the canonical map Z---;.P(V::'.) induces a surjec­
tion of HO(P(Vn~)) onto HO(Z, 'IfF * L1) and since the canonical map Z-7 
P(Vn~) factors through the canonical inclusion Z-7 W, we conclude that 
the canonical map 

is surjective (in particular for n~O). This proves that the hypotheses of 
(c) is satisfied. Then by the conclusion (iii) of Lemma 5, we see that in 
order to prove the theorem it suffices to prove (3). 

Every fibre of the canonical map p: Z-7PI is isomorphic to Yand 
the restriction of M to such a fibre can be identified with L.I Y (we see 
easily that the restriction of 'IfF to the fibres of Z-7p1 are injective and there 
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is a canonical fibre such that the restriction of 'I[r to this fibre is an iso­
morphism onto Y). Because of the inductive hypothesis that Hi(Y, L l ) = 
0, i>O and HO(y, L l )-:::::. Vl'l[r)*, we see that 

Hi(Z, M)-:::::.Hi(PI,p*(M», i>O. 

Hence to prove (3), we have only to prove that 

Now it is not difficult to see that the vector bundle p*(M) on pI is the 
vector bundle on pI associated to the B",-module Viso)* (since the fibre of 
the bundle piM) can be identified with HO(y, LJ~ Vlso)*, the morphism 
Y~X is a B",-map etc.) Now set 

E= Vlt), V= Viso) and e=e~. 

Recall that we have the following: 

(5) I
( i) E is a P",-module. 

(ii) V=U+e, U",e=O (i.e. X",e=O) and the I-dimensional linear 
space ke is T-stable. (We see that V is a B-module. Note 
that B is also the Borel subgroup of P"')' 

(iii) E= U_",V. 

Now the crucial result is the following (cf. 2.12, Demazure [2]). 

Lemma 6. Let E be afinite dimensional P",-module, V a B-submodule 
and e E E a weight vector satisfying the conditions (i), (ii) and (iii) of (5) 
above. Let F be the B-module (EjV)0x, where X represents the I-dimen­
sional B",-module given by the character t~rl of its maximal torus~Gm' 
Then F is B",-isomorphic to an SL(2)-module. 

For proof we refer to the paper of Demazure quoted above. 
Let us denote by E, V· . . etc. the vector bundles or sheaves on pI 

associated to E, V· .. etc. (E, V· .. etc. are B",-modules and the bundles 
on pI are those associated to the principal B",-fibration SL(2)~PI). We 
observe that since F is an SL(2)-module (not merely a B",-module), F is 
a trivial vector bundle on pl. Hence, as an immediate consequence of 
Lemma 6 we get 

Lemma 7. (EjV)*-:::::.F( -1), where F is a trivial vector bundle on pl. 

Now we have the following exact sequence of vector bundles on pI 

(6) . O~(EjV)*~E*~V*~O. 
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Since E* is an 8L(2)-module, E* is trivial and HO(PI, E*) ~ E* and 
Ht(PI, E*)=O, i>O. By Lemma 7, 

Hi(PI, (E/V)*)=O, i>O. 

Hence writing the cohomology exact sequence of (6), we get 

(7) HO(Pt, V*)~E* and Hi(pI, V*)=O, i>O. 

We have observed that V*=p*(M) and thus we have proved (4), which 
in turn proves (3). This concludes the proof of Theorem 1. 

Corollary (Demazure's Character formula). As in the theorem, we 
assume that the ground field k is of characteristic zero. Let Z[N] denote 
the group ring of the multiplicative group exp N, where 

exp N={exp A I A eN}, 

Let Xiso) be a Schubert divisor in X It(?:,) moved by (a simple root) a(?:,=saSO). 
Let L •. lt=L. denote the line bundle on G/B, associated to a dominant weight 
A as in Theorem 1. . Now the characters of the T-modules HO(X/t(SO), L.) and 
HO(X/t(?:'), LJ are elements of Z[N] and are denoted respectively by F(SO) 
and F(?:'). Let La be the linear operator La: Z[N]~Z[N] defined by 

L ( ')_ exp A-exp saW aeXPA- , 
l-expa 

AeN. 

Let M be the operator defined by 

Ma:Z[N]-+Z[N], 

Ma(exp A) = (exp p)La(exp (A-p», 

(p=half the sum of positive roots). 

Then we have the following iterative character formula: 

(This is equivalent to the formula of Demazure, cf. [2] and [8]). 

Proof. Let 1r be the principal B-fibration 

1r: Pa-+PI=Pa/B 

and1t'a the restriction of 1r to the 8L(2) in Pa: 
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Let W be a finite dimensional B-module and. W the associated bundle on 
pl. Then Hf(Pt, W) is a Pa-module; in particular a T-module and we 
can talk of its character Char Hf(Pt, W). We write 

We observe that if 

is an exact sequence of B-modules, we have 

. Char X(W) = Char (WI) - Char (W2). 

Because of Theorem I (or rather its proof), we see that 

Char Vlr) = Char HO(Pt, V"<SO» 

= Char X(V"<SO», since HI(PI, V'<SO»=O. 

Thus it suffices to show that if W is a finite dimensio~al B-module, then 

( 1 ) Char x(W) = Ma(Char W). 

Since W has a filtration by B-submodules such that its associated graded 
is a direct sum of I-dimensional B-modules, by the above additivity 
property of Wi--+X(W) with respect to exact sequences, we see that it 
suffices to prove (1) in the case of a I-dimensional B-module W. Thus we 
have only to check that if W is a I-dimensional B-module (or equivalently a 
T-module) given by p E Hom (T, Gm)=N, then 

(2) 

It is easily checked that (see for example [8]) 

(3) M ( ) _ exp (p-a/2)-exp sa(p-a/2) aexpp- . 
exp ( - a/2) - exp a/2 

If P were only a character of Ta , the above formula (3) is essentially the 
Weyl character formula for SL(2) and (2) follows, interpreted in the sense 
of characters of Ta -modules (note that the RHS gives the character of the 
SL(2)-irreducible module with lowest weight p). However, since (2) is an 
equality of characters of T-modules, a little care has to be taken to deduce 
(2) from (3). For this purpose, let R be the reductive part of P." i.e., 
R/T=SL(2). We have also R=PtJ//H, where H is the unipotent radical 
of Pa. Let then p E Hom (T, Gm). Then the RHS of (3) can be easily seen 
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to be (as a consequence of the usual SL(2) case) 

(4) 

where Lp is the line bundle on pI, associated to the principal fibration R 
---+pl (where in (4), we take characters of T-modules). Now (2) follows 
and the proof of Demazure's formula is complete. 

Remark 3. Lemmas 6 and 7 have the following Z-version, implicit 
in Demazure [2]. 

Lemma 6'. Let E be a Pa,z-Z-jree module of finite rank, Va Bz-Z­
submodule of E which is a direct summand as a Z-submodule and e e V a 
primitive weight vector in V (i.e., z· e is a Tz-Z-submodule of V and Ze is a 
direct summand of V). Suppose that the following conditions are satisfied: 

(a) V= U;e, Ua,ze=O 
(b) E= U_a,zV, 
Let F be the Ba,z-Z-module (E/V)&;;X' where X represents the Ba,z-Z­

module structure on Z, given by the character t>-*t- I of its maximal torus 
~Gm,Z' Then F is Ba.z-isomorphic to an SLz(2)-Z-module. 

As an immediate consequence of Lemma 6', we get: 

Lemma 7'. (i) (E/V)*:::=.F(-l), where F is a trivial vector bundle 
on Pi (where E· .. etc. denote the vector bundles or sheaves on Pi associated 
to E· .. etc.). 

(ii) (an immediate consequence of (i)) we have 

HO(Pi, V*)~E* 

HO(Pl, (V&;;k*))~(E&;;k)*, ';f field k. 

Suppose now that for every dominant A in Hom (T, Gm) and every 1: 
e W, we have 

(1) V1•Z (1:) is a direct summand in V1,z. 

Then because of Lemmas 6' and 7' above, the proof of Theorem 1 given 
above for Z goes through verbatim over any base field and we would 
obtain the following: 

(A) V1,z(1:)*=:;.HO(Xz(1:), L1,z) and 
V1,k(1:)*=:;.HO(Xk(1:), Lu ), ';f field k. 

(B) H i (X,,(1:), L1,k)=0, i>O, ';f field k and 
Hi(XZ (1:), L1,z) =0, i>O. 

(C) X,,(1:) = base change of Xz(1:) by Spec k---+Spec Z. 
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The property (1) has been conjectured by Demazure in [2] and has been 
proved for all classical groups as a consequence of standard monomial 
theory (cf. [9], [11] and Remarks 5 and 6 below). 

A careful analysis of the proof of Theorem 1 above leads to some 
better assertions than in the foregoing discussion; namely; 

Theorem 2. ( i ) Let j/ be a dominant weight such that the line bundle 
L1,z on GzJBz is ample. Then we have 

Vn1,z(") is a direct summand in Vn1,z for n~O and 'if" e W. 

(ii) X,,(,,) = base change of Xz(") by Spec k~Spec Z (i.e., for this 
property, we need not suppose Demazure's conjecture to hold as we did in 
Remark 3 above), i.e., the fibres of Xz(,,)~Spec Z are scheme theoretically 
Schubert varieties; in particular they are reduced. 

(iii) X,,(,,) is normal V field k. Consequently Xz(") is also normal. 
(iv) Ht(X,,(,,), (9xk(r)) =0, ;>0, V field k. 
(v) Suppose that for a given dominant weight p. V",z(") is a direct 

summand in VI',zV" e W. Then we have 
(A) VI',z(,,)*:::;HO(Xz(")' LI',z) and 

V",,,(,,)*:::;HO(X,,(,,), Lp.",k)' V field k 
(B) Ht(Xz(")' L",z)=O, i>O and 

Ht(X,,(,,), L",k) =0, i>O, V field k. 

Proof ( i ) Let k be.a field and Z~k the canonical homomorphism. 
This homomorphism factors as 

Z-----,>-A -----'>-k 

where A is the local ring at p e Spec Z and k is an extension of the residue 
field of A. We can find an integer no such that the canonical map 

(1) 

is surjective for n~no and V" e W (in the choice of no, we fix the field k). 
We shall first prove the slightly weaker assertion than (i), namely 

that 

(2) {the canonical inclusion Vnl,i")~ Vn1,A is an A-direct summand 
for n~no (recall Vn1j,,) = Vn1,z(,,)0z A etc.). 

The proof of (2) is done by induction on 1(,,). We choose a Schubert 
divisor Xz(SO) in Xz(") moved by a simple root a. Thus we suppose that 
(2) is true when" is replaced by SO. Let us now set 
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(3) XA(o) = base change of Xz(o) by Spec A--+Spec Z, 0 E W. 

Now the hypothesis that Vnl,A(<P) is a direct summand in Vnl,A (for n 
;;::: no) implies (see Remark 2) that the canonical linear map 

yields an isomorphism 

(4) 

by the base change Spec A--+Spec Z. Further, because of the property 
(1), one sees easily thatjA induces an isomorphism 

( 5) 

Let us now see carefully how the above proof of Theorem 1 carries 
over when the base is A or k. By the induction hypothesis Vnl,i<p) is a 
direct summand in Vnl,A for n;;:::no; it follows a fortiori that 

(6) Vnl,i<p) is a direct summand in Vnl,ir), 

Now Lemmas 6' and 7' obviously generalize over A. Since one has the 
property (6), it follows that we have a canonical isomorphism 

(7) 

and what is important (see (ii) of Lemma 7) is that this induces a canoni­
cal isomorphism 

( 8 ) 

We claim that these properties imply that Vnl,ir) is a direct summand in 
Vnl,A for n;;:::no (see the discussion in Remark 2); for, as we saw in § 1 and 
Remark 2, the image of the canonical map 

(9) 

can be canonically identified with (1m Vnl.k(r»*, where 1m Vnl,k(-r) is the 
image under the canonical map Vnl,lc(r)--+ Vnl,k and because of (8) it follows 
that (9) factors as 
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Thus the canonical mapping 

Vnl,k(7:")----+ Vnl,k 

is injective for n~no so that Vnl,A(7:") is a direct summand in Vnl,A (n~no). 
This concludes the proof of (2) which is slightly a weaker version of 

(i). We shall deduce the stronger version after proving (ii). 
(ii) Since XA(7:")---+Spec A isflat, we see that for n»O 

HO(XA(7:") X Spec A Speck, L~,k)=HO(XA(7:"), L~,A)0A k. 

Thus the properties (7) and (8) above imply that the canonical restriction 
homomorphism 

(10) HO(X.i7:") X Spec A Spec k, L~,k)----+HO(Xk(7:"), L~,k) 

is an isomorphism for n»O. We know that 

Xk(7:") = (XA(7:") X Spec A Speck)red. 

Now if X is a projective scheme and L is an ample line bundle on X such 
that the canonical homomorphism 

HO(X, Ln)----+HO(Xred' Ln) 

is an isomorphism for n»O, we see easily that X =Xred. Hence we see 
that (10) implies that 

X k(7:")=XA(7:") X Spec A Speck. 

This proves the assertion (ii). 
Now we can prove the assertion (i). Since the fibres of Xz(7:")---+ 

Spec Z are reduced, we see easily that we can find no, such that for n ~ no 
and any field k, the canonical map 

Vntz----+H O(Xk (7:"), L~,k) 

is surjectiveV7:" E W. Now the proof given above for proving (2) goes 
through for proving (i). Thus we have proved the assertions (i) and (ii) 
of Theorem 2. 

(iii) Let us look at the proof of Theorem lover the base k. Because 
of (i), we see that the canonical morphism (with the notations of Theorem 
1, with sometimes a subscript k thrown in) 

7J!: Z = SL(2) X Ba Xk(~)----+ Xk ( 7:") 

has the property 
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(11) 

Now the normality of Xk(Z") follows by induction on 1(1:). We can suppose 
that Xk(cp) is normal. Then Z is the fibre space with fibre Xk(cp) associated 
to the principal fibration SL(2)--+PI. It follows that Z is normal. Now 
(11) implies that Xk (1:) is normal. 

(iv) If 7Jf is as in (iii) above, we have also 

(12) q>O. 

Then the assertion that H i (Xk(1:), (1JXk(r» =0, i>O follows by induction on 
1(1:) and using (12) above. The proof uses the fibration Z--+pl with fibre 
Xk(cp) as in (iii) above. 

(v) The proof of (v) of Theorem 2 results immediately from the 
assertion (iii) in the proof of Theorem 1 (using of course (i». 

This completes the proof of Theorem 2. 

Remark 4. In the assertion (i) of Theorem 2, one has supposed that 
A is such that L;.,z is ample on Gz/Bz . For any dominant weight A, L;.,z is 
ample on Gz/Pz , where Pz is the isotropy subgroup scheme of e;. e P(V;.~z) 
(corresponding to the highest weight vector e;. e V;.,z)' If one works with 
Gz/Pz instead of Gz/Bz one sees that the assertion (i) holds for any domi­
nant weight A. One observes also that we have an analogue of Theorem 2 
for Schubert schemes in Gz/Pz , where Pz is any parabolic subgroup scheme 

ofGz · 

Remark 5. The assertion (iv) of Theorem 2 (see also Remark 4) 
states, in particular, that if A is a given dominant weight such that 

( 1 ) V;.,z(1:) is a direct summand of V;.,z V1: e W, then 

(2) V;.,z(1:)*----+HO(Xz (1:), L;.,z) is surjective V1: e W. 

Now (2) implies that the canonical map 

( 3 ) V;.~z ----+HO(Xz(1:), L;.,z) is surjective for every 1: e W. 

or equivalently (see Remark 1). 

(3)' HO(Gz/Bz, L;.,z)----+HO(Xz (1:), L;.,z) is surjective for every 1: e W. 

Conversely, we claim that (3) or (3)' implies (I). For this we observe first 
that the canonical mapping 

r: HO(Xz(1:), L;.,z)0z k----+HO(Xk (1:), L;.,k) 
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is injective V field k (we use the fact that Xi:(1:')=base change of Xz(1:') by 
Spec k~ Spec Z, which is the assertion (ii) of Theorem 2). Recall also 
that the image of the canonical mapping 

V1~k---'»HO(Xk(1:'), L1,k) 

can be identified with (1m V1,/c(1:'»* (see Remark 2). Now (3) or (3)' 
(together with the injectivity of r above) implies that the dimension of the 
k-vector space (1m V1,k(1:'»* or equivalently the dimension of the image of 
the canonical map 

V1,z(1:')0k= V1,i1:')---'»V1,k= V1,z0k 

is independent of k. This implies that V1,z(1:') is a direct summand in V1,z. 

§ 3. The basis theorem in standard monomial theory for fundamental repre­
sentations 

We shall now suppose that Gz is simple. Let Pz be a maximal para­
bolic subgroup scheme, associated to a fundamental weight Ct) or the corre­
sponding simple root a (cf. [8]). One way of saying that Pz is associated 
to the fundamental weight Ct) is that P z is the isotropy subgroup scheme at 
e e P (V .. ;z), where e is associated to the highest weight vector e e V .. ,z 
(to prove the equivalence of this with the usual definition one has to use 
Lemma 3 due to Deodhar). 

We say that Pz (resp. PR' Ct) is of classical type if 

1<Ct), a*>1=12(Ct), a)/(a, a)I~2 V root a. 

If Gz is a classical group, we see that every maximal parabolic subgroup 
scheme Pz of Gz is of classical type (in fact the converse is also true). 
Further, for an arbitrary Gz as above, there is always a maximal parabolic 
subgroup scheme P z of classical type and it is not difficult to write the list 
of all the Pz of classical type in Gz (cf. [9]). 

For 1:' e W/Wp (Wp= Weyl group of Pz), let us denote by [Xk(1:')] (k 
field), the element of the Chow ring Ch (Gk/Pk ) of Gk/Pk, determined by 
the Schubert variety Xk(1:') in Gk/Pk. Let Hk denote the unique codimen­
sion one Schubert subvariety of Gk/Pk. It can be shown that 

where· denotes multiplication in Ch (Gk/Pk) and 1:'t runs over the set of 
all A e W/Wp, such that Xk(A) is of codimension one in Xl1:'). We call dt 

the multiplicity of Xk (1:'t) in Xi1:'). If Pz is of classical type, we see that 
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dt ~ 2, using a formula of Chevalley (cf. [2]). It is possible that dt is always 
= 1 for a P z and the corresponding fundamental weight is characterized 
by the property of being minuscule (cf. [12]). 

Note that we have a canonical partial order in W/Wp , namely 

!'l~ !'28Xk(!'1);2X 1c(!'J. 

A pair of elements (!', rp) in W/Wp is called an admissible pair (we 
suppose that Pz is of classical type), if either !'=rp (in which case, it is 
called a trivial admissible pair) or !'=I=rp and there exist {!'t}, 1 ~ i ~s, !'t e 
W/Wp , such that 

(i) !'=!'1~!'2~'" ~!'.=rp 
(ii) Xh) is of codimension one in X(!'H)' 2~i~s, and the multi­

plicity of X(!'t) in X(!'H) is exactly 2. 
Note that in the minuscule case, every admissible pair is trivial. 

Theorem 3. Suppose that. P z is of classical type. Then there exist 
elements {PC!', rp)} of HO(Gz/Pz , L."z), indexed by admissible pairs in W/Wp , 

such that: 
(i) PC!', rp) is a weight vector (under Tz) of weight 

- (!'( m) + rp( m) )/2. 

(ii) Let pC!', rp) be the canonical image of PC!', rp) in HO(Gk/Pk, L."k) 
(k being any field). Then the restriction ofp(!', rp) to Xk(O) is not identically 
zero, if and only if O~!'. 

(iii) '10 e W, the elements PC!', rp) (resp. pC!', rp)), O~!', form a basis 
of HO(Xz(O), L."z) (resp. HO(X1c(O), L."k) (to be precise one has to take the 
canonical images of PC!', rp) and pC!', rp)). 

Now we will deduce Theorem 3 as a consequence of the following 
dual version. 

Theorem 3'. Suppose that Pz is of classical type. Then there is a 
basis {Q(!', rp)} of V."z indexed by (distinct) admissible pairs in W/Wp , such 
that 

(i) Q(!', rp) is a weight vector of weight 

(!'(m) +rp(m))/2. 

(ii) If W(O) denotes the Z-submodule of V."z spanned by Q(!', rp) such 
that O~!', then W(O) is a basis of V."z(O). In particular, V."z(O) is a direct 
summand in V."zfor every 0 e W/Wp • 

Now Theorem 3 is an immediate consequence of Theorem 3'. The 
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assertion (iii) of Theorem 3 is a consequence of the direct summand 
property in the assertion (ii) of Theorem 3 and the assertion (iv) of Theo­
rem 2 (see also Remark 4). We define {P('t", ~)} as the elements of the 
basis of V .. ~z-;:::!,HO(Gz/Pz' L."z), dual to the basis elements of {Q('t", ~)}. 
We see that the assertions (i) and (ii) of Theorem 3 are respectivelyequiva­
lent to the assertions (i) and (ii) of Theorem 3'. 

The proof of Theorem 3' is by induction on l('t"). When 1('t")=O, it 
is immediate. Let then Xk('t"l) be a Schubert divisor in X/«'t"), moved by a 
simple root a. We have 't"=Sa't"I' We now define the following: 

(i) a-weight of ~=m(~) (~e W or rather W/Wp ) = -<~(w), a*) 
= - 2(~(w), a)/(a, a) 

(ii) m(~)= -<~I(W)+~2(W), a*)/2, where ~=(~I' ~2) is an admis­
sible pair in W/Wp • 

(iii) 1'1 = set of admissible pairs on Xk('t"J, i.e., admissible pairs ~= 
(~" ~2) such that 't"1~~1" 

(iv) 1'1 ={~ e Ilm(~)=O} 
I;,:={~ e Ilm(~)<O and 't"1~Sa~l} 
I:'={~ e Ilm(~»O} 
I~1 ={~ e II m(~)<O and 't"1~Sa~I}' 

Now Theorem 3' is an immediate consequence of the following lemma 
(virtually a reproduction of Lemma 5.5, G/P-IV, [9]) which gives the main 
inductive step in its proof: 

Lemma 8. Suppose that the Z-module V .. ,Z('t"I) has a basis {QA,P} 
indexed by the (distinct) admissible pairs on X('t"I) (i.e., 't"1~A) having the 
follOWing properties; 

( i ) Ql,P is a weight vector of weight 

O(W) + p(w»/2. 

(ii) If W(O) denotes the Z-submodule of V."Z('t"I) spanned by all Ql,P 
such that 't"1~O~A, then 

W(O) = V .. ,z(O). 

Let now (.il" PI) e I~I' Then we define 
(a) QA,P=X-aQA1,Pl; (A, P)=(SaAI, SaPI) if (.ill' PI)=-l 
(b) If m(.ill' PI) = - 2, we set 

Ql,p=(X:a/2)Q1l,Pl; (A, p)=(saA" SaPI), 
Ql,P=X-irQA1,Pl' (A, p)=(saA" PI)' 

We call the elements Ql,P defined in (a), (b) above as the new basis ele­
ments. Consider the set of all Ql,P above, i.e., the given basis elements of 
V .. ,Z('t"I) (= W('t"I» together with the new basis elements. Then we claim 
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that we have the following: 
(A) {Q.,p} give a basis of the Z-module V."z(r) indexed by the 

(distinct) admissible pairs on XC!'), 
(B) Q.,P is a weight vector of weight 

O(W) + p(w))j2 

(C) if W(O) denotes the Z-submodule of V."z(!') spanned by all Q.,P 
such that !'~O~A, then 

W(O)=Y."z(O). 

(We call these Ql,P as the basis elements of W(O).) 

Proof Since we will always be working with the dominant weight 
w, in the proof let us drop the subscript w, i.e., we write 

Vz(!') instead of V."z(!') etc. 

We also write f, fO, ... for f r1 , f~, . . .. There are two important facts in 
the proof of this lemma which we do not prove here but only refer to 
GjP-IV, [9]. These are the following: 

(i) An admissible pair (A, p) on XC!') which is not on X(!'l)' i.e., 
'Z'l?A is precisely of the form given in (a) and (b) of the statement of the 
above lemma (cf. (c), Lemma 3.11, GjP-IV, [9]). 

(ii) For k=Q, we have 

Char Vk(!')= L: exp «A(W)+ p(w))j2) 
«,p) EI 

or equivalently 

since one has (cf. Theorem 2) 

In particular, we see that 

For this we refer to Theorem 4.1, GjP-IV, [9]. Note that as an immediate 
consequence of (ii), if v E Vz(!') is any weight vector, of weight X 

(1) Im(x)I~2. 
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The above two facts imply that in the statement of Lemma 8, the {Ql,/I} 
are indexed by the (distinct) admissible pairs on Xi(r); further,in order to 
prove that {Q.l,.} form a basis of Vz(r), it suffices to prove that {Q.l,p} 
generate Vz(r) as a Z-module, for by assertion (ii), the QI,p would be 
linearly independent over Q. Note also that the assertion (B) of Lemma 
8 is immediate. Thus we have only to prove the assertion (C) and that 
{Q.l,p} generate Vz(r) as a Z-module. 

Let VI be the Z-submodrile of Vz(r l ) spanned by all QI,P such that 
(A, p.) E Ie and V2 the submodule spanned by allQ.l,p such that (A, p.) ~ Ie, 
i.e., (A, p.) E 1° U 1+ U 1-. We have therefore Vz(rl ) = VI + V2• We claim 
that 

(2) 

On account of Lemma 2, to prove (2), it suffices to prove 

(2)' (A, p.) admissible pair on X(r l ) and (A, p.) ~ Ie, then U-a,z' Ql,pC 

U_a,zVI+ V2• 

Suppose now that (A, p.) E 1+, i.e., meA, p.) >0. Then we claim that 
X_aQ.loP=O. For otherwise, the weight of X-aQl,P i~ (A(w)+p.(w))/2-a 
and we have . '. . 

«A(m) + p.(m))/2-a, a*)= -mO, p.)-2~ -3. 

This easily leads to a contradiction (see (1) above). Thus (2)' follows 
when (A, p.) E 1+ . 

In the following discussion, we make use of the following simple facts 
(cf. Lemma 1.2, G/P-IV, [9]): 

(i) m(so)<O iff Xk(SO) is a Schubert divisor in Xk(saSO) moved by a. 
(ii) m(so»O iff Xi;(SaSO) is a Schubert divisor in Xlso) moved by a or 

equivalently Xk(SO) is stable under the action of the SL(2) corresponding 
to a. 

(iii) m(so)=O iff Xk(SO)=Xk(saSO)' 
Suppose now that (A, p.) is an admissible pair on X(r l ) such that rl~ 

saA. (For example (A, p.) E 1- 0 To see this use (3) above). Then we have 

If A~saA, then Xz(A) is stable under the SL(2) corresponding to a and then 
we have 

If rl~O=SaA>A, we see again that Xz(O) is stable under the SL(2) corre-
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sponding to a so that again 

We have of course 

Thus we get 

which proves (2)' in the case !"l~saA. 
Thus to prove (2)" it remains only to prove it for the case (A, p) E 1°. 

In this case, set u=XaQ.,w We see that 

u=XaQ.,p E VZ(!"l) 

since VZ(!"I) is stable under Bz' If now u=O, then Q.,P is a highest weight 
vector for the SL(2) corresponding to a. Now one checks that meA, p)= 
weight with respect to the I-dimensional torus Ta of this SL(2). Since 
meA, p)=o, it follows by standard SL(2) theory that X_aQ.,p=O and then 
(2)' is immediate. Thus we have only to consider the case when u::;l=O. 
We now claim that 

(4) 

Let us first show how (4) completes the proof of (2)'. Because of (4), we 
have only to show that 

(5) 

From the fact that meA, p)=O, we see that the weight of u with respect to 
Ta is 2 (Ta = 1 dimensional torus in SL(2». Hence we can write 

{
u= L:: au,.Qu,., ao,. E Z 

(6) (0,.) 

(0, a) admissible pair on XC!"l) with m(O, a)= -2. 

Thus if (0, a) is as in (6), either (0, a) E 1- or Ie. Hence by our discussion 
above 

This proves (5) and hence (2)' would follow since HaQ.,p =0 (using meA, p) 
=0). 
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Now to prove (4), we proceed as follows: We have 

since HaQ.,,,=O (using m(A, p)=O), Ha being the usual element [Xa' X_a] 
in SL(2) theory. We have then 

(JC..a/2)u = (X _a/2)(X _ aXaQ.,I') 

= (1/2)X_ a(XaX_ aQ •. ,,) 

= «1/2)X_aXa)(X_aQ.,I') 

= (1/2)XaX _aX _aQ"I'+X_aQ.,I" 

since we have 

We observe now that 

X:aQ.,I'=O 

for otherwise, if X = weight of X: aQ.,I" one has 

I (X, a*)1=4 

which leads to a contradiction of (1) above. Now (2) follows. 
We now claim that 

(7) XaQ.,1' =0 if (A, p) e Ie. 

This is immediate, for if (7) holds 

weight of XaQ.,1' =a+ (A(W) +p(w))/2 and 

«A(W) + p(w))/2, a*) = -m(A, p)+2~ 3 

which leads to a contradiction of (1). Now from (7), by standard SL(2) 
theory, it follows thatU_a,zQ.,1' is spanned as a Z-module by X_aQ.,,, if 
m(A, p)= -lor by X_ aQ.,1' and (JC..a/2)Q.,1' if mO, p)= -2. This obser­
vation together with (2) above show that Vz(t) is spanned by Q.,I' as a Z­
module. 

Thus to conclude the proof of Lemma 8, it remains to prove the as­
sertion (C). Consider first the case when 1:1~0. From the definition of the 
new basis elements, in this case it is clear that W(O) = Vz(O). We have 
only to consider the case1:I?O. Then we have the simple fact that if 01 = 
saO, we have 1:1~01 (this simple fact is however the basic idea for the 
inductive arguments). Hence we have W(OI) = VZ(OI)' Hence we get 
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(8) (by Lemma 1). 

Now (8) implies that 

where VI(OI) is the Z-submodule of Vz(O) generated by Qll,Pl such that 
(AI> PI) e 1~1 (the proof being similar to that of (A) given above). Suppose 
now that (AI> PI) e nl is such that (AI> PI) e 1:1 , Then by the way in which 
the new basis elements (relative to 't'l and 't') have been defined, we see that 
U -a,ZQ1hPl C W(O). Suppose on the other hand that (AI> PI) e 1~1 is such 
that (AI> PI) $ 1:1 , This means that 't'1~A, where A=SaAI and Xr.(AI) is a 
Schubert divisor in Xk(A) moved by a. By hypothesis, we have Vz(A) = 
W(A). Now Xk(A) is stable under the SL(2) corresponding to ct, so that 
we have 

Further 

Hence U_a,ZQll,Pl c W(O). Thus we conclude that U_a,ZVI(OI)C W(O) and 
since W(OI)C W(O), it follows that Vz(O)C W(O). Thus to show that Vz(O) 
= W(O), it remains to prove thatW(O)C Vz(O). Let then Ql,P be a basis 
element of W(O). Suppose that 't'l ~ A. Then by hypothesis Ql,P e Vz(A) 
(since in this case VZ(A) = W(A». We have Vz(A)C Vz(O) since O~A 
Thus we have only to consider the case, 't'll: A. Then if Al =saA, Xk(AI) is 
a moving divisor in Xk(A) moved by ct and OI~AI' Further, by the con­
struction of the new basis elements, we have 

where Q1l,Pl e W(OI)' Now the property (8) implies that Ql,p e Vz(O). 
Thus we see that W(O)C Vz(O). This concludes the proof of Lemma 8. 

This completes the proof of Theorem 3. 
For the sake of completeness, we shall now state the main theorem 

of standard monomial theory on Gz/Pz . 
We call a standard monomial of length m on Xz('t'), 't' e W/Wp , (resp. 

Xk('t'), k field) an element of HO(Xz('t'), Lz) (resp. HO(Xk('t'), D'I::», repre­
sented by 

such that 
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We have then (cf. G/P-IV, [9]): 

Theorem 4. Distinct standard monomials of length m on Xz(r) (resp. 
Xk(T»form a basis of HO(XZ(T), D;) (resp. HO(Xk(T), L'f:». 

Remark 6. Theorem 4 implies in particular that the canonical homo­
morphism HO(Gz/Bz, D;)-+HO(Xz(T), D;) is surjective. As a consequence, 
it follows (see Remark 5 and Remark 4) that Vm",.z(T) is a direct summand 
of Vm""z for every m~O. 

If Gz is a classical group, one has a suitable generalization of Theorem 
4 for Gz/Bz and as a consequence one deduces that the canonical homo­
morphism 

is surjective for any dominant A. Consequently, one deduces that V"z(T) 
is a direct summand in V"z for any dominant A (Gz being classical). 

Remark 7. The assertion (ii) of Theorem 2, namely that 

has been stated and assumed in (G/P-IV, [9]). However, it is not necessary 
to assume (*) for proving the main theorems on standard monomial 
theory; in fact (*) follows for all the Schubert varieties for which a standard 
monomial theory has been proved in [9] (in particular, for all Schubert 
varieties in the case of a classical group). Let us now indicate a proof of 
(*) in the case of Schubert varieties in Gk/Pk , where Pk is a maximal para­
bolic of classical type. One proves Theorem 3' first and this does not use 
(*). Since V""z(T) is a direct summand of V""z, the canonical mapping 

is injective (as we saw in § 1), where Xk(T) is only taken as (XzXspecz 
Spec k)red. One defines Pr,~ and Pr,<p as above. We can identify Pr.~ as an 
element of HO(Xk(T), L""k). Now the crucial point is that distinct standard 
monomials in Pr,~ (say of length m) are linearly independent elements of 
HO(XiT), D:. k ) (see the proof in G/P-IV, [9]). This is a formal step (and 
does not use (*». Let St (T, m) denote the Z-submodule of HO(Xz(T), 
L;:'z) generated by standard monomials of length m in Pr,~. Then the 
canonical mapping 
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is injective V field k. For k=Q this is shown to be an isomorphism. 
(cf [9]). This implies that the canonical map 

St (t', m)~HO(XzC-')' L:,z) 

is an isomorphism of Z-modules. Now for m~O, the canonical map 

is surjective. This implies that (**) is an isomorphism for m~O, Le., the 
canonical map 

is an isomorphism for m~O. This implies (as we saw in the proof of (ii) 
of Theorem 2) that the canonical map 

Xz(-.) X Spec Z Spec k~Xk(1:) 

is an isomorphism, which is the required assertion. 

Remark 8. The projective normality of a Schubert variety Xk (1:) (Pk 

of classical type, k any field) is a consequence of standard monomial 
theory (see Remark 4.1, [11]; a simpler deduction has been found by 
Huneke and Lakshmibai). The normality of such an Xk(-.) follows as a 
consequence. We did not suspect that a general proof could be given as 
in Theorem 2 above. 
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