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Topics in Topology 

Masaki Kasbiwara 

The purpose of this talk is to give applications of the theory of 
holonomic systems of linear differential equations with regular singu­
larities (we shall call them in this note regular holonomic systems, for 
short). Regular holonomic systems appear, besides purely analytic appli­
cations, as tools to connect topological objects with geometric or algebraic 
objects. This comes from the fact that Hilbert's twenty-first problem 
holds for regular holonomic systems. In this note, we take two topics 
as examples: "intersection homology groups" and "vanishing cycle 
cohomologies" . 

§ 1. Hilbert's 21-st problem 

1.1 We employ the same notations as in § 5 [0]. Then, Hilbert's 
21-st problem for regular holonomic systems is stated as follows. (This 
was announced in [7].) 

Theorem 1. The functor f2fJltx = R Jlf'om!!dX (@X, ): D b(f2x)hr--+ 
Db(CX)c is an equivalence of the categories. 

1.2 We shall discuss briefly how to construct the inverse functor 1Jf: 
Db(Cx)c--+Db(f2x)hr of f2fJltx ' Let X R denote the underlying real analytic 
manifold of X, and let f2b(O,p) denote the sheaf of (O,p)-forms with distri­
bution (in the sense of L. Schwartz) coefficients. A sheaf .'F of C-vector 
spaces on XR is called R-constructible if there exists a stratification of XR 

by subanalytic (see [2]) strata on which .'F is locally constant. For 
an R-constructible sheaf .'F, we define the sub sheaf :!T JIf'(.'F) (O,P) of 
Jlf'omcx(.'F,f2b(O,P)) as follows: for any open subset U of X, r(U, 
:!T JIf'(.'F)(O,P)) = {SO; .'F iu--+f2b(O,P) Iu; for any relatively compact open sub­
analytic subset V of U and for any s E rev, .'F), there exists u E 

r(U,f2b(O,P)) such that so(s)=uiv}' Then, :!TJIf'(.'F)(O,P) is an exact contra-
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variant functor in g;, We can define the Dolbeault sequence 

a a .r Yf'(g;)(O,,): o~.r Yf'(g;)<o,O)~.r Yf'(g;)<O,I)~, , , 

a 
~.r Yf'(g;)C0,n)~o, 

(n=dim X) 

This is naturaUy a complex of ~x-Modules, 
Now, let g;' be an object of Db(CX)c' Then there exists a bounded 

complex gj' of R-constructible sheaves, which is isomorphic to 
R Yf'omcx (g;', Cx) in Db(CX)c' Then 7Jf(g;') is defined as the simple com­
plex associated with the double complex .r J"t'(gj'Yo,') , 

1.3. The functor ~!!A!x enjoys the property 

(1.1) 

where vII'*=R Yf'om",x(vII', ~x)@.Q®-I[n] and g;'*=R J"t'omcx (g;', Cx) 
for g;' E Db(Cx)c' Here.Q denotes the sheaf of holomorphic n-forms on 
X, (See [6]), 

The foIIowing theorem characterizes the vanishing of cohomology 
groups of vii' in terms of ~!!A!x(vII'). 

Theorem 2. For vii' E Db(~x)hr set g;'=~!!A!x(vII'), Then we have 
the following, where Yf" means the cohomology sheaves: 

(i) Yf'J(vII') = o for any j>O if and only if 
codim Supp Yf'J(g;') > j for any j>O 

(ii) Yf'J(vII')=O for any j<O if and only if 
codim Supp Yf'J(g;'*) > j for any j>O, 

Corollary 3. Yf'J(vII') = 0 for any I*O if and only if 
(1.2) codim Supp Yf'J(g;')?j and codim Supp Yf'J(g;'*) > j 

for any j?O, 

Therefore, the abelian category of regular holonomic systems is 
equivalent to the full subcategory of Db(Cx)c consisting of g;' satisfying 
{1.2), Thus, for an g;' with (1.2), we can expect to study its property 
through the corresponding regular holonomic system, In subsequent 
sections, we discuss two examples of such g;', 

§ 2. Minimal extension and intersection homology groups 

The first example is the "intersection homology group", introduced 
by Goresky-MacPherson [1], 
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2.1. Let Y be a closed analytic subset of a complex manifold X and 
j the inclusion X - Y~X. Let.4 be a regular holonomic system de­
fined on X - Y. We assume that .4 is extendable onto X. In another 
word, j!df'k(.@Bi'(.4)) is constructible for any k, where j! is the direct image 
with compact support. 

Proposition 4. Under these conditions, there exists a regular holo­
nomic system Ji defined on X with an isomorphism .4.::; j-l Ji, which 
satisfies 

(2.1) df'~(Jl)=df'HJi*)=O, i.e. Ji has neither coherent sub-Module 
supported in Y nor coherent quotient supported in Y. 

Moreover, such an Ji is unique up to isomorphism. (See [8], for 
the proof.) 

This Ji is called the minimal extension of .4. The corresponding 
complex ff·=.@Bi'x(Ji) is characterized as follows. 

Proposition 5. ff· satisfies 

(2.2) j-lff·~,@Bi'x(vIt), 

(2.3) codimx yn Supp df'J(ff·»j for any j, 

(2.4) codimx yn Supp df'J(ff·*»j for any j. 

Moreover, such an ff· e Db(C x)c is uniquely determined by .@Bi'(vIt) 
up to isomorphism. 

2.2. Now, let Z be a closed analytic subspace imbedded into a com­
plex manifold X and let ZSing denote the singular locus of Z. Let vIt be 
the minimal extension of the regular holonomic system 88 Z -ZsinglX -Zsing 

defined on X - ZSing. Here, for an r-codimensional closed submanifold 
W of a complex manifold V, we denote by 88 WI v the algebraic local co­
homology .@v-module df'fw](lDv). Then 7t'z=.@Bi'x(vIt)[dim X] is called the 
"intersection homology group" of Z. It belongs to Db(CX)c and is sup­
ported on Z. By using Proposition 5, 7t' z is characterized as follows: 

(2.5) 

(2.6) 

(2.7) 

where Wz is the dualizing sheaf RTz(Cx )[2 dim X]. The uniqueness of 
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the minimal extension implies vii ~ vii * , which holds trivially on X - ZSing' 

Therefore by (1.1) and the duality theorem, we have 

(2.8) 

The Poincare duality theorem (e.g. see [3D implies 

(2.9) 

for any open subset U of Z. 

§ 3. Vanishing cycle sheaves 

3.1. Another example is the "vanishing cycle sheaf". Letf: X~D 
be a holomorphic map from a complex manifold X into the unit disk D= 
{z E C; Izl<I}. Let jj be the universal covering of D-{O}, p the pro­
jection jjXDX~X and j the inclusion XO=f-l(O)~X. Then .fF'= 
j-1Rp*(CDXDX) is called the vanishing cycle sheaf (see [10D. For any x E 

Xo, we have 

(3.1) .?/fJ(.fF}.=HJ(Unf-1(t), C), where U is the ball centered at x 
with radius e and O<ltl~e~1. 

Then, j*.fF"[ -1] satisfies (1.2) and 

(3.2) 

Hence 

(3.2), 

by the duality theorem (3), since {J)xo=Rr xo(Cx)[2 dim X] is the dualizing 
sheaf for Xo. Therefore, to j*.fF"[ -1], there corresponds a regular holo­
nomic system "f/' which satisfies 

(3.3) 

(3.4) 

~8£x("f/')=j*.fF·[ -1] 

"f/'~"f/'*. 

The last property (3.4) follows from (3.2), and (Ll). Since the mono­
dromy M for f acts on .fF', it acts also on "f/'. Hence "f/' can be considered 
as a ~x[M, M-1]-Module. 

3.2. The ~x[M, M-l]-module "f/', which is a regular holonomic ~x­
module is easier to handle than .fF', since it can be described directly in 
terms off as follows. Let ~ x[s] denote the sheaf of rings~ x®c C[s] and set 
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f = {P(s) E ~xrs]; P(s)!' = 0 onX-Xo}. Let % denotethe~xrs]-Module 
~x[s]lf, whose canonical generator is denoted by f8. In [4], it is shown 
that % is a coherent ~x-Module. Let t denote the ~x-linear endo­
morphism of % given by P(s)f'~P(s+l)f'+1=P(s+l)f.J·. Then t 
and the multiplication by s do not commute but have the relation 

(3.5) [t,s]=t. 

Let Crt, s] denote the ring generated by variables t and s with the relation 
(3.5), and let ~xfs, t] denote fi)x®c CIs, t]. Then % has a structure of 
~x[s, t]-Module. 

We know that for any fi)x[s, t]-sub-Module ~..v' of % which is co­
herent over fi)x, %'/t%' is a regular holonomic ~x-Module. The mini­
mal polynomial of s considered as an element of end (%'/t%') is denoted 
by b(s, %'). We endow %'/t%' with the structure of ~x[M, M- I]_ 
Module by M=exp (2n-J"=T s). The function b(s, %) is called the b­
function of f and it is known that the roots of the b-function are negative 
rational numbers (see [4]). 

Theorem 6. (i) %/t% and %'/t%' give the same object in the 
Grothendieck group of the abelian category of ~x[M, M-I]-Modules sup­
ported in Xo which are regular holonomic systems as ~x-Modules. 

(ii) There exists an %' such that no difference of two distinct roots 
of b(s, %/} is an integer. For such an %', %' /t %' is isomorphic to "Y as 
a ~x[M, M-I]-Module. 

We can prove this theorem by applying the theory of asymptotic 
expansions ([5]) to the regular holonomic system for o(t-f(x)). As its 
corollary, we have 

Corollary 6. (i) If A is an eigenvalue of the monodromy on ;Rj(~.):l!' 
then there is a root s of b(s) such that A = e2• ,,=I •. 

(ii) If ex is a root of the b-junction, there exist j and x such that e2• r-l« 

is an eigenvalue of ;Rj(~.):l!. 

This is known in the case of the isolated singularity. ([9]). I am 
informed by B. Malgrange that he and A. Beilinson and I. Bernstein 
obtained analogous results [11]. 
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