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Isolated Singular Point 
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§ O. Introduction 

In this note, exponents mean a certain set of numbers al> .. " a" as­
sociated with an isolated critical point of a holomorphic function f defined 
in an open neighbourhood of 0 in C n + 1• For instance, if f is a simple 
germ of a function of the type of Dynkin diagram Az, Dz, E6, E7 or E6, then 
the exponents of f are given by m i / h+n/2, j= 1, .. " I = (rank of the 
Dynkin diagram) where mi' j = 1, .. " p. are the Coxeter exponents and h 
is the Coxeter number of the diagram. 

Such exponents are introduced in [6] (ol' see [7] for the summary) for 
the study of the period mapping, associated with f. In fact, roughly 
speaking, they are given as exponents of Fuchs type differential equation 
(= the GauB-Manin connection off) so that they become the exponents of 
the Fourier expansion of the period mapping associated to f. The ex­
istence and well definedness of exponents introduced above depend on the 
existence of another object, the primitive form 1;(0), introduced there. Un­
fortunately the existence of such primitive forms is shown only for simple 
singularities and simple elliptic singularities for the moment, so that, 
rigorously·speaking, the above definition of the exponents is valid only for 
that type of singularities. 

Thus in this note, in § 1, we give a tentative way of defining exponents 
and discuss their relation to the characteristic pairs of the mixed Hodge 
structure by J. Steenbrink [13] (see also M. Saito [10]). A duality property 
of exponents will be explained in § 1 using local dualities (see (1.3)). 

Then the main purpose of this note is to give a provisional report on 
some computer experiments concerning such exponents. More precisely, 
our interest in this note concentrates mainly on two problems, namely, 
one of the "distribution" of exponents in § 2 and the other-the zeroes of 
characteristic function XI introduced in § 3. 

The exponents at> •. " a", which lie in the interval (0, n+ 1) with 
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center at (n+ 1)/2, seem to be distributed rather densely near the center 
(n+ 1)/2. We shall give a continuous model of such distribution in § 2. 
As a consequence of such discussion, one conjectures that the geometric 
genus of the singular point of J-I(O) is less than p/(n+ I)!. 

To study the distribution of the exponents, in § 3 characteristic func­
tion Xf for Jis introduced as 

Xf = i:: r«i= i:: exp (2it'.f=T ai'Z") 
i=l i=l 

where at> ... , all are the exponents off By choosing a variable X = TI/rlo 

=exp (2it'.f=T 'Z"/do) for some do E N, Xf becomes a polynomial in X. 
IfJis a quasi-homogeneous function, the polynomial Xf is a cyclo­

tomic polynomial. For a search for the zeroes of Xf for further examples 
we needed the help of computer. 

Then it seems to be a remarkable fact that a computer experiment 
shows that though in general the polynomial XI in X is not a cyclotomic 
polynomial, it has rather many roots oj absolute values equal to 1 which are 
not roots oj 1. 

In the execution of computations by the computer DEC System-2020 
and the XY-plotter TETRONIX 4662 in RIMS of Kyoto University, many 
efforts has been done by T. Mitsui. 

The author is grateful to T. Mitsui for his kind help. He is also 
grateful to Y. Namikawa, I. Naruki and M. Saito for valuable discus­
sions. 

§ 1. The definition of exponents 

We introduce exponents of a holomorphic functionJ ofn+ I-variables 
at an isolated critical point 0 in this paragraph which will be used in the 
later paragraphs. They are defined as eigenvalues of a certain endomor­
phism N on the module Qf: =Q~n"o/dJAQ~"+1,o (cf. (1.3)). 

The definition is tentative so that we give several conjectures on some 
basic properties of exponents, which in all the known examples tum out 
to be true. 

(1.1) Below, in (1.1), (1.2), we give a brief summary of local GauS­
Manin connection and residue pairings forJfrom [1], [6]. 

LetJbe the germ of a holomorphic function defined in a neighbour­
hood of 0 in C n +l • Put 

./.0(0). _ nn+l /dlf,/\d'nn-l 
df., f • -~4cn+l,o ..l4cn+1,O 

..a>(-l). nn /dlf,/\ nn-l +d'nn-l 
df., f . =')4Cn+1,0 ')4Cn+1,.0 .il4 Cn +1 ,O 

where. Q~n+1,o is the module of germs of holomorphic p-forms at 0 in C n +l. 
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The modules .?!PJ), .?!Pj-l), which were first studied by E. Brieskorn [1] 
and are denoted '?!p",'?!p' respectively, are naturally (!:le,o=C{f}=C{t} free 
modules of rank f1 (= Milnor's number off at 0= dime (!:len+l,o!(iJf/iJzo, .. " 
of/ozn).) (see [1] [12]) 

The exterior differentiation d: Q'/:n+,--~Q,/:;;~, induces a differential 
operator, the GauB-Manin connection, 

(1.1.1) 

The wedge product with the form df /\ : Q'/:n+I-7Q,/:;;~, induces a short 
exact sequence of (!:le,o-modules 

(1.1.2) 

where Q j : =Q,/:;;~,!df/\Q'/:n+,is a torsion C{t} module and has rank f1 over 
C. 

(1.2) The following theorem is proved in [6], [5], [9]. 

Theorem. There exists an infinite sequence of C-bilinear forms 

k=O, 1,2, ... 

such that 
i) K(k) is symmetric (skew-symmetric) if k is even (odd) respectively. 

ii) K(k)(f7 w, w') =K(k+l)(W, w') for w E .?!Pj-l!, w' E .?!pJ). 
iii) K(k)(tw, w')-K(k)(W, tw')=(n+k)K(k)(w, w') for w, Q/ E .?!pJ). 
iv) K(O) is given by the residue pairing, 

K(O)(cp(x)dx, t(x)dx) = Res . [ cptdx ] 
of/oxo ... of/oxo 

Hence factoring through reo) of (1.1.2), K(O) induces a non-degenerate 
symmetric bilinear form, 

(1.2.1) 

(1.3) Let us consider a splitting v of the exact sequence (1.1.2), i.e. 
v: Q J-7:YfJ) is a C-linear map such that 

(1.3.1) 

Associated with v let us define a C-endomorphism 

(1.3.2) N: Qj -7QJ , by the composition, 
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n tv(e) - v(te) _(-1) P' -0/£'(0) r(O) n 
e E ~4 f----+ E 07" f ----+.:n f ----+U f· 

df 

(1.4) Proposition. Suppose that a splitting v satisfies 

(1.4.1) K(v(e), v(e'))=O for e, e' E Qf. 

Then 

(1.4.2) N+N*=(n+ l)id!l/ 

where N* is the adjoint endomorphism of Q f w.r.t. the bilinear form J of 
(1.2.1). 

Corollary. The set of eigenvalues {al> ... , ap} of N has the duality 
property: 

(1.4.3) {ai, ... , ap}={n+l-al> ... , n+l-ap}. 

(1.5) Note. The duality property of Nand al> ... , ap above has 
several consequences. First, one gets an algebraic representation of the 
Poincare duality of the Milnor's fiber using N. The duality is also used 
to extend the period map associated withfto the boundaries (cf. [6]) 

(1.6) Letf(x) and g(y) be holomorphic functions on C n + l and C m + l 

respectively with isolated critical points at the origins. Then the joint 
f(x) + g(y) defined on c n + m +2 has isolated critical point at 0 such that 

(1.6.1) 

Let vf and Vg be splittings for f and g, and N f and N g be the as­
sociated endomorphism of Qf and Qg respectively. Then vf/\vg: Q/i!JQg 

~JR~)®JRi/)~JR}Olg, defines a splitting for f+g and the associated 
endomorphism of Qf+g is given by 

(1.6.2) 

Hence if {ai, ... , ap } and {;3I' ... , ;3.} be eigenvalues of Nf and Ng re­
spectively, then the eigenvalues of Nf + g is given by 

(1.6.3) 

(1.7) In [6], we constructed splittings v with the help of primitive 
forms ,(0). Then the set of eigenvalues {ah .. " ap } of N does not depend 
on ,(0) and has nice properties listed in the conjecture below. Unfortu-
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nately the existence of primitive form is not known for a general f So 
we state the conjecture in the following, weaker formulation. 

Conjecture. I) For any function f with an isolated critical point there 
exists a section v of (1.3), such that 

i) K(k)(v(e),v(e'»=O fork>l, e,e'e{)f 
Ii) K(k)(f7(tv(e)-v(te», v(e'»=O for k~2, e, e' e ()f" 

2) The eigenvalues al> ... , ap of N, which we shall call the exponents 
of J, do not depend on the choice of a section v satisfying the conditions of 
1) and have the follOWing properties. 

i) rationality, a, e Q for all i. Moreover the set exp (2it'.v=t a,) 
gives the eigenvalues of Milnor's monodromy associated to f 

ii) positivity a, > 0 for all i. 
iii) duality {al'···' ap}={n+l-al' .'., n+l-ap } 

iv) simplicity the multiplicity of the smallest (or biggest) at is equal 
to 1. 

v) stability The set {aI, .. " ap} is not changed by a p-constant 
deformation off 

(1.8) Example. For a quasi-homogeneous function of degree 1 with 
respect to the weights ro, ••• , r n of coordinates, the conjecture is true. 
Explicitly the endomorphism N is given by 

N: cp(x)dx e {)f~(Xcp)dx+rcp(x)dx e ()f 

where X = L:~-o rtxtCojox,) and r= L:~-o rt is the smallest exponent. 

(1.9) In [13] (5.3) J. Steenbrink introduced in a different way the 
concept of exponents as a part of characteristic pairs using the mixed 
Hodge structure on the vanishing cohomology. 

Here we recall an equivalent definition due to M. Saito [10] (3.2) 
Let Hn(x",,). be the generalized eigensubspace of the n-th cohomology 

group of the Milnor's fiber, with the eigenvalue A with respect to the 
Milnor's monodromy which carries a mixed Hodge structure. Let hfq be 
the Hodge number dime Gr~Gr1J+qHn(X",,) •. 

Definition. We define p rational numbers {al> .. " ap } and call them 
the exponents off: 

A e C, p e Z, A=i= 1::}#{j: exp 2it'.v=t aj=~, [aj]=n-p}= L: Mq 
q 

A= 1=?#{j: aJ=n-p+ 1}= L: hfq 
q 

where [ ] is the GauS' symbol. 
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M. Saito proved the following theorem ([10] § 1, Theorem 1) 

Theorem. The geometric genus p g of the singular point of f-l(O) equals 
the number of exponents not greater than 1. 

(1.10) In the computed examples including quasi-homogeneous func­
tions and cusp singularities, the set of exponents in the sense (1.7) and 
that in the sense of (1.9) coincide. One conjectures that they coincide 
fo(any f. 

In practice the exponents of the examples in § 3 are calculated by the 
method of (1.9). 

(1.11) For the future use let us introduce some notation. 

Definition. r(f): = the smallest exponent off 

s(J): = the biggest exponent off-the smallest exponent 
off 

In view of the duality of exponents (1.7) 2) iii) (cf. [8] (3.2)) 

2r(f)+s(f)=n+ 1. 

The theorem (1.9) implies that r(f» 1 if and only if f-l(O) is rational. 
Here one makes 

Conjecture. i) s(f)< 1 if and only iff is simple (i.e. one of A k , Dk , 

E6, E7, Es)· 
ii) s(f) = 1 if and only iff is simple elliptic or cusp (i.e. one of £6' £7' 

£s, Tp,q,r with I/p+ l/q+ I/r< 1). For quasi-homogeneous functions J, the 
conjecture is true (see [8] (0.8)). 

§ 2. The distribution of the exponents of a function f 

Let /Xl> ••• , /XI' be the exponents of a functionf of n+ I-variables with 
an isolated critical point. They lie in the interval (0, n + 1). So, one can 
define a discrete probability density: I/p. L:r~l o(s-/Xi)ds, where o(s) is 
Dirac's delta function and s is a variable in the interval (0, n+ 1). A 
priori there is no description of the distribution except that it is symmetric 
at s=(n+ 1)/2. 

In this paragraph, we propose a continuous distribution Nn+ls)ds on 
the interval (see (2.3)), and ask whether this distribution is the "limit" of 
the distribution of the exponents as f "moves". 

This paragraph also gives a motivation for the investigations in the 
next paragraph. 

(2.1) Definition. A distribution of exponents of a function f is 
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(2.1.1) 

where o(s) is Dirac's delta Junction and s E (0, n+ 1). 

(2.2) To get an intuitive understanding of a distribution let us com­
pute it in a simple example: 

Since J is a joint of monomials Z;"i+\ i=O, ... , n, by applying (1.6.3), 
exponents of J are given by 

jo + jl + ... + j n .. 1 < . < . ° lor =Ji=mi , 1=,···, n. 
mo+I m1+1 mn+I 

Then the distribution of exponents ofJis given by the following n-dimen­
sional integral representation: 

(2.2.1) 

(2.3) Motivated by this formula (2.2.1) let us introduce a one dimen­
tional continuous distribution Nn+1(s)ds by integrating 

(2.3.1) 

where 

SO(X)=G 
if x $ [0, 1] 

if x E [0, If 

It is obvious by definition that Nn+l(S) is an n+ I-st convolution so*· .. 
*SO(s) of SO so that it is an n-I-times smoothly differentiable function satis­
fyinglthe recursion relation. 

i) No(s)=SO(s) 
ii) (d/ds)Nn+1(s)=Nn(s)-Nn(s-l) 

(2.4) In the next paragraph in (3.7) 2) and (3.9) 2), we show the 
following, 

Assertion. i) The distribution oj exponents Jor a quasi-homogeneous 
Junction oJdegree 1 w.r.t. the weights (ro, ... , rn) (which depends only on 
the weights), converges to the distribution Nn+1(s)ds as ro, ... , rn tend to 
zero. 
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ii) The distribution of exponents forf(x, y) which defines a plane curve 
with two Puiseau characteristic pairs (nl' II), (nz, Iz), (which depends only on 
nl, II, nz, 12), converges to N2(s)ds as n2 tends to 00. 

Here "converge" means that the Fourier transformation of the distri­
bution converges uniformly on compact sets. 

(2.5) One would like to generalize the above assertion in two direc­
tions. 

i) Instead of quasi-homogeneous function or two variable function, 
the assertion must be valid for any functionfin a suitable formulation. 

ii) Nn+l(s)ds is not only a limit of the distribution of exponents, but 
it must be a "bound" of the distributions of exponents for all f in a suita-
ble sense. . 

Below we state the question more explicitly 

(2.6) i) In [7] (6.1), the following inequality was conjectured 

(2.6.1) ~ fT t o(S-ai)ds<fT Nn+l(s)ds 
pOi-I . 0 

n+I forO<r<--. 
2 

ii) The conjecture is false by the following simple example f=z3 
where p=2, a j =i/3, i= 1,2, and 

iii) Even though the inequality (2.6.1) does not hold for all r, O<r 
«n+ 1)/2, the inequality holds for a specific value of r as we see in the 
following example. 

(2.7) Example. Let n = 1 so that f defines a local plane curve with an 
isolated singular point. Then for r= 1/2, the inequality (2.6.1) holds. i.e. 

{ I} r/2 1 # a: exponent off s.ta<2 <p Jo NI(s)ds =p;P' 

Proof. In [14], M. Tomari has shown the following theorem. 

Theorem. Let f(x, y, z) be a holomorphic function in 3-variables, 
which defines a normal singular point of a surface with multiplicity 2. Then 
the geometric genus Pg of the singular point is less than p/8, where p is the 
Milnor number off. 

Let us apply this assertion to f- zz+ g(x, y). In view of (1.6.3) and 
(1.9) theorem, the geometric genus of zz+ g(x, y) is equal to the number 
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of exponents of g less than or equal to 1/2 and the Milnor number of Z2+ 

g is equal to that of g. 

(2.8) i) Let us call r with O<r«n+ 1)/2 dominating, if 

(2.8.1) p-l#{a: a is an exponent of/s.t. a::=;:r}<I: Nn+l(S)ds 

for all functions I of n+ 1 variables. 
Let us call r weakly dominating, if 

(2.8.2) p-l#{a: a is an exponent of/s.t. a<r}::=;: I: Nn +1(s)ds 

for all functions I of n+ 1 variables. 
ii) Problem. Determine the set of all dominating values and 

weakly dominating values respectively for each n. 
For n=O, the set of dominating values is void and the set of weakly 

dominating values is={I/m: m=2, 3, 4· .. }. 
iii) Is 1/2 a dominating value for all n> I? i.e. Is the # of ex­

ponents of/with a::=;: 1/2 less than p/(n+ I)! 2n+1 for any function of n+ 1 
variables n~ 1 ? 

iv) Is 1 a dominating value for all n>2? i.e. Is the # of exponents 
of/with a<lless than p/(n+l)! for any function I of n+l variables, n 
~2? 

In particular for n = 2, the conjecture is "The geometric genus of a 
surface singular point of/- 1(0)<,46." This was conjectured also by A. 
Durfee in [2] and partially solved by Randeli. 

(2.9) To compute the values of I: Nn(s)ds for intergers r eN, it is 

convenient to use the following combinatorial method similar to the 
Pascal's triangle. 

Define integers N(n, r) indexed by two integers n eN and O::=;:r::=;:n, 

(2.9.1) N(n, r): =n! IT Nn(s)ds. 
r-l 

By putting formally, 

(2.9.2) N(n, O)=N(n, n+ 1)=0 and N(l, 1)= 1 

one obtains the following recursion formula. 

(2.9.3) N( n+ 1, r+ 1)=(n-r+ I)N(n, r)+(r+ I)N(n, r+ 1). 

The recursion form gives an algorithm to compute N(n, r) by induc­
tion on n, like the Pascal's triangle. 
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n=1 1 

n=2 1 1 

n=3 1 4 1 

n=4 1 11 11 1 

n=5 1 26 66 26 1 

n=6 1 57 302 302 57 1 

In a private letter to the author H. Hitotumatu has computed inde­
pendently both the recursion formula (2.9.3) and the following explicit 
formula 

(2.9.4) N(n, r)= ~1 (_ l)k(n+ 1)(r_k)n. 
k~O k 

(2.10) Note. Inspired by the characteristic function introduced in 
the next paragraph § 3, let us introduce a sequence of polynomials, 

" (2.10.1) L,,(T)= L: N(n, r)T'-l n=I,2,·· .. 
r=l 

Formally putting Lo= 1, from (2.9.3) we get a recursion formula 

(2.10.2) a Ln+1(T)=(1 +nT)L,,(T)+ T(I- T) - Ln(T). aT 

From this recursion formula (2.10.2) one proves the following as­
sertions 

Assertion 1). i) The polynomials LiT) have only simple real roots 
lying in ( - 00, 0). 

ii) In each connected component of( -00, O)~{roots of L,,(T)}, there 
is exactly one root of L"+l(T). 

Assertion 2). Put 

(2.10.3) (T-I) H(T, t)= e(l-T)t 
Te(l-T)t_l 

which satisfies the following differential equation 

(2.10.4) aH aH H=(I-tT)--T(1-T)-. at aT 
Then using the recursion (2.10.2), one computes 
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(2.10.5) (~)n H(T, t) = ( T -1 .)n+le(I-TlILn(Te(I-Tlt). 
at Te(I-Tlt -1 

Hence 

(2.11.6) (~)nH(T, t)1 = Ln(T), 
at 1=0 

n=O, 1,2, ... 

so that H(T, t) is a generating function for the sequence of polynomials 
Ln(T). 

The author is indebted to I. Naruki for the computation of (2.10.3). 

Assertion 3). The [(n-l)/2] roots of LnCT) which are less than -1, 
(which may be regarded as real units in a certain algebraic number field) are 
multiplicatively independent for n < 8. 

Hopefully the last assertion might be true for any n. Compare this 
assertion with (3.8) ii) of § 3. 

§ 3. The zeroes of the characteristic function X iT) 

In this paragraph we introduce the characteristic function XI(T) as a 
generating function of the exponents of f, or as the Fourier transform of 
the distribution of exponents (see (3.1». Our main interest lies in the zero 
locus of the function XI and we give a report on some experimental results 
on the zeroes of XI calculated by a computer. 

It is remarkable that in all the examples, the equation XI(T)=O has 
rather many roots on the unit circle I TI = 1. Because of the limited number 
of examples studied, the author does not know whether this is a general 
phenomenon for any f or not. 

(3.1) Definition. The characteristic function XI for a germ f of an 
analytic function with an isolated critical point is, 

(3.1.1) 
1 p 

X (T): =- L: Tat 
I p. i=l 

where ab ... , ap are the exponents off. 

Note. Using a new variable -r with T=exp (21t'-1=1 -r), one gets the 
Fourier transform representation 

(3.1.2) XI: = ~ J exp (21t'-1=1 t-r) ~ o(s-at)ds 

and hence, using the N of (1.3.2), we obtain, 
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(3.1.3) X,: = 1 tr. f exp (2:'t'./=T tr)(sl o,-N)-lds. 
2p:'t'./=T 

(3.2) The product formula. Let f(x) + g(y) be the joint of two func­
tionsfand g. Then by using (1.6.3), one gets, easily, 

(3.2.1) X,+g(T)=xiT)x/T). 

(3.3) The zeroes of x,· Let us now study the roots of X,=O in the 
following steps. 

i) Choose integers do, dl , ••• , dp and represent the exponents IX, = 
dildo, i= 1, ... , p. 

ii) Introduce a new variable X such that 

X = T/do=exp (2:'t'./=T rid). 

Using X, write the characteristic function as X,=XdOT(f) P(X), where P(X) 
:= ~~-1 Xdo(dt-T(f)) is a polynomial in X of degree d=dos(f). 

Note. The duality of the exponents (1.4) implies the relation 
XdP(X-I)=P(X). Furthermore if the conjecture (1.9) is true, P(X) is a 
monic polynomial with the constant term 1. Hence the roots of P(X)=O 
are units in some algebraic number field. 

iii) Let f31' ... , f3d be the roots of P(X)=O. Then we get a "virtual 
decomposition" 

a(f)do 
(3.3.1) X =T'(f) n (TI/do_f3,). 

, j-l 

Even though the decomposition (3.3.1) depends on the choice of do, all 
such decompositions are related in an obvious manner. 

In particular, the set {f31°: j = I, ... , d = s (f)do} does not depend on 
the choice of do. Let us call this set the zero locus of Xr All the elements 
f3 of the zero locus are counted with multiplicities=#U E {I, .. ', s(f)do}: 
f3 = f31o}1 do· It is obvious by definition that the sum of the multiplicities of 
the elements of the zero locus of X, is equal to s(f). 

(3.4) The numerical invariant s(f, 0). As we shall see in the examples 
below, the zero locus of X, has rather many elements on the unit circle I TI 
= 1. Motivated by this fact let us introduce the following invariants; 

(3.4.1) s(f, r): = ~ multiplicity of f3 E zero locus of X, 

such that Iloglf3l1<r 

=do1#{f3: root of P(X)=O s.t.lloglf3ll<do1r} 

for O<r<oo. 
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By definition s(f, r) is an increasing function of r such that s(f, 00) = 
s(f). By definition, s(f, O)/s(f) is equal to the ~ of roots of P(X) on 
the unit circle IXI=1 divided by degP(X). 

(3.5) An algorithm to compute s(f, 0). We shall compute s(f, 0) in 
the following manner. The computer programming is due to T. Mitsui. 

i) Take the polynomial P(X) of (3.3) ii). 
ii) Write P(X) in the form (X + lYQ(X), where Q(X) and X + 1 are 

co-prime. Notice that the degree d-I of the polynomial Q(X) is even. 
iii) Introduce a new polynomial R(Z) with integer coefficients by 

R(X+X-l)=X-(d-l)/2Q(X). Notice that R(Z)=O doesn't have a root 
equal to 2 or - 2. 

iv) Let m be the number of real roots of R(Z)=O which lie in the 
interval (-2,2), counted with multiplicities. 

The Sturm algorithm has been employed to calculate the number m. 
From the computational point of view, the algorithm is so algebraic that 
any software for symbolic and algebraic manipulation is suitable. We 
have carried out the computations by REDUCE 2 on DEC System 2020. 

v) Since the roots of R(z) lying on the interval (-2,2) correspond 
to the roots of Q(X)=O lying on the unit circle by 1: 2, we get the formula, 

(3.5.2) s(f, 0) = do1(l+ 2m) 

(3.6) Graphical search of the roots of P(X)=O. In [4] T. Mitsui has 
developed a graphical method for the search of zeroes of a polynomial 
P(X) in the complex X-plane by the use of graphical devices. In the fol­
lowing examples (3.7)-(3.11) we use this method to study the zeroes of 
the P(X) of (3.3) ii). 

In the figures 1-8, the following data are displayed. 
i) the figures are drawn in the half plane 1m X>O. 

ii) the small half-circle in a figure expresses the unit half circle 1 XI 
=1,ImX>O. 

iii) the big half circle in a figure expresses the half circle of radius 
IXI=2. 

iv) the zero locus of Re P(X) is displayed by the solid line. 
v) the zero locus of 1m P(X) is displayed by the dotted line. 

vi) Since the polynomial P(X) has real coefficients, the figure can 
be extended to the lower half plane 1m X::;:: 0 by the reflexion along the 
real axis which is shown by the dotted straight line in the figures. 

Thus the zeroes of P(X) are at the intersections of the solid lines with 
the dotted lines. If they cross on the small circle, the intersection shows 
a root of P (X) = 0 on the unit circle 1 XI = 1. 

vii) In the explanation of a figure, ~ means the number of the roots 
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of the polynomial P(X) which lie on IXI=1. 

(3.7) Example 1 (Quasi-homogeneous singularity). 
1) the characteristic function. Let f be a quasi-homogeneous func­

tion of degree 1 with the weights (ro, ... , rn). By computing the Poincare­
polynomial of the graded module {J f' we get, 

(3.7.1) _ 1 n~-o (T - Tr.) 
Xf--;; n~_o(Tr'-I) . 

2) the limit of the characteristic function. Let us vary the weights 
(ro, ... , rn) in the expression (3.7.1) so that rc~O for i=O, ... , n. Then 
noting that p= n~-o (ri1-1), one computes easily the limit as, 

(3.7.2) 

On the other hand, note that the right hand side of (3.7.2) is nothing 

but the Fourier transform J exp (21t'.f=T'rs)Nn+l(s)ds of the distribution 

in (2.3). 
Thus in the probabilitistic sense, the distribution of the exponents 

converges to the distribution; 

(3.7.3) ro}~~,,-o (tf o(s-at)~) =Nn+I(S)~. 
3) The zero locus of Xf and s(f, 0). It is obvious from the expres­

sion (3.7.1), that by a choice of X=TI/rlo, where do is a common denomi­
nator of ro, ... , r n' Xf = Tr(f) P(X), where P(X) is a cyclotomic polynomial 
in X. 

In particular, all the roots of Xf=O are roots of 1 and therefore s(f, 0) 
=s(f). 

One conjectures that the zeroes of Xf are roots of 1 if and only iff is a 
semi quasi-homogeneous singularity. 

4) Examples. For simple germs in three variables, one computes, 

xAm =T1+I/(m+l) If (TI/(m+l) -exp (21t'~ j ))Im 

X =TI+I/2(m-l) If (TI/2(m-I)_eXp (21t'.f=Tj)) 
D", j-1 m 

X if (TI/2(m-l) - exp 21t'.f=T j)(TI/2(m-l) + I)-11m 
j-1 2(m-2) 
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XES = Tl+ 1/30(T1/3 + 1)( T1/4_ exp ( 21'~ )) 

X ( r /4 - exp ( 41' ~ ) ) / 6 

XE7= r+ I/IB hl (TI/9_ exp ( 21'7 j )) 

X (TI/9+ exp ( 21'~ ))( T1/9+ exp ( 41'~)) /7 

Note. As we see from the above examples (and from the formula 
(3.7.1)), the zero locus of Xf is related to the ,u-th power roots of 1. Is there 
any good explanation of that? 

(3.8) Example 2 (Cusp singularities Tp,q,r). 

1) equation f=xp+yq+zr +xyz for l/p+ l/q+ l/r< 1. 
exponents 1, l+j/p for j=l, .. ·,p-l, l+j/q for j=l, ... , 

q-l, l+j/r for j= 1, ... , r-l, 2. ,u=p+q+r-1. 

( T-T'lp T-rlq T-T'lr )/ 
(3.8.1) XTp,q,r = T 1 + T'lp -1 + r lq -1 + T'lr -1 + T ,u 

The program (3.5) gives the following results. 

s(T2,3,7' 0)= 11/21 

s(T2,3,B' 0)= 12/24, 

S(T2,3,IO' 0) = 18/30, 

s(T2,4,5' 0)= 8/20 

(see Figure 1) 

s(T2,3,9) = 15/27 

s(T2,3, 11) = 38/66 

(see Figure 2) 

s(T3,3,4' 0)=4/12 (see Figure 3) 

s(Tp,p,p,0)=(p-2)/p (see Figure 4) 

2) Let us investigate more closely the last case above. 

Assertion. i) The characteristic function of Tppp is decomposed in 
the following form 

(3.8.2) 

for even p 



210 K. Saito 

. . 
. . 

I .. ",/ 

--I ...... ~ 

.. __ .. ____ .... _______ .... .. __ .. _________ .. ::::~'l;~:=~~ .. __ __ ______ __ ~ .................... ___ .. __ .. .. 
Figure 1*. example 2. 1) 

f= T7 ,3,2 do=42, deg P=42, #=22 

Figure 2. example 2. 1) 
f=T5 ,.,2 do=20, deg P=20, #=8 

. ".,," ..... .. __ ._ .. __ J ___ .. __ v ___ .. ______________ _ 

Figure 3. example 2. 1) 
f=T.,3,3 do=12, deg P=12, #=4 

* The explanation of the figures is found in (3.6). 
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Figure 4. example 2. 2) 
f=T12,12,12 do=12, deg P=12, #=10 

for oddp 
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where €i are complex numbers with I €i 1= 1 for i = 1, ... , [pI2] -1 and (Xp is 
a real algebraic number with 

(3.8.3) 

Assertion. ii) In the above expression, numbers (Xp' €" ••• , €[p/2]-1 

are multiplicatively independent in C *1 ± 1. 

Note iii) As a consequence of (3.8.3) we get 

(3.8.4) inf {r: s(f, r)=s(f)}=p log (Xp~p log 2----+00 (as p----+oo). 

Note. iv) Note that the fact ii) is in contrast with the case when f 
is quasi-homogeneous of example 1, where all the roots of Xj=O are roots 
of 1 so that they are torsions in C*. 

A sketch of the proof of i) and ii) 
Choosep as do in (3.3) i) and set XTppp=XPPp(X) for TI/P=Xand 

Pp(X) = I+XP+3 L:f.:-i Xi. 
First one checks easily the following recursion formula. 

(3.8.5) 

Put 

q=2, 3, 4, ... 
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Rq(Z)=(X + 1)-IX-qP2Q+I(X) 

where Z=X+X- 1• 

q=2, 3, 4, ... 

Then from (3.8.5) one obtains recursion formulae, 

Qq+I(Z)=ZQq(Z)-Qq_I(Z) 

Rq +I(Z) =zRq(Z)-Rq_I(Z), 

Using the above recursion formulae one proves the following assertion by 
induction on q. 

Assertion. v) The equation Qq(Z)=O (resp. Rq(Z) = 0) has q real 
simple roots. q-l of them lie in the interval (-2,2) and one root lies in 
the interval (- 00,2). Furthermore there is one root of Qq+I(Z)=O (resp. 
Rq + tCZ) = 0) in each of the connected components of ( - 00, 2) - {roots of 
Qq(Z)=O} (resp. (- 00, 2)-{roots of Rq(Z)=O}). 

From the assertion v) above, the assertion i) follows immediately. 
The approximation of the root a p is done by a direct calculation. 

Now let us prove the next assertion. 

Assertion. vi) The polynomials P2q{X), (X + 1)- IPZq +1(X) are irre­
ducible over Z. 

Proof Let us show that if Pp(X) is reducible, Pp(X) should be divi­
sible by a cyclotomic polynomial. 

Remember that except two negative real roots -ap and -a;;-\ all 
the roots of P p(X) have absolute values equal to I. Let Q(X) be a factor 
of P p(X) over Z. If X + a p divides Q(X), then X + a;;-l divides Q(X), 
otherwise Q(O) is not equal to ± I. Hence, either Q(X) or P p(X)/ Q(X) 
has only roots of absolute value I, so one of the two is a cyclotomic poly­
nomial. Thus if P p(X) is reducible, it should have a root of the form 
exp (271:~/m) for some integer m~O. 

Using the expression P p(X)=(X-l)-1(XP+l-l+2X(XP-1-1)) one 
has the representation. 

(3.8.6) Pp(ei8)=~. ~- sin -P--O +2sin p- 0 . ei(p/Z)8 ( (+ 1) (1)) 
sm 0/2 2 2 

Let m be any integer ~ 2. Divide p by m so that p = rm + t for some 
t with O<t<m. Then 

Pp(ez".;~/m) =. (- 1)' sin --71: + 2 sin ~71: • eP"';~/m (( t+ 1) (t 1 )) 
sm71:/m m m 

Because of the condition O~ t<m, one can see that the right hand cannot 



The Exponents of a Singular Point 213 

be zero except for the case m=2, t=I. This proves assertion vi). 
Let us now show the assertion ii). Suppose that there exist integers 

m, ml> ... , m[p/2J-I such that 

[pI2J-l 
(3.8.7) am IT ej'= ± 1. 

j=1 

Then taking the absolute value on both sides, one gets am = 1. Thus m = 
0. Now because of the assertion vi) a and e/S are conjugate by the Galois 
group action. For instance let a be an element of the Galois group s.t. 
a(el)=a. The element a induces a permutation of the roots of Pp(X). 
One checks easily that aCe?), ... , a(e[P/2J-I) are neither equal to a nor to 
a-I. Then applying a to the relation (3.8.7), one gets a new relation, 

for suitable n j • Then again by the same argument above ml =0. 
Repeating this argument, one proves mj=O for j= 1, ... , [pj2]-I. 

Together, these prove the assertion ii). 

(3.9) Example 3 (irreducible plane curves). 
In [11] M. Saito determined the characteristic function for an irre­

ducible plane curve as follows. 
1) Let a germ of an irreducible plane curve is given by, 

such that ci::;t:O, (Ii' nJ= 1, i= 1, ... , g, ll>nl" 
Put by induction on g, wl=ll> Wg=Wg_IngWg_I+lg and (fJI(ll> nl ; T)= 

(TIll! _ T)j(I- TlflI)(Tllnl_ T)j(I- 'Fllnl) 

where 

for 

(fJ g(ll> nl> ... , 19, ng; T) 

= (1- T)j(I- Tllng). (fJi!-I(ll, nl> .. . lg_l> ng_l ; Tl/ng) 

+ T(1- T)j(1- 'FlIng). (fJ?;~I(1I' nl> ... , 19-1, ng_l ; Tl/ng) 

_I(Tl/wg _ T)j(I- TI/Wg). (Tllng - T)j(I- Tl/ng) 

(fJ>l(T): = L: aiTilT , 

i1N>1 
(fJ<I(T): = L: aiTilN 

ilN<1 

Then the characteristic function is given by 



214 K. Saito 

where 

p.g=(ng-1)(wg-1)+ngp.g_l' 

2) One sees directly, 

lim = ---- . . (T_1)2 
ng-OO X<1.n' •.•.•• g.ng(T) log T 

3) Let us examine the zero locus for a simple case. 

X = TS/l2(1 + Tl/2 + T2/s + P /6) 
3,2,3,2 

+ Tl7/S0(1 + T l/ lS + T2/lS + ... + T lS/ lS) 

r= 5/12 s= 14/12 

Let us choose do=60 and put XS.2.S.2=X2SP(X) such that deg P=70. 
The program (3.7) shows that P(X) has 48 roots of IXI=l, and 

therefore 

S(fs.2.3.2' 0) = 48/60 (See figure 5). 

Figure 5. example 3. 
f: Puiseau pairs (3,2) (3,2) do=60, degP=70, ~=48 

(3.10) Example 4 (An example by B. Malgrange [3], see also [13]). 
Letf=x8+y8+z8+x2y2z2. Then p.=215 and 

xiT) = Tl/2(1 + 3 Tl/8 + 6Tl/4 + 9T3/ 8 + 13Tl/2+ 18Ts/8+ 21 T 3/ 4 + 24 T 7/8 

+ 25T + 24]'9/8 + 21 TS/4 + 18Tll/ 8 + 13T3/ 2+ 9 Tls/8 

+ 3 T l5/8 + T 2)/215. 

r(l)=1/2, s(l)=2. 
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Figure 6. example 4. 
f=x8+y8+z8+x2y2z2 do=8, deg P=16, #=6 

215 

Choose do=8 and put Xf =X4P(X) s.t deg P=I6. 
The program of (3.5) shows that P(X) has 6 roots on IXI=I and 

therefore one gets 

and 

and 

and 

14. 

s(J, 0) = 3/4. (See Figure 6) 

(3.11) Example 5 (Plane curves with two Newton-boundaries). 
1) Let j=xP +yQ+X2y 3 with 2/p+3/q<1. Then p=2p+q+I 

r(f)= p+I, 
3p 

s(f)= 4p-2 . 
3p 

Let us examine the simplest case when p = q = 11. Then 

xiT ) = r/lI(1 + TI/II + 2T2/11 + 2T3/11 + 3r/ll + 3YS/II + 3T6/11 

+ 3T6/ 11 + 3r/1I + 3TIO/ll + 2T + 2r2/ 11 + TI3/11 + Tl4/II) 

s(f)= 14/11, r(f) =4/1 1. 

Choose do = 11 and set Xf =X4P(X) for a polynomial P(X) of degree 
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The program (3.5) shows that P(X)=O has 10 roots onlXI=l and 
therefore 

s(f, 0) = 10/11. (see Figure 7) 

Figure 7. example 5. 1) 
f=Xll+yll+X2yS do=l1, degP=14, #=10 

r(f)=1/3, s(f)=28/21. 

Choose do=21 and put X/=T-/sP(X) for a polynomial P(X) of 
degree 28. 

The program (3.5) shows that P(X)=O has 16 roots on IXI=l, and 
therefore one gets 

s(f, 0)= 16/21. (See Figure 8) 

, , 

.. ,,,,,,,. 

, ,//' 

. . . __ .. ___ ___ __________ _ ____ ... __ .. !. _________ ~'101::.._____ _____________ .... ___ .. _______ ..... _ ..... 

Figure 8. example 5. 2) 
f=X7 +y7 +XSyS do=21, deg P=28, #=16 



The Exponents of a Singular Point 217 

References 

[ 1] Brieskorn, E., Die Monodromie der isolierten Singularitliten von Hyperfliichen, 
Manuscripta math., 2 (1970), 103-160. 

[ 2 ] Durfee, A., The signature of smoothings of complex surface singularities, 
Math. Ann., 232 (1978), 85-98. 

[3] Malgrange, B., Letter to the Editors, Invent. math., 20 (1973), 171-172. 
[ 4] Mitsui, T., A graphical technique for non linear algebraic equations, sub­

mitted. 
[5] Namikawa, Y., Higher residues associated with an isolated hypersurface 

singularity, Advanced Studies in Pure Mathematics, 1 (1983), 181-193. 
[ 6 ] Saito, K., On the periods of primitive integrals, in preparation. 
[ 7] --, Primitive forms for a universal unfolding of a function with an isolated 

critical point, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28 (1981), no. 3, 
775-792. 

[ 8] --, Einfach-elliptische Singularitiiten, Invent. math., 23 (1974), 289-325. 
[ 9 ] --, The higher residue pairings KU,) for a family of hypersurface singular 

points, to appear in Proceeding of Symposia in Pure Mathematics, A.M.S., 
Arcata, 1981. 

[10] Saito, M., On the exponents and the geometric genus of an isolated hyper­
surface singularity, to appear in Proceeding of Symposia in Pure Mathe­
matics, A.M.S., Arcata, 1981. 

[11] --, Exponents of a plane curve singularity, in preparation. 
[12] Sebastiani, M., Preuve d'une conjecture de Brieskorn, Manuscripta math., 2 

(1970), 301-308. 
[13] Steenbrink, J. H. M., Mixed Hodge structure on the vanishing cohomology. 

Real and Complex Singularities, Oslo 1976, Proceedings of the Nordic 
Summer School. 

[14] Tomari, M., The inequality 8pg<1l for hypersurface two dimensional iso­
lated double points, pre-print. 

RIMS 
Kyoto University 
Kyoto, Japan 


