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On the Structure of Compact Complex Manifolds in €

Akira Fujiki

Notations and conventions.

We use the following convention and terminology (cf. Ueno [43]).
A complex manifold is always assumed to be connected. A complex variety
is a reduced and irreducible complex space. A fiber space is a proper
surjective morphism of complex spaces with general fiber irreducible.

a) Let X be a compact complex manifold and L a line bundle on X.
Then:

a(X) : the algebraic dimension of X
q(X) :=dim H'(X, 0y), the irregularity of X
K : the canonical bundle of X

#(L, X): the L-dimension of X

#(X) :=k(Ky, X) the Kodaira dimension of X

b) Let X be a compact complex variety, X a nonsingular model of
X, ASX an analytic subspace, E a holomorphic vector bundle on X.
Then:

aX)  =al®)

g(X) =q(X)

Aut X : the complex Lie group of biholomorphic automor-
phisms of X

Aut, X . the identity component of Aut X

Aut (X, 4) :={ge Aut X; g(4)=A4}

Aut, (X, 4): the identity component of Aut (X, 4)

P(E) :=(E—{0})/C* ({0} =the zero section of E)

Oy :  the sheaf of germs of holomorphic vector fields on X

A compact complex variety X” is called a bimeromorphic model of X

if it is bimeromorphic to X.

¢) Let Y be a complex variety. Then

7(Y): the fundamental group of ¥ with respect to some reference
point.

Q(Y): the class of subsets of ¥ which is a complement of an at
most countable union of proper analytic subvarieties of X, or
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232 A. Fujiki

equivalently, an at most countable intersection of nonempty
Zariski open subsets of Y.
d) Letf: X—Y be a fiber space of complex varieties, Y—¥ a mor-
phism of complex varieties, US Y a Zariski open subset, and y € Y a point.
Then

Xy :=XXy ¥ and fp :=f; X4, idp: Xp—>7.

In particular
fv : Xy—U the restriction of fto X,

X, =X, the fiber over y

dim f =dim X—dim Y

q(f) =¢(X,) for general X, if f is generically smooth

Aut (X/Y): the group of biholomorphic automorphisms g: X—X
with fg=f.

Dy : the relative Douady space associated to f

Oxv : the sheaf of germs of relative holomorphic vector fields.

In this paper we have to distinguish two notions of ‘general fibers’:
Let (P) be a property of a complex space. Then we say that X, has the
property (P) for general (resp. ‘general’) y e Y if there exists a Zariski
open subset UZS Y (resp. a subset MC Y with M e Q(Y)) such that X, has
property (P) for y e U (resp. y e M).

e) Let g: X—Y be a meromorphic map of complex varieties, 'S X
X Y the graph of g, p: I'—X, p’: 'Y the natural projections. Then we
say that g is surjective if p'(I"y=Y. The general fiber of g is p(I",)S X for
general ye Y. g is called a meromorphic fiber space if p’ is a fiber space,
i.e., g is surjective with general fiber irreducible. A (meromorphic) P'-fiber
space is a (meromorphic) fiber space with general fiber isomorphic to the
complex projective line P'.

A meromorphic map g’: X'— Y is a bimeromorphic model of g if there
exists a bimeromorphic Y-map ¢: X—X’. If g’ is holomorphic, we call
g’ simply a holomorphic model of g. More generally given a diagram of
meromorphic maps of complex spaces we can speak of its bimeromorphic
model or holomorphic model in the obvious sense.

f) In this paper we are concerned with the structure of compact
complex manifolds up to bimeromorphic equivalences. Thus if X is a
given compact complex manifold and if we are given a meromorphic map
f: X—Y into a complex variety Y, then passing to another bimeromorphic
model X* of X such that the resulting meromorphic map f*: X*—Y is
holomorphic and then considering X* instead of X we may assume from
the beginning that f is holomorphic.
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§1. Introduction

The introduction contains a review of the known methods and results,
the definition and the fundamental properties of the manifolds in the class
%, and a typical application of our main results.

1.1. We first review the general methods for studying nonalgebraic
compact complex manifolds, together with some known results due mainly
to K. Ueno. (See Ueno [43] for the detail.)

Let X be a compact complex manifold. Then the first bimeromorphic
invariant of X we consider is the algebraic dimension a(X) of X, which is
by definition the transcendence degree tr. deg C(X) of the meromorphic
function field C(X) of X; a(X)=tr. deg C(X). (Recall that C(X) is in
general an algebraic function field over the complex number field C.) A
good geometric interpretation of a(X) is provided by considering algebraic
reduction of X; an algebraic reduction of X is a meromorphic fiber space
f: X—Y such that Y is projective and f induces an isomorphism f*: C(Y)
= C(X) of meromorphic function fields of X and Y. An algebraic reduc-
tion is unique up to bimeromorphic equivalences and we have of course
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a(X)=dim Y. In particular 0<La(X)<n :=dim X. When a(X)=n, X
is by definition a Moishezon manifold and is bimeromorphic to a pro-
jective manifold. We call this case algebraic and exclude from our con-
sideration in this paper.

a) When 0<<a(X)<nm, then an algebraic reduction defines a non-
trivial meromorphic fibering structure on X. So our first aim should be
to study the structure of f. For this purpose, however, we may assume
that f: X—Y is a (holomorphic) fiber space (cf. Convention f)). Then the
next proposition already impose a strong restriction of the possible fibers
of . (See Ueno [43, 12.1] and Lieberman-Sernesi [34].)

Proposition 1.1. For any line bundle L on X, (L, X,)<0 for
‘general’ ye Y. In particular x(X,)<X0 for ‘general’ y e Y.

Example. 1) When dim f=1, X, is an elliptic curve. 2) When
dim f=2, #(X,)<0 for general y e Y (cf. [43]). Furthermore, the general
fiber of f cannot be bimeromorphic to a ruled surface of genus g=>2
(Kawai when dim X==3 (cf. [43]) and Kuhlmann in general).

Unfortunately, however, the above seems to be all what is known on
the general structure of f.

b) When a(X)=0, the general procedure for studying X is to take
the Albanese map a: X—Alb X of X. The following observation due to
Ueno is fundamental for the study of the structure of «.

Proposition 1.2, Under the above assumption that a(X)=0, o is
necessarily a fiber space. In particular dim Alb X<dim X.

Proof. 'See Ueno [43, § 13].

However, nothing more seems to be known about the general struc-
ture of a, except the case of dim e¢=1 and 2 where Ueno [43] proved
the following:

Proposition 1.3. 1) Suppose that dim a=1. Then for general a e
Alb X, X, is either isomorphic to P* or an elliptic curve. Moreover there
exists a Zariski open subset US Alb X such that « is a holomorphic fiber
bundle over U. 2) Suppose that dim a= 2. Then (X,)<0 for general
aec Alb X. Moreover X, cannot be bimeromorphic to a ruled surface of
genus =2,

Proof. See Ueno [43, 13.8 and 13.11]
¢) When a(X)=¢(X)=0, no general method is known.

1.2.. Now our starting point in this paper is the observation that the
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class of nonalgebraic manifolds is not uniformly nonalgebraic, but there
exists a special subclass of compact complex manifolds containing the
algebraic ones which enjoys a number of properties in common with alge-
braic manifolds. Namely we recall from Fujiki [12] (cf. also [13]) the
following:

Definition. A compact complex variety X is said to be in (the class)
% if there exist a compact Kahler manifold ¥ and a surjective mero-
morphic map 4: Y—X. By Chow’s lemma [28] one can always take % to
be holomorphic if one likes (cf. [12, Lemma 4.6]).

Most typical properties of the varieties in € are summarized as fol-
lows. See also [43a].

A. Functorial properties. Let X be a compact complex variety in
€. Then:

1) Any subvariety of X is again in %.

2) Any meromorphic image of X is again in %.

3) Let Y be a compact complex variety and A: Y—X a proper and
Kéhler (e.g. projective) morphism (cf. [12]) or a Moishezon morphism
(cf. [14] and the definition in 2.1 below). Then Ye %.

B. Hodge decomposition [13]. Let X be a compact complex mani-
fold in €. Then for any k>0 we have the natural decomposition

(1) HYX,C)= @ H™'(X), H"(X)=H"*(X)
pra=k

of H*(X, C) into the subspaces H?%X) of elements of type (p, ¢) where
“denotes the complex conjugate. In particular any odd dimensional Betti
number of X is even. Moreover, in connection with this, we have ¢(X)
=dim Alb X where Alb X is the Albanese variety of X.

Essential point in the proof is contained in the following lemma
which will be used in the sequel.

Lemma 14. Let f: X—Y be a fiber space of compact complex mani-
folds in 4. Then f*: H*(Y, R)—H*(X, R) is injective for any k.

C. Closedness of the Douady space Dy of X [12]. For any compact
complex variety X in &, any irreducible component of the Douady space
D, is again compact and belongs to € (cf. [14]).

More concretely, the akinness of manifolds in % to algebraic mani-
folds are typically seen in the case dim X=2, by the following classification
table due to Kodaira [32] in its roughest form:
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Classification of compact analytic surfaces

a(X) X £(X)
2 projective —00,0,1,2
Xe?® 1 elliptic surface, b, even 0,1
0 ~ complex torus or K3 surface 0
1 elliptic surface, b, odd 0,1
X¢& 0 surface of class VII [32] — o0
(non-Kéhler K3 surface) ©)

b, first Betti number, ~ bimeromorphic to

Remark 1.1. 1) When dim X=2, X e¢ ¢ if and only if X is Kéhler
(Fujiki [21]). 2) We put parentheses on the last row since the existence
of a non-kdhler K3 surface is suspected. 3) Except for this possible ex-
ception, X e % if and only if X is a deformation of a projective surface.

1.3. Now the purpose of this paper is to establish some general
structure theorems (Theorems 1 and 2 to be formulated and stated in the
next section) for an algebraic reduction f: X—Y of X (including the case
where a(X)=0 so that f is a constant map) under the assumption that X
is in the class %.

In fact, these structure theorems together with some specific consider-
ation yield as a consequence the following generalization of the above
classification table in the three-dimensional case (in case X ¢ ).

Theorem. Let X be a compact complex manifold in € with dim X=3.
Then X falls into one of the following classes.

1) a(X)=3 and X is Moishezon

2) a(X)=2 and X is an elliptic threefold

3) a(X)=1; there are two cases to be distinguished.

1. For any bimeromorphic model X* of X an algebraic reduction f*:
X*—Y is always a morphism. Let X% be any smooth fiber of f*. Then
X ¥ is isomorphic either to a complex torus or a holomorphic P*-bundle over
an elliptic curve.

II. X is bimeromorphic to a quotient variety (C X S)/G where C is a
compact Riemann surface, S is either a complex torus or a K3 surface, with
a(S)=0, and G is a finite group acting on both C and S and acting on CX S
diagonally.

4) a(X)=0; there are three cases to be distinguished.

1. X is Kummer
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II. X is a P'-fiber space over a normal compact analytic surface S
with a(S)=0. _
III. X is simple and its Kummer dimension k(X)=0.

Relevant definitions are: 1) A compact complex manifold X is said
to be Kummer if X is bimeromorphic to a quotient variety 7/G of a com-
plex torus T by a finite group G (cf. [43]). 2) A compact complex mani-
fold is said to be simple if there exists no (analytic) covering family {4,},c,
of proper analytic subvarieties 4, of X with dim 4,>0. (‘covering’ means
that | ),cr 4,=X.) 3) ‘k(X)=0" means that there is no surjective mero-
morphic map of X onto a Kummer manifold. In particular then ¢(X)
=0.

Roughly, the content of Theorem may be summarized in the follow-
ing table:

a(X) X
3 Moishezon
2 elliptic threefold

1. f: X—Y (algebraic reduction) is holomorphic
1 a. X,=complex torus

B. X,=P'-bundle over an elliptic curve
II. quasi-trivial type (cf. 10.2)

I. Kummer
0 II. Pi-fiber space over a surface
III. simple and A&(X)=0

See Sections 10-13 for more detailed information on the individual
classes with a(X)<<1. On the other hand, see Viechweg [44] for the case
a(X) =3 where remarkable progress has been made recently by the work
of Ueno, Fujita, Kawamata and Viehweg.

§2. Formulation and statement of Theorems 1 and 2

2.1. First we recall from [18] the theory of relative algebraic reduc-
tion, together with some relevant definitions which is of constant use in
this paper. This theory was also developed by Campana [6] independently.
We refer to [6] and [18] for the more detail.

Definition. Let f: X—Y be a proper morphism of complex spaces.
Then: 1) fis a called Moishezon if f is bimeromorphic to a projective
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morphism, and 2) f is called locally Moishezon if for any point ye ¥
there exists a neighborhood y ¢ U (in the usual topology) such that the
induced morphism f,: X,— U is Moishezon.

Let f: X—Y be a fiber space of compact complex manifolds in ¥.
Let UZY be a Zariski open subset over which f is smooth. For any
integer k=0 we set 4, :={y e U; a(X,)=k}. Then we have a descending
sequence U=4,24,2---4,2--- of subsets of U. Actually it is known
that 4, is at most a countable union of analytic subvarieties of U whose
closures in Y are analytic [18, Proposition 3].

Definition. We set a(f) :=max {k; 4,=U} and call it the relative
algebraic dimension of X over Y or simply an algebraic dimension of f.
The definition is independent of the choice of U by the remark preceding
to the definition. The remark also shows that a(f)=k for an integer
k=0 if and only if a(X,)=Fk for ‘general’ y e Y. Clearly if f is locally
Moishezon, then a(f)=dim f.

Definition. Let f: X—Y be a fiber space of compact complex mani-
folds in . Then a relative algebraic reduction of f is a commutative
diagram

X————-—>Y

A

where X is a compact complex manifold in €, f; is a meromorphic fiber
space and f; is a (holomorphic) fiber space, such that 1) a(f)=dim £, and
2) f; is locally Moishezon. We also say that (f;: X—X,, f;: X,—Y), or
simply, f; itself, is a relative algebraic reduction of f.

Remark 2.1. 1) and 2) together are also equivalent to: For ‘general’
ye Y f, induces a meromorphic fiber space f; ,: X,—X; , which is an alge-
braic reduction of X,

In [18, Proposition 4] (cf. also Proposition 8) we have proved the
following:

Proposition 2.1. For any fiber space f: X—Y of compact complex
manifolds in ¥ a relative algebraic reduction of f exists and it is up to bimero-
morphic equivalences uniquely determined by f.

2.2. Now in general let X be a compact complex manifold in €.
Let f: X—Y be an algebraic reduction of X. By f) of Notations and
Conventions we may assume that f is holomorphic. Let (f;: X—X,, f":
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X,—Y) be a relative algebraic reduction of /. By the same convention as
above we may assume that f is holomorphic. Then take a relative alge-
braic reduction (f;: X—X, f7: X,—X,) of f; where we may assume that f,
is holomorphic as above. Continuing analogously we finally obtain a
commutative diagram of fiber spaces

f
X > Y
Xp—>+ - > X,
I

2 Px Xi—>Y
where (f;, f;) are relative algebraic reductions of f;_, for 1<i<m (f,=f),
a(f;-)=dim f{ >0, 1<i<m, and a(f,)=0. Changing the notation we
set g=f,,, h=f7---f, and X=X,,. Then we get the following commuta-
tive diagram of fiber spaces

. X-———————)Y
(3) \ ARG

which is up to bimeromorphic equivalences canonically associated to X.
In fact there exists a characterization of (3) by a certain universal property
(cf. Proposition 8.4 below). In any case the diagram (3) reduces in a
certain extent the study of the structure of f to that of g and 4. Note that
from our construction we might say that X is composed of algebraic
(Moishezon) manifolds (cf. 9.5), and its structure is expected to be very
close to algebraic manifolds. In fact, the structure of (the fibers of) A
turns out to be surprisingly simple.

Theorem 1. The general fiber X, of h is a holomorphic fiber bundle
over its Albanese torus Alb X, via the Albanese map a,: X,—Alb X, whose
typical fiber F, is an almost homogeneous unirational Moishezon manifold.
Moreover if dim h>0 (or equivalently a(f)>0), then ¢(X,)=dim Alb X,
>0. In particular 0< g(X,)<dim Ak if dim A>0.

Remark 2.2. A compact complex manifold is said to be unirational
if it is a meromorphic image of some complex projective space P¥. Thus
it is necessarily Moishezon. Then F, being ‘almost homogeneous uni-
rational’ is equivalent to saying that there exists a linear algebraic group
G, acting holomorphically and algebraically on F, with a (dense) Zariski
open orbit (cf. [13]).

Example. 1) If dimi=1, ¢(X,)=1 and X, is an elliptic curve.
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2) Ifdimh=2, q(X,)=2o0rl. Ifg(X,)=2, X,is a complex torus and
if ¢(X,)=1, X, is a holomorphic P'-bundle over an elliptic curve.

2.3. Theorem 1 largely reduces the study of the structure of f to that
of g. So we are led to the study of a fiber space g: X—Y with a(g)=0
in general. This includes as a special case the study of a compact complex
manifold X with a(X)=0 (the case Y is a point). We start with this
absolute case. In this case it turns out to be more reasonable to consider
the Kummer reduction of X instead of the Albanese map (torus reduction)
of X as in 1.2,

Definition. Let X be a compact complex manifold. Then a Kummer
reduction is a meromorphic fiber space 8: X—B over a Kummer manifold
B such that if g’: X— B’ is any surjective meromorphic map of X onto a
Kummer manifold B’ there exists a unique meromorphic map y: B—B’
such that g’=yB. Obviously a Kummer reduction is up to bimero-
morphic equivalences unique if one exists. In this case we call k(X) :=
dim B the Kummer dimension of X.

Starting from Proposition 1.2 we can prove in Section 7 easily the
following:

Proposition 2.2. For any compact complex manifold X with a(X)=0
(not necessarily in €) a Kummer reduction of X exists and it is unique up
to bimeromorphic equivalences.

As we shall see, even if we start from the absolute case it becomes
necessary also to consider a relative version of the above proposition.
First we need the following:

Definition. Let g: X— Y be a fiber space of compact complex mani-
folds in &, with a(g)=0. Then a relative Kummer reduction of fis a com-
mutative diagram

N

where B is a compact complex manifold, g is a meromorphic fiber space
and / is a (holomorphic) fiber space such that for ‘general’ y e ¥, X, is
smooth, a(X,)=0, and § induces a meromorphic fiber space 8,: X,—B,
which is a Kummer reduction of X,

Then we can prove the following:
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Proposition 2.3. For any fiber space g: X—Y of compact complex
manifolds in € with a(g)=0 a relative Kummer reduction of g exists and is
unigue up to bimeromorphic equivalences.

In this case we call k(f) := dim 4 (where 4 is as in the above defini-
tion) the relative Kummer dimension of X over Y or the Kummer dimension

of f.

2.4. Now in general suppose that we are given a fiber space g: X—
Y of compact complex manifolds in ¥ with a(g)=0. Take a relative
Kummer reduction (8: X—B, h: B—Y) of g according to Proposition 2.3.
As in f) of Notations and Conventions we may assume that 3 is holo-
morphic. Let (g,: X—X,, b: X;,—B) be a relative algebraic reduction of
B where we may assume that g; is holomorphic as above. (Note that the
algebraic dimension a(b) of b is positive in general, cf. Proposition 1.3).
Then we obtain the following commutative diagram of fiber spaces

(4) g\\ /

1———>B

canonically associated to g. Theorem 2 then concerns the structure of
this diagram.

Theorem 2. There exist Zariski open subsets VT X, UZ Y with (V)
C U such that 1) for any ye U X, ,, B, are both smooth and the induced
morphism b,: X, ,—B, is a holomorphzc fiber bundle over the Zariski
open subset 1,_B wzth typical fiber an almost homogeneous unirational

Moishezon manifold, and 2) a(g,)=k(g)=0.

Thus the general fiber of Ab: X,— 7Y is a fiber space over a Kummer
manifold which is almost a holomorphic fiber bundle as is described in 1).
So Theorem 2 reduces our original problem considerably to the study of
a fiber space g’: X—Y with a(g")=k(g")=0 in general. Note thatina
special case where Y is a point, this amounts to considering the manifolds
with a(X)=k(X)=0 (in particular g(X)=0).

In this case our method is to take a relative semi-simple reduction of
g’ (to be developed in the subsequent paper [20]) to obtain again a canoni-
cal decomposition of g’.

In any case we shall here remark that the same proof as for Theorem
2 gives also the following: Let g’: X—»Y be as above with a(g’)=k(g")
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=0. Let (8': X—B’, B/—Y) be any decomposition of f into two fiber
spaces and (g1: X—X{, b’: X{—B’) be a relative algebraic reduction of &/,
so that we get a commutative diagram

x—% vy
CONN A
X{—>B’

analogous to (4). Then the same conclusion as 1) and 2) holds also for
this diagram. In particular a(g})=%k(g))=0 so that ‘Kummer (in parti-
cular torus) part’ never again appears in the study of such a morphism.
Thus the reduction by Theorem 2 to the case a(g’)=k(g”)=0 mentioned
above is in this very strong sense.

2.5. For later reference here we recall the existence theorem of a
relative Albanese map for a locally Moishezon morphism and an imme-
diate consequence of it which is of frequent use in this paper.

Definition. Let f: X—Y be a fiber space of compact complex mani-
folds in ¥. Then a relative Albanese map for f is a commutative diagram

X f > Y

@ 7
Alb* X]Y

where A:=Alb* X/Y is a compact complex manifold in &, 5 is a (holo-
morphic) fiber space, and « is a meromorphic map with the property that
there exists a Zariski open subset UC Y such that 5 and f are both smooth
over U and « induces a holomorphic map a,: X;—4, with «,: X,—4,,
a,=ayly,, being an Albanese map for X, for ye U. We also call « itself
the relative Albanese map for f.

The following results are shown in [18].

Theorem 2.4. Let f: X—Y be a fiber space of compact complex mani-
Sfolds in €. Suppose that fis locally Moishezon. Then a relative Albanese
map for f exists and it is unique up to bimeromorphic equivalence. Moreover
«a is a Moishezon map, i.e., any holomorphic model of a is Moishezon.

As an immediate consequence of the last assertion we get the fol-
lowing:

Proposition 2.5. Let f: X—Y be a fiber space of compact complex
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manifolds in €. Suppose that f is locally Moishezon and q(f)=0. Then
[fis Moishezon.

For a later purpose we also introduce the notion of relative algebraic
Albanese map; let f: X— Y be a fiber space of compact complex manifolds
in % and (g: X—X,, h: X,—Y) be a relative algebraic reduction of X. Let
(a: X,—>Alb* X /Y, 5: Alb* X,/Y—Y) be a relative Albanese map for A
which is locally Moishezon. Then we shall call the composite map ¢=
ag: X—Alb* X|/Y, or the pair (ag, 1), a relative algebraic Albanese map
for f.

When Y is a point, ¢: X—Alb X, is simply called an algebraic
Albanese map for X. An algebraic Albanese map has the universal
property among the morphisms of X into an abelian variety in analogy
with the usual Albanese map. In particular, if ¢ is smooth, the fiber of
¢ is connected. We set a-¢(X)=dim Alb X, and call it the algebraic
irregularity of X. For a fiber space f: X—Y as above we define the alge-
braic irregularity a-q(f) of f by a-q(f):=a-g(X,) for ‘general’ ye Y.

§3. A preliminary proposition
The purpose of this section is to prove Proposition 3.2 below.

3.1. Terminology. Let Y be a complex space and X, X’ be complex
spaces over Y with X reduced. Let Z& XX, X’ be a subspace. Then by
Frisch (cf. [9, 3.18]) there exists a dense Zariski open subset UC X such
that Z is flat over U. Let z,: U— Dy, be the associated universal
morphism into the relative Douady space Dy.,,. Then z, extends to a
unique meromorphic map z: X— D, which is independent of the choice
of U as above (cf. [12, Lemma 5.1]). We call ¢ the universal meromorphic
map associated to the inclusion ZS XX , X'.

Lemma 3.1. Let f: X—Y, f': X' —Y be fiber spaces of complex
varieties. Let g: X—X' be a surjective meromorphic Y-map. Then there
exists a unique compact subvariety X(Z Dy, such that the universal sub-
space Z,S= X X » X restricted to X is the graph of a meromorphic Y-map
go: X— X which is bimeromorphic to g.

Proof. Let 'S XX, X’ bethe graph of g. Let z: XDy, be the
universal meromorphic Y-map defined by I'. Let X;=<(X’). We show
that ¢ gives a bimeromorphic map of X’ onto Xj. Let VS [ be a Zariski
open subset such that the natural projection ¢: I'—X gives an iso-
morphism of V and g(V). Let US X’ be a Zariski open subset such that
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the natural projection p: I'— X" is flat over U and that I",, is the closure
of V,, for x’ € U. Then it is immediate to see that ¢ is holomorphic and
injective on U. So ¢ is bimeromorphic and the following commutative
diagram

r —T>Z(,

|, |

X ——>X,

gives a bimeromorphic map of I" and Z over z. Hence Z,S XX , X gives
a meromorphic map bimeromorphic to /. Next we show the uniqueness.
Let X{'S Dy, be another compact subvariety having the same property
as X, Let go: X— X be the associated meromorphic map. There exists
a bimeromorphic Y-map 7’: X’—X} with g{=17'g. Then returning to the
construction of r above we see immediately that the image of ¢ is in fact
X and 7' =1. q.e.d.

We call g obtained in the lemma the canonical model of g. Of course
g, depends only on the bimeromorphic equivalence class of g(with X fixed).
It is easy to see that in the situation of the above lemma there exists a
Zariski open subset UZ Y such that for any ye U g, (resp. g) induces a
meromorphic map g, ,.: X, ,—Xj ., (resp. g,; X,—X) with g, , the canoni-
cal model of g,.

3.2. Let f: X—Y be a fiber space of complex spaces. Let MS Y be
a subset. Suppose that for each y e M we are given a surjective mero-
morphic map ¢,: X,—X(»). We set S={{,},c, and call & a family of
meromorphic maps parametrized by M. Lety: Y—Y be any morphism.
Then we set M=v"'(M) and Sy={Y;}yezr Where ¥y;=vr,: (X Xy ¥);
=X,—X(3), y=u(§). S is called the pull-back of & to ¥. In par-
ticular for any open subset WE Y we can speak of the restriction &, of &
to W.

Let ©={y,},cx be as above. Then we say that fis good with respect
to © if there exist a subset Ny=N,(f, ©) SMCSY with N, e Q(Y) (cf.
Notation) and a commutative diagram

x—? 5x
N

where X—Y is a fiber space and ¢ is a meromorphic Y-map, such that for
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any y € N,, ¢ induces a meromorphic map ¢,: X,—X, which is bimero-
morphic to v-,. In this case we call ¢ a good meromorphic map with
respect to ©. We say that f'is very good with respect to & if we can take
¢ to be holomorphic in the above diagram.

Proposition 3.2. Let f: X—Y be a fiber space of compact complex
varieties in €. Let UZ Y be a Zariski open subset. Let MZ Y be a subset
and S={y,}, <y be a family of meromorphic maps parametrized by M.

1) Suppose that for any y € Y there exist a neighborhood y e N and
a finite covering n: N—N such that n is isomorphic if y ¢ U and that fg:
Xy—N is good with respect to 5. Then there exist a fiber space h: X—Y
and a surjective meromorphic Y-map ¢: X—X such that for any N=N with
NCU as above ¢g: Xz—Xg is bimeromorphic to some good meromorphic
map o(N) with respect to S, which exists by our assumption on fy.

2) Suppose that for any y e U there exists a neighborhood y ¢ N such
that fy: Xy—N is very good with respect to ©,. Then there exist h: X—Y
and ¢: X—X as in 1) such that for any N as above ¢y: Xy— X, is bimero-
morphic to a good meromorphic map o(N) with respect to S,.

Proof. Suppose first that we are under the assumption of 1). Let
yeUand ye N be as in 1). Let o(N): X,—X(N) be a good mero-
morphic map with respect to S,. Let @(N): Xy—>B(N)Z Dy,,» be the
canonical model of o(N). Let N’ be the Zariski open subset of N such
that ¢, : X,—X,, ¢,: X,—B, are meromorphic maps and ¢, is the canoni-
cal model of ¢, for ue N’ where $,=@N), and ¢,=¢(N),. Then for
each u e N'NN, e Q(N), @, is the canonical model of y-(u) where N,=
N(fy, ©y). Let y, e N, be another such point and its neighborhood.
Let 3(N): Xy, B(N)S Dy, /v, be the canonical model of ¢y,. Then
B(N) and B(N)) coincide over NN\ N, as a subspace of Dy, /way,. (Note
that for any open subset WE Y, Dy, is naturally identified with an open
subset of Dy,y.) In fact, let M=N'NN{NN,N(N,) € Q(NNN,) where
N7 is defined as N’ and (N)y=Nyfy,,» ©»,)- Then for any u ¢ M, B(N),
= B(N,), in Dy, since both are the image of the canonical model of (u).
Hence B(N) must coincide with B(N,) over NN\ N,. This already implies
that there exists an analytic subvariety B(U)Z Dy, such that for each N
as above, B(U)|y=BN). Let Z(U) (EX, X, B(U))—B(U) be the uni-
versal family restricted to B(U). - Then the natural projection Z(U)—Xy,
is bimeromorphic since it is so over each N as above. Hence Z(U) defines
a meromorphic map @(U): X,—B(U) over U which is bimeromorphic to
o(N) on each N. ‘

Suppose now that f are even very good with respect to ©,. In this
case each B(XN) turns out to be an irreducible component of Dy, (cf. the
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proof of [18, Lemma 9]). Hence B(U) also is an irreducible component
of Dy, ,y. Let B be the irreducible component of Dy, which restricts to
B(U). Bis proper over Y since X € ¥. Then by the same argument as
above we get a meromorphic Y-map ¢: X—>B which restricts to o(U) over
U. This shows 2).

To finish the proof of 1) it suffices as above to show that the closure
B of B(U) in Dy, is analytic. The problem is local with respect to Y.
Namely we have only to show that if y ¢ Y is any point and if y ¢ N is as
in 1) then the closure B,y of B,y in Dy, is analytic. Let g(N): X (&)
—B(N )CD xy/& be the canonical model of a good meromorphic map
o(N). Set U=n""(UNN). Then we have (B(N))g=Byy X U in Dy o
with respect to the natural identification DXU,f;_DXUM,Un ¥ Xy U. In
fact, for ‘general’ iie N, B(N), =By, wu i Dy, =Dy, since both are the
image of the canonical model of ¥+(u) in D, where u=n(#). Hence B(N)
is the closure of B,y X, U in Dy, It follows that By, is the image
of B(N) by the finite morphism Dy 55 =Dy,/x X y N—Dy,,v and hence is
analytic. g.e.d.

§4. Consequences of the Hodge decomposition

In this section we derive two important consequences of the Hodge
decomposition (1). (See Propositions 4.1 and 4.5 below.)

4.1. Period map. a) Let f: X—Y be a fiber space of compact
complex manifolds in ¥. Let UZ Y be a Zariski open subset over which
f is smooth. Take a compact Kihler manifold Z and a surjective
morphism A: Z—X. Fix a Kihler class w on Z. Let VS U be a Zariski
open subset of ¥ over which f4 is smooth. Given these data we can con-
struct naturally a variation of real Hodge structure over V in analogy with
the case of polarized family of algebraic manifolds (Griffiths [24]). How-
ever, here we shall explain this only in the simplest case of weight k=1
since it is the only case we need in this paper. (In this case, the situation
becomes much simpler since we need not take account of primitive classes,
and the variation is actually defined over U.) We refer for the precise
definition of variation of Hodge structure to Schmid [38, p. 220], and
follow the notations there. Then in the notations there we set

a) M=U

b) Hg=RY,. K, K=Z, R or C which is a local system on U, and

¢) k=1. Moreover,

d) a flat nondegenerate bilinear form S on Hp, is defined as follows;

for ye V and «, e Hy,,=H'(X,, R) we set S, (a, ‘B)—I o ABFa N\
kB where h: Z,—X,, 0, is the restriction of w to Z, and r=dim fh=
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dim Z,. Since 4} : H,(X,, R)—H'(Z,, R)is injective (Lemma 1.4), S, defines
a non-degenerate skew-symmetric form on Hy,,. Moreover since S,=
{S,},er is flat and Hp|, extends to a local system on U, S, also extends to
a unique flat bilinear form S on Hy over the whole U.

e) A holomorphic subbundle F;C H, is defined as usual by F} :=
HY(X,)E H,,=H(X,, C)(F°=H, and F?*={0}) where Hy is considered
as a holomorphic vector bundle with constant transition functions.

It is immediate to see that these data, denoted symbolically by
(Y, H,, F?), actually satisfy the conditions i) and ii) of [39]. An important
remark, however, is that in the definition of variation of Hodge structure
we do not here require the bilinear form S to take rational values on H,,.
So we call (U, Hg, F?) the variation of real Hodge structure.

b) Now to any such variation of Hodge structure {U, H,, F*} we
can associate just as in Griffiths [24], or [38] the period map &: U—D/I
where D is the corresponding period matrix domain, i.e., the classifying
space of Hodge structures (in our case of k=1 D is isomorphic to the
Siegel upper half space, cf. [24, §1]) and I" is a discrete group acting
properly discontinuously on D. More precisely, let Hy, K=Z or R, be
the fiber of the canonical Hodge bundle on D at oe D (cf. [38, §3]).
Let G :={g e GL(Hyg); S(gu, gv) = S(u, v)}, S being the corresponding
bilinear form on Hg. Then Gy acts transitively on D with compact stabi-
lizer at 0. Thus if p: #,(Y, 0)—G is the monodromy representation with
image I', then I” clearly is discrete and act properly discontinuously on D.
Here an important thing to note is that since S is not required to take
rational values on Hy, I' is in general not arithmetic. For instance D/I”
has in general no compactification like the Baily-Borel compactification in
the arithmetic case.

4.2. Period map and algebraic reduction. Roughly speaking we shall
show that the period map constructed in 3.1 associated to f: X— Y factors
through an algebraic reduction of Y at least when D is a bounded sym-
metric domain. To be more precise we make the following:

Definition. - Let ¥ be a compact complex variety and U a Zariski
open subset of Y. Let @: U—Z be a morphism of U into a complex
space Z. We say that @ is generically factored by an algebraic reduction
of Y if for any algebraic reduction f: Y—Y of Y (defined in the same way
as the smooth case), there exist a Zariski open subset V" of ¥ contained in
U, a Zariski open subset W of Y and a morphism @: W—Z such that fis
defined on V, f(V)S W and &f|,=®|,.

Then we shall prove the following:
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Proposition 4.1. Let Y be a compact complex manifold and U a
Zariski open subset of Y parametrizing an (abstract) variation of real Hodge
structure. Let D (resp. 'S Gy) be the associated period matrix domain
(resp. a discrete group) and @: U—D|I" be the period map. If D is a
bounded symmetric domain, then @ is generically factored by an algebraic
reduction of Y.

Remark 4.1. If I' is arithmetic, this is well-known (Borel, Kobayashi-
Ochiai). Our main interest is in the case of non-algebraic family of com-
plex tori and K3 surfaces.

We first prove the following:

Lemma 4.2. Let f: U—U and @: U— Z be morphisms of normal
complex varieties. Suppose that f is open and there exists a map &: U—Z
such that Of=@. Then O is holomorphic.

Proof. Since f'is open, @ is continuous. Take anyze Uandue U
with f(u)=u. Since fis open, dim,, f~'f(«) is independent of u e U (cf. |9,
3.10])). Hence we can find an analytic subvariety B defined in a neigh-
borhood of # and passing through u such that the induced map (B, u)—>
(U, u) of germs is finite and surjective (cf. [9, 3.7]). Since the problem is
local, replacing U by B, @ by @|, etc. we may assume from the beginning
that f is finite and surjective. Then f'is locally biholomorphic on a dense
Zariski open subset of U. The lemma immediately follows from this and
the Riemann extension theorem in view of the normality of U.

Proof of Proposition 4.1. Since I' &G, there exists a torsion free
subgroup "SI of finite index [4, p. 118]. In particular the action of I
on D is free. Let p: x(U)—I'S G, be the monodromy representation
where z,(U) is the fundamental group of U with respect to some reference
point. Letzn: U’— U be the finite unramified covering of U corresponding
to p”'(I")&x,(U). Extend r to a finite covering z’: Y’— Y by a theorem
of Grauert and Remmert where Y’ is a normal complex variety containing
U’ as a dense Zariski open subset. Then pulling back the variation of
Hodge structure to U’ we obtain the associated period map @'; U'—D/I"
such that @z =@'® where @: D/I"—D/|I" is the natural projection.

We first show that it suffices to show that @’ is generically factored
by an algebraic reduction of ¥’. In fact let f: Y—Y be an algebraic re-
duction of Y. Passing to a suitable bimeromorphic model of ¥ we may
assume that f is holomorphic. Let fa’'=zf’, (f': Y'=»Y’,7’: Y'—=Y),
be the Stein factorization of fz’. We see readily that f/ is an algebraic
reduction of Y’ with ¥/ normal and the natural map F: Y'—Y' Xy Y is
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surjective. Suppose now that there exist Zariski open subsets W/ Y,
VS U’C Y’ and a holomorphic map @’ : W’/—D/I"’ such that f/(V)YS W',
and &'f’=¢@’ on V’. Combining this with the relation @@’ =®@r together
with the surjectivity of F it follows that @@’ and @ coincide when they are
considered as holomorphic maps from VX, W’ via the natural projec-
tions VX, W—W’ and VX, W—V where V=z(V)ZY and W=
#(W)ZY. Then we see readily that if we restrict ¥’ and W’ @|, is fac-
tored by some holomorphic map V—W (cf. Lemma 4.2), and hence @ is
factored generically by an algebraic reduction of Y. Thus we may assume
from the beginning that the action of I' is free so that D/I” is a manifold.
Now since D is a bounded symmetric domain, by a theorem of Borel
[5], for each g ¢ D/I" there exist meromorphic functions g, - - -, gp, M=
dim D, on D/I" such that g, are holomorphic at ¢, g,(¢)=0, and give local
coordinates of D/I" at g. Moreover g, can be expressed as a quotient of
two holomorphic sections of K&?, for some sufficiently large b where K,
is the canonical bundle of D/I’. On the other hand, as was shown by
Sommese [40, p. 254ff] @*K,,, extends to a holomorphic line bundle L on
Y (after passing to a suitable bimeromorphic model of Y), and moreover
the pullback to @*K,, of the canonical metric of K, induced by a G-
invariant metric of K, has L:-poles at infinity in the sense of Sommese [39],
so that for any holomorphic section /# of K¥?r, its pull-back @*h extends
to a meromorphic section of L% on Y (cf. [39, Lemma I-F]). In particular
for the above g,, @*g, extends to a meromorphic function on the whole Y.
From this we can deduce the proposition as follows. Let /1 Y—Y
be any algebraic reduction of ¥ which we may assume to be holomorphic
as above. Restricting U if necessary we may assume that f|, is an open
map and that UNf~(p) is irreducible for ¢ Y. Let U=f(U). Then
by Lemma 4.2 it suffices to show that for any #e U, @ maps U, :=UN
f~'(@)to apoint. Take any u ¢ U, and let g=0(u). Let §,=0*g, with g,
as above. Then @ is given locally at ¥ by m meromorphic functions
&, -+, §, which are holomorphic at #. On the other hand, since g,
extends to a meromorphic function of ¥ as we have remarked above, by
the definition of f we can find meromorphic functions g; on Y such that
f*g,=§,. This implies that U, is contained in the fiber ®~'(g) near u and
hence in the whole U since U, is irreducible. g.e.d.

4.3. As another consequence of the Hodge decomposition (1) we
obtain a result which relates the irregularities of the total space, the base
space and of the general fiber of a given fiber space (Proposition 4.5 below).
First we remark that in view of the Hodge decomposition and the func-
toriality of the class % it follows that Deligne’s theory of mixed Hodge
structure [8] is applicable with obvious modifications to Zariski open
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subsets of compact complex manifolds in 4. Especially the following
proposition corresponding to Théoréme 4.1.1 (ii) of [8] is important for us.

Proposition 4.3. Let f: X—Y be a fiber space of compact complex
manifolds in €. Let UZ Y be a Zariski open subset over which f is smooth.
Then the composite map H*(X, C)—H*( Xy, C)—I'(U, R*f,.C) is surjective
for any k.

Proof. When X is Kihler, the Leray spectral sequence E? :=
H?(X,, RY,«C)=>H?* (X, C) degenerates at EP? terms [8, 2.6.2]. Further
for any compact smooth subspace BC X, the images of H*(X,, C) and
H*X, C) in H*B, C) coincide (cf. [8, 3.2.18]). From this the proposition
follows as in [8]. In the general case take a compact Kahler manifold Z
and a surjective holomorphic map 4A: Z—X. As in the proof of [8, 4.1.1]
we may assume that g=1% is smooth over U. Then the rest of the argu-
ment is the same as in [8] where the general case of complete varieties is
reduced to the projective case.

We shall apply the above proposition in the following situation. Let
f: X—Y be a fiber space of compact complex manifoldsin ¥. Let UCY
be a Zariski open subset over which f is smooth. Then from the Leray
spectral sequence we get the following commutative diagram of exact
sequences

2
0—>H'(Y, C)—>H'(X, C) ——> H(Y, Rf,C) —>0
u
0—> H(U, C)—>H'(X,, C)—Z> H(U, R'f,,,C)—>0

where the surjectivity of A, (resp. 1) follows from Proposition 4.3 (resp.
Lemma 1.4).

Lemma 4.4. u is isomorphic. In particular if RYf,.C is a constant
system, then q(X)=q(¥Y)+q(f).

Proof. By Proposition 4.3 uA is surjective. Hence we have only to
show that u is injective. Note first that the first two vertical arrows are
injective since HY(Y, C)=HY%(X, C)=0 where A=Y —U and A=X—X,,.
So we regard these as inclusions as well as the first two horizontal arrows.
The above diagram then shows that the injectivity of u is equivalent to the
equality HY(X, C)N HY(U, C)=H'(Y,C) in H'(X,, C). Now take any
holomorphic 1-form w on X with A,(w)=ul(w)=0, where o is identified
with the cohomology class it defines. This implies that w, restricted to
each fiber X,, u ¢ U, vanishes identically. It follows that there exists a



Structure of Manifolds in € 251

holomorphic 1-form @, on U such that w,=f*®,. Then by Mabuchi
[35, Cor. 2.2.3], @, extends to a holomorphic 1-form @ on Y such that w
=f*®. Taking complex conjugate we also see that any anti-holomorphic
1-form o’ with 2;(w")=0is a pull-back of an anti-holomorphic 1-form on
Y. Since H'(U, C)N H'(X, C) is a sub-Hodge structure of H'(X, C) [8],
any element of it is expressed as a sum of holomorphic 1-form and an
anti-holomorphic 1-form belonging to it. Thus by what we have shown
above, we get H'(U, C)N H'(X, C)=H'(Y, C) as was desired. The last
assertion then follows from the equalities dim H%(U, RYf,.C)=dim H'(X,,
C),ue U, and b(Z)=2q(Z) forall Ze &%. q.e.d.

Now we come to the main assertion of this subsection.

Proposition 4.5. Let f: X—Y be a fiber space of compact complex
manifolds in €. Let UZY be a Zariski open subset over which f is smooth.
Suppose that the period map @ : U—D|I" associated to f as in 3.1 is constant.
Then there exist a normal compact complex variety ¥ and a finite covering
v: Y—Y which is unramified over U such that if X :=XX, Y then q(X)=

a(f)+a(@).

Proof. Our assumption is equivalent to saying that the variation of
Hodge structure (U, H, F?) associated to f; is locally constant, i.e., a
holomorphic fiber bundle over U. Let @: U—D be any lift of @ to U where
U is the universal covering space of U (cf. [25, Lemma 9.6]). & also is a
constant map. Let #=@(0). Then the structure group of this bundle is
clearly contained in the stabilizer ', of I" at #, which is finite. Hence
there exists a finite unramified covering v,: U—U such that R'f;.R=
RYf,.RX, U is a constant system on U, where f5: XX, U—U is the
natural morphism. Let v: Y—Y be the unique finite covering which
completes v, over Y with ¥ normal. Let f,: X,—¥, be any nonsingular
model of ¥—¥. Then by Lemma 4.4 we have ¢(X)=¢(X)=q(f)+q)

=q(N+q@). q.e.d.

As an easy application we note the following:

Proposition 4.6. Let 8: X—T be a smooth fiber space of compact
complex manifolds in 4. Suppose that T is a complex torus and every fiber
of B is a complex torus. Then X is hyperelliptic, i.e., it is isomorphic to a
complex torus divided by a finite group acting fixed point freely on X.

Proof. By the construction in 4.1 the period map @: T—D/I" is
defined on the whole 7. Then by Griffiths-Schmid [25, Cor. 9.7] @ must
be constant. By Proposition 4.5 there exists a finite unramified Galois
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covering T— T such that if we set X :=X X, T then ¢(X)=q(T)+q(p)=
dim T'4dim 8=dim X. Moreover the proof shows that in the following
commutative diagram

b'e & > Alb X
N7
T=AbT

& induces on each fiber X, of 8 a morphism @,: X,—(Alb X), which is
isogenous. This implies that & is unramified and hence X is a complex
torus. Therefore X is hyperelliptic. g.e.d.

§5. Structure of a projective morphism

In the statement of both Theorems 1 and 2 we have encountered
a holomorphic fiber bundle with an almost homogeneous unirational
Moishezon manifold as a typical fiber. This is of course not accidental;
in this section we give some results on the structure of a projective
morphism with respect to an algebraic reduction of its base space, which
leads to the structure as above. These will be given in Propositions 5.1,
5.2, 5.3 below and will play an important role in this paper.

5.1. The first one is the following:

Proposition 5.1. Ler g: X—X,, h: X,—Y be fiber spaces of compact
complex manifolds in ¢. Let A=(4,, -+, A,,) be a sequence of analytic
subspaces of X. Suppose that g is projective and a(X,)=a(Y). Then there
exist Zariski open subsets UZ Y, VE X, with h(V)Z U such that for any u

e U, X,, X,, are both smooth and g,:(X,, A,)—X,, is a holomorphic fiber
bundle over V, (in the obvious sense), having a linear algebraic group as a
structure group.

Proof. Note first that we may clearly assume that all the irreducible
components of 4, are mapped surjectively onto X; by g. Note next that
by the form of the statement of the proposition it suffices to show it after
passing to a suitable bimeromorphic model of (g: X—X,, #: X;—Y). Then
since g is projective, passing to another bimeromorphic model we may
assume that there exists a holomorphic vector bundle E on X such that
X is a subspace of the associated projective bundle »: P(E)—X,. Infact,
we can write XC P(&) for some coherent analytic sheaf 4 on X where
P(#) is the projective variety associated to & (cf. [26, V] and [9, 1.9]).
Then we take a proper modification ¢: X,— X, such that ¢*F admits a
Jocally free quotient &’ with a torsion kernel. Then the strict transform
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X’ of X in XX x X{ is naturally embedded in P(6")=P(E) where E is
the dual of E’. Then taking a suitable nonsingular holomorphic model of
(07'g: X—X{, ho: X|—Y) we get a situation as above.

Let N4+-1=rank E. Let p: P=Isomy (P"XX,, P(E))—X, be the
principal bundle with group PGL (N¥N+1, C), associated to . Then there
exists a natural trivialization P(E)X y P=PXP" of the induced bundle
P(E)X x, P—>P. Let A;=X. Then we have the natural inclusions 4,
X x, PCPXP",0<i<m. Let;: P—Dpy be the universal meromorphic
map associated to this inclusion, where Dpy is the Douady space of P¥
(cf. § 3). On the other hand, x has the natural compactification g: P=
Isom¥ (P" XX, P(E))—X, which itself is naturally a holomorphic fiber
bundle over X,. (See[19]for the notation Isom*.) Then it is easy to see
that ¢, extends to 2 meromorphic map #,: P—>Dpy. Let Q be the image of
the meromorphic map gX#X#H X « -+ X £, P>X, X D%, where Dp3itl=
DpxX -+« XDpy ((n’l+ 1)-times).

Let #: X,—D be the umversa] meromorphic map associated to the
inclusion QC X, X D' where D denotes the Douady space of D2t (cf.
§3). Dpi'is a disjoint union of projective analytic spaces and hence D
also is a disjoint union of projective analytic spaces [26]. Then since
a(X)=a(Y) by our assumption, #' must factor through Y. Hence by the
definition of the universal meromorphic map (cf. 3.1) we can find Zariski
open subsets UZS Y and VX, with A(V)ZS U such that if u e U, then
for every ve V,, Q, is one and the same subspace of D35,

On the other hand, note that G :=PGL (N+1, C) acts naturally on
Dpy. Let G act on D33! diagonally. Let go__g and g,=g|,,: 4,—X,.
For any point p e P we consider a,=(X,, 4, ,, - - -, 4,,,) as a point of D33
where X,=(XX x, P), and 4; ,=(4;X x, P),. Then by our construction
and the definition of P if we take the above U and V sufficiently small, for
any v e V, Q, is nothing but the closure of the G-orbit of a, in Dg#* for
any p ¢ P, (which is of course independent of p ¢ P,). This then implies

that for any ue U, (X,, 41,45 - - +» Ap,,) are mutually isomorphic (by ele-
ments of G) as longasve V,. In fact we show that for any such u the
map g,: (X, 41,4 - - +» Am,.)—X}, 1s actually locally trivial over V,,.

Restricting ¥ we may assume that g, are all flat over V. Fix oe V,
arbitrarily. Take a sufficiently small neighborhood 0 e MZ ¥V, in such a
way that we have a trivialization P(E), =M X P¥. Then with respect
to the induced inclusion A4, ,S M X P¥ consider g, ,: A, ,—M as a flat
family of subspaces of P¥ parametrized by M. Let z,,: M—Dpy be the
associated universal morphism and z,=1y ;X - XTp,x: M—DEF.
Let z,(0)=b. Let B be the G-orbit of b in Dpy'. Then 7, (M)ZB by
what we have proved above. Let n: G— B be defined by n(g)=gb. Then
7 is a holomorphic fiber bundle. Hence if M is sufficiently small, we can
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get a morphism #,: M—G with #,(0)=e, the identity of G, such that z,,
=r-%y, i€, 74,(L)=gbh for all ve M, where g(v)=2,(v). It then
follows that the map @: M X X,—~M X P¥ defined by &, x)=(v, g(v)x)
has its image X, and gives the trivialization M X(X,, 4,5, -+ *» Am,o) =
(Xars Ay, s+ +» A, y) Oover M. Thus g, is locally trivial over ¥,. Finally
the difference of two trivializations is given by a holomorphic section M
—G, :=xn""(0). Thus the structure group is reduced to the stabilizer G,

of b in G. g.e.d.

Remark 5.1. Recently the author has shown that the set It of iso-
morphism classes of nonuniruled polarized algebraic manifolds has the
natural structure of an algebraic space (cf. [17]). Proposition 5.1 follows
from this general result immediately if X is not uniruled, e.g. (X, )=0
for some x, e X; with X, smooth.

5.2. As a preparation for the proof of the next proposition we recall
some definitions and notations on relative automorphism groups etc. from
[19]. (For the more detail we refer to [19].) Let f: X—Y be a fiber space
of compact complex manifolds in €. Let US Y be a Zariski open subset
over which fis smooth. Let Aut, X, be the relative automorphism group
over U for the smooth morphism f,: X;,—U. For each y e U we have
the natural identification (Aut, X,),=Aut X,. Aut, X, is naturally
regarded as a Zariski open subset of the relative Douady space Dy, v, xp/m
of X, X ; X, over U which is also Zariski open in Dy, z,. Let Autf X
be the essential closure of Aut, X, in Dy, x, i.€., the union of those
irreducible components of the closure which are mapped surjectively onto
Y. Let A=(4,, ---, 4,) be a sequence of analytic subspaces of X.
Restrict U so that A4, are all flat over U. Then we can define a relative
group subvariety Aut, (X, 4,) of Aut, X, by the condition; Aut, (Xy, 4,),
=Aut(X,, 4,) :={ge Aut X; g4, ,= A, , foralli}, ye U. (See[19] for
the more precise functorial definition.) Suppose now that f'is Kéhler (cf.
[12]), e.g., fis projective. Let w € I'(Y, R*f, R) be a relative Kiahler class,
i.e., the restriction w, € H(X,, R) of o to each fiber X, is a Kéhler class.
Then define the relative group subvariety (Aut, X,), of Aut, X, by
((Aut, X)), ={g e Aut X; g*¥w,=w,}, ye U. (See[19] for the functorial
definition.) Let Aut,(Xy, 4,),=(Aut,X;), N Aut(Xy, 4;). When Y, and
hence U also, is a point, we write simply Aut(X, 4),. Let Auti(X, 4), be
the essential closure of Aut, (X, 4,), in AutfX. This is then a relative
meromorphic subgroup of Aut(X in the sense of [19], which essentially
means that Aut(X, 4), is analytic and compact.

Let G* be the relative meromorphic subgroup of Aut(X, say G*=
Aut}(X, A), as above. Then a relative generic quotient of X by G* is a
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compact complex manifold X over Y together with a surjective mero-
morphic Y-map ¢: X—X such that for general % ¢ X, the fiber X, over %
is a closure of an orbit of G, in X, where x ¢ X, and G,=G¥N Aut X, (in
our case G,=Aut(X,, 4,),,). Then a relative generic quotient always
exists for the given f and G* as above by [19, Theorem 1]. We call X
itself also a relative generic quotient and it is often denoted symbolically
by X/G*. When Y is a point, we simply call X a generic quotient of X
by G* or by G:=G*N Aut X.

Letf: X—Y and UZY be as above. Suppose that f is a holo-
morphic fiber bundle over U with typical fiber F and with structure group
G. G is called a meromorphic structure group (with respect to f) if G is
a meromorphic subgroup of Aut F, i.e., the closure G* of G in Aut*F (or
in Dy ;) is analytic and compact. Suppose that G is meromorphic. Let
F:=F/G be the generic quotient of F by G. Then there exists a mero-
morphic map + : X—F canonically associated to f and G, called a canon-
ical meromorphic map associated to f and G (cf. [19, Def. 6])

5.3. To state the next proposition in its full generality it is con-
venient to introduce the following terminology.

Definition. Let f: X—Y be a fiber space of compact complex mani-
folds in #. Let VS Y and W X be Zariski open subsets with f(W)S V.
Then we say that the triple (f: X—Y, W, V) has property (F) if there
exist a projective manifold F, and a linear algebraic subgroup GS Aut F
such that 1) G acts algebraically and almost homogeneously on F with a
Zariski open orbit F,C F, and 2) if we set A=X— W and B=F—F, then
f: (X, A)—7Y is a holomorphic fiber bundle over ¥ (in the obvious sense)
with typical fiber (F, B) and with structure group G acting on (F, B) as
above.

Proposition 5.2. Let g: X—X,, h: X,—Y be two fiber spaces of
compact complex manifolds in €. Suppose that g is projective, q(g)=0,
and a(X)=a(Y). Then there exist Zariski open subsets UCY, VC X,
WCX with g(W)SV, h(VYSU such that 1) for any ue U, X, X,,, are
smooth and the triple (g, : X,—X, ., W, V,) has property (F) in the sense
defined above and 2) for any analytic subvariety AS X with g(A)=X, we
have AN W=0.

Remark 5.2, In a special case where Y a point, then the condition
q(g)=0 can be deduced from other two conditions; g is projective and
a(X)=0.

Proof of Proposition 5.2. a. Leth, : Y—Y’ be an algebraic reduc-
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tion of Y. Then from the form of the statement of the proposition we
infer readily that it suffices to show the proposition for a suitable bimero-
morphic model of (g : X=X, bk : X,—Y"), i.e., we may assume from the
beginning that 4 is an algebraic reduction of X, so that in particular Y is
projective.

B. LetA=(4,, - - -, 4,,) be any sequence of analytic subspaces of X.
(We include the case m=0, i.e., 4=0.) Then by Proposition 5.1 there
exist Zariski open subsets UZS Y, VE X with A(V)Z U such that if ue U,
then both X, and X,, are smooth and g, : (X,, 4,)—X, is a holomorphic
fiber bundle over V,EX,,. Since g is projective g is Kéhler. Fix a rela-
tive Kihler class o € I'(Y, R’g,R). Take and fix v=v(u) e V,, and con-
sider (F,, B,):=(X,, 4,) as a typical fiber of the above bundle. Further
G(u):=Aut (X,, 4,),, can be taken to be a meromorphic structure group
of the bundle (cf. [19, Proposition 6]), the associated relative meromorphic
subgroup of Aut¥ X, being given by Aut}, (X,, 4,),, where o, € ['(X,,,
R’g, . R) is induced by o (cf. [19]). Since ¢(X,)=0 by our assumption,
G(u) is a linear algebraic group (cf. [13][33]). Let G*=Aut%, (X, 4), and
G:=G*N Aut (X, 4,).

y. We now prove the existence of W satisfying 1). More precisely,
we show that (after restricting ¥ and U if necessary) there exists a Zariski
open subset W X with g(W)Z V such that if ve V then G, acts almost
homogeneously on X, and its unique Zariski open orbit coincides with W,
Let X:=X/G be the relative generic quotient of X by G* over X,. Let
p : X—X, be the natural map. Then by [19, Proposition 1] for the existence
of W as above it suffices to show that p is bimeromorphic. For general
ue Y, G¥ is a relative meromorphic subgroup of Aut¥ X, over X, X,
is a relative generic quotient of X, by G¥ over X, and p defines a mero-
morphic map p, : X,—X,, with dim p=dim p, (cf. [19, Proposition 1]).
Let +r, : X,—F,:=F,/G(u) be a canonical meromorphic map associated
to the bundle g,|,, and the meromorphic structure group G*(u) (cf. 4.2).
Then dim p,=dim F, (cf. {19, 2.2]). Hence it suffices to show that dim F,,
=0, or +, is a constant map.

8. For this purpose we shall construct a commutative diagram

— 7
Lo
—————>h Y

14

4

e

where b is a fiber space of complex varieties and ¢ is a surjective mero-
morphic map such that if u € U ¢ induces a meromorphic map ¢, : X,—Z,
which is bimeromorphic to +,. In particular for general, and hence for
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all, x, e X, o(X,,,)=Z,,. In fact, once such a diagram is constructed,
we have only to show that dim 5=0 and this can be seen as follows. Let
@ : X*—Z be a holomorphic model of ¢ such that the resulting mero-
morphic map X*—X, is also holomorphic. Since for each x; € X, &5 :
X} —>Z, ., is surjective. Z,., is Moishezon as well as X}*. Further
since 0=q(X})=q(Z,,)=0 for general x, € X;, we get that q(b)=0.
Hence by Proposition 2.5 b is Moishezon. Then Z itself is Moishezon
since Y is. Therefore by our assumption dim Z=a(Z)=a(Y)=dim Y.
Thus dim 5=0 as was desired.

e. It remains to construct a diagram as above. For this purpose,
taking a flattening of 4 [28], we may assume that % is flat (though X, may
then be singular). Then for each y ¢ ¥ we can find a neighborhood y e N
and an analytic subvariety NC X, 5 such that p:=h|g : N—N is finite and

surjective, and is isomorphic if y ¢ U, and that NN X, ,EV. Take the
base change to N by g Then g : X,, X, 7— N has the canonical section s:

N—X, 5 with s(N)S V3. Then we can apply [19, Proposition 8] to gz:

Xy—X, 5, hy together with the sequences of subspaces (4, g, -+ +, Am,5)
and with the relative Kéhler class wy for gz which is the pull-back of @
by the natural map X, g—X;. Therefore we obtain a fiber space b(N ):

Z(N )—+N and a surjective meromorphic N-map ¢(N): Xz—Z(N) such
that b(N)p(N)=fy, and that for ii e y"(N N U) with u= u(@), (V') induces
a meromorphic map ¢;: X, =(X3)a—(Z()); which is bimeromorphic to
v, (f U is restricted smaller). Now we set M=U and S={y,},cx-

Then by Proposition 3.2, 1) there exist a fiber space b : Z—Y and a sur-
jective meromorphic Y-map ¢: X—Z (where X is over Y via Ag) such that
@ is bimeromorphic to ¢(V) for each N as above. In particular we get
hg=>bp. Then restricting U further we may assume that for ue U, ¢
induces a meromorphic map ¢,: X,—Z, which is bimeromorphic to .
Thus a desired commutative diagram is constructed.

L. It remains to show that the above W also satisfies the condition
2) for a suitable choice of (4, - - -, 4,,).

Let A, be the set of those proper analytic subvarieties of X which are
not contained in any other proper analytic subvariety of X and which are
mapped surjectively onto X;. Let A be the set of finite unions of elements
of 4,, We show that there exists a unique maximal element in 4. For
this purpose it suffices to show that for any infinite sequence 4, S 4, -

C ... of subspaces of X with 4, e 4, there exists a proper analytic subset
B with B2 A, for all . We set G(i)*=Aut} (X, A?), where A‘“——(A
A;). Then we have G(0O)*=Aut}, X,2--- 2G()*2G(+1D)*2- -
which must be stationary (cf. 4.2). Hence there exists an index j such
that G(j)*=G(j+1)¥*=---. Then take WS X asin y for A=A, De-
fine B to be the closure of (X—W)Ng~*(V)in X. Then B2 A, for all i.
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In fact, for general x, e X;, W,,N A4, ,, =@, for all i, since W,, is homo-
geneous with respect G(i), and 4, ., is left invariant by any element of
G(i),. Hence WEX—A4, and BDA,.

Let 4 ¢ A be the maximal element. Set G*=Aut% (X, 4). Let V&
X, WS X be the Zariski open subsets corresponding to G as in y (the case
where A,=4 and 4,=0,i>2). Then we claim that W=(X—A4)Ng (V).
In fact, by the same argument as above we have X— W2 4. On the
other hand, by the maximality of 4 both must coincide over V. Hence
W satisfies also the condition 2). g.e.d.

5.4. Propositions 5.1 and 5.2 are also true even if « is Moishezon
instead of being pro_]ectwe However here we shall be content with the
following:

Proposition 5.3. Let g: X—>X,, h: X,—Y be fiber spaces of compact
complex manifolds in €. Suppose that g is. Moishezon, q(g)=0 and a(X)
=a(Y). Then there exist Zariski open subsets UC Y and VZ X, with (V)
& U such that for any ue U, X, X,,,, are both smooth and g,: X,—X, , is
a holomorphic fiber bundle over V,, with typical fiber an almost homogeneous
unirational manifold. Moreover there exists a unique maximal analytic
subset M of X each irreducible component of which is mapped surjectively
onto X, by g.

We need a lemma.

Lemma 5.4. Letg: X—Y and g’': X'—Y be smooth fiber spaces of
complex manifolds. Let ¢: X—X' be a bimeromorphic Y-morphism such
that ¢,: X,—X is bimeromorphic for any ye Y. Then if g is a holo-
morphic fiber bundle, g’ also is a holomorphic fiber bundle.

Proof. We consider the following commutative diagram

@y "—'—> Rg*@X/Y -——) Rg*go*@‘yl/y

1, /'

@Y '—9 ng*@X,/Y

where ¢’ is the coboundary map in the long exact sequence obtained'by
applying Rg, to the short exact sequence

0 > Ox sy > Oy >8'*0y —> 0

and § is defined similarly for g; v is the natural map and g is induced by
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the natural sheaf homomorphism 0 ,,—¢*0y.,,,. Moreover by the spectral
sequence for the composite functor g, =gle, we see that v is isomorphic
since R'¢,0*0 5y =R'¢40x Q,,, O ,»=0. Since g is a holomorphic fiber
bundle, § is the zero map and hence &’ also is the zero map. By the de-
finition of ¢’ this implies that g, 0, —0, is surjective, which is equivalent
to the local triviality of g’ as is well-known. q.e.d.

Proof of Proposition 5.3, Using Chow lemma [28] we can find a pro-
jective fiber space §: X—X, of compact complex manifolds in ¥ and a
bimeromorphic X;-morphism ¢: ¥—X. Let USY and VE X be Zariski
open subsets such that Ag is smooth over U, g is smooth over V, ¢,: X—
X, is bimeromorphic for any v e ¥ and that the conclusion of Proposition
5.1 is true for (g, h). Then by Lemma 5.4 for any ue U, g,: X,—X, , i8
a holomorphic fiber bundle over ¥,. Let W< X be as in Proposition 5.2
applied to (g, 4) with U and V restricted if necessary. Let i'=X—W
and M’=q¢(M’). Let M be the union of those irreducible components of
M’ which are mapped surjectively onto X by g. Then from the minimality
property of W it follows immediately that M has the desired maximality
property. Finally let FE X, be the set of indeterminacy for ¢~'. Then
we have FN X, E M if we restrict U and V if necessary. Hence ¢,, ve V,
induces an isomorphism X, — M,~ X, — M,, so that X, — M, is homogene-
ous as well as X,— M, (cf. 1) of Proposition 5.2). X, is thus almost
homogeneous (cf. also [13, Remark 2.4.1)]). g.e.d.

We call M obtained in the above proposition the maximal transversal
analytic subset with respect to g.

§ 6. Quasi-hyperelliptic manifolds

In this section we study some basic properties of quasi-hyperelliptic
manifolds to be defined below.

6.1. - Definition. Let 7 be a complex torus and GSAutT be a
finite group. Let Y:=T/G be the quotient variety. Then Y is called
quasi-hyperelliptic if codim B>2 in T where B={t e T; G,+{e}}, G, being
the stabilizer of z. In this case we call Y=T/G an admissible representation
of Y. If B=@, Y is called a Ayperelliptic manifold. A compact complex
manifold which is bimeromorphic to a quasi-hyperelliptic manifold is said
to be bimeromorphically quasi-hyperelliptic.

Remark 6.1. A Kummer manifold X with a(X)=0 is bimero-
morphically quasi-hyperelliptic. This follows from the fact that a complex
torus T with a(T)=0 contains no divisor.
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Let Y be a quasi-hyperelliptic variety and Y=7/G an admissible re-
presentation of Y. Let S=Sing Y be the singular locus of ¥ and U:=Y
— 8. Let E be the affine space which is the universal covering of 7.

Lemma 6.1. There exists a unique group G of affine transformations
of E acting properly discontinuously on E such that Y=E|G and E—Y is
unramified over U. Moreover the pair (E, G) is determined uniquely by Y,
being independent of T and G. We have the natural group isomorphism
n(U)=G.

Proof. Let p: T—Y be the natural projection. Let U,:=p~(U) and
p: U—U, be the universal covering of U, Since codim(7T—U,)=2,
7 (U)=x(T). Hence there is a natural inclusion US E which fits into
the following commutative diagram

0§—U—U
Al Nl [l
E—>T —p—> Y.

Moreover U,— U is unramified; in fact an unramified Galois covering with
Galois group G. Therefore pu: U—U gives the universal covering of U.
Now consider 7,(U) as a group of biholomorphic automorphisms of U.
Since codim (E—0)>=2 and E=C", n=dim T, each element § ¢ z,(U)
extends uniquely to an automorphism § of E. We show that § is an
affine transformation of E. First note that we have the natural exact
sequence

e —> m,(U) —> =,(U) —2—> G—e.

For § € n,(U), let 6=2(5). Then it is well-known that the transformation
d, which is an automorphism of 7, is induced by an affine automorphism
of E which is defined uniquely up to translations by elements of the lattice
ACE defining T. Since A naturally identified with z(U,), from this
follows the desired assertion immediately. Let A(E) be the group of affine
transformations of E and G (resp. G) the subgroup of A(E) defined by
m,(U) (resp. z,(U))). Then G,S G and G/G =~G. Moreover E/G=(E|G)|G
=T/G. This shows the existence of G. Also the final assertion follows
from our construction.

Uniqueness. Let Ty, i=1, 2, be complex tori and GigAut T, finite
subgroups such that T,/G, are admissible representations for Y. Let T be
the normalization of any irreducible component of 7;X,7,. Then we
have finite coverings v,: 7— T, whose branch loci are codimensionz2 in
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T,. Thus T is also a complex torus and v, are unramified. Passing to a
suitable unramified covering of 7" we assume that 7— Y is Galois. Let G
be the Galois group. Then T/G also is an admissible representation of Y.
This reduces our problem to the case where there exists a normal sub-
group HC G, such that G,/H=G,. Then the uniqueness follows almost
immediately from the above construction.

Definition. Let Y be a quasi-hyperelliptic variety. Write ¥Y=E/G
as in the above lemma. Let G, be the normal subgroup of all the trans-
lations in G. Let T=E/G, and G=G/G,. Then we call T/G the canon-
ical representation of Y.

The abstract characterization of G, is also possible. This is essentially
due to Uchida-Yoshihara [42].

Lemma 6.2. G, is the unique maximal normal abelian subgroup of G.

Proof. See Proyosition 1 of [42]. In the proof of the proposition
the assumption that G acts freely on E is irrelevant as long as E/G is com-
pact.

Lemma 6.3. Let Y, i=1, 2, be quasi-hyperelliptic varieties with
admissible representations Y,=T,/G,. Then any bimeromorphic map g: Y,
— Y, is necessarily biholomorphic.

Proof. Suppose that g gives an isomorphism g’: U,— U, of Zariski
open subsets U,SY,, i=1, 2. Restricting U, we may assume that U, are
nonsingular. Let /,— U, be the universal coverings of U,. Then just as
in the proof of Lemma 6.1 there exist natural inclusions I, C E, of U, into
the universal covering spaces E, of T, such that any isomorphism g’: U,
—U, lifting g’ extends to an isomorphism g’ of E, onto E, It then
follows that g’ induces an isomorphism gj: Y;—Y, which extends g’.
Then g=gj. q.ed.

Let X be a bimeromorphically quasi-hyperelliptic manifold. Let ¥
be a quasi-hyperelliptic variety bimeromorphic to X. Then the above
lemma shows that Y is up to isomorphisms uniquely determined by X.
So, if Y=1T/G is the canonical representation of ¥, then we call 7/G the
canonical model of X.

6.2. We study the structure of the automorphism group of a bimero-
morphically quasi-hyperelliptic manifold. First we prove the following
general
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Proposition 6.4. Let f: X—Y be a finite covering of normal compaci
complex varieties. Let BC Y be an analytic subset such that f induces an
unramified covering X— A—Y— B, where A=f"'(B). Then there exist a
connected closed subgroup GZ Auty(X, A) and a surjective homomorphism
i G—Aut(Y, B) with finite kernel with respect to which f is (G, Aut(Y,
B))-equivariant.

Proof. For ge Aut Xlet I',S X X X be the graph of g and I", the
image of I',in YX Yvia fX f. Weset G={g e Aut (X, 4); fgf'(») con-
sists of a single point for every y e Y}. Then G is a complex Lie subgroup
of Aut (X, 4). (Itisclear that G is a subgroup. So we have only to show
that G is an analytic subset of Aut (X, 4) and this can be shown by a
standard argument which is left to the reader.) If g e G, then one verifies
readily that I", is the graph of a unique element g e Aut (¥, B) and the
map g— g defines a homomorphism +: G—Aut (Y, B) of Lie groups. The
kernel of + is contained in the covering transformation group of f, and
therefore is finite. We show that the image of +» contains Aut(Y, B). In
fact, then replacing G by the identity component of G we would obtain
the lemma. (Note that Ker « is finite.)

Now let U=X—A, and V=Y—B. Let p: U—U be the universal
covering of U. Then fp: U—V is the universal covering of V. Let 4 be
the covering transformation group of fp. Then every ge Aut V induces
an automorphism g, of 4 which is defined up to inner automorphisms of
4. Fixing such a g, we can find a lift §: U—U of g to Aut U such that
g(0u)=5,(8)g(u) forue Uandd e 4. Take now g from Auty(Y, B), con-
sidered naturally as an element of Aut V. Then g acts trivially on 4 so
that we can take as g, the identity automorphism of 4 so that g(6u)=
0Z(u). This implies that g descends to an element g of Aut U. Moreover
from ge Aut (Y, B), by considering locally at points of Y and using
Riemann extension theorem for holomorphic functions, it follows that
g e Aut(X, 4). Since g induces g, g belongs to G. Hence g=(g) € Im
as was desired. q.e.d.

Proposition 6.5. Let X be a bimeromorphically quasi-hyperelliptic
manifold and Y=T|G the canonical model of X. Then: 1) Aut,Y (resp.
Aut,X) is a complex torus. In particular if q(X)=0, then Aut,Y=Aut X
={e}. 2) BHol(X, Y)=Aut Y if BHol(X, Y)+@ where BHol(X, Y) is
the set of bimeromorphic morphisms of X onto Y.

Proof. 1) Let z: T— Y be the natural projection. Let U=Y—Sing Y
and W=g"'(U). Since W—U is an unramified covering, by Proposition
6.4 there exist a subtorus GS Aut,7= T and a surjective homomorphism
G—Aut, (Y, Sing Y). Thus Aut,Y=Aut(Y, Sing Y) is a complex torus.
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Next we consider Aut, X. Let L be the linear part of Aut,X, i.e., the
maximal connected linear algebraic subgroup of Aut,X (cf. [13][33]). Let
h: X—Y be a fixed bimeromorphic map. Then the formula ¢(b)=/hbh?,
b e L, defines a meromorphic map ¢: L—~BAut Y=Aut ¥ (Lemma 6.3)
where BAut Y denotes the set of bimeromorphic automorphisms of Y.
Further it is easy to see that ¢ is injective on some Zariski open subset on
which ¢ is defined. On the other hand, since each connected component
of Aut Y is a complex torus by what we have proved above, (L) must
reduce to a point. Thus L must reduce to the identity and Aut,X is a
complex torus (cf. [13] [33]).

2) Let BH=BHol (X, Y). Suppose that BH=~0, and fix 4, ¢ BH.
Then for any i e BH, we set y(h)=h-h;'e BAut Y. Since BAut Y=
Aut Y by Lemma 6.3 we have «»: BH—Aut Y. It is then immediate to
see that + is bijective. This shows 2).

6.3. Let T be a complex torus and GS Aut T a finite subgroup.
Fix the origin o e T and consider T as a complex Lie group. Then we
have the canonical decomposition Aut T=H(T)-T where H(T)=Aut (T,
{0}) (cf. [19]). According to this decomposition any element g € G can be
written uniquely in the form g(#)=A(g)t+b(g) where A(g) e H(T) and
b(g) e T. Let K, be the kernel of the endomorphism 4(g)—1I of T where
I'is the identity. Let K=(",.¢ K,. Let T, be the identity component of
K which is a subtorus of T. Let T=1T/T, and let n: T—T be the natural
homomorphism. Then the G-action on T induces the natural G-action
on T so that r is G-equivariant. Thus if we set Y:=7T/G and Y:=T/G,
then 7 induces a morphism z: Y—Y. We check readily that 7 is inde-
pendent of the choice of the origin o and depends only on T and G.
Thus 7 is associated with (7, G).

Let : Y—Alb Y be the Albanese map of Y. Since Y has only
quotient singularities, this can be defined (cf. Lemma 7.5 below). Let ¢:
T—Alb Y be the quotient map 7— Y composed with «.

Lemma 6.6. T is mapped isogenously onto Alb Y by ¢. In partic-
ular ¢q(Y)=0 and dim Y =dim Y—¢q(Y).

Proof. Let o’=¢(0), and consider o’ as the origin of the complex
Lie group A=Alb Y. Then 4 becomes a homomorphism of (7, 0) to (4,
0’). First note that I'(4, 2%)=I'(Y, 2%)=I'(T, 27)° where ( )¢ denotes
the set of G-invariants (cf. [43, Prop. 9.24]). Let G be the image of G in
H(T) by the natural projection Aut T—H(T). The action of G on
I'(T, 24)¢ factors through G. In particular I'(T, QL) =I"(T, 24)¢. Let
E be the tangent space of T at o and E* its dual space. Then we have
an isomorphism of transformation spaces (I'(T, 2%), G)=(E*, G). Let
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E, be the tangent space of 4 at o on which G acts trivially. Then 4., the
differential of A at o, induces a G-equivariant homomorphism (E, G)—
(E,, G), where the action of G on E is the dual action of G on E* and G
acts on E, trivially. Let E,=E® -Then A, induces an isomorphism of
E, and E, since dim E,=dim (E*)®=dim I'(4, £)=dim E,. (We have
a G-invariant direct sum decomposition E=E, @ E, for a subspace E,C F
and E, has no nontrivial subspace on which G acts trivially. Hence %.(E,)
={0} and A.(E,)=E,.) On the other hand, we have E,=") ec Ker(A(g),
—1I) where A(g),. is the differential at o of 4(g). So E, is the tangent
space of T, at o. It follows that T, is mapped isogenously onto 4. The
first assertion is proved. Thus if ¢(Y)>0, then we can find a holomorphic
1-form on a nonsingular model of ¥ which induces via # a holomorphic
1-form on Y which is not obtained from a holomorphic 1-form on 4.
This is a contradiction. Hence ¢q(Y)=0. Clearly dim Y =dim Y—dim T,
=dim Y—dim 4=dim Y—¢g(Y). q.e.d.

Remark 6.1. From the above lemma we obtain immediately the
following: The Albanese map a: Y—Alb Y is a holomorphic fiber bundle
with finite abelian structure group and with typical fiber a Kummier
variety. This result is due to Yoshihara [45] when Y is hyperelliptic.

6.4. Let Y be a quasi-hyperelliptic variety and Y= T/G the canonical
representation of Y. Then the map z: Y—Y associated with (7, G) (cf.
6.1) is called the co-Albanese map of Y. Clearly z depends only on Y.
By Lemma 6.6 (together with its proof) Y is a complex torus if and only
if dim Y=0.

Definition. Let f: X—Y be a fiber space of compact complex
varieties. Suppose that the general fiber of f'is quasi-hyperelliptic. Then
a relative co-Albanese map for fis a commutative diagram

X——>Y

A/

where g is a surjective meromorphic map and 4 is a fiber space, such that
for general y € Y, X, is quasi-hyperelliptic and the induced map g,: X,—
Z, is holomorphic and is the co-Albanese map for the hyperelliptic mani-
fold X,. We have ¢(h)=0 and dim A=dim f—g(f) by Lemma 6.6.

Proposition 6.7. Let f: X—Y be a fiber space of compact éomple_x
manifolds in €. Suppose that the general fiber of f is hyperelliptic. Then
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a relative co-Albanese map for f always exists and is unique up to bimero-
morphic equivalences.

The proof uses a diagram which will be given in a more general con-
text in the next two sections. To avoid repetition we therefore defer the
proof of the proposition till the end of Section 8.

§ 7. Kummer reduction and its relativization

In this section we shall prove Propositions 2.2 and 2.3.

7.1. Let X be a compact complex manifold with a(X)=0. Then in
analogy with the maximal irregularity ¢*(X) introduced by litaka (cf. [43])
we [define the following invariant g**(X) for X; g**(X):=sups q(X)
where X run through all the compact complex varieties which are finite
coverings (possibly ramified) of X. Since a(X)=a(X)=0 for any finite
covering X— X (cf. [43, 3.8]) we have by Proposition 1.2 g**(X)<dim X.
Thus we can always find a finite Galois covering X—X such that g**(X)

Using this notion we shall now prove the existence of Kummer re-
duction. :

Proposition 7.1. Let X be a compact complex manifold with a(X)=0.
Then a Kummer reduction of X exists. Moreover we have k(X)=qg**(X)
where k(X) is the Kummer dimension of X.

Proof. Take any finite Galois covering X’—X with Galois group G
such that g**(X)=¢(X’). Let r: X—X’ be an equivariant resolution of
X' [27] so that the action of G on X’ extends to X. Let ¢: X—X/G be
the resulting bimeromorphic map. G acts naturally on the Albanese map
@: X—>Alb X of X. Let B:=(Alb X)/G. Let 8: X—B be the composite
meromorphic map X 819 /G— B where the last morphism is induced by &.
We claim that 8 is a Kummer reduction of X. This would also show the
last assertion from our construction. For this purpose we first show that
the 8 constructed above is up to bimeromorphic equivalences independent
of the choice of X’ as above. So let X7, i=1, 2, be finite Galois coverings
of X with ¢(X7))=¢**(X). Take another Galois covering X} of X which
dominates both X7;
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Let G, be the Galois groups of X/—X, and X, equivariant resolutions of
X!, i=1,2,3. Then we have to compare the composite meromorphic
maps 8,: X—X,/G,—B,:=(Alb X)/G,. We have the commutative dia-
gram

X—> X,/G,—> B,

” l g l B(u;) I= 1, 2

X —> X,/G,—> B,

of meromorphic maps where #, and B(u,) are induced by u,. Now recall
that @,: X,—Alb X, are fiber spaces (Proposition 1.2) so that g8,: X,—B,
are meromorphic fiber spaces. Then since dim B,=dim B,, B(u;) must be
bimeromorphic. Hence 8, and B, are bimeromorphic as was desired.

Now we show that the above g is a Kummer reduction of X. Let
B’: X—B’ be any surjective meromorphic map with B’ a Kummer mani-
fold. Let B’ be bimeromorphic to 7//G’ where T’ is a complex torus and
G’ is a finite group. Passing to another bimeromorphic model of X we
may assume that X—B’—T"/G’ is a morphism. Let X, be an equivariant
resolution of an irreducible component of XX 7,6 T7. Let r’: X —T vbe
the natural morphism. Then r/ is factored by the Albanese map X,—
Alb X,. Take a Galois covering X of X with Galois group H and with
g(X")=¢**(X) which dominates the above irreducible component of
XX 1,6 T". We have thus the natural meromorphic map X’—X,, which
in turn induces a meromorphic map X’/H—X,/G’ and then (Alb X")/H—
(Alb X)/G’. Composing the last map with (Alb X))/G’'—T’/G’'—B’ we
get a meromorphic map y: (Alb X”)/H—B’ such that y3=p’ where B: X
—(Alb X")/H. Since 8 is a Kummer reduction of X by what we have
proved above, the assertion is proved.

Remark 7.1. It follows from k(X)=¢**(X) that k(X) is invariant
under finite coverings.

The advantage of considering Kummer reductions instead of Albanese
maps is mainly given by the following:

Proposition 7.2. Let f: X—Y be a ﬁbér space of compact complex
manifolds in € with a(X)=0. Then k(X)=k(Y)+q(f). In particular if
k(X)=k(Y), then q(f)=0.

Proof. Take a normal compact complex variety with a finite cover-
ing ¥— Y such that g(¥)=k(Y). Let X:=Xx,¥ and let f: XY be the
resulting fiber space. Since k(X)=k(X), k(¥)=k(Y) and the general fiber
of f is isomorphic to those of f, taking f instead of f we may assume from
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the beginning that £&(Y)=¢(Y). (For a singular variety Z we set k(Z)=
k(Z) for any nonsingular model Z of Z.) :

Let U be a Zariski open subset of ¥ over which f is smooth. Then
by Proposition 4.5. there exists a finite covering v: Y;—Y which is un-
ramified over U such that if X,:=XX,Y;, then ¢g(X)=¢(Y)+q(/).
Hence k(X)=q**(X) = q(X)=q(Y)+49(f)=k(Y)+q(f). q.ed.

We now turn to the relative case. For this we need some prelimi-
naries.

7.2. a) Let X be a compact complex manifold and D an analytic
subset of X. Then as a generalization of ¢**(X) we define a nonnegative
integer ¢ **(X, D) as follows; g**(X, D):=supz q(X) where X run through
all the compact complex varieties with a finite covering X—X which is
unramified over X—D.

b) Let X be a compact complex manifold with a(X)=0. Then by
Krasnov (cf. [10]) there exist only a finite number of reduced divisors
on X. The union D of all such divisors is called the maximal divisor on
X. By the purity of branch loci (cf. [9, 4.2]) we have ¢**(X)=g**(X, D).

Let f: X—Y be a fiber space of compact complex manifolds.
Suppose that a(X)=a(Y). Then there exist only a finite number of
reduced and irreducible divisors D, on X such that f(D)=Y. (See
Fischer-Forster [10].) Let D be the union of all such divisors. Then we
call D the relative maximal divisor with respect to f.

Lemma 7.3. Let f: X—Y be a fiber space of compact complex mani-
folds in 4. Suppose that a(f)=0 so that in particular a(X)=a(Y). Let
DCX be the relative maximal divisor with respect to f. Then for ‘general’
ye Y, a(X,)=0 and D, is the maximal divisor of X,.

Proof. Let Ny={ye U; a(X,)=0}. Then by [18, Proposition 3] (cf.
2.1), N, e Q(Y). Let UZY be a Zariski open subset over which f is
smooth. Let Div X;;/U be the space of relative divisors on X over ¥ and
Div-X/Y the (analytic) closure of Div X,;/U in Dy, 2Dy, (cf. [18]). Let
{Dg}se 5 be the set of those irreducible components Dj of (Div™X/Y),e (the
underlying reduced subspace) such that the natural maps ¢,: D,—7Y are
not surjective. Since ¢, is proper, D;=¢,(D,) is an analytic subset of Y.
Let N,=Y—\J,D, and N=N,N\N,. Then NeQ(Y). Therefore the
lemma follows if we show that when y € N, D, ., is the maximal divisor
of X,. For ye N, let D(y) be the maximal divisor of X,. Let D, be an
irreducible component of (Div~X/Y),.q containing the point d(y) € Dy ,=
Dy v, corresponding to D(y). Since y € N,, ¢,: D,~Y is surjective. Let
Z,—D, be the universal family restricted to D, and z,: Z,— X the natural
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map. Then E,=z.(Z,) is easily seen to be a divisor on X which is mapped
surjectively onto Y. Hence by the maximality of D, E,=D. Therefore
D(WEE, D, . Thus D, ..s=D(y) as was desired. g.e.d.

¢) Letf: X—Y be a fiber space of compact complex manifolds and
DZ X a reduced divisor. Then we say that D is of relative normal cross-
ings at x ¢ X (with respect to f) if there exist local coordinates x;, - - -, x,,,
Xmet> **» Xmaen Of X at x and local coordinates y,, - - -, y, of ¥ around
f(x) such that locally at x fis defined by f(x,, -+, Xpon)=FKnsts * * *sXmsn)
and D is defined by x;- - -x,=0 for some 1<k<m where dim X=m-+n
and dim Y=n.

We call D is of relative normal crossings over some open subset UC Y
if D is of relative normal crossings at each point of X,;. Thus in this case
1) D, is a divisor with only normal crossings in X, for y ¢ U, 2) f: (X, D)
—> Y is analytically locally trivial at each point of X, and 3) X, —D,—U
is’a’C=-fiber bundle over U.

Lemma 7.4. Let f: X—Y be a fiber space of compact complex mani-
folds with a(X)=a(Y). Then there exists a bimeromorphic model f*: X*
—Y of f such that the relative maximal divisor DS X* with respect to f* is
of relative normal crossings over some Zariski open subset UZ Y.

Proof. Let DS X be the relative maximal divisor with respect to f.
By Hironaka [27] there exists a proper bimeromorphic morphism 4: X*—
X such that D*=f-%(D) is a divisor with only normal crossings in X*.
Then D* is of relative normal crossings over some Zariski open subset
UCY. (cf. [7, 6.15]). It is clear that D* is the relative maximal divisor
with respect to f*. q.e.d.

e) Moreover we need the following:

Lemma 7.5. Let f: X—V be a fiber space of complex manifolds with
X, e ¥ forany ye V. Suppose that X has only quotient singularities and
that there exists a resolution r: X—X such that fr: X—V is smooth. Then
the relative Albanese map a=az,,: X—Alb XV for fr (cf. [18]) factors
through X. Moreover the resulting V-morphism ay,,: X—Alb XV is inde-
pendent of the chosen resolution r.

Proof. We show that @:=a3,, is constant on each fiber of . This
would imply the lemma since X is normal. Let x be any point of X.
Take a neighborhood U of x and a finite covering p: V'—U with ¥ smooth.
Let U=r-'(U) and V=Vx,U. Let p: V—U and 7: ¥—V be the natural
projections. Let 2,: ¥;—V be a proper bimeromorphic morphism such
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that ¥, is nonsingular and 2=7-'4,: ¥,—¥ is holomorphic (cf. [27]). Then
apa: V,—Alb X/V factors through V (cf. the proof of [15, Proposition])
and hence there exists a F~morphism 8: V—>Alb X7V such that af= BF:

~ A
Vi——>

<

7
—

P p

<
J<—

0—U.
r

In view of the finiteness of § and the connectedness of the fibers of r, it

follows readily that & is constant on each fiber of r|z. Since x was arbi-

trary, this shows the lemma, the final assertion being clear.

In the situation of the above lemma we shall denote Alb X/¥ by
Alb X/V and call ay,,: X—Alb X/V the relative Albanese map for f.

7.3. We now turn to the construction of a relative Kummer reduc-
tion.. We first give a local construction along the general fiber.

Let f: X—Y be a fiber space of compact complex manifolds in .
Suppose that a(f)=0. Let DC X be the relative maximal divisor with
respect to f. We assume that there exists a Zariski open subset US Y
such that f;,: X;— U are smooth and that D is of relative normal crossings
over U. This can always be realized after passing to a suitable bimero-
morphic model (Lemma 6.4). Let W:=X-—D. Take any contractible
open subset VS U. Then we have the natural isomorphism b, : z,(W;) =
n,(W,) forany ye V. Let G be any subgroup of =,(W;) of finite index.
Corresponding to G we have a finite unramified covering v: W,— W,
which induces by restriction the unramified covering v,: Wy—» W, cor-
responding to b (G) S, (W,).

Let g,: X,—X, be the finite covering with X, normal which com-
pletes v; there exists a natural inclusion W, S X, such that p|W,=v.
Then G acts naturally on X, and we have X, =X,/G. On the other hand,
since (X, D)|,—V is locally a product at each point of X, the same is
true for the induced morphism f, = oty X,—V. Therefore we can find
by [27] an equivariant resolution r: Z,—X, such that the resulting
morphism g, =f,r: Z,—V is smooth.

Moreover since D has only normal crossings on X, X, has only
quotient singularities (cf. Raynaud [37]). Hence by Lemma 7.5 we have
the relative Albanese map &, : X,—A4,:=AlIb(X,/V) associated to f,.
Moreover we get a natural biholomorphic action of G on 4, making &,
G-equivariant. Hence we get a V-morphism ¢, : X, = X,/G—4,/G. Thus
we get the following commutative diagram
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(5) x,—% 5 1,/G

Lemma 7.6. Set q(f,)=q(g,). Then for each V as above we can find
a subgroup GSr (W) such that g**(X,, D,)=q(fy) for any ye V.

Proof. Since p,,,: X,—X, is unramified over W, and ¢(f,)=¢(X,),
we get sup, q(f,)<gq**(X,, D,) for any y e ¥V where G runs through all
the subgroups of z;(W;) of finite index. On the other hand, for any y e
V, take an arbitrary finite covering p/: X7— X, which is finitely unramified
over W,. Let G,Sx,(W,) be the subgroup corresponding to the covering
©(W,)—W,. Then if we make the above construction starting from
G=b,%(G,), we see readily that y, , is bimeromorphic to y,. Since z, was
arbitrary, it follows that ¢**(X,, D,)<supsq( 7). Hence the equality
must hold here. Since y was arbitrary, if we take y with a(X,)=0 then
g**(X,, D,)=¢g**(X,)<dim X,. Hence sup is attained for some G as
was desired. , q.e.d.

Remark 7.2. It follows that g**(X,, D,) is independent of y ¢ ¥ and
hence of y e U.

We call the diagram (5) admissible if G is chosen as in Lemma 7.6.

Proof of Proposition 2.3. Let UZY be a Zariski open subset over
which f is smooth. We shall apply Proposition 3.2. Let M={ye U;
a(X,)=0}. Then M e Q(Y) (cf. 2.1). Let 4,: X,—B, be the Kummer
reduction of X, (Proposition 7.1). Set ©={yr,},c,. The existence of the
admissible diagram (5) (Lemma 7.6) then shows that for any y ¢ U there
exists a neighborhood y e ¥ such that f, is very good with respect to &,
in the sense of 3.2. Then by Proposition 3.2, 2) there exist a fiber space
B—Y and a meromorphic Y-map ¢: X— B such that for any V as above
&y is bimeromorphic to the ¢,: X—4,/G in the admissible diagram (5).
Let N be a subset of U with N e Q(Y) such that if y e N, then a(X,)=0,
D, is the maximal divisor of X, and ¢ defines a meromorphic map ¢,:
X,—B, (cf. Lemma 7.3 and {12, Lemma 5.5]). Then from the proof of
Proposition 7.1 we see that ¢, , for any y € ¥ N is bimeromorphic to a
Kummer reduction of X, and hence so is ¢, even for any y e N. q.e.d.
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§ 8. Fiber spaces with a(f)=0 and k(f)=dim f-

Using the local construction obtained in the previous section we shall
study more closely the structure of a fiber space with a(f)=0 and k(f)=
dim f; i.e., the general fiber is a Kummer manifold of algebraic dimension
zero.

8.1. First we note the following:

‘ Lemma 8.1. Let X be a Kummer manifold with a(X)=0. Let D be
the maximal divisor of X and V=X—D. Then the fundamental group
(V) has a unique maximal abelian normal subgroup.

Proof. let Y:=T/G be the canonical model of X and ¢: X—>Y a
bimeromorphic map. Let U=Y—Sing Y. Suppose that ¢ gives an iso-
morphism of Zariski open subsets ¥,V and U,C U so that (V)=
,(U;). Then since codim (V—V,)=2 and codim (U—U,)=2, we have
(VM) =2r(V)=r(U)=r,(U). Then the lemma follows from Lemma 6.2.

Let f: X—Y be a fiber space of compact complex manifolds in ¥
with a(f)=0. Let DZ X be the relative maximal divisor with respect to
f. Let UZS Y be a Zariski open subset over which fis smooth and D is of
relative normal crossings. We assume that U=@. Now suppose that
k(f)=dim f. Then for any contractible open subset VS U we have the
canonical choice of G in Lemma 7.6. Namely, in the notation of 7.3
since n(W,)=x,(W,) for any ye V, taking y from VNN where N is
chosen as in 7.3 (just after Remark 7.2 ) we see that there exists a unique
maximal normal abelian subgroup G, of z,(#;) by Lemma 8.1. Then for
y e VNN the map 7,: Z, ,—X, is bimeromorphic to the quotient map T,
—T,/G where T,/G, is the canonical model of X, (cf. the proof of Lemma
8.1). Thus G, may serve as G as above. Note that in this case ¢, is
bimeromorphic in (5) since ¢, is bimeromorphic for y e VN N. In this
case we call the diagram (5) canonically associated to f,.

Lemma 8.2. X, is bimeromorphically quasi-hyperelliptic for any y e U
and if (5) is canonically associated to f,, 4,/G, is the canonical model of X,
where A,=(4y),.

Proof. Let G, be any subgroup of G. Let F, be the set of fixed
points of G,. By Lemma 8.3 below F, is smooth over V. Then since
codim F, ,>2 in 4, if y € ¥ N, the same is true for all y e V. Since G,
was arbitrary and X, is bimeromorphic to 4,/G,, X, is bimeromorphically
quasi-hyperelliptic. Since G, is the maximal normal abelian subgroup of

m,(W,) for any y e V, this also shows the final assertion (cf. Lemma 6.3).
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Lemma 8.3. Let f: X—V be a smooth fiber space of complex mani-
folds and GS Aut(X/V) a finite subgroup. Let F be the set of fixed points
of Gon X. Then F is smooth over V.

Proof. 1t is well-known that F is nonsingular. Let x ¢ Fand v=
f(x). Let T, (resp. Ty) be the tangent space of X (resp. F) at x and T,
the tangent space of ¥ at v. Let f,.: Ty— T, be the differential of f at x.
Since f'is smooth, f is surjective. On the other hand, we get a G-equi-
variant direct sum decomposition Ty =T, @ E where E has no nontrivial
subspace on which G acts trivially. Since fis G-equivariant, E is mapped
to zero by f,. Hence f,|,,: Tz— T} is surjective, which implies that F is
smooth over V.

8.2. Using the description above we now associate to f: X—Y in
8.1 a variation of real Hodge structure of weight 1 parametrized by U,
and hence is a period map defined on U.

Lemma 84. Let f: X—Y and U—Y be as in 8.1. Then there exists
a variation (U, H, F?) of real Hodge structure of weight 1 parametrized by
U such that 1) He,,=HYY,, C) where T,|G, is the canonical model of X,
and 2) F*=H"T)S Hy,,. '

Proof. 1In the notation of [38, p. 220] (cf. 3.1): 1) M=U, 2) the
local system Hg, K=Z, R, C, is given by Hg ,:=H'T,, K), 3) k=1, 4)
a flat nondegenerate bilinear form S on Hy will be deﬁned below, 5) the
Hodge subbundle F' of Hy is given by F;=H"(T,) as above. (F'=H,,
F?={0}.) We shall now define S. Fix once and for all a compact Kahler
manifold Z with a Kéhler form w and a surjective morphism g,: Z—X.
Set g=fg,: Z—Y. Fix a Zariski open subset VC Y such that VC U and
g is smooth over V. Take a locally finite open covering {¥} of V' with
V, contractible. Let

X, —2 5 Alb(%/U)="T,

(5) x,— 5 16,

£

be the diagram (5) with f,=f, which is canonically associated to f, where
X;:=X,, and f,=f,, etc. and where &, and ¢, are bimeromorphic. Then
we have T,=T,, for ye V,. Set Z;:=Z;,=g;(X)=g"'(V)) and Z,=
Z, X x;X Fix a resolution r,: Z,—Z,. Define the composite maps g,
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7 by by 22 232,58V, 7 232,52, and b 2,52, % 5T,
Take a Zariski open subset V;Z ¥V, such that g, is smooth over V, and
that z, ,: Z, ,—Z,, is a resolution of Z, , for each u ¢ V7.

Now let ue Y. Suppose that ue V; For each ¢,, ¥, € Hy,=

HYT,, B) we define Spu b=, GEFABLp AT where @,,—
2

.0, (0,=0|,,) and m=dim Z, , and where ¢, and +, are identified
with closed C> 1-forms which represent ¢, and 4,. Since z,, and b,
factor through Z =2y X xuf'u, S, actually is independent of the choice
of the resolution r, and of the choice of 1 with u ¢ 7}, depending only on
u. Since @,, is the pull-back of the Kéhler form w, by the generically
finite surjective morphism Z, ,—Z,, it is immediate to see that S, is non-
degenerate and the triple O(u)=(Hp,,, F3, S,) defines a (real) polarized
Hodge structure of weight 1. This is our definition of S. In fact, since
B. (resp. 2)) is smooth over V, (resp. V%) where §,: T,—T,/G,—V,, Hy is
really a local system on U, F! is a holomorphic subbundle of H; on U
and S is a flat quadratic form on Hp defined over V’:= L;l vV which is

dense in U. Then as in 4.1 a) S extends to a unique flat quadratic form
on Hy over U. Thus the above data 1)-5) actually gives a variation of
Hodge structure of weight 1 parametrized by U. q.e.d.

8.3. Using the period map of Lemma 8.4 we give a condition for
bimeromorphic ‘quasi-triviality’ of a fiber space f with a(f)=0 and k(f)
=dim f. 'We need the following:

Lemma 8.5. Let T be a complex torus with a(T)=0. Let V be a
complex manifold and X=TX V. Let p: X—V be the natural projection.
Let GSAut (X/V) be a finite subgroup. Let Y=X|G and f: Y—V the
induced morphism. Then f is locally trivial.

Proof. Fixing the origin o e T we consider T as a complex Lie
group. First we show that £ is locally a product at each point y ¢ Y. We
have the semi-direct decomposition Aut T=T-H(T) where H(T) is the
group of automorphisms of T as a complex Lie group (cf. [19]). As we
have noted in [19], the H(T)-part of g € G is independent of v. Namely
we can write each g € G in the form

g)=A(g)t+b(g)(v), teT

where b(g) is a T-valued holomorphic function on ¥ and A(g) is independ-
ent of v. Fix y e Y and set v=f(y). Then choose any x=(¢, v) € z7'()
where n: X—Y is the natural projection. Let G, be the stabilizer of G at
x and F, the set of fixed points of G,. Since F, is smooth over ¥ by
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Lemma 8.3, we can take a holomorphic section s: V—F with s(v)=x
locally at v. Then after changing the zero section of p from §(v)=/(o, v)
to s(v), for any g ¢ G, g takes the form ¢ A4(g)¢ which is independent of
v. Thus (7, y)=(X, x)/G, is locally trivial over (V, v), as was desired.

Let F be the set of those points of X which are fixed by some ele-
ments of G. Let U=X-—F and W=Y—Sing Y. Since a(T)=0, codim F
=2 in X. Hence Sing Y=n(F) and r induces an unramified covering
U—W. Now since the family is locally trivial on Y, we get a short exact
sequence of @,-modules

0—> 0y, —> 0, —>f*6, —> 0

which splits locally where @, (resp. O,,) is the sheaf of germs of holo-
morphic vector fields on Y (resp. which are tangent to the fibers of f) and
0, is defined similarly. We also get a similar exact sequence from the
product family p: X—V. From these, we obtain the following diagram
of exact sequences

.0y —> 0, > R, 6,
2.0y —> 06, LN R'p,BOy .

Clearly g is the zero map. We show that p also is the zero map. We
consider the following diagram

R £,0y,y —> R(f|w)xOwiw

0y

o -
R'pOxw __r) R'(p| U)*@U/V

where r and 7 are the restriction maps. Since Y is normal, codim (Sing Y)
>2 and depth ®,>2, and hence, depth @,,,>2. Hence r is injective.
Since # is unramified on U, we have R(p|)yOpr=R'(P|0)+7¥Op )=
R(f1m)s(Ow,r @ 7, 0y). On the other hand, the natural map R'(f],)4Ow,»
—R(f1)5xOn/r Doy, w40y is injective since @ is naturally a direct
summand of 7,0,. Hence we have an injective map v: R'(fly)sOwp—
R(p|)4Oy,r. Then it is easy to see that vrp=Fg. Since § is the zero
map and v and r are injective, p is the zero map. Thus f,,0,—0), is sur-
jective. Hence there is a holomorphic vector field on Y in a neighbor-
hood of each fiber Y, which is mapped to a nonvanishing vector field on
V. Integrating such a vector field we obtain a desired local isomorphism.
q.ed.
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Proposition 8.6. Let f: X—Y be a fiber space of compact complex
manifolds in € with a(f)=0 and k(f)=dim f. Suppose that a(Y)=q(f)
=0. Then there exist a finite covering h: Y—Y and a Kummer mamfold
F with a(F) q(F)=0 such that XX Y is bzmeromorphzc over ¥ to the

product ¥ X F.

Proof. Let UZ Y be a Zariski open subset over which f is smooth.
By Lemma 7.4 passing to another bimeromorphic model and restriction to
U we may assume that the relative maximal divisor with respect f is of
relative normal crossings over U. By Lemma 8.2 X, is bimeromorphically
quasi-hyperelliptic for ye U. Let T,/G, be the canonical model of X,.
Then we show that the isomorphism class of T, is independent of y.- Let
(U, H,, F?) be the variation of real Hodge structure of weight 1 para-
metrized by U defined in Lemma 8.4. Let @: U—D/I" be the associated
period map. Since D is isomorphic to the Siegel upper half space and
a(Y)=0, by Proposition 4.1 @ must be a constant map. This implies that
the moduli of T, is constant as was desired. We now consider the dia-
gram (5),. Let u,: G,—~Aut(T)), be the restriction map and G, ,:=u,(G)).
Since 8,: T,—U, is locally trivial by what we have proved above (cf. [11])
t, also is locally trivial by Lemma 8.5. Therefore if we set F,:=(T,/G),
=T,.,/G,. which is independent of 1, then F=F, is up to isomorphisms
independent of ue U. For each ue U, ¢,,: X,—F e BHol(X,, F) (cf.
Proposition 6.5). In particular BHol(X,, F);&Qf Let X'= F><Y with
the natural projection X’—Y¥. Then for u ¢ U we have BHol(X,, X/)=
BHol(X,, F)=0. Moreover by Proposition 6.5, 2) BHol(X,,, F)=Aut F.
Since g(F)=¢q(X,)=0 by our assumption, from Proposition 6.5, 1) it
follows that Aut F is a discrete group. Hence BHol(X,, X7) is discrete.
Thus by 2) of Proposition 9 of [19] there exists a finite covering ¥Y—Y
such that XX, ¥ and X’ x ,¥=Fx ¥ is bimeromorphic over ¥. q.e.d.

8.4. Proof of Proposition 6.7. Let US Y be a Zariski open subset
over which fis smooth. For any contractible open subset VE U we con-
sider the diagram (5) which is canonically associated to f. Since X, are
hyperelliptic for y e U, &, is isomorphic in our case. Restricting V" assume
that there is a holomorphic section s: V—A4, so that 4, is considered as
a complex Lie group with s(¥) the identity section. We have the natural
semidirect product decomposition Aut(4,/V)=H(4,/V)-T'(V, A,) where
H(A,/V)={g € Aut(4,/V); g(s(v))=s(v) for all ve V} (cf. [19]). Let H:
Aut(4,/V)—H(A,/V) be the natural projection. Let T, , be the con-
nected component of the identity section of the subspace (), (4,(g)—1)
where I denotes the identity. Then T, , is a complex Lie subgroup of T,
over ¥ which is smooth over V. Let n,: T,—Ty:=T,/T, , be the relative
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(geometric) quotient of T, with respect to T, ,. There exists a natural
G-action on T, which makes 7, equivariant. Hence we have a V-morphism
7yt Xy—Y,:=T,/G. From our construction it is clear that 7, ,: X, ,—
Y, . is the co-Albanese map for X, .

The rest of the proof is essentially the same as that of 2) of Proposi-
tion 3.2 except that here we use the relative Barlet space By, (cf. [12,
3.2]) instead of the relative Douady space. In fact, because of the
normality of ¥ and of the equidimensionality of the fibers of 7z, we get a
'V-morphism j,: Y,—>By,,, =By, |y induced by the universality of By,
(cf. [2, Theorem 1, p. 38]). Then j, is actually injective onto some irre-
ducible component, say Z;, of By, and moreover there exist a unique
irreducible component Z of By, and a meromorphic Y-map g’: X—Z’
which is holomorphic over U such that Z'|,=Z% and g,: X,—Z} is
bimeromorphic to 7, for any ¥ as above (cf. the proof of Proposition
3.2). Letn: Z—Z’ be the normalization of Z’. Then it is easy to see
that g:=n"'g’: X—Z is the desired co-Albanse map for f.

§9. Proof of Theorem 1

9.1. Before the proof we give two important propositions of inde-
pendent interest. The first one concerns the structure of a (holomorphic)
algebraic reduction f: X— Y whose general fiber is a certain type of com-
plex torus. We begin with making this last point precise.

Let T be a complex torus. Then we say that T is obtained by a
successive extension of abelian varieties if there exists a sequence of subtori
T.cT,&..-CT,=Tsuch that T,/T,_,, 1<i<m, are all abelian varieties
where T;/T,=1T,. It is immediate to see that in this case any subtorus or
any quotient torus of T has again the same property.

On the other hand, we note the following. Let Z be a subvariety of
a complex tours 7. Let Aut(T, Z)={ge Aut T; g(Z)=Z}. Then x(Z)
+dim Aut(7, Z)=dim Z. = This is due to Ueno (cf. [43, 10.9]).

Proposition 9.1. Let f1 X—Y be a fiber space of compact complex
manifolds in €, which is an algebraic reduction of X. Suppose that dim f
>0 and that each smooth fiber is a complex torus which is obtained by a
successive extension of abelian varieties. Then there exists no proper
analytic subvariety of ZS X with f(Z)=7Y.

Proof. Let ZC X be a subvariety. Supposing that f(Z)=Y we shall
derive a contradiction. Let Z—Z be the normalization of Z and (Z—7Y,
¥— ) be the Stein factorization of the induced map Z—Y. Then con-
sidering instead of f (resp. Z) the base change 7 of f to ¥ followed by a
resolution (resp. a suitable irreducible component of Zx . ¥), to derive
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contradiction, we may assume that the general fiber of Z—> Y is irreducible.
Let U be a Zariski open subset over which f is smooth and f|, is flat.
Let Aut} (X, Z)S AutfX be the unique irreducible component of Aut¥
(X, Z) which contains the identity section of Aut,(Xy, Z,)—U (cf. 5.2).
Let ye U. Then since X, is a complex torus, Aut}(X, Z), = Aut(X,, Z,)
and further Aut¥ (X, Z),=Aut(X,, Z,). Hence Autf (X, Z) is a com-
plex torus. Therefore if (p: X—X, f: X—Y) is a relative generic quotient
of X by Aut¥ (X, Z) over Y (cf. 5.2), ¢,: Xy— X, is actually a geometric
quotient (cf. [19, Proposition 1}). In particular f;;: X,—s U is smooth and
any of its fiber is'again a complex torus which is obtained by a successive
extension of abelian varieties. Since Z=X, dim f>0. Let Z be the
image of Z in X. Then Z, are of general type for all y € U by the remark
preceding the proposition. This implies that f|;: Z—Y is Moishezon.
Then Z is Moishezon as well as Y. Hence we have a subvariety Z/CZ
such that f|;, : Z’— Y is generically finite and surjective. Let (z: X—X7,
h: X'—Y) be a relative algebraic reduction of /. Then g is holomorphic
over some Zariski open subset of ¥ and the general fiber of / is an abelian
variety. '(An algebraic reduction of a complex torus is given by a quotient
by some subtorus.) Thus g(Z’) gives a meromorphic multi-section to 4.
Then by [18, Proposition 6] # is a Moishezon morphism and so X’ is
Moishezon as well as Y. Since 7 is an algebraic reduction of X, this im-
plies that dim 2=0. This contradicts the fact that each smooth fiber X,
of f is obtained by a successive extension of abelian varieties and hence
a(f)=a(X,)>0. g.e.d.

9.2. For the next proposition we need the following:

Lemma 9.2. Let X be a compact complex manifold on which a linear
algebraic group G acts biholomorphically and meromorphically (cf. [13]).
Suppose that X is almost homogeneous with respect to G so that G has a
Zariski open orbit USX. Let D=X—U. Then q**(X, D)=0.

Proof. Since the identity component of G also acts homogeneously’
on U, we may assume that G is connected. Let z: X—X be any finite
covering which is unramified over U. Then by Proposition 6.4 there exists
a connected linear algebraic group G acting biholomorphically and mero-
morphically on X with open orbit =7z-'(U). Hence X is unirational
and therefore g(X)=0. Since x can be chosen arbitrarily, g**(X, D)=0.

g.e.d.

Proposition 9.3. Let {1 X—Y be a fiber space of compact complex
manifolds in €. Let f=F.f.f, be a decomposition of f into three fiber spaces
fi: X=X, f;: X,—X,, fi: X,—Y of compact complex manifolds in €.
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Suppose that f, is a relative algebraic reduction of fi,:=f,f,. Suppose further
that a(X)=a(Y) and q(f,)=0. Then a(f)=0.

Proof. Assuming that a(f;) >0 we shall derive a contradiction. Let
=1 X—X], f’: X{—X,, be a relative algebraic reduction of f.
Then to derive a contradiction by replacing f=f.f.f. by f":=f.1.f]" we
may assume that f; is locally Moishezon since also for f"=f,f,f;’ the con-
ditions of the proposition are still verified and a(f))>0. Suppose first that
q(f)=0. Then f is Moishezon by Proposition 2.5. On the other hand,
since ¢(f;) =0 by assumption f; also is Moishezon by the same proposition.
Then f,, is Moishezon, contradicting our assumption that f, is a relative
algebraic reduction of f;, and that dim f;>>0. So we may assume that
q(f)>0. Take Zariski open subsets UC X,, WCE X, with f(W)Z U such
that £}, ;2 Xp—U, fop: Xi,p;—U and f, : Xp—W are all smooth. Then
by Proposition 4.1 and Proposition 4.5 (restricting U and W if necessary)
for each u € U there exists a finite covering v,: X, ,—X, , which is un-
ramified over W, such that if we put X,=X, X z X, , and define 7, ,: X,
—X, ., by the natural projection, then we get ¢(X,)=¢(X, )+ q(fi..)-
On the other hand, since we may assume that f, is projective by passing
to a suitable bimeromorphic model, and since a(X,)=a(Y) and ¢(f;)=0,
we can apply Proposition 5.2 to f,;=f,f,: X,—>X,—Y. In particular after
an eventual restriction of U there exists a Zariski open subset W,< X, with
[{(W)ZS U such that W, & W and W, , is homogeneous with respect to a
linear algebraic subgroup G, of Aut X, ,. Thus, W, ,:=v; (W, )—>W,.,
being unramified, by Lemma 9.2 ¢(X; ,)=0. Hence we get ¢(X,)=¢(f:..)
>0. For we W, let &,: X;—Alb X, be the Albanese map for X,=
fikow) and let &,: X,—~Alb X, be the Albanese map for X,. Then we
have the unique affine map g8: Alb X;—Alb X, with &,|%;=pa,. The
above equality then implies that § is isogenous (cf. the proof of Propo-
sition 4.6). Then since X, is Moishezon, Alb X, and hence Alb X, also,
is an abelian variety. Now we take ue U ‘general’ in such a way that
fiu: X,—X,, is an algebraic reduction of X,, which is possible since f; is
an algebraic reduction of f;,, Then £, , is again an algebraic reduction of
X, since a(X,)=a(X,). This is a contradiction since &, is not factored
by f1.., and Alb X, is an abelian variety of positive dimension.  q.e.d.

9.3. The universal property of the diagram (3) mentioned in Section
2 is given by the following:

Proposition 9.4. The diagram (3) is characterized by the following
universal property. For any fiber space f*: X*—Y bimeromorphic to f
and for any decomposition f* =h*g* of f* into two fiber spaces g*: X*—
X%, h*: X'*—Y with a(g*)=0, there exists a unique meromorphic map
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u: X'* X' such that g=ug*p and h=h*u, where ¢: X—X* is a fixed
bimeromorphic map.

Proof. We use the notation of 2.2. We first see that dim(X,..)=0
for general x’* ¢ X’* where X, is the fiber of the meromorphic map g*¢p:
X—X’"*. In fact, otherwise, in (2) let i be the smallest index such that
dim f; (X,..) >0 for general x ¥ ¢ X’*. Since by our choice of i for any
x'* f{X,.) is contained in a fiber of X,—X,_, so that f(X,..) is Moishezon.
On the other hand, since a(g*)=0, a(f(X,..))=0 for ‘general’ x'* ¢ X%,
This is a contradiction. Thus dim g(X,..)=0. It follows then readily
that g induces a unique meromorphic map u: X’*—X’. It is immediate
to see that u has the desired commutativity property. g.e.d.

9.4. Proof of Theorem 1. We shall construct a diagram of mero-
morphic fiber spaces which is bimeromorphic to (3) in Section 1 and which
satisfies the conclusion of Theorem 1. First we shall construct a com-
mutative diagram

X S f >Y
( 6) 9’\1\\ Pa 1 ”
A, —rh—)Az 7—>A1————9Y

r 2 n

of compact complex manifolds in & satisfying the following properties:
For any 1<k<r 1), the general fiber of the composite morphism y, =1z,
-« .yt A,— Y is a complex torus which is obtained by a successive exten-
sion of abelian varieties, and 2), ¢,: X—4, is a fiber space. (Here X may
be replaced by a suitable bimeromorphic model of it.) We proceed induc-
tively. So suppose that we have already constructed ¢,: X—4,, ;: 4,—
A,_, for 0<i<k—1 for some k>0 satisfying 1),, 2), for 1<i<k—1,
where we set p,=f, 4;=A_,=7Y and 5,=id,. Then if a-g(p,_,)=0, we
set k— 1=r, and if a-q(p,_,)>0, we define (p,: X—4,, 5,: 4,—~A4,_,) to
be the relative algebraic Albanese map for ¢,_, where we assume that ¢,
is holomorphic by passing to another bimeromorphic model of X if
necessary. We need to show the following:

Claim. 1), and 2), are true for 3, and ¢, defined above.

Admitting the claim for the moment, and hence that the construction
of (6) is already done, let (g;: X—X,, a: X,—A4,) be the relative algebraic
reduction for the fiber space ¢,: X—4,. We assume that g, is holomorphic
as above. Set A=A, p=¢, and y=y,---7,. Then we get the following
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commutative diagram of fiber spaces

X———f—>Y

(7) gx\\ /r

X,—>'4-
a

We have g(e)=a-q(¢)=0. Hence « is Moishezon by Proposition 2.5.
Now we turn to

Proof of Claim. The claim obviously follows from a) and b) below.

a) We show that 2), is true assuming that 1), (and 2),_,) are true.

Surjectivity of ¢,,: X—A,. Let X,:=¢,(X). Suppose that X, C 4,.
We then show that #(X,/Y)>0, which would contradict the fact that X,
— Y is an algebraic reduction of X, (cf. Proposition 1.1). First, by 1), the
general fiber of 4,—Y is a complex torus. Next, note that for general
yeY, X,, generates 4,. In fact, the natural morphism X, ,—4,_,, is
surjective by 2),_,. Moreover, by the definition of ¢, and X, for general
(yand)ae 4,_,,, (X,,,), generates (4,,,),. From this it follows readily
that X, , generates 4, ,. Then by a theorem of Ueno ([43, 10.5]), #(X},,)
>0. Hence £(X,/Y)>0 as was desired. Thus 0 (X)=A4,. In particular
7% A,— Y is an algebraic reduction of 4,.

Next, we show that the general fiber of ¢,: X—4, is connected. Let
U,:={a e 4;; ¢, is smooth along X,}. Since 4, , is a complex torus ob-
tained by a successive extension of abelian varieties by 1), 7,(4,— U,) Y
by Proposition 9.1. In particular for general ye Y, ¢, ,: X,—4,,, is
smooth. Consider the commutative diagram ‘

We know that ¢,_, , is a fiber space by 2),_, and for ‘general’ ae 4, _, ,,
(@r,)a: (X)e—(4,,,), is an algebraic Albanese map for (X,),. Since
(@1,y)a 1s smooth, it follows that (¢, ,), and hence ¢, ,, ¢, also have con-
nected fibers (cf. 2.5).

b) We show that 1), holds true. Since 1), is clearly true by our
construction, here we may assume that k>1. Let V,_,;: ={ae 4,_;;
7, is smooth along 4, ,:=7;%(a)}. Then as above by 1),_;, 2),_, and Pro-
position 9.1 we see that ¢, _,(4,_,—V,_,)+ Y. Hence for generaly ¢ Y, 7,,,:
A, ,—A;_1,, s smooth where every fiber is an abelian variety. Then by
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Proposition 4.6 4, , is hyperelliptic, i.e., the general fiber of y,: 4,—Y is
hyperelliptic. Let (¢,: 4,—>4;, 7.: A,—Y) be the relative co-Albanese
map for 7, (cf. Proposition 6.7). We then claim that for general a e 4,_, ,,
the induced map ¢f:=¢; 4 4..° 4, a—>4:, is surjective. In fact, since
A, _,,,is a complex torus by 1),_,, there exists a morphism b, ,: Alb 4, ,—
A1,y such that b, A, =7, , where ¢, ,: 4, ,—Alb A4, , is the Albanese
map of A4,,. Then, since ¢, , XV, Ay ,—>A,,, XAlb 4, , is a finite
covering, ¢ ,: A.,,—>4,,, being the co-Albanese map for 4, ,, the sur-
jectivity of @7 follows. Hence A4, , is Moishezon (in fact, projective).
From this, together with the fact that ¢(7,)=0 (cf. 6.4) it follows that 7,
is Moshezon by Proposition 2.5. Since 4,—Y is an algebraic reduction
of 4,, this implies that dim 7, =0, or equivalently, 4, , is a complex torus
for general y e Y. Finally since the general fiber of 7, is an abelian variety
it follows from 1),_, that 4, , is obtained by a successive extension of
abelian varieties. This completes the proof of Claim and hence the con-
struction of the diagram (7).

We now consider «: X;—A4. Since « is Moishezon by Proposition
5.3 there exist Zariski open subsets VS 4 and UZ Y with ¢(V)Z U such
that for any y e U, the induced morphism x,: X; ,—4, is a holomorphic
fiber bundle over ¥, with typical fiber an almost homogeneous unirational
manifold. In particular «, is isomorphic to the Albanese map of X, ,.
On the other hand, by Claim together with Proposition 9.1 we have
7(A—V)+Y. Hence for general ye Y, V,=A4, and «, is a holomorphic
fiber bundle over the whole 4,. Also, we obtain a(g,)=0 applying Pro-
position 9.3 to the decomposition f=f, f, fi:=yag,. Further if dim y=0,
then dim 7,=0 so that =0 in the decomposition (6). Hence we have f=
ag, up to bimeromorphic equivalences. On the other hand, since « is
Moishezon, X, is Moishezon as well as Y. Hence dim ¢=0, because « is
an algebraic reduction of X;. Hence a(f)=0 by the definition of a.

Thus by what we have proved above the commutative diagram

(8) | o\ mimre

X,

s has the properties stated in the theorem. Moreover from the above
proof we infer readily that the same is also true for any commutative dia-
gram bimeromorphic to (8). (Use the fact that for any bimeromorphic
model #’: X{—Y of h with a bimeromorphic Y-map b: X{—X;, ab is holo-
morphic over some Zariski open subset of ¥ by Proposition 9.1.)
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Thus it remains to show that (8) is bimeromorphic to the diagram (3)
of the theorem. First, as a(g,)=0, by Proposition 9.4 there exists a unique
bimeromorphic map u: X;—X such that g,=ug and hu=nh,.

On the other hand, since any general fiber of 7,: 4,—4,_, is an
abelian variety, by the same argument as in the proof of Proposition 9.4
there exists a unique bimeromorphic map v: X—X, such that g=uvg, and
hv=h. Since the maps involved are all meromorphic fiber spaces it
follows readily that u and v are bimeromorphic as was desired. q.e.d.

9.5. Definition. A compact complex manifold X in % is called a
compound Moishezon manifold if in the diagram (3) g is bimeromorphic.

For a compound Moishezon manifold X (7) reduces to

N
A

where for general y € Y, A4, is a complex torus and «,: X,—4, is a holo-
morphic fiber bundle with typical fiber almost homogeneous and uni-
rational. In particular ¢(f)=dim 7.

Remark 9.1. Let €.# be the class of compound Moishezon mani-
folds. Then ¥.# has the same functorial properties as ¢ stated in 1.3.
Let Xe ¥.#. Then: 1) Any subspace, and any meromorphic image of
Xisagainin €.#. 2) If f: Y—X is a Moishezon morphism then Y e Z.#.
Further 3) any irreducible component of the Douady space D, (is compact
and) again belongs to ¥.#.

§10. Proof of Theorem 2

10.1. Theorem 2 is almost an immediate consequence of Proposition
5.2 and Proposition 10.2 below. First we note the following:

Lemma 10.1. Let f: X—Y be a fiber space of compact complex mani-
folds in €. Let f=f, f; be a decomposition of f into fiber spaces f,: X—X,
and f;: X,—Y. Let N={ye Y;f (resp. f,) is smooth along X, (resp. X, ,),
and a(f,,,)=0}. Then N ¢ Q(Y) if N+0.

Proof. Let Ny={x, ¢ X,; f; is smooth along X, , a(X,)=0}. Then
N, e Q(X)) by [18] (cf. 2.1). Write X, —N,=|J, B, where B, are analytic
subsets in X; and the union is at most countable. Let m=dim f,. Let
A,={ye Y;dim B, ,=>m}. A,is an analytic subsets of 4. Let A={ye



Structure of Manifolds in € 283

Y; f'is not smooth along X,, f; is not smooth along X, ,}. Then 4 is ana-
Iytic and it is easy to see that N=Y—-AU (U «A4,). Hence Ne Q(Y).
q.e.d.

Proposition 10.2. Let f: X—Y be a fiber space of compact complex
manifolds in € with a(f)=0. Let f=f,f,f, be a decomposition of f into
three fiber spaces f,: X—X,, f: X,—X,, fi: X;—Y of compact complex
manifolds in €. Suppose that k(f)=k(f,) (note that a(f;)=0) and f, is a
relative algebraic reduction of fi,:=f,f,. Then q(f})=a(f)=k(f)=0.

Proof. First we show that ¢(f)=q(f)=a(f))=0. For ‘general’
yelY, X, X,,, X;, are all smooth, a(X,)=0 and k(X,)=k(X,,). Since
k(X)) =k(X,,)=k(X,,,), this implies that k(X,)=k(X, ,). Hence by Pro-
position 7.2 g(f;,,)=0. Thus q(f,)=4q(f,,,)=0. Similarly from a(X;,)
=0 and k(X, ,)=k(X,,) we have gq(f,)=0. Hence by Proposition 9.3
applied to f=f, 1, 1, g=fi., h=f; we get that a(f;)=0.

Now supposing that k(f;) >0 we shall derive a contradiction. Let
(f: X=X, f’: X'—=X,) be a relative Kummer reduction of f;. Then in
order to get a contradiction by replacing f with a suitable bimeromorphic
model of £, 1, f/": X’—Y, we may assume that dim f;=k(f;). Take y suf-
ficiently ‘general’ in such a way that in addition to the above conditions
the following holds true; 1) a(f,, ,)=0 (cf. Lemma 10.1) so that in par-
ticular f ,: X,—X, , is a relative algebraic reduction of f;, ,: X,—X; , and
2) k(f,,,)= dun fl,y Then replacing f by f,,, we may assume from the
beginning that Y is a point and then derive a contradiction. So we may
omit the subscript y in what follows. Thus we get a commutative diagram
of fiber spaces

X ——————-)X

N,

where a(X)=a(X))=0, q(f)=a(f)=0, dimfi=k(f)>0 and k(X)=
k(X ). Then applying Proposition 8.6 to f; there exist a finite covering
u: X,—X, and a Kummer manifold F of dimension k(f;) such that the
induced map f;: X:=XxX 1 2 X—X, is blmeromorphlc over X, to the
patural projection FX X,—X,. Let (f;: X,—X,, X,—X,) be the Stein
factorization of fyu: X;— X,. Then we have k(X)=k(X)=k(X,)=k(X))
since the Kummer dimension is invariant under finite coverings (Remark
7.1). 1In particular if ¢: X2—>X is a Kummer reduction of Xz, then gof2 is
a Kummer reduction of X. On the other hand, denote the composite
meromorphic map X—Fx X,—F by g where the first arrow is the above
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bimeromorphic map. Then by the definition of the Kummer reduction
- there exists a unique meromorphic map +: X,—F such that ¢ Fo=g:
However this is impossible unless dim F=0 since the general fiber of f, is
mapped bimeromorphically onto F by g. Hence k( f;)=0. q.e.d.

'10.2. Proof of Theorem 2. Since k(f)=k(h) by the definition of a
relative Kummer reduction, we can apply Proposition 10.2 to the decom-
position g=hbg, of g. Hence g(b)=a(g,)=k(g,)=0. In particular 2) is
proved. Since g(b)=0, b is Moishezon by Proposition 2.5. Hence 1)
follows from Proposition 5.3. v g.ed.

Remark 10.1. The analogous assertion for the diagram (4) men-
tioned after Theorem 2 also follows in the same way as above noting that
k(g")=0 implies k(#')=0.

§11. The case ca(X)=2

Let X be a compact complex manifold in €. We set ca (X):=dim X
—a(X) and call it the co-algebraic dimension of X. Then the main purpose
of this section is to study the structure of X when ca(X)=2.

11.1. Let f: X—7Y be a fiber space of compact complex manifolds in
%. Then we say that f has property (A) if for any bimeromorphic model
1 X'=Y of f with a bimeromorphic Y-map ¢:X—X’ there exists a
Zariski open subset UZ Y such that ¢ gives an isomorphism X, = X/. The
following is an obvious criterion for f to have property (A).

Lemma 11.1. Let f: X—Y be as above. Consider the following con-
ditions. 1) f has property (A), 2) for any bimeromorphic model f’: X'—
Y of f there exists no analytic subvariety FC X’ of codimension =2 which
is mapped surjectively onto Y, and 3) there exists no proper subvariety E of
X with f(E)=Y. Then 1) and 2) are equivalent and are implied by 3).

Proof. 1t is easy to see that 3) implies 2). We show the equivalence
of 1) and 2). Suppose first that a subspace FC X as in 2) exists for some
f’. Let ¢: X—X” be the blowing up of F followed by a resolution. Then
f=f ’0: X—Y and f’ cannot be biholomorphic over any Zariski open
subset US Y. It follows that 1)—2). Conversely suppose that f does not
have property (A). Then we can find f” and ¢ as above in such a way
that if F (resp. F”) is the set of indeterminacy of ¢ (resp. ¢~?) then either
f(F) Yor f/(F')=Y. Then since F (resp. F’) is of codimension =2, 2)
is not satisfied. , q.e.d.

Definition. Let X be a compact complex manifold. Then we say
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that X has property (A) if for some, and hence for any, holomorphic model
f: X*—Y of an algebraic reduction of X, f has property (A).

There are special cases where the property (A) is automatically
satisfied.

Proposition 11.2. Let X be a compound Moishezon manifold (cf. 9.5).
Suppose that q(f)=dim f or dim f—1. Then X has property (A).

Proof. When ¢(f)=dim f, by Proposition 9.1 there is no proper
subvariety EC X with f(E)=7Y. So the proposition follows from Lemma
11.1.  Suppose that g(f)=dimf—1. Let f’: X’—Y be any bimero-
morphic model of fand FE X’ any subvariety with f/(F)=Y. Let (a: X’
—A,7: A—>Y) be a decomposition of f” as in (9) where « is a mero-
morphic fiber space. We have dim ¢=dim f—g(f)=1. Since the general
fiber of y is a complex torus, a is holomorphic over some Zariski open
subset of Y. On the other hand, again by Proposition 9.1 we must have
a(F)=A. Hence codim F=1. Since f/ and F were arbitrary, f has

property (A) by Lemma 11.1. q.e.d.

11.2. Let X be a compact complex manifold in €. Let f: X*—Y
be a holomorphic model of an algebraic reduction of X. Clearly ca(X)=
dim f; and ca(X)=0 if and only if f is Moishezon. When ca(X)=1, we
have the following well-known:

Proposition 11.3. Let X be a compact complex manifold with ca(X)
=1. Then X has property (A) and X} is a nonsingular elliptic curve.

Before stating our result in case ca(X)=2 we shall introduce the class
of quasi-trivial manifolds (cf. Theorem). Let Y; and S be compact com-
plex manifolds. Let G be a finite group acting biholomorphically on both
Y, and S. Let X,:=(Y,XS)/G be the quotient space. Then we have the
natural projection f;: X,—Y;/G. A fiber space f X— Y of compact complex
manifolds is called quasi-trivial if f is bimeromorphic to f; for some Y;, S
and G as above. We call a compact complex manifold X of quasi-trivial
type if any holomorphic model f: X*—Y of an algebraic reduction of X
is quasi-trivial. Note that in this case S must be of algebraic dimension
Zero.

We also recall the following: Let C be a nonsingular elliptic curve.
Then there exists a unique indecomposable holomorphic vector bundle
over C of rank 2 which admits a trivial line subbundle (cf. Atiyah [1]).
We shall denote this vector bundle by F,= F,(C) in what follows.

Theorem 3. Compact complex manifolds X in € with ca(X)=2 are
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up to bimeromorphic equivalences classified as follows:
I. X has property (A)
a) X} =complex torus
@) X} is an abelian variety
B aX¥)Z1 for ‘general’ ye Y and f is a holomorphic fiber
bundle over some Zariski open subset of Y.
b) XF=P* bundle over an elliptic curve C,
CV) X;kEP(F;)a B:FZ(C;;)
B X};=P(DL,), L,: line bundle on C, with deg L,=0
II. X is of quasi-trivial type
a) X} ~a complex torus with a(X;)=0
b) X¥~a K3 surface with a(X}¥)=0
Here X denotes a general fiber of any holomorphic model f: X*—Y of
algebraic reduction of X. (~ denotes ‘is bimeromorphic to’.)

In particular, hyperelliptic, Enriques, rational surface cannot appear
as fibers of algebraic reductions (if X e ¥) (cf. Remark 12.5 of Ueno [43]).
See also [43a].

11.3. We first study in general the structure of a fiber space whose
general fiber is bimeromorphic to a complex torus or a K3 surface.
a) We begin with the following:

Proposition 11.4. Let f: X—Y be a fiber space of compact complex
manifolds in €. Suppose that dim X=3, dim Y=1 and the general fiber
X, of fis a K3 surface. Then either i"*(X)=0 or f is a holomorphic fiber
bundle over some Zariski open subset US Y. Moreover the latter is true if

a )1

Proof. Assuming that A**(X)=£0, we shall show that the latter con-
dition is satisfied. There exists a nonvanishing holomorphic 2-form, say
o, on X since #*(X)=h"*X). We first show that the restriction w, of ®
to any smooth fiber X, is nonzero. In fact, note first that if ®,=0 on
some X, then w,, =0 on any smooth fiber X,.. In fact, let r,: I'(X, 2%)
—I'(X,, Q%,) be the restriction map. It suffices to show that the kernel
of r, is independent of y. By the Hodge decomposition (1) we may con-
sider r, naturally as a direct summand of the restriction map 7,: H*(X, C)
—H*X,, C). Thus we have only to show the corresponding assertion for
7,. In this case this is immediate since 7, factors through the space
(U, R¥,C) of sections of the local system R, C|,.

Hence if w,=0 for some y e U, then o is written in a neighborhood
V, of X, in the form w=w, A\ f*dt where t is a local parameter of Y at y
and o, is a holomorphic 1-form on V,. Since X, is a K3 surface, o,
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restricted to each fiber must be identically zero. From this it follows that
=0 on V, and hence on the whole X. This is a contradiction. Hence
0,70 for any smooth fiber X,, i.e., the closed 2-form o on X gives by
restriction the non-vanishing holomorphic 2-form w, on each fiber. In
this case by the usual local Torelli argument using Stokes (cf. Bogomolov
[3, Theorem 2], Fujita [22, Lemma 4.3]) we see that f is locally analytically
trivial along any smooth fiber of /. Finally if a(f)<1, then a(X)=1 or 2.
Then either X is an elliptic threefold or f is an algebraic reduction of X.
Hence 4"*(X)+0 by Proposition 3 of [21] which states that for any com-
pact complex manifold Z with 4*%(Z)=0 we have a(h)=k(h)=0 for any
holomorphic model 4: Z*—Z of an algebraic reduction of Z. Thus the
last assertion follows from what we have proved above. q.e.d.

b) Letf: X—Y be a fiber space of compact complex manifolds in
%. Let U be a Zariski open subset of Y over which f is smooth. Let s:
Y—X be a meromorphic section to f which is holomorphic on U. Let G
be a finite group of biholomorphic automorphisms of X7, over U which fix
each point of s(U). Let X(U):=X,/G be the quotient of X, by G. Let
F(U): X(U)—U be the induced morphism and ¢: X,—X(U) be the quo-
tient map.

Lemma 11.5. Suppose that X, is a complex torus for each ue U.
Then there exists a compactification f: X—Y of f(U): X(U)—U such that
q extends to a meromorphic map q: X—X.

Proof. We first show that the action of G extends to a bimero-
morphic action on X. Let g € G be any element. Then by our assump-
tion g defines a holomorphic section g, to Aut, (X, s(U))—U (cf. 4.2 for
the notation). Then since Aut,(Xy, s(U)) is discrete over U, g,(U) is a
Zariski open subset of a unique irreducible component 4 of Aut} (X, s(Y))
(cf. 5.2). Thus g, extends to a meromorphic section to Aut¥ (X, s(Y))—
Y, which is also equivalent to g extending to a bimeromorphic automor-
phism g of X over Y. Thus our assertion is proved. Now let I',&X
Xy X be the graph of gand I"=\J,c¢ I';. Then we obtain the following
commutative diagram

I' & XXy X

e

Y

where p, is the projection to the second factor. Considering p as parame-
trizing zero cycles on X in the fibers of f we get a meromorphic Y-map z:
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X—sym%X where symtX is the symmetric product of X over Y and k is
the order of G (cf. [12]). From the construction it follows readily that
7|y, factors through X(U), or more precisely, that there exists a unique
embedding ¢’: X(U)—>sym%X such that z|;,=7"q. Hence if X is the image
of = and if we identify X, with its image by ¢/, then X together with the
natural map f: X—Y gives the desired compactification of f(U). g.e.d.

¢) Letf: X—Y be a fiber space of compact complex manifolds in ¥.
Suppose that there exists a Zariski open subset US Y such that X is a
complex torus for every y € U. Then up to bimeromorphic equivalences
over Y, there exists a unique fiber space f;: X,—Y of compact complex
manifolds in & such that 1) f;: X,—U and f, ;: X, ,— U are locally iso-
morphic over U and 2) f; admits a meromorphic section s: Y—X which
is holomorphic on U. In fact, it suffices to set X,:=Aut¥ , X (cf. [19,
Proposition 7]). We call f;: X,— Y the basic fiber space associated to f.

Proposition 11.6. Let f: X—Y be a fiber space of compact complex
manifolds in € with Y projective. Suppose that a(f)<1 and the general
fiber X, of f is bimeromorphic either to a K3 surface or a complex torus.
Then any smooth fibers of f are bimeromorphic to each other.

Proof. Let UZY be a Zariski open subset over which fis smooth.
It suffices to show that for any y, y’ € U, X, and X, are bimeromorphic
to each other. Take any smooth curve CS Y passing through y and y’
such that if X/ is the unique irreducible component of X, which is mapped
surjectively onto C then for the induced map f7: X;—C we have a(f’)=
a(f) (cf. 2.1). Thus to show the lemma, replacing f by a suitable non-
singular model of fj if necessary, we may assume from the beginning that
dim Y=1. Then by [15, Proposition 3] we can pass to another bimero-
morphic model to assume that X, is minimal for every y ¢ U with U un-
changed. Then it suffices to show that X, y ¢ U, are isomorphic to each
other. First, if X, is a K3 surface, then this follows from Proposition
11.4. So we assume that X, is a complex torus.

We first assume that f admits a meromorphic section s: ¥—X which
is holomorphic on U. Then f,: X,~U has the unique structure of a
complex Lie group over U with the identity section s (cf. [19]). Then the
automorphism ¢: X;—X, over U which coincides with z——z on each
fiber X, y ¢ U, extends to a bimeromorphic map ¢*: X—X over Y (cf. the
proof of the previous lemma). Let X(U)=X,/{:) be the quotient of X,
by (), with the natural projection f,;: X(U)—U. Then by Lemma 11.5
there exists a compactification f: X—Y of f,, such that the quotient map
q: X,—X(U) extends to a meromorphic map 7: X—X. Let v: ¥—X be
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any resolution of X inducing the minimal resolution on the general fiber
X,. Then the resulting map f: ¥—Y has as general fibers K3 surfaces
and we have a(f )<1. Hence from the proof of Proposition 11.4 there
exists a nonvanishing holomorphic 2-from @ which restricts to a nonzero
holomorphic 2-from on each fiber. Then the pull-back w of @ to X via
the meromorphic map v-'g has the same property. Then as in the proof
of Proposition 11.4 this implies that f is locally trivial along any smooth
fiber. Hence the proposition is proved in our special case.

Next in the general case we consider the basic fiber space f,: X,—Y
associated to £. Then f; is a fiber space whose smooth fiber is isomorphic
to that of fand which admits a meromorphic section which is holomor-
phic on U. Hence the proposition is true for f;, by what we have proved
above. Then the same is clearly true for the original £, too. q.e.d.

11.4. We prove some lemmas needed for the proof of Theorem 3.

Lemma 11.7. Let f: X—Y be a fiber space of compact complex mani-
Jolds in €, with dim f=2. Suppose that Y is projective and f has property
(A). Then any smooth fiber X, of f is relatively minimal.

Proof. Suppose that X, is not relatively minimal for some smooth
X,. Let C be an exceptional curve of the first kind on X,. Let D, be the
irreducible component of Dy, containing the point ¢ corresponding to the
subspace CC X,. Then by Kodaira [30] the natural projection u: D,—Y
is biholomorphic at ¢. Since D, is compact u is then generically finite.
Let Z,— D, be the universal family restricted to D, and Z,Z X the natural
image of Z, in X.. Then from the generic finiteness of u it follows that Z,
is an irreducible divisor on X and the general fiber of the natural projec-
tion Z,— Y is isomorphic to a disjoint union of P'. Hence Z, is Moishezon
as well as Y. Then we can find an irreducible divisor TS Z, with f(T)=
Y. Since codim T=2 in X, f does not have property (A) by Lemma 11.1.
This is a contradiction. g.e.d.

Lemma 11.8. Let f: X—Y and f,: X,—Y be fiber spaces of compact
complex varieties in € with Y nonsingular. Let ¢: X—X, be a bimero-
morphic map over Y. Let G be a finite group acting biholomorphically on
both X and Y in such a way that f is G-equivariant. Suppose that f, is a
holomorphic fiber bundle the typical fiber S of which is a minimal nonruled
analytic surface (resp. a complex torus). Then there exists a natural biholo-
morphic action of G on X, making f, equivariant.

Proof. Let Y=Y/G and let g: Y—Y be the quotient map. Consider



290 A, Fujiki

X, as spaces over Y via qf;, We define a bimeromorphic action of G on
X, over Y by g—g,=¢gp~': X;—X,. Since qf; is locally a product over
Y, X, , is minimal, and #(X,,)=0, the action of G is actually biholo-
morphic. (See Viehweg [44, Lemma 2.6].) q.e.d.

Before proceeding we note the following fact. Let S, be a nonruled
compact analytic surface and S its minimal model. Let BHol (S,, S) be
the set of bimeromorphic morphisms of S, onto S. Then since S is
(absolutely) minimal, BHol (S;, S)=Aut S by the map h—hh;?, for he
BHol (S,, S), where 4, e BHol (S,, S) is a fixed element.

Lemma 11.9. Let f: X—Y be a fiber space of compact complex mani-
foldsin €. Suppose that dim f=2 and a(f)=0. Suppose that any smooth
fibers of f are bimeromorphic to each other. Suppose further that f has not
property (A) if X, is bimeromorphic to a complex torus. Then f is quasi-
trivial.

Proof. 1In view of Lemma 11.8 it suffices to show that there exist a
minimal compact analytic surface S, a finite covering v: ¥— ¥ of compact
complex varieties and a bimeromorphic map X;—SX ¥ over ¥. (We can
then assume v to be Galois, and then take an equivariant resolution.) Let
U be a Zariski open subset of ¥ over which f is smooth. Let S be the
common minimal model of X, ye U. For any subset BS Y we set S;=
SX B. It is then easy to see that taking a suitable open subset W& U we
can obtain a W-morphism ¢y, : X;— Sy (cf. the proof of Lemma 11.7).
Then ¢y, defines a holomorphic section @,: W—BHol, (X3, Sy) (cf. [19,
§ 4] for the notation). Let H be an irreducible component of BHol# (X, S})
which contains @,(W). Since H is compact, the natural map H—Y is
surjective. ~ Suppose first that S is a K3 surface. Then in view of the
remark preceding Lemma 11.9, H is generically finite over Y since Aut S
is discrete.

Next suppose that S'is a complex torus. Then by our assumption
together with Lemma 11.1 (possibly after passing to another bimero-
morphic model of f) there exists a subvariety ES X such that f(E)=Y
and dim E,=0 for general y. Taking the base change to E of f with
respect to the natural morphism f|,: E—7Y and taking resolutions we may
assume from the beginning that f|, is bimeromorphic. Fix the origin o €
S and consider B:=BHol} ((X, E), (Sy, 0,))SBHol% (X, Sy) where 0,=
{0} X Y (cf. [19, § 4] for the notation). Then we may take W and ¢, above
in such a way that g, (W)ZS BHol,, (X, Ey), (S, 0w)) (by translating the
original &, via a section W—S}). Let H’ be an irreducible component
of B which contains @, (W). Then as above H’ is proper, generically finite
and surjective over Y. Let ¥/=H or H’ according as S is a K3 surface
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or a complex torus. Then by the property of ¥’/ proved above the as-
sertion follows from [19, Remark 9]. ‘

11.5. Further we need some facts on the structure of a P!-bundle
over an elliptic curve.

Lemma 11.10. Let C be a nonsingular elliptic curve and p: X—C a
P'-bundle. Suppose either that (K3, X)<0 or Aut, X is not a complex
torus of dimension 1. Then X = P(F,) of P(1®L) where F, is as in Theorem
3.and L is a line bundle of degree zero on C.

Proof. Write X=P(E) for some holomorphic vector bundle E of
rank 2 on C. Suppose first that E is decomposable; we may assume that
E is of the form E=1@L with deg L>=0. Let F be the tautological line
bundle associated to E—~C. Then we have K,=F*Qp*L so that K3y’'=
F->»@p*L (cf. [29, Proposition 2.2]). Then we get p K3*=E*®Q,, L’ (cf.
[29, Theorem 2.1]) and hence I'(X, Kz*)=1I'(C, p Kz)=I'(C, E¥*®*,,L")
27I'(C, L*) where E*® denotes the 2v-th symmetric product of E* and
the last inclusion is induced by a nonzero section in I'(C, S I'(C, E*®).
Here for a holomorphic vector bundle F on C we write F=0,(F). There-
fore v(L, C)<k(Kz', X)<0. This implies that deg L=0. Next we con-
sider the case where E is indecomposable. Tensorizing a suitable line
bundle with E we can assume that deg E=0 or 1. If deg E=0, then E=
F,QL for some line bundle L with deg L=0 (Atiyah [1]). So P(E)=
P(F,). Nextif deg E=1, then Aut, X is a complex torus of dimension 1
by Maruyama [36, Theorem 3.4]. Thus this case cannot occur.

Remark 11.1. Let X be a holomorphic P*-bundle over a nonsingular
elliptic curve C. 1) If Aut X is a complex torus T of dimension 1, then
B:=X]T is isomorphic to P* and we have the natural structure of an el-
liptic surface X—B on X. 2) X=P(F,) or =P(1®DL), deg L=0, if and
only if X is almost homogeneous. In this case there is no curve with
negative self-intersection on X. Further Aut, X is an extension of C by
C* (resp. C) if Ex=1®L, L#1 (resp. F,). Moreover if WS X is the
unique Zariski open orbit of Aut, X, then X— W is the disjoint union of
the two minimal sections B, and B, (resp. coincides with the unique
minimal section B) of the projection X—C. In this case we have B,- B,=
0 (resp. B-B=0) on X (cf. [36]). 3) If X is homeomorphic to P(F,) and
P(1®L), then X =P(F,) or =P(1®L) (L#]1) if and only if dim H(X, O;)
=2 (cf. Suwa [41]).

Proof of Theorem 3. Let f=gh be the decomposition (3) as in Theo-
rem 1 with g a meromorphic fiber space. Since a(g)=0, dim g==1. Hence
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from the equality dim f=dim g-+dim 4, it follows that there exist two
cases to be distinguished; (dim g, dim A)=(2, 0) or (0, 2). In the former
case by the classification theory of surfaces X} is bimeromorphic either to
a complex torus or-a K3 surface, X¥ being in . Suppose first that X
does not have property (A) provided that X7 is bimeromorphic to a com-
plex torus. Then by Proposition 11.6 and Lemma 11.9 it follows that f
is quasi-trivial. Hence X belongs to the class II in this case. Suppose
next that X7 is bimeromorphic to a complex torus and f has property (A).
Then by Lemma 11.7 each smooth fiber X¥ is actually a complex torus.
Then from Proposition 11.6 it follows that each smooth fiber is mutually
isomorphc and hence f is a holomorphic fiber bundle over some Zariski
open subset of Y (cf. Fischer-Grauert [11]). Thus X bzlongs to class I a)
p.

Next we consider the latter case, i.e., the case where (dim g, dim A)=
(0, 2). In this case f is bimeromorphic to /# and then from the inequalities
dim f>¢(f)>0 we get two cases; g(f)=2or 1. If g(f)=2, X7} is iso-
morphic to a complex torus and if g(f)=1, X¥ is isomorphic to a holo-
morphic P!-bundle over an elliptic curve, by Theorem 1. In both cases X
has property (A) by Proposition 11.2. Now suppose first that g(f)=2.
Then if a(f)<1, by Proposition 11.6 smooth fibers of f are mutually iso-
morphic and X belongs to the class I a) 8). Otherwise X belongs to the
class I a) «). Next we consider the latter case so that ¢g(f)=1. First,
since f'is an algebraic reduction of X*, (K ;E%, X¥)=<O0 for ‘general’ ye Y
by Proposition 1.1.  Moreover for general y ¢ ¥ Aut, X} is not a complex
torus of dimension 1. In fact, suppose otherwise. Then it is easy to see
that (Aut} X*), is a complex torus of dimension 1 for general y e Y (cf.
the proof of Proposition 9.1). Let (u: X*—C, v: C—Y) be the relative
generic quotient of X by Aut} X* (cf. 5.2). Then by Remark 11.1, 1) the
general fiber of v is isomorphic to P!. Hence v is Moishezon and so C
itself is Moishezon. This is a contradiction since v is an algebraic reduc-
tion of C. Thus by Lemma 11.10 X7} is of the form P(E) for ‘general’ y
e Y where E=1®L or F, in the notation of that lemma. Then by Remark
11.1, 2) and the upper semicontinuity of dim H°(X}, ) this also is true
for general y ¢ Y. Since X is compound Moishezon, passing to a suitable
bimeromorphic model X* we obtain a decomposition (9) of f; f=7ra, a: X
—A, y: A—Y, with o holomorphic. Let M be the unique maximal trans-
versal analytic subspace of X* with respect to f; (cf. 5.4). Since X} —M,
is homogeneous for general y e Y, by Remark 11.1, 2) M, S X7¥ is the
union of the minimal sections on X}. Moreover the remark also shows
that M— A4 is either generically two to one or is bimeromorphic and that
X is in the class I, b),5) in the former case and in the class I, b), &) in the
latter case. q.e.d.
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Remark 11.2. In case I, b), §), for ‘general’ y € ¥, L*+1 for any k
e Z—{0}.

§12. The case a(X)=0 and ck(X)=<2

Let X be a compact complex manifold in € with a(X)=0. - Define
the co-Kummer dimension ck(X) of X by ck(X):=dim X—k(X). Thus
ck(X)=0 if and only if X is Kummer. In this section we consider the
structure of X when ck(X)=1 or 2. Let 8: X*—B be a holomorphic
model of a Kummer reduction of X. Then we have ck(X)=dim g.

Proposition 12.1. Let X be as above. Then ck(X)=1 if and only if
X is a meromorphic P'-fiber space over a Kummer manifold.

Proof. ‘Only if” part follows immediately from Theorem 2. So sup-
pose that X is bimeromorphic to X* which has a P!-fiber space structure
7: X*—Y with Y a Kummer manifold. Then ck(X)<1. Suppose that
ck(X)=0,i.e., X is Kummer. To derive a contradiction from this, by
passing to a suitable finite covering of ¥ and to a suitable bimeromorphic
model of X, we may assume that ¥ is a complex torus (cf. Remark 7.2).
Then 7 is the Albanese map of X. Hence if h: X—C is the co-Albanese
map of X (cf. 6.4), then dim C=1. Hence a(X)=a(C)=1, which is a
contradiction. q.e.d.

Proposition 12.2. Suppose that ck(X)=2. Then there exists a Zariski
open subset US B such that By: X—U is a holomorphic fiber bundle such
that if F is the typical fiber of B, and if G is a structure group of By, then
either of the following two cases occurs: 1) Fis a rational surface on which
G acts almost homogeneously, or 2) Fis a K3 surface of algebraic dimen-
sion zero and G is finite. In the latter case B is quasi-trivial.

Proof. Let (g,: X’—X,, b: X;,—B) be the decomposition (4) (cf.
Theorem 2) applied to the constant map X— Y=/{point} where X’ is a
bimeromorphic model of X. In particular b is Moishezon and a(X,)=
a(g,)=k(g)=0. Since dim g,=1 (a(g,)=0), it follows that (dim g,, dim b)
=(0, 2) or (2, 0). In the former case 8 is bimeromorphic to b and hence
by Proposition 5.3 g satisfies the conditions of 1). Next, consider the case
of (2,0). Then g is bimeromorphic to g,. Since a(g,)=k(g)=0, X¥,,
and hence X ¥, is bimeromorphic to a K3 surface for general be B. Let
UZ B be a Zariski open subset such that 3 is smooth over U. Restricting
U we may assume that we have the period map @: U—D/I" as in 4.1. By
Proposition 4.1 @ is a constant map. Hence the bimeromorphic moduli
of X,, ye U, is constant, i.e., X, are mutually bimeromorphic. Hence by
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Lemma 11.9 § is quasi-trivial and the case 2) occurs. g.e.d.

§13. Proof of Theorem

In this section we shall prove Theorem in Section 1.

13.1. We begin with an easy criterion for a meromorphic map to be
holomorphic. In general a surjective meromorphic map f: X— Y of com-
pact complex varieties is said to be almost holomorphic if there exist Zariski
open subsets WS X and UZ Y such that f|, is holomorphic, f(W)S U
and f|,: W—U is proper.

Lemma 13.1. Let f: X—Y be a meromorphic fiber space of compact
complex manifolds. Suppose that dim Y=1. Then f is holomorphic if one
of the following conditions is satisfied; 1) there is no subvariety E on X
with f(E)=Y and 2) f is almost holomorphic.

Proof. Suppose that 1) is true. Let f*: X*— ¥ be any holomorphic
model of f with a bimeromorphic morphism ¢: X*—X over Y. Let Ebe
the exceptional divisor for ¢. Then by our assumption f*(E)=Y. This
implies that f=f*@™'|y_, 14 is holomorphic and proper over the
Zariski open subset U:= Y —f*(E). Thus it suffices to show that 2) implies
the holomorphy of f. Let F be the set of indeterminacy for /. Then
F corresponds by fto a finite set of points Y—U. From this it follows
readily that fis actually holomorphic. g.ed.

Using this we prove the following:

Proposition 13.2, Let X be a compact complex manifold with dim X=
3and a(X)=1, i.e., ca(X)=2. Suppose that X is in the class 1 in Theorem
3. Then an algebraic reduction f: X— Y is necessarily holomorphic.

Proof. Let f*: X*—Y be any holomorphic model of an algebraic
reduction of X. Suppose first that X'* is in the class I, a) and there exists
a proper subvariety FE X with f*(F)=1Y. Since f* has property (A) by
Lemma 11.1, Fis a divisor. Then a(f)=1, which contradicts Proposition
9.1. Hence there is no F as above. Then the assertion follows from
Lemma 13.1. Next we assume that X is in the class I, b). Taking X*
suitably we may assume that there exist 1) a bimeromorphic morphism ¢:
X*—X and 2) a decomposition f*:=ya, a: X*—4, y: A=Y, of f*: X*
—>Y as (9). Let ESX* be the exceptional set for ¢. If f*(E)Z Y, then
fi=f*e~': X—7Y is almost holomorphic as in the proof of Lemma 13.1
and hence is holomorphic by that lemma. So supposing that f*(E)=Y
we shall derive a contradiction. If &(F)Z A, «(E) is a divisor on 4 with
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r(e(E)=7Y. Thisisimpossible since y is an algebraic reduction of 4 and
dimy=1. So a(E)=4A.

Let E be any irreducible component of E with a(E)=4. Then a(E))
=a(A)=1. Assume first that dim ¢(E,,)=0. Then E,, is exceptional in
X, in the sense of Grauert [23], which is impossible because X, contains
no curve with negative self-intersection (cf. Remark 13.1, 2)). Thus
dim ¢(E;,)=1. Let F,=¢(E,). Then dim F,=1. Then ¢(E,)=F, for
any ye Y, and hence for any x ¢ F,, ¢~'(x) is a divisor on E, which is
mapped surjectively onto Y. This again is impossible since a(E,)=1.

q.e.d.

13.2. a) Before the proof of Theorem we remark on curves on a
K3 surface S of algebraic dimension zero. On S there exists only a finite
number of irreducible curves, say C, ---, C,, and we have C,= P! and
C,- C,;= —2[31]. On the other hand, by Riemann-Roch we see that there is
no curve D on S with D-D>=0. From this it follows readily that the inter-
section matrix (C;-C)), 1<4, j<m, is negative definite, and we can then
obtain from S a unique normal analytic surface S/ by contracting these
curves to normal points of S’. We call S’ the minimal normal K3 surface.

In general let S be a compact analytic surface with a(S)=0. Then
we call a normal compact analytic surface S’ the normal minimal model of
S if S’ is a complex torus or the minimal normal K3 surface bimero-
morphic to S according as S is bimeromorphic to a complex torus or a
K3 surface. Among the surfaces bimeromorphic to S, S’ is uniquely
characterized by the property that it contains no curve.

b) Proof of Theorem. If a(X)=3, then X is by definition Moishezon.
If a(X)=2, X is an elliptic threefold as is well-known (cf. Proposition
11.3). So suppose that a(X)=1, i.e., ca(X)=2. Then we can apply
Theorem 2 to X. If X is in the class I, by Proposition 13.2 for any bimero-
morphic model X’ of X an algebraic reduction of X” is necessarily holo-
morphic. Thus Theorem follows from Theorem 3 in this case.

Next, suppose that a(X)=0. Then k&(X)=3,20r0. If k&( X)=3,
then X is Kummer. If k&(X)=2, X is a meromorphic P*'-fiber space over
a Kummer manifold S of dimension 2 by Proposition 12.1. Since S is
simple (i.e., there is no analytic family of curves on § which covers the
whole S), the natural map 8: X—S (Kummer reduction) is almost holo-
morphic [20]. Let S’ be the normal minimal model of S. Let §/: X—S§”’
be the resulting almost holomorphic meromorphic map. Then since for
any Zariski open subset U’&S’, S’— U’ is a finite set, 8’ is actually holo-
morphic as one sees immediately. Finally we assume that a(X)=k(X)=
0. In this case we consider a semisimple reduction A: X—T of X, which
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is a meromorphic fiber space with T semisimple, having the universal pro-
perty among the surjective meromorphic maps of X onto semisimple
varieties (cf. [20]). First, by [20] dim T">>0. Further since a(X) =0,
dim T=1. Suppose that dim 7=2. Then by Proposition 9.2 4 is a mero-
morphic P'-fiber space. Replacing T by its normal minimal model as
above, we can take % to be holomorphic. Thus X is in the class II. Finally
assume that dim 7=3. Then X is semisimple. But since a(X)=0
X must be simple. q.e.d.

Remark 13.1. Let X be as in Theorem. 1) If a(X)=1, and for some
ye Y X, is a complex torus with a(Xy)<1 then there exist a torus bundle
X—7Y over a compact Riemann surface ¥ and a finite group G acting on
X and ¥ fiber-preservingly such that X is bimeromorphic to X/G. 2) There
is no known example of X which is simple with a(X)=k(X)=0. It is
highly interesting to know if such an X actually exists or not.

1) of the above remark follows from the following:

Proposition 13.3. Let f: X—Y be a fiber space of compact complex
manifolds in € with dim Y=1. Suppose that there exists a Zariski open
subset UZ Y such that f;: Xy— U is a holomorphic fiber bundle with typical
fiber a complex torus T. Then there exists a torus bundle f: X—Y over a
compact Riemann surface ¥ and a finite group G acting fiber-preservingly on
X and ¥ such that f is bimeromorphic to the induced morphism X|G—Y/G.

We need a local version of this proposition.

Lemma 13.4. Let f: X—D be a fiber space of complex manifolds with
fe /D (¢f. [14]), where D is a 1-dimensional disc D={|t|<e}, ¢>0. Let
D'=D-—{0}. Assume that f is a holomorphic fiber bundle over D’ with
typical fiber a complex torus T. Then (after a possible restriction of D) there
exists a finite covering y: D— D, unramified over D/, such that the induced
map f5: Xp—>D is bimeromorphic to the projection TX D—D. Here the
bimeromorphic map can be taken to be isomorphic over D’=D —{0}.

Proof. Passing to a suitable finite covering of D we may assume that
f admits a holomorphic section s: D—X. Fix the origin oe 7. Let X’
:=TX D considered naturally as a complex space over D. Set [¥=
Isom} ((X, s(D)), (X', 05)) where o,={0o}X D (cf. [19] for the notation).
The fiber over de D’ of I} is then given by Isom ((X,, s(d)), (T, 0))=
Aut ((T, 0)). Hence I'* is discrete over D’. Then the lemma follows from
Remark 9 of [19].

Proof of Proposition 13.3. Let y,, ---,y,e€ Y correspond to the
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singular fibers of f. Then by Lemma 13.4 there exist for each y, a disc
nelghborhood D, 3 y, and a finite covermg I D,—D, such that f5 : . Xp,
—>D, is bimeromorphic to T D,—D,. Let m, be the covering degree of
;- Then take a finite Galois covering z: ¥— Y with Galois group G such
that for each 7, e ¥ over y, the ramification index at j, is divisible by m,.
Let f=fp: X=Xp—Y be the induced map. Then for each 5, e ¥ cor-
responding to a singular fiber there exist a neighborhood U, of 7, and a
bimeromorphic map @,: X ﬁa—>(7 X T over U, which is isomorphic over
U,— {y‘,} Then set X'=X—J,f-(#,) and define X,: =X U (U (T, x 1))
where X" and U, X T are identified via ¢,|znz5,. (Here we take {0} in
such a way that TN T ﬁ_ﬂ if e=p.) Then we have a natural morphism
Fo: £ —¥ such that  and £, are bimeromorphic and f, is a holomorph1c
fiber bundle with typical fiber 7. Now G acts naturally on X so that X/G
= X. The proposition then follows from Lemma 11.8.

§14. A bimeromorphic classification of non-algebraic uniruled manifolds
of dimension 3

14.1. Recall that a compact complex manifold X is said to be uni-
ruled if there exists a covering family of rational curves on X

XxT2Z-Zsx
(10) \ lp
T

i.e., m is surjective and the general fiber of p is an irreducible rational curve.
We may assume that p is a universal family restricted to a subspace T of
the Douady space Dy of X.

The following proposition gives a rough classification of non-alge-
braic uniruled threefolds in €.

Proposition 14.1. Let X be a compact complex manifold with dim X
=3in¥%. Suppose that X is uniruled and is not Moishezon. Then X is in
either of the following two classes; i) a fiber space over a compact Riemann
surface Y whose general fiber is isomorphic to a P'-bundle over an elliptic
curve of the form P(1DL) or P(F,) where L is a line bundle with deg L=0,
or ii) a P'-fiber space over a normal compact analytic surface S with a(S)
=0. If Xis ini), the relative. Albanese map : X—S:=Alb* X]Y gives
the structure of a meromorphic P'-fiber space on X.

Remark 14.1. 1) The relation with classification table in Theorem
3 is as follows.
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PG ) »
X,=P(1®L),
2 (L¥*=1 for some k=>1)

X,=P(1®L) -
(L*%1 for any k>1, 11, B) (quasi-trivial type)
¥ ‘general’) X~(P'x8)/G

=P(F)

0 / II, P'-fiber space over S

2) A covering family of rational curves on X is unique; the one
given by the natural meromorphic P!-fiber space structure over S. This
follows readily from the non-ruledness of S.

3) For any compact complex manifold X Mabuchi [35] introduced
an invariant p(X):=max {dim X: there exists a surjective meromorphic
map X—X with «(X)=0}. From the above proposition, for a uniruled
non-Moishezon manifold X we always have f(X)=2.

Proof. «) Suppose first that z-'z(Z,)==Z, for general ¢t ¢ T in (10).
Then = is bimeromorphic, dim 7’=2, and pz~': X—T gives a structure of a
meromorphic P!-fiber space over 7. If a(T)=0, then replacing T by its
normal minimal model S we get a P!-fiber space X—S as in the proof of
Theorem. Thus X is in the class ii). On the other hand note that a(T)
#2; otherwise X would be Moishezon.

B) Next, suppose that #~'n(Z,)~Z,. Then we infer readily that
there exist irreducible components Z, , of #7'z(Z,) other than Z, for general
te T. Then since X is nonsingular dim Z, ;>1, and hence also dim #(Z, ,)
=1 because TS Dy. Then if we set S,:=zp 'por~'x(Z,), dim §,=>2. On
the other hand, since # and p are Moishezon morphisms (cf. [14, Propo-
sition 4]), S, also is Moishezon. Hence S,#X for any ¢te T by our as-
sumption. Thus dim S,=2 for any t e 7. Thus {S,},., defines a covering
family of divisors on X. Let ¢: T7—Div X be the universal meromorphic
map. Let Y==(T). Then dim ¥=1, the general fiber of z being of the
form prx~'m(Z,), te T, which is a divisor on T sinee dim pz~'z(Z,) =
dim z~'7(Z,)=1+dim Z—dim X=dim Z—2=dim T—1. Then restrict-
ing the universal family onto Y and taking a suitable irreducible com-
ponent we obtain a covering family
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YXXDZ' -5 X
| lp
Y

with Z; an irreducible divisor for general y ¢ Y.

Since Z; admits a covering family of rational curves by our construc-
tion, Z; is ruled for y ¢ Y. It is not rational, since otherwise Z’, and
hence X also, is Moishezon (cf. Proposition 2.5), contradicting our assump-
tion. Let r: Z—>Z’ bea resolution and g:=p'r: Z—Y. Let a:Z—
Alb* Z/Y be the relative Albanese map for § (which we may assume to be
holomorphic). Let S be the image of « and »: S— Y the natural morphism.
Then dim S=2 since Z, is not rational. If S is Moishezon, X would be
Moishezon, again leading to a contradiction. So a(S)=1. In particular
S'is an elliptic surface over Y. (Thus we have actually S=Alb* Z/Y.)
We claim that #=ra’: Z—X is bimeromorphic. In fact, let B,=#"'%#(Z,).
Suppose that §(B,)=7Y. Let B, , be any irreducible component of B, other
than Z,. Then B, , is a divisor on Z, §(B, ,)=Y and B, , is Moishezon,
both # and Z, being Moishezon (cf. [14, Proposition 4]). Thus w(B, )=
S. Hence «(B,,,) is a divisor with ne(B, )=7Y. However this also is im-
possible since 7 is an algebraic reduction of S by Proposition 1.1. Thus
B,=Z,. This implies that z is bimeromorphic as was desired.

r) By a) and §) we have shown that if X is not in the class ii), then
X is a meromorphic P'-fiber space over an elliptic surface S with a(S)=1.
Let 5: S—Y be the algebraic reduction giving the structure of an elliptic
surface. Let f: X—Y be the composite meromorphic map and f*: X*—
Y a holomorphic model of /. We consider the general fiber X} of f* in
case i). When a(X)=1, X}=P(1®L) or P(F,) by Theorem 3.

So assume that a(X)==2 so that X is an elliptic threefold. In this
case we infer readily that X has the structure of an elliptic surface over
P? also. Hence by [36], [41] X} =P(1®L) with L*=1 for some k=1 or
=P(F,®QL,) where L, is a line bundle of degree 1 on S,. We shall see
that the latter case does not occur. In fact, if X} = P(F,QL,) for general
¥, there exists a unique irreducible divisor £ on X such that E, coincides
with the unique minimal section of X¥—S, for general ye Y. Then we
have a(E)=1 and deg[E]|;,=1 for general y where [E] denotes the line
bundle defined by E on X*. This is impossible by Proposition 1.1.

Finally we have to show that f is actually holomorphic so that we can
take f=f* in the above argument. This follows from Proposition 13.2
when a(X)=1, and the same proof also applies to the case a(X)=2 since
we have proved that X¥ = P(1®L). g.e.d.
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14.2. Finally we shall state without proof a bimeromorphic clas-
sification of non-Moishezon uniruled threefolds in the class i) of Propo-
sition 14.1. We first introduce some notations. Let X be a minimal
elliptic surface with a(S)=1. Let n:S—Y be the algebraic reduction
giving the structure of an elliptic surface. Let z,: B—Y be the associated
basic elliptic surface (cf. 10.3, ¢)), which is algebraic. Consider B as an
elliptic curve over K:=C(Y)=C(S). Then we denote by E(K) the abelian
group of K-rational points of B. On the other hand, put the unique struc-
ture of an algebraic curve on Y. Then the coherent analytic sheaf R'z, 0
has the unique structure of a coherent algebraic sheaf on Y. Let e Y be
the (scheme-theoretic) generic point of Y. Let E(S):=(R'z*0;),, which is
a finite dimensional vector space over K.

Proposition 14.2, The set of bimeromorphic equivalence classes. of
compact non-Moishezon uniruled threefolds in € which is in the class i) in
Proposition 14.1 is in natural bijective correspondence with the set of pairs
(S, e) consisting of a minimal elliptic surface S with a(S)=1 and an element
ec E(K) (resp. e e P(E(S)): = (E(S) —{0}/K*) if XF=P(DL) (resp.
X} =P(F).

Remark, If X}=P(1®L), then a(X)=2 if and only if e € E(K)q
the torsion subgroup of E(K).
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