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Higher Residues Associated with an Isolated 
Hypersurface Singularity 

Yukihiko Namikawa 

§ O. Introduction 

The aim of this note is, as a preliminary to Prof. Saito's article in 
this volume, to give a brief introduction to the theory of primitive integrals 
associated with isolated hypersurface singularities which he is now develop­
ing extensively. The whole theory, though still incomplete, can be found 
in [8] and a summary in [7]. 

The central idea of this theory is an intimate connection between 
geometry and transcendental functions with the theory of elliptic integrals 
asa motivated example. In his case the geometric object is a (so far) local 
isolated hypersurface singularity, with which he associates a specific dif­
ferential form called the primitive form. This primitive form enables us 
to study the singularity with analytic methods. Unfortunately, the ex­
istence of the primitive form has not yet been established in general except 
for a small but significant number of cases from explicit computations ([6]). 
The integrals of this form would give a new type of transcendental func­
tions generalizing elliptic integrals of the first kind. 

In order to state the fundamental properties of primitive forms which 
relate to geometric properties of singularity, we need to introduce what we 
call higher residue pairings (cf. [7]), whose definition is the goal of this 
note. Among many notions introduced by Saito with higher residues the 
exponent is one of the most important and is discussed in his article [9]. 

§ 1. A Hamiltonian system of an isolated hypersurface singularity 

In this section we introduce what we call a Hamiltonian system which 
is the object of our study. In fact we treat a special kind of a Hamiltonian 
system: one which is associated with a universal unfolding of an isolated 
hypersurface singularity. 

Definition (1.1). AHamiltonian system (X~S~T, 0,) is a col­
lection of the following data: i) X, S, T are the germs of manifolds of 
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respective dimensions m + n, m, m - 1 ; ii),p: X -+S, 7C: S-+ T are the germs 
of holomorphic maps; iii) 0, is a holomorphic vector field on S. They 
satisfy the following conditions: a) 7C: S-+Tis a submersion with 7C-'(@T) 
={g E @s: o,g=O} where @s and @T denote the sheaves of the germs of 
holomorphic functions on Sand T respectively (hence there is a local co­
ordinate system (f" ... , fm) = (f" f') (resp. (t2' .. " fm) = (f')) of S (resp. T) 
such that 7C is the projection (f" f')-+(f') and o,=%f,); b) Q=7Co,p is 
smooth (hence there is a local coordinate system (xo, .. " x n , f2' .. " fm)= 
(x, t') of X such that ,p(x, t') = (F,(x, t'), f2' ... , fm))' 

Notation (1.2). Taking the fibre product we have the following com­
mutative diagram: 

Then Z has a canonical system oflocal coordinates (x, t) such thatp: (x, f) 
-+(t), it: (x, f)-+(X, f') and the graph of ,p: X-+S inZ is defined by F=. 
f,-F,(x, f')=O. 

(1.3). Let f2ets denote the sheaf of germs of holomorphic vector 
fields on S. We define 

which is an @T-free Module of rank m. Moreover we obtain an exact 
sequence of @T-Lie algebras, 

Assumption (1.4). The function fex)=F,(x, 0) has an isolated criti­
cal point at x = O. 

In this note we consider only Hamiltonian systems satisfying the 
above assumption. Then,p is an unfolding of f. The dimension of 
@q-'(O),o/Yo, Yo = eof/oxo, .. " af/oxn ), as a C-vector space is the Milnor 
number off 

Definition e1.5). The map ,p is a universal unfolding if the map 

Ts,o---).@q-.(O),o/Yo 
\U \U 

o ---).eaF)lt'=~ 
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is bijective where Ts•o is the tangent space of Sat 0 and 3 is an arbitrary 
lifting of 0 to Z by p. 

All the unfoldings can be constructed canonically (and locally) from 
the universal unfolding. 

Therefore, in this note we always assume for simplicity that p is uni-: 
versa!' In particular, we have m=p.. 

Example (1.6); J=xn. 

Definition (1.7). i) Let C be the subvariety of X defined by the ideal 
of = (aF1/axo, •• " aF1/axn ). It is the critical set of the map p and is a com­
plete intersection under the assumption (1.4). 

ii) Put D = p( C) C S which is called the discriminant of p. 

Remark (1.8). i) Moreover, the critical set C is smooth when p is 
universal, and then qlo: C~T is a branched covering of degree p. and q*(!}o 
is a free (!}T-Module of rank p.. 

ii) Let A(t') e End.T (q*(!}o) be the multiplication by tl in q*(!}o, and 
put L1=det (tl-A(t'». Then D is nothing but the divisor defined by L1 
=0. 

Example (1.9). In the example (1.6) L1 is the usual discriminant of F 
up to scalar multiplication when we consider F as a polynomial in x. 

§ 2. Gauss-Manin connection 

(2.1) Int his section we consider X, S, Tin (Ll) as local manifolds 
defined by 

X={(x, t'); Iixll<e, 1Jt'11<0', IF11<0}, 
S={(t); Itll<o, 1Jt'II<o'}, 
T={(t'); llt'li<o'} 

with 1 ~e~o~o'>O. 

Fact (2.2) (Milnor [4]). The map p: X-p-I(D)~S-D is locally 
trivial as a differentiable map whose general fibre Xt=p-I(t) has a homo­
topy type of a bou'luet of p. times Sft. 

Hence 

H= U Hft(Xt, Z)~S-'-D 
teS-D 
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forms a local system on S - D determined by the monodromy represen­
tation 

and 

is a locally free sheaf of rank p. 

Fact (2.3) (Griffiths, also see Brieskorn [1], Katz-Oda [2]). 
The sheaf ;If' admits a holomorphic connection 17 called Gauss-Manin 

connection whose horizontal sections are precisely H0z C. Here a con­
nection is a map 

17: $e~S-DX ;If'~;If' 
W W 

(0, w) 170w 

such that for f E @S-D> we have 

17.(fw) =o(f)w+ f17.w. 

To give a connection on;lf' is equivalent to give a $s_D-Module structure 
on;lf' where $S-D is the ring of germs of holomorphic differential opera­
tors on S-D. 

Now we can state our main problem explicitly. 

Problem (2.4). Extend;lf' to the whole of S and study the behaviour 
of 17 near D and its relation to the geometry of cpo 

We can give several answers to this problem, but they are in fact 
related to each other. 

Definition (2.5). 

where 

;If' (0): = cp*Q}~}/ dF1!\ dcp*Q}j}, 

;If'(-l): =cp*Q}/T/dF1!\cp*Q}j}+dcp*Q}j}, 

;If'(-2): =RPcp*(Q"x/s) 

= Ker (cp*Q}/s~ CP*Q1jJ) 

Im( CP*Q1/J~CP*Q}/s) 
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Q~/T=Q~/q*(Q~)I\Q~-l, 

Q~/S=Q~/ifJ*(Q1)I\Q~-1 

~Q~/T/dFl!\Q~/f 
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are the Kahler differential forms and the former is locally free for O<p< 
n+1. 

We denote Q~i1 by QF. Note that the support of QF is C. Then 
these three sheaves are related as follows. 

Proposition (2.6). We have two exact sequences: 
.) 0 ./p(_I)l\dF1 ..&>(O) T ",. n 0 
1 ~.n; ~.n; ~'f'*~4 F~ , 

ii) O~.Yf(-2)~.Yf(-I)~"" Q ~O 
'1'* F , 

where r and i are the canonical morphisms coming from the definition. 

Proof i) Only the injectively of I\dF1 : .Yf(-l)~.Yf(O) is non-trivial. 
If (J) e ifJ*Q~/T satisfies dF11\(J)=dF1I\d1j for 1j e ifJ*Q~/f' i.e. dF1!\«(J)-d1j) 
=0, then there is ~ e ifJ*Q~/f with (J)-d1j=dFl!\~ by the division lemma 
«3.5) below). 

ii) Note that .Yf(-l) ~ifJ*Q~/s/difJ*Q~/1. Then surjectivity of d: .Yf(-l) 

~ifJ*Q F follows from the De Rham lemma for Q"x, and the rest of the ex­
actness·is evident. 

Theorem (2.7) (Sebastiani[ll], Malgrange [3]) . .Yf ct ), i=O, -1, -2, 
are locally free sheaves of rank p. 

The proof obtained so far is very difficult in spite of its apparent sim­
plicity. A new proof would give us another insight in the nature of these 
sheaves. 

Proposition (2.8). Let .YfCt ) be as in (2.5). They can be considered as 
extensions of .Yf by the following identification. 

i) For t e S-D, we have 

which is identified with Hn(Xt, C) by De Rham theorem, or explicitly, letting 
(J) e Q~/T correspond to the dual map 

Hn(Xt'Z)~ C 
\II \II 

r ~I (J)IX,· 

ii) For (J) e Q~if we define an element in H"(Xu C) by 
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which gives the identification of Jlt'f~, with Hn(Xt, C). 

Definition (2.9). The Gauss-Manin connection is the integrable co­
variant differentiation 

17: !@etsX JIt' (-1)~JIt' (0) 

IV IV 

(0, m) ~176m 

defined by 

178m.[(] =( -1)t+I[(dt2/\ ... /\dtm)-ldt1/\ ••• /\di,/\dtm !\d!;] 

where [!;] denotes the class in JIt'(-I) corresponding to !; e f)-X/To 

Remark (2.10). Another definition of the Gauss-Manin connection 
is given by 

IV IV 
m 

m ~dm=dFll\ml+ L: dt.!\mi • 
i=2 

Then 178m• has a particular importance because of the following pro­
perty. 

Proposition (2.11). 176• defines isomorphisms of{!}T-Modules as 

17a.: JIt'(-2)~JIt'(-I), 

1761 =d: JIt'(-I)~JIt'(O), 

both of which are compatible with the exact sequences in (2.6), i.e. we have 
a commutative diagram: 

The compatibility of 17 a with the exact sequences holds more generally for 
o e @ (1.2). 
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These properties of £(1), i=O, -1, -2, and /7ol now enable us to 
embed £(i) into an infinite sequence of £(-k), k=O, 1,2, .... 

Definition-Proposition (2.12). Put 

£(-k) = {w E £(-i); (l7aY-lw E £(-I)}. 

This coincides with the previous definition of £(-2) and we have the exact 
sequences 

r(le) 

0------)-Jlt' ( - k - I) ------)-£ ( - k) ------)-cp * Q F------)-O, 

k=I,2, ..• 

and isomorphisms 

compatible with the above exact sequences. 
They form a filtration of £(0), whose (completed) graded ring is, 

roughly speaking, Taylor expansions along D. 

Definition (2.13). We define 

!!2ets (-log C) = Ker (!!2e~s------)-(!)c) 
\II \II 

a ------)-aFI C 

= {a E !!2ets: iJL1 E Cd)}, 

which is a Lie subalgebra of !!2ets, and let 

which is naturally dual to !!2ets ( -log C). The sections of Q1(log D) are 
called logarithmic differentiall-forms (along D) (cf. (1.7)). 

Proposition (2.14). We have 

!!2ets (-log C)= {a E !!2ets; /70£(-1) C£(-I)} 

or equivalently 

/7: £(-I)------)-Q1(log D)@£(-I), 

that is, the connection /7 has only a logarithmic pole along D. This property 
is the regular singularity of /7. 
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§ 3. Higher residue pairings 

In thissectlon we state the following result which is the goal of this 
note and prove the most part of it. 

Main Theorem (3.1). There exists an infinite sequence of (!J1'-bilinear 
forms 

k=O, 1,2, ... 

such that 
i) K(k) is symmetric or skew-symmetric respectively when k is even 

or odd; 

ii) K(O) ([.,. dx] [.,. dx]) = Res [ tlt2dx ] 
'1'1 , '1'2 X,1' aFjaxo'" aFjaxn 

for [ttdx]e 'IT:*yt'(O); 
iii) KCk)(W" (2)=K(k-I)(f7"W" (2),for WI e 'IT:*yt'(-l), W2 e 1t"*yt'(O); 
iv) K(k)(tlw" ( 2)-K(k)(W" t1( 2)=(n+k)KCk-I)(wl, ( 2), 

for Wt e 'IT:*yt'CO); 
v) K(k)(W" WJ=K(k)(f7, WI' (2)+K(k)(WI, Va ( 2)for Wt e yt'(-l), 0 e @. 

A very important application of this theorem, the theory of exponent 
is given in Prof. Saito's article [9] in this volume. In particular, the mean­
ing of the property iv) becomes clear there. 

Here we exhibit his latest simplified proof in [to], though it does not 
differ in essence from the preceding ones. 

For the proof he introduces a new complex called quantization, with 
which we embed (the completion of) 'IT:*yt'(O) into a bigger (!J1'-Module on 
which f7" has no poles (i.e. ~s acts) and we define residue pairings there. 

Notation (3.2). We denote by CUOil]] the formal power series ring 
in Oil and by C«Oil)) its quotient field, whose elements are formal Laurent 
series. A natural filtration is given by 

keZ. 

In our case it would be better to consider C«Oil)) as the completion of 
the localization of C[011 at the ideal 1=(01)' 

Note that in C«Oil)) the multiplication by 01 is invertible and induces 

Definition (3.3) (Quantization). We consider the complex 

(Q·)=(tJ;',i(oi l )), d) 
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where d=011d-dFt!\, and its filtration 

which d preserves, 

Proposition (3.4), i) The complex (Q") is purely (n+ l)-codimen­
sional, 

Jf'P(Q")=O, p=/=n+ 1. 

The same is true of(PQ') and (Q'fPQ), 
ii) The submanifold C is the common support of Jf' n + I(Q'), 

Jf'n+I(PQ'), and Jf'n+'(Q'fFkQ"). 
iii) The canonical injection 

i(k): Jf'n+I(FkQ')----,;-Jf'n+I(Q') 

induced from the inclusion: Fk(Q}--+(Q") defines a filtration {P Jf'n +I(Q') = 
1m i(k)} on Jf'n+I(Q') which is complete and 

iv) The multiplication by 01 (3,2) induces isomorphisms 

hence, naturally, 

The key fact needed for the proof is the so-called division lemma, 

Theorem (3,5) ([5]). The sequence 

I\dFI rn n I\dFl n +1 n 0 
O----,;-(!J x /T~~4 x /T----';-' , ,----';- ~41-/T~~4 1-/T----';-~4 F----';- , 

is exact, 

Then, noting that the complex (Fk(Q')fFk-I(Q'), d), k e Z, is nothing 
but the above (Q"x/T> I\dF,), the proposition follows directly by the next 
technical lemma, 

Lemma (3,6). Let {PQ'h be a (descending) filtered complex, 
i) Suppose that FkQ' is complete with respect to the filtration, i,e, 

PQP:::lim (PQPfFkQP), 
~ k'>k 
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For aftxedp e Z, if 

;;IfP(P' Q'jP' +lQ')=O for all k'>k, 

then 

;;IfP(PQ') = 0. 

ii) Suppose that theftltration is exhausted, i.e. QP=Uk FkQP. For 
peZ,if 

for all k'<k 

then 

map 

i(O): 7r*;;If(Ol~;;Ifn+l(q*F'0lQ')C;;lfn+l(q*Q'), 

which is compatible with the filtration, i.e. 

i(k): 7r*;;If(- kl~;;Ifn+l(q*F'- klQ'). 

Proposition (3.8). For k>O we have a commutative diagram whose 
vertical sequences are (already known to be) exact: 

Corollary (3.9). Theftltered completion of 7r*.?If(-kl is isomorphic to 
;;Ifn+l(q*FHlQ'). 

Proposition (3.10). The inclusion i(kl is a <g[oll]-homomorphism. 

Remark (3.11). The sheaf .@T«oll)) acts on ;;Ifn+l(q*Q') and .@T[[olllJD 
=U::::Dmo-m; Dm e.@n deg Dm<m} on 7r*;;If(-kl and on ;;Ifn+l(q*F'-klQ'). 
Therefore we can consider the first action as an extension of the second. 

(3.12) For a Stein open set Uc T we take a Stein covering U= 
{Uo, •• " Un} of (X-C) n q-I(U) defined by Ui = {x e xn q -I(U); 
(oFjoxi)(x)=t=O}. 
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Consider the double Cech complex 

(C'Q') 

where CJ: {}p,q~{}P+l,q denotes the Cech coboundary, and d: {}P,q~{}p,q+1 
is as in (3.3). The total coboundary operator is then defined by 

~=CJ+( _l)n+ p + qd. 

Note that H~({}p,q)=HP(Xn q-l(U), {}hT)((o11))::;H~+1(Xn q-l(U), 
{}hT)((o1 1) which vanishes for p=l=n. 

Proposition (3.13). The single complex associated with (C'Q') is 
acyclic with respect to ~. 

Proof. Clear from (3.4) i) and ii). 

Corollary (3.14). We can define a map 

L: £,n+l(q*Q')---)-q*£,~+1(lTJx)((011» 

which preserves the filtration, i.e. 

Proof. The proof of this is just a general nonsense. 
The image of the inclusion r(U, q*{}1-iJ.)((o11)~CO(U, {}1-iJ.)((o11» is 

contained in Ker ~=Im~. In other words for cu E q*{}1-iJ.((o11) there is 
a c=(c') E EB~=o {}i,n-' with ~c=cu. Then we define 

L([cu])=the cohomology class of c n • 

The following zigzag process gives a more elementary illustration of this 
map: 
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Remark (3.15). In view of (3.11) the multiplication by oIl is com­
patible with L but the one by 01 is not. The compatibility holds if one 
defines the dual sequence of lVT-Modules .i/(~) (.i/(~)---+.i/(Hl») and the dual 
connection 1781 : .i/(k) =;.i/(Hl) (cf. [10]). 

(3.16). Forw E yt'n+l(Q") we expand L(w) into Laurent series as 

L(w)= L: Dr-k)(w)of. 
k';ko 

Note that 

Definition (3.7) • 

.i/(O}={w E q*yt'~+l(lVx); dF1 /\dw=0 in q*yt'~+l(QhT)}' 

Theorem (3.18). The image of D(-k) is contained in .i/(O) and we have 
an exact sequence 

DCk-l} 
O~yt'n+l(q*F<-k)Q·)~yt'n+l(q*Q·)~.i/cO). 

We omit the proof here. See [10]. 

Remark (3.19). Roughly speaking, to apply the map D(k-l) ~to 
L:i';ko aioi E yt'n+l(q*Q') means to forget the part L:i';-k aioi • 

Definition (3.20). For w, w' E 'IC*yt'(O) we define 

k=O, 1,2, ... 

where P=DCk) 0 itO), and Resx /T: q*yt'~+l(Q"};J.)---+q*lVc~lVT is the ca­
nonical residue map. 

Example (3.21). For w=[~dx] E 'IC*yt'(O) we have w=a(c i ) with 

cO= ( ifJ dxo/\ ••• /\d;k /\ ... /\dXn) (mod oIl), 
aFt/axk k=O,···,n, 
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Hence for w=[pdx], w'=[1/tdx] E ,,*£,(0) 

K(O)(w, w') = ResX / T [ p1/tdx ]. 
(}F1/(}aO' •• (}F1/(}xn 

(3.22). For the complete proof of the main theorem (3.1) we refer 
the reader to [8]. It is rather involved though elementary. Note that we 
have already given the definition of K(k) and a proof of the properties ii). 
iii). For a proof of the property i) compare also [7]. 

References 

[ 1 1 E. Brieskorn, Die Monodromie der isolierten Singularitaten von Hyperflachen. 
Manuscripta Math., 2 (1970), 103-161. 

[2] N. M. Katz, T. Oda, On the differentiation of De Rham cohomology classes 
with respect to parameters, J. Math. Kyoto Univ., 8 (1968), 199-213. 

[ 3] B. Malgrange, Integrales asymptotiques et monodromie, Ann. Sci. Ecole 
Norm. Sup., 7 (1974), 405-430. 

[ 4] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Studies, 
No. 66, Princeton Univ. Press, Princeton, 1968. 

[ 5] K. Saito, On a generalization of De-Rham lemma, Ann. lnst. Fourier, 26, 
(1976), 165-170. 

[ 6 ] --, On a linear structure of a quotient variety by a finite reflexion group, 
Comm. Algebra. 

[ 7 1 --, Primitive forms for a universal unfolding of a function with an isolated 
critical points, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28 (1981), no. 3, 
775-792. 

[ 8] --, On the periods of primitive integrals, in preparation. 
[ 9] --, The zeros of characteristic function XI for the exponents of a hyper­

surface isolated singular point, in this volume. 
[10] --, Higher residues for hypersurface isolated singular points, to appear 

in Proceedings of Symposia in Pure Mathematics, A.M.S., Arcata, 1981. 
[11] M. Sebastiani, Preuve d'une conjecture de Brieskorn, Manuscripta Math., 2 

(1970), 301-308. 

Department of Mathematics 
Nagoya University 
Chikusa-ku, Nagoya 
Japan 


