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Introduction to Algebraic Analysis 
on Complex Manifolds 

Tadao Oda 

This talk is meant to be an introduction for algebraic geometers, who 
are familiar with local cohomology formalism and derived categories but 
not much with hard analysis, to the so-called "algebraic analysis" on com­
plex manifolds. This is also meant to be an introduction to Kashiwara's 
talk later in this symposium [K5], where he will explain to us the relevance 
to algebraic geometry of holonomic systems with regular singularities (the 
twenty-first problem of Hilbert). 

During the past ten years, there has been tremendous progress made 
in this field by Sato, Kashiwara, Kawai, Malgrange, Ramis and Mebkhout 
among others. The formulation, modelled after the idea and formalism 
of Sato's hyperfunctions, is a rather familiar one to algebraic geometers 
once they get used to what are going on. Most of the basic results can 
be found in Kashiwara [Km], [Kb], [KI], [K2] and Kashiwara-Kawai [K3]. 
Hopefully the by now voluminous literature is made a little bit more ac­
cessible to algebraic geometers when they get familiar with the formalism 
and typical examples found in this talk. We touch neither on the results 
concerning the differential operators of infinite order nor on the "micro­
local" part of the theory, which in reality play very powerful roles in the 
proof of the results mentioned here. As a complete newcomer myself in 
this field, I benefited a great deal in reading Bjork [B] and Pham [P], which 
are good introductions also to the micro-local theory. 

§ 1. What is algebraic analysis? 

(Ll) Let X be an n-dimensional complex manifold. We denote by 
~ x the sheaf of germs of holomorphic linear partial differential operators 
of finite order. At a point x E X with local coordinates (z" ... , zn), the 
stalk of ~ x at x consists of finite sums 

p= 'LJxCz)(ojoz)a 
a 
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where a= (aI, ... , an) runs through a finite set of n-tuples of nonnegative 
integers, (a/az)a = (a/azl )a1(a/az2)a •. .. (a/azn)a" and £(z) are holomorphic 
functions. The first basic result is that p) x is a coherent sheaf of (non­
commutative) rings with each stalk left and right Noetherian ofleft and 
right global dimension n (cf. [Km]). P)x contains the structure sheaf ~x 
as well as the holomorphic tangent sheaf ex=p)e~c (~x). Locally, P)x is 
generated by ex over ~x. 

(1.2) As Kashiwara already noted in [Km], a system of holomorphic 
linear homogeneous partial differential equations 

(i= 1, ... , s) 

with I unknowns UI , ••• , Ut and with Ptj e HO(X, p) x) can be described 
intrinsically as a left p) x-module M of finite presentation 

p 
O~M~~!~~' 

where P sends a germ (QI> ... , Q.) of ~. to the matrix product (QI> ... , 
Q,)(P'J) of ~!. Then a global holomorphic solution u=(UI> ... , ut) of 
(*) is nothing but an element of the C-vector space 

ofleft ~x-homomorphisms, where ~x is naturally a left P)x-module by 
differentiation (cf. (2.1)). 

This simple-minded observation leads us also to consider the C x­
module (C x being the constant sheaf with fibers C on X) 

.Yl'OYrl(lX (M, ~x) 

of germs of local holomorphic solutions, or more generally the derived 
functors 

Ext ~x (M, M'), C"t~x (M, M') 

for left P)x-modules M, M ' , as well as 

for left P) x-modules M and right P) x-modules N. They will play im­
portant roles in "algebraic analysis", i.e., the study of ~x-coherent left 
(or right) modules. 
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§ 2. Examples of !?d x-modules 

We now list typical !?dx-modules, to get an idea of how widespread 
they are. 

(2.1) IPx is canonically a left!?dx-module; for germsP= 'LJiz)(a/az)a 
e!?dx andf e IPx, we let Pf= L:.fa(z)(a/az)aJ, where (a/az)af is the partial 

derivative off. We have the following !?dx-Iocally free resolution: 

O~lPx~!?dA9mx /\. ex 

which will play important roles later, where 1\. ex is the exterior algebra 
of ex over IP x and the boundary map 

a 
!?dx®mx /\ p-l ex~!?d x®mx 1\ p ex 

is defined by 

a(P®(vJ\ ... /\ vp» = L:. (-I)i-I(PV,)®(v l /\···.:-··· /\ vp) 
l .. i .. p 

+ L:. (-I)i+j P®([vi , v j ]/\ vl /\ ••• .:- •• • t . .. /\vp) 
i<j 

forgermsPe!?dx and VI> ···,vpeex . Here [v, v']=vv'-v'v is the Lie 
bracket. 

(2.2) Since IPx is a subalgebra of !?dx , a left !?dx-module M is an IPx-
module. M is IPx-coherent if andonIy if M is a vector bundle (i.e., IPx-
locally free of finite rank) with a holomorphic integrable connection. 
Among other characterizations, this means the following: exacts C x­

linearly on M via a C x-homomorphism 

ex®cxM~M 

with the image of v®m written as vm for germs vee x and m e M so that 
(a) (av)m=a(vm) for a e IPx, v e ex, m eM, 
(b) v(am) = (v(a»m+a(vm) for a e IPx, v e ex, m eM, 
(c) [v, v']m=v(v'm)-v'(vm) for v, v' e ex, m e M. 

The usual de Rham complex !?dPllx(M)={)"x®mxM of the form 

built out of the integrable connection l7 can be interpreted as the complex 
of Cx-modules 
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whose cohomology sheaves, i.e., the de Rham cohomology sheaves are 
nothing but 

More generally, a left!?} x-module M is nothing but an (f) x-module with 
a Cx-linear action of ex on M satisfying the above properties (a), (b), (c), 
sinee!?}x is locally generated by ex over (f)x with the relations va=v(a)+ 
av, [v, v']=vv' -v'v for a e (f)x and v, v' e ex. Here v(a) means the action 
ofv on a e (f)x' 

(2.3) Using the above simple observation (ef. [K2]) we see the dif­
ference between left and right !?} x-module structures as follows: Let N 
be a right!?} x-module. Then we have C x-homomorphisms 

sending a0n to a*n=na and v0n to v*n= -nv for a e (f)x, v e ex and 
n e N, where the right hand sides are via the right !?) x-module action. 
Then we easily see that 

(a*) (a*v)m= v*(a*n), 
(b*) v*(a*n)=v(a)*n+a*(v*n), 
(e*) [v, v']*n=v*v'*n-v'*v*n. 

Conversely, Cx-linear actions of (f)x and ex on a Cx-module N satisfying 
(a*), (b*), (e*) give rise to a right !?}x-module structure on N. Thus for­
mally, the difference between left and right !?}x-module structures lies only 
in (a) and (a*). 

In this way, we see that the canonical invertible sheaf wx=fJ'l: is natu­
rally a right !?}x-module by letting v*p with v e ex and p e Wx to be the 
Lie derivative of p with respect to the vector field v, i.e., 

i 

(v*p)(vlO •• " vn)= V(P(VIO .. " vn))- ~ P(Vl' •. " [v, Y Vi]' .. " Vn) 
l<;i<;n 

(2.4) Using the above simple observations (2.2) and (2.3), we see the 
following for left !?}x-modules M, M' and right!?}x-modules N, N': 

M0~xM' is a left !?}x-module via v(m0m')=(vm)0m'+m0(vm'), 

M0~x N is a right!?} x-module via v*(m0n)= (vm)0n+m0(v*n), 

.?/fom~x (M, M') is a left !?}x-module via (vt)(m)=v(t(m))...,...t(vm), 

.?/fom~x (N, N') is a left !?}x-module via (vt)(n)=v*(t(n))-t(v*n), 

.?/fom~x (M, N) is a right !?}x-module via (v*t)(m)=v*(t(m))-t(vm). 
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Here is an easy way to remember all these: When X is a compact 
Riemann surface of genus g, an lV x-invertible sheaf L on X can be a left 
~x-module (resp. right ~x-module) if and only if degL=O (resp. degL= 
2g-2). . 

(2.5) For instance, for q ~ 0 and a left ~ x-module M, we have a 
natural right ~x-module structure on Cxt~x (M, ~x) induced by that of 
the second factor ~ x. Hence 

is naturally a left ~x-module (cf. (4.3)). 

(2.6) Algebraic local cohomology sheaves. Let us start with the 
simplest nontrivial case. Let X be a neighborhood of 0 in C with the co­
ordinate z. The stalks of lV x and ~ x at z= 0 are the convergent power 
series ring lV=C{z} and !')=tf)m~olV(dfdzt". Then lV as well as the field 
lV[Z-l] of finite Laurent series are left ~-modules. Thus the quotient 
lV[Z-l]flV is also a left ~-module supported at z=O, with the C-basis con­
sisting of the residue classes 0(11/,) of (_I)mm!z-(m+l) mod lV for m=O, 
1, .... Then (dfdz)o(m)=o(m+l) and zo(m) = _mo(m-l). Thus o(m) is the 
m-th derivative of (27d times) Dirac's delta function 0(0). 

These are particular cases of the following more general algebraic 
local cohomology sheaves: For a closed analytic subspace Y of a complex 
manifold X defined by an lVx-ideal I, we define the q-th algebraic local 
cohomology sheaf of an lv x-module M by the inductive limit 

.Yt"ry](M)=ind lim Cxt~x (lVx/I", M). 
"~o 

Compare this with the transcendental local cohomology sheaves .Yt"HM), 
which are the usual derived functors of the sub sheaf functor .Yt"~(M) of 
sections with support in Y. We also consider 

.Yt"rxly](M)=ind lim Cxt~x (I", M), 
"~o 

hence have a long exact sequence 

and isomorphisms 

.Yt"EXly](Mt~.Yt"r;j(M) q~ 1. 

When M is a left ~x-modtile, we see that .Yt"ry](M) and .Yt"rxly](M) are 
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again naturally left !»x-modules, since expcp-I. The above exact se­
quence and isomorphisms are those of left!» x-modules. In contrast, the 
transcendental local cohomology sheaves .n"}(M) are naturally left !»'X­
modules, where !»'X is the sheaf of germs of hoI om orphic linear differential 
operators of infinite order. 

(2.7) Inverse images. Let f: Y~X be a holomorphic map of 
complex manifolds. For an lVx-module M, let f* M =lVY®~x M = lVy 
®J-l(~X)!-I(M) be the usual inverse image as ringed spaces. If M is a left 
!» x-module, then f* M is naturally a left !»y-module by the chain rule: 
For local coordinates (WI' ... , wm ) at a point y e Yand those (z" ... , zn) 
for f(y) e X, with Zj=h(W), the canonical homomorphism eY~f*ex 
sends ajawt to L:I<;j<;n (a!jjawt)(!(w))(ajazj). Even if Mis !»x-coherent, 
however,J* M need not be !»y-coherent. (cf. [Km] and (4.7.5)). 

We mention here the following observation in [Km] concerning the 
Cauchy problem (the initial vaiue problem) for linear partial differential 
equations: Given a coherent left !»x-module M and an embeddingf: Y~ 
X, we ask if the canonical homomorphism of Cy-modules 

f- I .n"oYr/gX (M, lVx)~.n"oYr/gy (f* M, lvy), 

sending a local holomorphic solution of the corresponding system of 
partial differential equations (cf. (1.2)) to its "initial value at Y", is in­
jective or not, where f- I on the left hand side is the inverse image of the 
ex-module. Kashiwara [Km, Chapter II] shows that it is injective and 
f* Mis !»y-coherent iff is "non-characteristic" with respect to M. 

(2.8) Direct images. Compared with the inverse images in (2.7), 
the direct images are more difficult to define but are richer in geometric 
significance ("integration along fibers"). Let f: Y ~X be a holomorphic 
map of complex manifolds. We first define a sheaf !»x-y on Y which is 
both a right!»y-module and a leftf-I(!»x)-module. Here and elsewhere, 
f- I is the inverse image as a sheaf. Then the whole sequence of direct 
images of a left !»y-module N are defined to be the hyperdirect image left 
!» x-modules (cf. [Kb, § 4]) 

S; N:=Rqf*(!» x_y~N) qeZ, 

where ®~y means the left derived functor of the tensor product over !»y 
(or, more precisely, the tensor product in the derived category of !»y­
modules). 

The sheaf !»x-y above is defined (cf. [K2, § 4] and [Kb, § 4]) as 
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where illx and illy are the canonical invertible sheaves of X and Y, respec­
tively, andf* is the inverse image as ringed spaces. In the first descrip­
tion, !!fix is a right !!fix-module by right multiplication, hence !!fi x0@xilli! is 
a left !!fix-module by (2.4). Thus f-!(!!fi x0@x illi!) is a left f-l(!!fi x)-module. 
On the other hand, !!fi x0mx illi! is a left !!fix-module by left multiplication, 
hence f*(!!fi x0@x illi!) is a left !!fiy-module as an inverse image by (2.7). In 
view of (2.3) and (2.4), we conclude that the second description of !!fi x~y 
above is a right !!fiy-module. 

Remark. Do not confuse the above !!fi x~y with 

which is a left !!fiy-module and a right f-l(!!fi x)-module and which appears 
in the literature. 

Let us now describe rather complicated !!fix~y and the direct images 
in more detail whenfis smooth. The study in the general case is reduced 
to the composite of this case and the case of an embedding, since (i) a 
holomorphic map f: Y ---+ X is a composite of an embedding 

r: Y----+YXX, r(y) = (y,J(y» for y E Y 

and the second projection P2: YX X---+X which is smooth, and since (ii) for 
another holomorphic map g: Z---+ Y we have (cf. [Kb, § 4D 

Sometimes convenient is the following description (cf. [Kb, § 4]): 

!!fi x~y = r-l(JIf'~;(yfi(ptilly ». 
Whenf: Y---+X is smooth of relative dimension r, we have an exact 

sequence 

0----+8y / x----+ 8 y----+ f*8 x----+O, 

hence, in particular, the subring !!fiy/x of !!fiy generated by the relative 
tangent sheaf 8y/x=JIf'om@y (.oir/x, my), and a surjective ring homomor­
phism !!fiy---+f*!!fix---+O. Then we see (cf. [P] and [BD that !!fix~y has the 
following right !!fiy-Iocally free resolution: 
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Here [r] means the usual dimension shift to the left by r of the relative de 
Rham complex for gyy defined by 

where Q~ /X is the usual complex of relative holomorphic forms with re­
spect to the relative exterior differentiation dy/x. The map 

for various p's are defined uniquely in such a way that 
(i) d(a/\cp)= (dy/xa) !vp + ( -1)Pa/\dcp for a e Qf;/x, cp e Qhx0~y gyy 
(ii) d sends 1 e gyy=Q~/x0@ygyy to the canonical element of Q~/x 

0~y eY/xcQ~/x0~y gyy corresponding to the identity element of 
gnd~y (eY/x)=Q~/x0@y e y/x . 

We obtain the augmentation homomorphism 

by noticing that Q"y/x=(f*{J)x)-10~y{J)y is a right gyy/x-module as a rela­
tivized version of (2.3). Hence the direct image R'1*(gyx_y0~y N) of a 
left gyy-module N is seen to coincide with the hyperdirect image left gyx­
module 

qeZ 

of the relative de Rham complex for N given by 

gygty/x(N) = gygty/xCgyy)0"y N=Q~/x0~y N. 

When N is a vector bundle on Y with a holomorphic integrable connec­
tion,we see (cf. (2.2)) that gygty/x(N) coincides with the usual relative de 
Rham complex for the induced relative connection. Hence we see that 
the hyperdirect image left gyx-module RT+'1*(gygty/xCN)) coincides with 
the usual relative de Rham cohomology @x-module ;!f'ni?(YjX; N) with 
the Gauss-Manin connection (cf., for instance, [D]). 

§ 3. Structure of coherent gy x-modules 

Now that we have familiarized ourselves with left gy x-modules, we 
explain briefly how their structure is studied. 

(3.1) Filtration. gyx has the following increasing filtration by @x­
submodules: 
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where the stalks of !?flkm ) consist of P= 'L,.a!a(z)(alaz)" with fa(z)::j::.O only 
for 10l1=0l1 + ... +Oln<m. We say P to be of order m if P E !})r;') but P 
i £»f{'-l). In this case, the residue class um(P) of P mod !?flkm - 1) is, by 

tradition, called the principal symbol of P. 

As in commutative algebra (where we deal with the dual decreasing 
filtrations), we consider the associated graded sheaf of rings 

gr (!?fl x)= EB !?flkm ) l!?flkm - 1 ). 

m;;>O 

We have a canonical isomorphism 

the symmetric algebra over {9 x of the holomorphic tangent sheaf ex' 

Hence in particular it is commutative. Thus we are naturally led to con­
sider the cotangent bundle (as a complex manifold) 

v 
n 

X~T* X = Specan (gr (!?fl x»= V(ex) 

(this if is sometimes also denoted n) or sometimes the projectivized cotangent 
bundle 

as well. Here we follow the notations of Grothendieck's EGA. 

(3.2) Important analytic subspaces of T* X are the conormal bundles 
T:Xc T* X of analytic subspaces Y of X defined as follows: First of 
all, when Y is an r-codimensional closed sub manifold of X defined by an 
{9x-ideal I, we have the normal sheaf JII' y/x=:Yt'om~y (liP, (9y) and an exact 
sequence 

Hence we have a submanifold T:X = V(JII' y/x) of T* X = V(ex ), which is 
a rank r subbundle of the restriction (T* X) X x Y to Y of the cotangent 
bundle of X. More generally, if Y is an open subset of a closed analytic 
subspace possibly with singularities, we define its conormal bundle T:X 
to be the closure of that of the smooth part of Y. In particular, the co­
normal bundle Tj.X of X in X is nothing but the zero section of T* X. 

(3.3) The characteristic variety. To a coherent left !?flx-module M, 
we associate a closed analytic subspace V Me T* X, called the characteristic 
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variety of M, in the following way: Locally M is a quotient of a free left 
f?) x-module L of finite rank. Hence we have locally an increasing filtra­
tion r 

induced by the obvious filtration of L. This filtration has the following 
properties: 
(i) Um>oMlm)=M. 
(ii) Each M(m) is @x-coherent. 
(iii) f?)<pM(m)cM(!+m) for alII, m, and theassociatedgradedgr(f?)x)­

module 

grr (M)= EB M(m)jM(m-l) 
m;<=O 

is locally finitely generated. 
A filtration r of M satisfying (i), (ii) , (iii) is called a good filtration. 

We can then consider locally the annihilator ideal I in gr (f?) x) of 
grr (M). One of the basic results says that its radical rad (I) does not 
depend onthe good filtration r chosen. (cf. [Km], [B], [PD. We thus 
have a globally defined homogeneous radical ideal sheaf J MC gr (f?) x), hence 
a closed reduced analytic subspace 

which, by tradition, is called the characteristic variety of M. Sometimes 

VM is also denoted SS (M) and is called the singular spectrum of M. 

Remark. In the above, we had to paste together locally obtained 
data to define the characteristic variety. In "micro-local analysis" where 
we introduce a sheaf i x on T* X of micro-differential operators, VM can 
be defined simply and more directly as the support of the "pulled-back" 
ix-module 

Besides being a fiber system of "conic subvarieties" (i.e., stable under 
the fiberwise scalar multiplication, since J M is homogeneous), VM is known 
to be involutive. This means the following: Locally, M has a good filtra­
tion r. Let P and P' be germs of f?)x of orders m and m', respectively, 
such that their principal symbols am(P) and am,(P') belong to JM , i.e., 
some powers of them annihilate grr (M). Then the principal symbol 
am+m'-I([P, P'D of [P, P'] =PP' - P'P also belongs to JM • This 
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O'm+m'-I{[P, PI]) is known to depend only on O'm{P) and O'm'{P') and is 
called the Poisson bracket of O'm{P) and O'm'{P'), The involutiveness is 
proved micro-locally. See, for instance, [SKK, p. 453, Theorem 5.3.2] 
and [B, Chap. 4, Theorem 9.1 and Chap. 5, Section 5]. See also Gabber 
[G] for a purely algebraic proof, where he considers a very big graded 
module EBmez M(m) over a very big ring EBmez !1)5rm). 

Geometrically, the involutiveness means the following: First of all. 
the cotangent bundle T* X is a so-called symplectic manifold globally 
equipped with the canonical l-form 0 and its exterior derivative ro=dO, 
called the fundamental 2-form. In local coordinates (ZI' ... , zn) of X and 
the principal symbols i;i = O'I{ajazi), they can be written as 

ro= I:: di;i A dzi· 
l .. i"n 

Then a closed reduced analytic subspace Vc T* X is involutive jf and only 
if for any smooth point v of V, the tangent space Tv V in Tv(T* X) satisfies 
{Tv V)l-c Tv V, where the left hand side is the perpendicular with respect 
to the fundamental 2-form ro. As a consequence, each irreducible com­
ponent of the characteristic variety VM is of dimension ~n=dim X (Bern­
stein's inequality). This is also a consequence of the fact that the stalks 
of !1) x are of left global dimension n (cf. [B], [Km]). 

§ 4. Holonomic !1) x-modules with regular singularities 

A left ~ x-module M is said to be holonomic if M is !1) x-coherent and, 
moreover, if the dimension of its characteristic variety V M is equal to n = 
dim X, i.e., the smallest possible. In this sense, M is also called "maxi­
mally overdetermined". 

If M is a holonomic !1) x-module, then M satisfies various properties: 

(4.1) For each x E X, the stalk M., is a monogenic ~x,x-module of 
finite length. (cf., for instance, [B, Chap. 1, Theorem 8.18 and Chap. 2, 
Theorem 7.13]). 

(4.2) For each irreducible component V of the characteristic variety 
VMc T* X, the image 7f(V)cX is an irreducible closed analytic subspace 
and V coincides with the conormal bundle T~(V)X in the sense of (3.2). 
(cf., for instance, [P, pp. 92-94]). 

(4.3) Cxt~x {M, ~x)=O for q=l=n and the adjoint left !1)x-module {cf. 
(2.5» defined by 
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is also holonomic with VM .= VM and M**=M. (cf. [Km, 3.1.5, 3.1.2, 
3.1.8] and [Kb, Theorem 2.3]). 

(4.4) By far the most important result is the finiteness theorem [K2, 
Theorem 4.8] : If M and M' are holonomic left ~ x-modules, then the C x­

modules gxt~x(M, M') are Cx-constructible for all q. Recall that a Cx-
module F is said to be C x-constructible if there exists a finite sequence of 
closed analytic subspaces 

0=XocX1c··· cXJ_1cXjc ... cX 

such that the restriction of F to each X;,',.xJ -I is a locally constant C x­
module of finite rank. 

Actually, Kashiwara showed that there exists a Whitney stratification 
of X such that the restriction of gxt~x (M, M') to each stratum is a locally 
constant C x-module. Of particular importance are the following special 
cases: The "solution sheaves" 

and the "de Rham sheaves" 

are mutually dual constructible Cx-modules (cf. (1.2) and (2.2». Note that 
@x is holonomic, since its characteristic variety is easily seen to be the zero 
section TIX. 

(4.5) Among holonomic ~ x-modules, the following are of utmost 
importance: A holonomic ~ x-module M is said to have regular singu­
larities if it satisfies the following equivalent conditions. 

( i) Locally at each point, there exists a coherent (I) x-submodule F 
of M with M = ~ xF such that if the principal symbol G m(P) of P E ~i?) 

vanishes on the characteristic variety VM , then PFc~irm-l) F. In another 
word, in a neighborhood of each point of X, there exists locally a good 
filtration r 

of M such that if Gm(P) for P E ~irm) vanishes on VM , then Gm(P) annihi­
lates grr (M). 

(ii) [K3, Corollary 5.1.11] There exists a global good filtration r 
of M such that if (Jm(P) for P E ~irm) vanishes on VM , then (Jm(P) annihi­
lates gr r (M). 



Introduction to Algebraic Analysis 41 

(iii) [K3, Theorems 6.3.1 and 6.4.1] The "formal solutions" coincide 
with the "holomorphic solutions", i.e., for each q and for each point x E 

X, the canonical homomorphism 

0"xt~x (M, (!7x)x~Ext~x ... (Mx, @x,x) 

is an isomorphism, where the suffices x mean the stalks at x and @x,x is 
the usual completion of the local ring (9 x, x' The right hand side is the 
usual extension module. 

(iv) [K3, Theorem 6.4.7] For each point x E X, we have the equality 

L: (-I)q dime 0"xt~x (M, (!7x)x= L: (-I)q dime Ext~x ... (Mx, @x,x)' 
q q 

Note that by the finiteness theorem in (4.4), the left hand side is well 
defined. 

These seemingly unrelated conditions are shown to be equivalent only 
through other micro-local characterizations (i.e., in terms of J x-modules 
and, indeed, Jx-modules, where Jx is the sheaf on T* X of germs of 
micro-differential operators of infinite order) and through the reduction 
to the important special cases introduced by Oeligne [0] (i.e., holonomic 
EO"x-modules of Oeligne-type along hypersurfaces of X) The whole paper 
[K3] is devoted to the task. 

(4.6) The above definition of holonomicity with regular singularities 
is a successful generalizati'on to higher dimensions of the classical notion 
of ordinary differential equations with regular singularities in the one­
dimensional case. To see this, let us go back to the situation in (2.6), 
namely, Xis a neighborhood of 0 in C, (!7=C{z} and EO" = (£;m-;,o (!7(djdzY'· 
Consider a left EO"-module M=EO"jEO"P with 

such that ap E (9 and am::;t:O. M is obviously a holonomic EO"-module. 
Let us denote by ord(ap ) the usual order of zero at Z=O of the holo­
morphic function ap • Then P is classically said to have regular singularity 
at Z= ° if the coefficients satisfy 

for all p. 

It was Malgrange [Ma] (and Oeligne, cf. [KD, who first formulated 
this condition in such a way that (iv) of (4.5) is a natural generalization to 
higher dimensions. We have a EO"-free resolution -

p 
O~M~EO"~EO"~O, 
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where P is the right multiplication by P E f2. Hence we have 

p 

{
ker «(9~(9) 

gxt~ (M, (9)= ~oker «(9~(9) 

Malgrange showed that the index defined by 

index «(9~(9)=dime ker «(9~(9)- dime coker «(9~(9) 

is equal to m- ord (am), while if the completion @= C[[z]] is taken instead 
of (9, then 

index (@~@)=sup (p-ord (ap )). 
p 

Thus index «(9~(9)=index (@~@) if and only if P has regular singu­
larity at z=O. 

Here are simple examples to give the feeling for the equivalence of 
(i) through (iv) in (4.5). 

(4.6.1) (9~f2/f2(d/dz) is holonomic with regular singularities. Take 
the one-step filtration 0=M(O)cM(I)=M(2)= ••• =(9. The characteristic 
variety is the zero section TiX={,=O} with '=al(d/dz). 

(4.6.2) M=(9[Z-I]~f2/f2(zd/dz+l) is holonomic with regular singu­
larities. Take the filtration M (j) = z- j (9. The characteristic variety is 
1f-1(0) U TiX={z,=O}. 

(4.6.3) M = (9[Z-l]/(9= E8m ;>o cacm) ~f2/f2z is holonomic with regular 
singularities. Take the filtration MU) =E8o<;;m<;;j cacm). The characteristic 
variety is 1f-l(O) = {z=O}. 

(4.6.4) M=(9[Z-l] exp (Z-1)=f2/f2(z2d/dz+ 1) does not have regular 
singularities, but the characteristic variety is {z' = O}. 

(4.6.5) For A E C with A*O, 1,2, ... and for a nonnegative integer 
I, the left f2-module 

Ml.l=f2/f2(zd/dz-A)l~ EB (9[Z-l]Zl(log z)J 
O<;;j<l 

is holonomic with regular singularities. Take the filtration 
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Mtl= EB Z-i(17Zl(lOg Z)j. 
O"';'j<l 

The characteristic variety is again {z':;=O}. 

(4.6.6) (cf. [P, p. 102-p. 106]) A coherent left £0-module M is 
holonomic with regular singularities if and only if M *0 and if there exists 
an (17-coherent submodule LcM with £0L=M and (zd/dz)LcL. In fact 
this is the case if and only if the kernel and the cokernel of the "localiza­
tion £0-homomorphism" 

M ~(17[Z-I]@~ M 

are isomorphic to direct sums of (17[Z-I]j(17 and if (17[z-I]@m M, which is 
nothing but the algebraic local cohomology sheaf £~xly](M) with Y={O}, 
is a direct sum of M 1,! 's with A 's as well as the differences among them 
not being integers. 

(4.7) Coming back to a general complex manifold X, here are some 
of the important general results concerning holonomic £0 x-modules and 
those with regular singularities. 

(4.7.1) (17x or, more generally, (17x-coherent £0x-modules M*O are 
holonomic with regular singularities (cf. (2.1) and (2.2». 

(4.7.2) For an exact sequence O-,;M'-,;M-,;M"-,;O of left £0x-
modules, M is holonomic (resp. holonomic with regular singularities) if 
and only if so are M' and M". (cf. [BK, Proposition 1.3, (1) and (3)]). 

(4.7.3) For an r-codimensional closed submanifold YcX, we see that 
the algebraic local cohomology sheaves £[Y]«(17x) vanish for q*r and that 
£[Y]( (17 x) is £0 x-holonomic with regular singularities. The characteristic 
variety is the conormal bundle TfX. 

(4.7.4) F or a closed analytic subspace Y C X and a left £0 x-module 
M which is holonomic (resp. holonomic with regular singularities), the 
algebraic local cohomology sheaves £[nCM) and £[xlY](M) are £0x-
holonomic (resp. £0x-holonomic with regular singularities). (cf. [Kl, 
Theorem 1.3], resp. [K3, Theorem 5.4.1]). By the Mayer-Vietoris exact 
sequence, the proof is reduced to the case of hypersurfaces, and then the 
formalism used to study the Bernstein-Sato polynomials is employed. 

More generally, [BK, Proposition 1.3, (7)] shows the following: 
For closed analytic subspaces Y::)Z of X, the algebraic local coho­
mology sheaves £cY\z](M) are defined to be the derived functors of 
£~Y]£~xlz](M). If M is £0 x-holonomic with regular singularities, then 
so are £[Y\z](M). 
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(4.7.5) Letf: Y-+Xbe a ho10morphic map. For a left 2}x-modu1e 
M which is ho10nomic (resp. ho10nomic with regular singularities), the 
inverse image (cf. (2.7» f*M is 2}y-ho10nomic (resp. 2}y-ho10nomic with 
regular singularities). (cf. [K.2, Theorem 4.4], resp. [K3, Corollary 5.4.8]). 

(4.7.6) For left 2}x-modu1es M, M' which are ho10nomic (resp: 
ho10nomic with regular singularities), .r ot~X (M, M') is 9} x-ho10nomic 
(resp. !')x-ho10nomic with regular singularities) for each q. (cf. [K2, Theo­
rem 4.6], resp. [K3, Corollary 5.4.7]). 

(4.7.7) For a proper ho10morphic map f: Y-+X and a ho10nomic 
9}y-modu1e N with regular singularities, the direct images (cf. (2.8» 

J; N:=R'1i!')x_/~)~ N) 

are !')x-ho10nomic with regular singularities. (cf. [K3, Theorem 6.2.1] for 
f projective. The proof in the general case will appear in [K6]). 

Note that for a smooth (algebraic) morphism f: Y-+X of (not neces­
sarily compact) algebraic manifolds and an lfJy-coherent left !')y-module N, 
we have a theorem of Griffiths-Katz-Deligne to the effect that the Gauss­
Manin connection on the direct images is with regular singularities (cf. 
(2.8». 

(4.7.8) For a holonomic 9}x-module M with regular singularities, 
the adjoint (cf. (4.3» 

is 9) x-ho10nomic with regular singularities. 

§ 50 The twenty-first problem of Hilbert 

An extremely lucid account of this problem as well as Deligne's con­
tributions to its solution in the algebraic case can be found in Katz [K]. 
Recently, Kashiwara [K4] and also Mebkhout [Me] gave the following 
solution to the problem in higher dimensions. See also Kashiwara's ac­
count in [K5] as well as his [K6] now in preparation. 

The de Rham functor 

M°f----+!,)&1!x(M'):=R :/'t'Olr!gx(lfJx, MO) 

(resp. the solution functor 
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gives rise to an equivalence (resp.anti-equivalence) from the derived cate­
gory Db(~X)hr of the bounded complexes of left ~x-modules whose co­
homology sheaves are ~ x-holonomic with regular singularities, to the 
derived category Db(Cx)c of the bounded complexes of Cx-modules with 
Cx-constructible cohomology sheaves. Note that ~f!Jlx and fl'olx are 
mutually dual in the sense that 

fl'olx (M·)=R £'omcx (~f!Jlx (M·), Cx) 

~f!Jlx (M·)=R £'omcx (fI'olx (M·), Cx) 

for a bounded complex M· of !!d x-modules with holonomic cohomology 
sheaves. (cf., [K3, Proposition 1.4.6]). 

We have the following compatibility for ~f!Jlx with respect to various 
operations onDb(~x)"T we considered in (4.7) and corresponding operations 
on Db(CX)c. 

(5.1) @x corresponds to the usual de Rham complex ~f!Jlx (@x) (cf. 
(2.2», which is quasi-isomorphic to the constant sheaf CX. 

(5.2) We can extend the notion of the adjoint in (4.7.8) to Db(~x)hr 
by 

(M·)*:=R £'om!Jix(M·, ~x)®~xCl)xl[n], 

where n=dim X. Then it corresponds to the Cx-dual in Db(Cx)e, i.e., 

~f!Jlx (M·*)=R £'omcx (~f!Jlx (M·), Cx) 

(cf. [BK, Proposition 1.1, (5)]). 

(5.3) For M· and M'· in Db(~X)"" we have 

R £'om!JiX (M·, M'·)=R £'omcx (~f!Jlx (M·), ~f!Jlx (M'·» 

(cf. [BK, Proposition 1.3, (4) and (9)]). 

(5.4) For a holomorphic map I: Y---+X, the inverse image in (4.7.5) 
corresponds to the inverse image 1-1 of C x-modules, i.e., for M· in 
Db(~ x)hr we have 

fI' oly (f* M·) =1-1 fI' ol x (M·). 

(The proof will be published in [K6].) 

(5.5) For a proper holomorphic map I: Y---+X, the direct image in 
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(4.704) corresponds, up to the degree shift, to the direct image of C x 

modules, i.e., for N' in Db(f!2Y)hr we have 

Y'alx (L N')[dim X] = Rf*(Y'aly (N'))[dim Y]. 

(The proof will be published in [K6].) 

(5.6) For an r-codimensional closed submanifold YcX, we have seen 
in (4.7.3) that the algebraic local cohomology sheaf J't'[Y](@x) is f!2x-holo­
nomic with regular singularities. It corresponds to f!2f!lt x (J't'[Y](@x)), which 
is quasi-isomorphic to j*Cy[ -r] for the embedding j: Y-+x. It is the 
complex with the direct image j*Cy of the constant sheaf Cy on Y being 
in degree r and zero elsewhere. For instance for a neighborhood X of Y 
={O} in C, we have M:=J't'EY](@x)=@[Z-']/@ in the notation of (4.6), and 
have an exact sequence 

O~M~Q'0.M~Cy~O. 

(5.7) More generally, for a closed analytic subspace YCX, we have 
a functor RJ't'~Y] from D b(f!2 x)hr into itself sending M' to the algebraic 
local cohomology RJ't'~Y](M') by (4.704). This corresponds to the tran­
scendentallocal cohomology RJ't'~ for C x-modules, i.e., 

f!2f!lt xCRJ't'~YlM')) = RJ'tHf!2f!lt xCM ')) 

for M' in Db(f!2 x)hr (cf. [BK, Proposition 104]). 

(5.8) Let Y be a purely r-codimensional closed analytic subspace of 
X. Let Z be a closed analytic subspace of Y containing the singular locus 
of Y. Then we have the following generalization of (5.6) (cf. [BK, Pro­
position 8.5 and Theorem 8.6]): On the one hand, there exists a unique 
holonomic f!2x -module 2=2(Y, X) with regular singularities such that 
(cf. (4.704)) 

hence a natural extension of (5.6) for ~Zc~Z, and that 

J't'~(2) = J't'~(2*) = O. 

Moreover, 2 is self-adjoint, i.e., 2*=2. On the other hand, the cor­
responding de Rham complex f!2f!ltxC2(Y, X)) is quasi-isomorphic to 
Iry[ -r], where Iry is the intersection cohomology complex of Cx-modules 
introduced by Deligne-Goresky-MacPherson [GM]. The restriction of Iry 
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to the smooth locus of Y is known to be the constant sheaf C there, hence 
this side is also a natural extension of (5.6) for Y",ZCX",Z. The self­
adjointness of 2'(Y, X) corresponds to the self-duality of n"y[ -r] by (5.2), 
hence to the Poincare duality for the intersection cohomology groups. 

In the special case when Y is a Schubert variety in the flag manifold 
X=G/B, this result was a key in the proof of a conjecture of Kazhdan­
Lusztig concerning the multiplicity of irreducible factors in the Verma 
modules. (cf. [KLl], [KL2], [BK], [BB] and [K5]). 
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