
CHAPTER 7

Invariant and Relatively Invariant

Measures on Locally Compact

Groups and Spaces

The various definitions and properties of measures are handled in
this chapter in terms of continuous functions with compact support,
in the spirit of the Bourbaki integration theory. The results hold then
also for the integrable functions. This will be understood tacitly and
will generally not be mentioned further.

In Sections 7.1 and 7.2 frequent reference will be made to Nach-
bin (1976). For short this will often be abbreviated "N."

7.1. Haar measure on locally compact groups. Let G be
a I.e. group and %{G) the family of real valued continuous functions
on G with compact support. Since G is I.e., the theory of Chapter 6
applies and any measure on G will be understood to be in the sense of
Section 6.3. Consider the left and the right action of G on itself and
recall the definition of the left ^-translate gf and the right translate
fg of a function / on G by an element g £ G (Section 2.1).

7.1.1. DEFINITION. A measure μ on G is called left invariant,
or a left Haar measure, if

(7.1.1) μ(gf) = μ(f), geG,fe%(G).
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One also speaks of μ being a left invariant integral and (7.1.1)
can be written J gf dμ = J f dμ. There is, of course, a similar defini-
tion for right invariant (or right Haar) measure, by replacing gf
by fg. It is obvious from (7.1.1) that if μ is left invariant, then so is
cμ for any c > 0.

Intuitively, it is a little easier to think in terms of left ^-translates,
gA, of sets A C G (Section 2.1). Equation (7.1.1) implies the same
equation for / 6 £, in particular for integrable sets A:

(7.1.2) μ(gA) = μ(A), j G G , integrable AcG.

The existence of such a measure was first shown by Haar (1933) un-
der the additional restriction that G be second countable. The idea
is rather simple and will be sketched here briefly, following Nach-
bin (1976, Section II.2). It suffices to achieve (7.1.2) for compact sets.
Let U be a neighborhood of the identity e E G and A an arbitrary
nonempty compact set. Each g £ A has a neighborhood gU', and by
compactness A can be covered by a finite number of these left trans-
lates of U. Let (A : U) be the smallest such number. This number
is a rough measure of the size of A, but it is not a measure in the
technical sense, and, besides, it depends on the choice of U. Instead,
choose another fixed compact set B with nonempty interior and try
to compare A with B. Put μv(A) = (A : U)/(B : 17). Note that
μv(gA) = μjj(A) since (gA : U) = (A : 17), for every g 6 G. Also
note μjj(B) = 1. This is not a measure either but something close to
it. One can think of measuring A in units B and for that purpose there
is available a measuring device whose smallest unit of measurement
is U. Then both A and B are compared with U. Making U smaller
increases the measurement precision. This suggests considering the
neighborhood system of e partially ordered by inclusion. It turns out
that as U becomes smaller and smaller μυ has a limit μ in a certain
sense, and μ is a measure (the details are far from trivial). Since
μu(gA) = /i£/(A), the same is true for μ so that μ satisfies (7.1.2).
Furthermore, μ(B) = 1. Another choice of B could have produced
another left Haar measure, say μ'. However, it turns out that the
relation between μ and μ' is very simple: μ' = cμ for some c > 0.
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7.1.2. THEOREM. Let G be a I.e. group, then G admits a not

identically zero left invariant measure that is unique up to multiplica-

tion by positive reals.

PROOF. There are several proofs in the literature; here is a
selection: Halmos (1950, Chap. XI; Bourbaki (1963), VII, §1.2; Nach-
bin (1976), Chap. II, Sect. 8 (proof of A. Weil), Sect. 9 (proof of
H. Cartan). D

There is of course an analogous theorem for right invariant mea-
sure. It is also easy to construct a right Haar measure, say i/, from
a given left Haar measure μ. For / G %{G) define i/(/) = J fdu by
i/(/) = f f(χ-1)μ(dx) (notice that g -> fig"1) is also in X(G)). That
v is right invariant follows from the following computation. First put
h(x) = /(x" 1 ), x G G. Then compute, for fixed g G G, v(fg) =
f(fg)(χ-*)μ(dx) = ff(χ-*g-i)μ(dx) = Jh(gx)μ(dx) = μ(g^h) =
μ(h) = ^(/). These computations are sometimes easier conceived of
and carried out if we consider sets rather than functions. Thus, the
measure v has the property that for compact (or even integrable) set
A, v(A) = μ{A~λ), where A"1 = {g G G : g~ι G A). It is now
immediate that for g G G, u(Ag) = μ(g~1A^1) = μ(A~ι) = v(A).
For any right Haar measure v we have the equivalent of (7.1.2):

(7.1.3) u(Ag) = z/(A), geG, integrable A C G.

If G is abelian, then, of course, a left Haar measure is also right
invariant. But there are groups, e.g., GL(n) and O(n) (for notation
see Section 5.1), that are not abelian, but where nevertheless left
and right invariant measures coincide. For O(n) this follows from
compactness (Corollary 7.1.7); for GL(n) see subsection 7.7.2.

Examples. All I.e. groups in this monograph are Lie groups.
A very simple example is G = R = reals under addition, with μ =
Lebesgue measure (or a positive multiple thereof). Then for / G %{G)
we have for a fixed g G R, μ{gf) = / f(x — g)dx = J f(x)dx = μ(/)
by a change of variable. It is also obvious that for a set A C i?,
for which the general notation gA now becomes A + g, the Lebesgue
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measures of A and A + g are equal. I.e., Lebesgue measure is invariant
under translation. Here G is abelian, and μ is both left and right
invariant. The example can of course be extended immediately to G =
Rn under translations. Another simple example is G = R+ = positive
reals under multiplication. This is also abelian so that left and right
Haar measures coincide. The integral μ(f) = Jo°° f(x)x~1dx^ for / 6
3C(G), is left (and right) invariant as the following computation shows:
μ(gf) = /0°° f(g~1x)x~1dx = /0°° f(x)x~1dx = μ(f), by a change of
variable. The measure μ can be defined informally as (l/x)dx on
i?+. One can also verify (7.1.2) for A an interval (α, 6) : J9

a x~λdx =

Ja x~1dx. More examples will appear in Section 7.7.

Right- and left-hand moduli. Let μ be left invariant and for
g G G fixed define a new measure μ1 by μ'(f) = μ{fg)-> f G 3C(G). For
gλ G G we have (g1f)g = gx{fg) and therefore μ'(g1f) = μ{gΎ{fg)) =
μ(fg) (since μ is left invariant) = ^ ;(/)- Thus, μ' is also left invariant
and it follows from Theorem 7.1.2 that μ' = cμ for some c > 0. Here
c may depend on g. It is denoted Δ r(g) or Δ^(#) if the group G has
to be specified. The function g —> ΔΓ(#) is called the right-hand
modulus of G.

7.1.3. PROPOSITION. The right-hand modulus Δ r defined by

(7.1.4) μ(fg) = ΔΓ(flf)μ(/)

/or g £ G, f £ %{G) and μ any left Haar measure on G, is a con-
tinuous homomorphism G —» R+. The same conclusion can be drawn
for the left-hand modulus Δ^ defined by

(7.1-5) u(gf) = Δ<(fl,M

where v is a right Haar measure on G.

PROOF. The fact that Δ r is a homomorphism follows from
the simple computation that on one hand μ(fgιg2) — ^(/(ί/ifl^)) =

and on the other/i(/^^2) = μ{{fgλ)g2) = ΔΓ(flf1)ΔΓ(flf2)
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μ(/), so that Ar(g1g2) = Ar(g1)Ar(g2). In order to show Δ Γ contin-

uous rewrite (7.1.4):

(7.1.6) J /(xg-1 )μ(dx) = Δr(flf) j f{x)μ{dx).

Choose a fixed continuous / with support contained in the compact

set K such that J f(x)μ(dx) φ 0. It suffices then to show that the

function

(7.1.7) g -> J f{xg-λ)μ(dx)

is continuous on G. Let g0 £ G be arbitrary and choose a compact

neighborhood L of g0. Put h(x,g) = f(xg~1)', then h is continuous on

G x G since it is the composition of the continuous functions (x,g) —>

(xg~λ) and /. If g is restricted to L, then h(x,g) = 0 unless x 6 i fL =

M, say. By the compactness of M, the convergence h(-,g) —* h( ,gQ) is

uniform, as in the proof of Lemma 6.5.6(i). I.e., \\h( ,g) — ̂ ( ,ί7o)ll =

supxeM\h(x,g) — h(x,gQ)\ —> 0 as g —> gf0. By the continuity of

the linear functional μ on the Banach space 3C(G,M) (Section 6.3),

μ(/i( ,#)) —> μ(/i( ,g0)) which shows the continuity of (7.1.7) at g0

and therefore the continuity of Δ r on (?. The proof for Δ^ is similar.

D

The following formula is useful in converting g~x to g in the

argument of a function that is being integrated with respect to an

invariant measure on G. It also establishes a precise link between a

left and right Haar measure.

7.1.4. PROPOSITION (N, II, Prop.8). Let μ be left Hao.r measure

on the I.e. group G and Ar its right-hand modulus. Then for f 6

X(G),

(7.1.8) Jfix-^μidx) = J f(x)Ar(x-^(dx),

and both sides define a right invariant integral.
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PROOF (Sketch). The left-hand side was shown earlier to be a

right invariant integral. A similar, straightforward computation es-

tablishes this also for the right-hand side. By the essential uniqueness

of right Haar measure (Theorem 7.1.2 with "left" replaced by "right")

the two sides must be equal except, possibly, for a factor c > 0. In

order to show c = 1 observe that Δ r(e) = 1 (because Δ r is a homo-

morphism) and that Δ r in (7.1.8) can be kept arbitrarily close to 1

by restricting x to a small enough neighborhood U of e (use the con-

tinuity of Δ r , Proposition 7.1.3). Then choose / > 0 in such a way

that f(x) = /(x^ 1), supp/ C £7, and / > 0 on a neighborhood of e.

D

According to Proposition 7.1.4 the following is a right Haar mea-

sure v\

(7.1.9) v(dx) = A^x'

or, more formally,

(7.1.10) J f(x)u(dx) = I f{x)Ar{x~ι)μ(dx), f e X{G).

7.1.5. PROPOSITION. Δ r Δ^ = 1 on G.

PROOF. Take the right Haar measure v defined by (7.1.10),

and take g e G fixed. Take / G %{G) such that v(f) φ 0. Put

h(x) = f(x)Ar(x~1) so that u(f) = μ(h), and compute (gh)(x) =
h(g~1x) = Ar(g)f(g~1x)Ar(x~1). Integrate both sides with respect

to μ, then on the left-hand side we have μ(gh) = μ(h) = ^(/), and

on the right-hand side we get Ar(g)v(gf) = Ar(g)A£(g)v(f) by the

definition of Δ^. D

A I.e. group is called unimodular if Δ Γ = 1 on G. Then also

Δ^ = 1, by the previous proposition. Obviously, a group is unimodu-

lar if and only if a left Haar measure is also right invariant, and vice

versa.

The following is a generalization of N, II, Prop. 13.
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7.1.6. PROPOSITION. Let G be compact and 8 a continuous ho-

momorphism G —> i2+. Then 8 = 1 on G.

PROOF (Essentially 2nd proof of N, II, Prop. 13). The image of

G under 8 is compact since 8 is continuous, and is a group since 8 is a

homomorphism. But R+ does not have any compact subgroup other

than the trivial group {1}. (By taking log an equivalent statement

is that the additive group R does not have any compact subgroup

except {0}.) D

7.1.7. COROLLARY. A compact group is unimodular.

PROOF. In Proposition 7.1.6 take 8 = ΔΓ. There is also a very

easy direct proof (1st proof of N, II, Prop. 13). Since G is compact,

the function / = 1 is in %{G) and μ(/) > 0. Then for any g 6 G,

fg = /, so that μ(f) = μ(fg) = Ar(g)μ(f). D

7.1.8. COROLLARY. Let H be a compact subgroup of a I.e. group
G and 8 a continuous homomorphism G —•> R+. Then 8 = 1 on H.

In particular, Δ<?(Λ) = Δ f (h) = 1 for he H.

PROOF. Restrict 8 to H and use Proposition 7.1.6 with G re-

placed by H. D

The implication compact => unimodular by Corollary 7.1.7 does

not go in the opposite direction. For instance, G = R and G = R+

are not compact but they are unimodular because they are abelian.

An example of a noncompact, nonabelian group that is unimodular

is GL(n) (see subsection 7.7.2).

Since a compact group is unimodular, left and right Haar mea-

sures coincide and one may drop the left-right designation. It will be

recalled from Section 6.3 that if μ is a measure on a I.e. space X and

K is a compact subset of X, then μ(K) < oo. In particular, if G is

a compact group and μ Haar measure, then μ(G) < oo. This also

follows from taking / = 1, then / G X(G) and μ(f) = μ(G). If Haar

measure is taken so that μ(G) — 1, then one says that μ is normal-

ized. It can also be shown that a I.e. group whose left or right Haar

measure is finite must be compact (N, II, Prop. 4).
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An automorphism of a group G is an isomorphism of G with
itself, i.e., a bijection a : G —> G that preserves group multiplication:
a(g1g2) = o,(g1)a(g2). The inverse function α" 1 is also an automor-
phism. (NOTE: a~1(g) is not to be confused with (α(g))"1.) If G is
topological and the bijection a a homeomorphism, then a is called a
topological automorphism. An example is an inner automor-
phism g —* gγιggι for gλ G G fixed.

7.1.9. PROPOSITION N, II, Prop. 16). Let a be a topological au-
tomorphism of the I.e. group G and let μ, v be any left and right Haar
measures, respectively. Then there exists a unique positive number
δ(a) such that for f G %{G)}

(7.1.11)

(7.1.12) / / (α" 1 (x))u(dx) = δ(a) ί f(x)u(dx).

If G is compact, then δ(a) = 1.

PROOF. If (7.1.11) is valid for one choice of left invariant μ,
then it is valid for any other choice since that amounts to multiplying
both sides of (7.1.11) by some c > 0. Similarly (7.1.12) and the choice
of v. In order to prove (7.1.11) put the left-hand side equal to μ'(/),
then μ1 is a not identically zero linear functional on %(G) which is
nonnegative on 3C+(G). We show now that it is left invariant. Put
h(x) = f(a~1(x)) so that h G %{G\ then μ'(f) = μ(h). Fix g G G
and put a^g"1) = g^1. Compute (g/)(α""1(x)) = f(g~1a"1(x)) =

/ ( α - ^ Γ 1 ) ^ 1 ^ ) ) = fia-'igϊ1*)) = Hΰϊ1*) = (9ih)(x). There-
fore, μ'(gf) = μ(g\h) = μ{h) (since μ is left Haar) = μ'(/) so that
μ' is left invariant. By Theorem 7.1.2 μ'(f) = cμ(f) for some c > 0,
which is (7.1.11) with c denoted δ(a). Now replace / in (7.1.11) by /*,
where f*(x) = /(α:" 1), and observe that J f*dμ is a right invariant
integral by the left-hand side of (7.1.8): take / fdv = u(f) = / f*dμ.
Then (7.1.11) (with /*) becomes (7.1.12). If G is compact, then we
take / Ξ 1 in (7.1.11) and it follows that δ(a) = 1. D
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The number δ(a) is called the modulus of the topological auto-
morphism α.

7.1.10. PROPOSITION. If in Proposition 7.1.9, the automorphism

is taken to be the inner automorphism a = a , defined for any g £ G

by ag(x) = g~ιxg, x G G, then 8{ag) = Ar(g).

PROOF. The inverse function is a~ι(x) = gxg"1. Then the

left-hand side of (7.1.11) is μ{g-λfg) = μ(fg) = Δr(g)μ(f). Ώ

Product of groups. Let Gλ and G2 be two I.e. compact groups,

then so is Gλ x G2 (Section 2.2) with the coordinatewise multiplication

(x1 ?a:2)(y1,y2) = {x1y1^x2y2)' Let μ be left Haar measure on G^

i = 1,2, then the product measure μ = μλ ® μ2 is left Haar measure

on Gλ x G2. By Section 6.5 it is sufficient to check this for / of the

form Λ (g) / 2, £ G X(G{). We have, for g. G G , (gl9g2)(f1 ® /2) =

(ffi/i) ® (^2/2) s o t h a t μ((9i,92)(fi ® Λ)) = K(9ifi) ® (02/2)) =
(formula 6.5.1) ^1/1)^2(^2/2) = Vi(f 1)1*2^2) = Kfi ® Λ) ((6.5.1)
again). Similarly, 1/ = I/J ® z/2 is right invariant if ^ is right Haar
measure on Gz , i = 1,2.

7.2. Relatively invariant measures on groups. Recall

from Section 7.1 that left Haar measure of an integrable set A is not

changed if the set is left translated: A —> gA, but is changed under

a right translation A -+ Ag by a factor ΔΓ(g). Similarly, right Haar

measure of A is unchanged under A —> A#, but changes by a factor

under A —> </A. More generally, consider measures λ for which

(7.2.1) X(gA) = χt(g)λ(A), \{Ag) = χr(g)\(A),

with positive functions χ£ and χr on G. That is, under left translation

the measure of a set may change, but only by a factor depending on

the translation, not on the set, and similarly for a right translation.

In terms of functions we have

7.2.1. DEFINITION. A measure X on a I.e. group G is said to be

relatively invariant with left multiplier χe and right multiplier
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Xr if for f E X(G)

(7.2.2) X(gf) = χe(g)\(f)

(7.2.3) \(fg) = χr(g)λ(f).

Thus, a left Haar measure is relatively invariant with multiplier

χ£ = 1, χr = ΔΓ, and a right Haar measure is relatively invariant

with χt = Δ / 7 χr = 1.

7.2.2. PROPOSITION. The multipliers χe and χr are continuous

homomorphisms G —> J?ϋj_.

PROOF. Similar to the proof of Proposition 7.1.3. D

The reader's attention is drawn to the fact that in Definition 7.2.1

for a relatively invariant measure A both (7.2.2) and (7.2.3) are to be

satisfied. Instead we could consider (as is done in Nachbin, 1976)

measures λ that satisfy (7.2.2) but not necessarily (7.2.3) and call

these "left relatively invariant;" similarly λ of (7.2.3) "right relatively

invariant." A priori there is no reason to believe that those two classes

of measures coincide, in the same way that left Haar measure is not

necessarily a right Haar measure. However, it will be shown in Propo-

sition 7.2.5 that either of the equations (7.2.2) and (7.2.3) implies the

other. Therefore, the left and right relatively invariant measures are

the same and in anticipation of that result it will not be necessary

to make the distinction between the two. It should be kept in mind,

however, that in general the left and right multipliers of a relatively

invariant measure are not equal. The following proposition presents a

useful representation of a relatively invariant measure in terms of left

and right Haar measure.

7.2.3. PROPOSITION (N, II, Prop. 26). Let G be a I.e. group with

left Haar measure μ and let χ£ be a continuous homomorphism G —>

R*l_. Then the measure λ defined by

(7.2.4)
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satisfies (7.2.2). Conversely, if \ is a measure satisfying (7.2.2), then

λ can be expressed as (7.2.4) w ^ a unique choice for the left Haar

measure μ. The theorem remains true for λ satisfying (7.2.3) and

being represented by

(7.2.5) Kf) = J fXrd", feX(G),

in which v is right Haar measure.

PROOF. Clearly λ of (7.2.4) is a linear functional on %{G)

and nonnegative on %+(G). In order to show that λ satisfies (7.2.2)

fix g G G and for simplicity of notation write χ for χ£. Observe

that (gχ)(χ) = χ(g~ιχ) = x(g~1)x(χ) = (x(g))"1 x(χ) for x e
(7, so that x = χ(g)gχ on G. Then compute λ(gf) = μ(χgf) =

μ(x(g)(gχ)(gf)) = x(g)μ{g{xf)) = x(g)μ(xf) = x(g)Kf), which
is (7.2.2). Conversely, suppose that λ satisfies (7.2.2) (again, drop

subscript ί on χ). Define μ'(f) = Ή χ " 1 / ) , then μf is a linear func-

tional on X(G) and nonnegative on 3C+(G). Fix g G G and compute

μ'(gf) = Kx-'gf) = Kxig-^igxr^f) = xig-^Wx-1 f)) =
(use (7.2.2)) χ(g-1)χ(g)X(χ-1 f) = μ'(f). Since μ' is left invariant

it must equal μ for some version of left Haar measure μ, by Theo-

rem 7.1.2. That is, λ(/) = μ(fχ) = μ(fχέ), which is (7.2.4). By

choosing / so that the left-hand side of (7.2.4) is φ 0 it is obvious

that μ is unique. The proof of the statement of the theorem pertain-

ing to (7.2.5) is similar. D

7.2.4. COROLLARY. A measure λ on the I.e. group G satisfy-

ing (7.2.2) with given left multiplier χ£ is unique up to a positive

multiplicative constant. The same is true for X satisfying (7.2.3).

PROOF. The representations (7.2.4) and (7.2.5) are unique. D

7.2.5. PROPOSITION (N, II, Prop. 27). On a I.e. group G every

measure λ satisfying (7.2.2) with a given left multiplier χ£ also sat-

isfies (7.2.3) with some right multiplier χr, and vice versa. The left

and right multipliers are related by

(7.2.6) χr = χA°

in which Δ ^ is the right-hand modulus of G.
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PROOF. Let λ satisfy (7.2.2) then it is expressible, by (7.2.4),

as λ(/) = μ(/χ) (again we have dropped subscript ί o n χ for simplic-

ity). Observe that for g G G, χ = χ(g)(χg), a n ( ^ compute λ(/#) =

μ((fg)x) = μ((fg)x(g)(χg)) = x(gMifx)g) = x(g)Δ?(g)μ(fx) =
χ(g)A?(g)λ(f) = Xl(g)A°(g)X(f), so that λ satisfies (7.2.3) with χr

given by (7.2.6). The proof in the other direction is similar. D

The representations (7.2.4) and (7.2.5) can be written in the more

convenient forms

(7.2.7) \(dg) = Xe(g)μ(dg) = χr(g)v(dg),

which may be abbreviated λ = χeμ = χrv. This also suggests a

method of obtaining the Haar measures μ and v for a given group.

Often there is an obvious measure λ to try for relative invariance; in

Lie groups this is usually Lebesgue measure. Suppose this attempt

is successful and that the computations have produced the left and

right multipliers χ£ and χr. Then we have

7.2.6. PROPOSITION. Let G be a I.e. group and λ a relatively

invariant measure on G with left and right multipliers χ£, χr, respec-

tively. Then left Haar measure μG and right Haar measure vG on G

may be taken as

(7.2.8) μG = XΪ1*> "G = Xr1λ

Furthermore, the right-hand and left-hand moduli are, respectively,

(7.2.9) A? = ?

PROOF. Equations (7.2.8) follow from (7.2.7). The first of (7.2.9)

is (7.2.6), and the second follows by an interchange of the roles of right

and left. D

From (7.2.9) it is seen that G is unimodular if λ is a relatively

invariant measure with χt = χr. By multiplying the two expressions

in (7.2.9), Proposition 7.1.5 is recovered. Proposition 7.2.6 will be

applied in subsection 7.7.2 to LT(n) and UT{ri).
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7.3. Invariant and relatively invariant measures on a space
on which a group acts properly. Let X be a I.e. space and H

a I.e. group that acts properly (Section 2.3) to the right of X. The
reason for writing H here rather than G, and for wanting the ac-
tion to the right, is that its most important application will be in
Section 7.4 to the case X = G, where G is a I.e. group and H a
closed subgroup. Then the orbit space X/H is the space of left cosets
G/H (Section 2.1). It will be shown in Section 7.4 that G/H admits
essentially unique left invariant and relatively invariant measures, and
this will play an important role in the sequel. The most essential ele-
ments in the construction and proof are just as easy to establish for a
more general space X rather than a group. It also has the additional
benefit of showing the existence of a so-called quotient measure on
X/H, which will have application in Section 13.3.

The material in this section is based on Bourbaki (1963), VII, §2,
nos. 1 and 2. Left Haar measure on H will be denoted β. A measure
μ on X is called relatively invariant with multiplier χ if

(7.3.1) μ(fh) = χ(h)μ(f), f 6 %(X), heH,

and invariant if χ = 1. Note that the multiplier is necessarily a right
multiplier since there is only one action to the right of X, unlike the
case of a group in Section 7.2 where there is both right and left ac-
tion. A relatively invariant measure with multiplier χ will sometimes
be called a ^-relatively invariant measure. As in Section 7.2 χ is a
continuous homomorphism H —> R+.

The aim is to start from a given relatively invariant measure on
X and create in a natural way a measure on X/H. Since the action
of H is assumed proper, X/H is I.e. by Theorem 2.3.13(a) so that
the integration theory of Chapter 6 applies. Any relation between
measures on X and measures on X/H is provided by a relation be-
tween functions in %(X/H) and functions in %(X). There is a natural
way of creating a member of %(X/H) from a member of X(X). Let
/ G %{X) and define

(7.3.2) f1(x)
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The right-hand side is well-defined since f(xy) as a function of y is
in X(H). It is checked immediately that fλ{xh) = fλ(x) for every
h e H since β is left invariant. That is, /* is constant on each orbit
and defines therefore a function, say / b, on X/H:

(7.3.3) f1 = /' o π ,

in which π is the orbit projection X —> X/H. The function /* can be
shown to be continuous, as in the proof of Proposition 7.1.3, so that
/k is continuous on X/H since TΓ is an open map (Section 2.3). Also,
if supp/ C K compact C X, then supp/b C π(K) compact C X/H.
Hence / <E %{X) => /b G %{X/H). If in (7.3.2) / is replaced by
/Λ, /* G # , the right-hand side of (7.3.2) becomes / f(xyh~1)β(dy) =
Δ^(/i) / f(xy)β(dy), where Δ ^ is the right-hand modulus of H. That
is, (fh)1 = Δ^(Zι)/1, and therefore

(7.3.4) (fhf = A?(h)f\ heH, f6 X(X).

We have now a function Φ : X(X) -* X(X/H) defined by

(7.3.5) b

The function Φ is obviously linear, and Φ(/) > 0 if / > 0. For a given
measure v on X/H there is a natural measure μ oτiX defined by

(7.3.6) μ(f) = v(f), feX(X)

(this is really the dual of the linear mapping Φ). With help of (7.3.4)
we see that

(7.3.7) μ(fh) = Δ?(Λ)μ(/), / € %(X), heH.

Thus (see (7.3.1)) μ is relatively invraiant with multiplier χ =
So far we have started from a measure on X/H and created a

measure on X, by (7.3.6). But what we really want is to go in the
other direction; i.e., given a measure / / o n l and g G %{X/H) de-
fine v on X/H by v{g) = μ(f) for / such that /b = g. We know
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from (7.3.7) that a necessary condition for this to be possible is that
μ be relatively invariant with multiplier Δ^. But there are two more
missing ingredients: (1) for g G X(X/H) it has to be shown that
there exists / G X(X) such that /b = g, also with X replaced by
0C+; and (2) if f\ = f\ = g, then μ(fχ) = μ(/2), so that v{g) can be
defined unambiguously. These two questions will be settled first in
the following two lemmas.

7.3.1. LEMMA. The function Φ defined by (7.3.5) maps X(X)
onto X(X/H) and X+(X) onto X+(X/H).

PROOF. It suffices to prove the second part of the statement.
Let g G X+(X/H), with compact support K' C X/H. We have
to show the existence of / G 3C+(X) such that f1 = g o π. By
Proposition 2.3.3 there is compact K C X such that π(K) = K''. By
Lemma 6.3.2 (with g in that lemma replaced by u) there is a function
u G 3C_|_(-X") with u = 1 on K (the constant value 1 is unimportant;
any positive nonconstant value would do just as well). Now u1 defined
by (7.3.2) with / replaced by u is positive on the saturation KH of
K, so in particular it is positive on K. Hence, u1 has a positive
lower bound on K, and therefore on KH since u1 is constant on
orbits. It follows that (goπ)fu1 is nonnegative, is continuous on KH,
and vanishes outside KH. Moreover, it is constant on orbits. Then
/ = u(g o π)/^ 1 is in X+(X) and f1 = g oπ. D

7.3.2. LEMMA. If a measure μ on X satisfies (7.3.7), then fb = 0
implies μ(f) = 0 for f G X(X).

PROOF. First we show that for f,g G X(X),

(7.3.8) 1 1

In order to treat the left-hand side of (7.3.8) we need to verify first
that h(x,y) = f(x)g(xy) as a function of (x,y) on the product space
X x H is in X(X x H). The continuity of h follows from the continuity
of / and g and the continuity of the action (x,y) —> xy. In order to
check that h has compact support let A, B be the compact supports
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of /, g, respectively. Then h(x,y) = 0 unless x G A, xy G B\ i.e.,
unless y G ((A, 5)) (see (2.3.2) with slight change of notation) and
the latter has compact closure, by Proposition 2.3.8 (with G replaced
by H). The left-hand side of (7.3.8) is an iterated integral which can
be written as an integral of the above function h with respect to the
product measure μ ® /?, and then the order of integration may be
reversed (Fubini, see (6.5.13) and (6.5.14)). We get

1) = J f(x)μ(dx) J g(xy)β(dy)

= J β(dy) J f(x)g(xy)μ(dx)

= J β(dy)A^(y-') J f(xy-1)g(x)μ(dx) by (7.3.7)

= J g(x)μ(dx) J fixy-1 )Δ?(y-1 )β(dy)

= J g(x)μ(dx) J f(xy)β(dy) by (7.1.8)

so that (7.3.8) has been shown. Equation (7.3.8) may also be written
μ(f(gb o π)) = μ(g(f o π)). Therefore, if / b = 0, then μ(f(gb o
TΓ)) = 0 for every g G 3C(X). Let supp/ = Λr, compact, and take
g0 G %{X/H) in such a way that g0 _= 1 on τr(A'); this can be done
by Lemma 6.3.2. By Lemma 7.3.1 there exists g G X(X) such that
g* = g0 so that g^ = 1 on π(K) and hence g^ oπ = 1 on K. Therefore,

b o TΓ) = / so that μ(f) = μ(f(gb o TΓ)) = 0. D

Given a measure / i o n l satisfying (7.3.7) define a measure μb

on X/H by

(7.3.9) μ\g) = μ(f), 9eX(X/H)

in which / is any function in %{X) such that /b = g. Lemma 7.3.1
shows that there is such a function and Lemma 7.3.2 shows that μ(f)
is unique (even if / is not). Together with the notation μb of (7.3.9)
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it is also convenient to have the notation i/" for the measure defined

by (7.3.6). That is,

(7.3.10) ,/«(/) = K/b), feX(X).

With help of (7.3.9) and (7.3.10) a simple calculation shows μb* = μ

and v^ = v. That is, the operations b and * are inverses of each other.

7.3.3. THEOREM. Let the I.e. group H act properly on the right

of a I.e. space X and let β be a given left Haar measure on H. Then

given a relatively invariant measure μ on X with multiplier χ there

exists a unique measure v that has the property (7.3.6) if and only if

X = Δ ^ . If this condition is satisfied, then v is given by μ^ of (7.3.9).

PROOF. That the condition χ = Δ ^ is necessary was already-

established in (7.3.7). Suppose the condition holds, then μb of (7.3.9)

satisfies the equation (7.3.6) for v. That μ is the unique such mea-

sure follows from the fact that the equation (7.3.6) for v can also be

expressed as ι/" = μ with i/' defined in (7.3.10). Then v — v^° — μ*\

D

7.3.4. DEFINITION. The unique measure μ° in Theorem 7.3.3 is

called the quotient of μ and β, and is denoted

The correspondence between the measures on X and those on

X/H in the case χ = Δ ^ can also be put in the following way. For

Λ>/2 £ 0C(X) write f1 ~ f2 if f\ = f\- Then ~ is an equivalence

relation. Lemma 7.3.2 shows that all functions in the same equivalence

class have the same value of μ. Since there is now a 1-1 correspondence

between the equivalence classes of %{X) and the functions in %{X/H)

we can define μb by equating its value at a function in %(X/H) to

the value of μ at the corresponding equivalence class of X(X).

7.3.5. PROPOSITION. Let the compact group H act continuously

on the right of a I.e. space X and let β be normalized Haar measure

on H, i.e., β(H) = 1. // the measure μ on X is invariant, then the

quotient measure μjβ coincides with the induced measure τr(μ); where

π is the orbit projection X —> X/H.
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PROOF. Since H is compact, its action is proper (Corollary
2.3.10) and π is proper (by essentially the same proof as the one of
Proposition 2.3.5). Therefore, π(μ) is a measure on X/H, defined
by (6.3.4) with h replaced by π, Y by X/H:

(7.3.11) π(μ)(flf) = μ(g o π), geX(X/H).

Now μ is given to be relatively invariant with multiplier χ = 1. There-
fore, x = A^ since H is unimodular. Hence, Theorem 7.3.3 applies.
For g G %{X/H) the function goπ on X has compact support since by
Lemma 7.3.1 there exists / G X(X) with support K such that / b = g,
and then g o π = f1 vanishes outside the compact set KH. Now for
given g G X(X/H) we may take / = g o TΓ G 3C(X) and then / = /*
since / is constant on orbits and β(H) = 1. The equation f1 = g o π
then shows, by (7.3.3), that f = g. The measure μ/β = μb of The-
orem 7.3.3 is defined by (7.3.9), which now reads μb(#) = μ(g o π),
g G %{X/H). Comparing this with (7.3.11) finishes the proof. D

7.4. Invariant and relatively invariant measures on ho-
mogeneous spaces. Let G be a I.e. group acting properly and
transitively on the left of a I.e. space X. Take x G X arbitrarily, then
X = Gx and coincides with G/Gx as a point set since G is transi-
tive. Apply Theorem 2.3.13, then by part (c) Gx is compact, and
by part (e) the bijection φx : G/Gx —» X is a homeomorphism. It
follows that the mapping ax of part (b) is an open mapping, because
for U open C G, UGX is also open and may be regarded as an open
subset of G/Gx; then observe that ax(U) = Ux = UGxx = Φx{

UGx)
which is open in X since φx is open. Thus, X is what Nachbin (1976,
III, 3) calls a topological left homogeneous space.

In order to study invariant and relatively invariant measures on
X we may without loss of generality do this on the coset space G/Gx.
Replacing Gx by an arbitrary closed (but for the time being not
necessarily compact) subgroup H of G, we consider the homogeneous
space G/H of left cosets of G mod H. The closedness of H ensures
that H is I.e. (Section 2.2). An application of Proposition 2.3.8 with
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X and G there replaced by G and H shows that H acts properly

on G to the right. Thus, we have here a special case of Section 7.3

with X there replaced by G. However, there is more structure here

since not only do we have the group H acting on the space G, but

also G a s a group acts on itself and acts to the left on the coset space

G/H (see (2.1.3)). Thus, we can now also consider relatively invariant

measures on G/H.

7.4.1. THEOREM (Weil, 1951, II, §9; Nachbin, 1976, III.3, Thm.l;

Bourbaki, 1963, VII, §2.6, Thm. 3). Let H be a closed subgroup of a

I.e. group G and G/H the space of left cosets modiϊ*. Let μG and β

be left Haar measures on G, H, respectively and let χ be a continuous

homomorphism G —> R+. Then in order that there exist on G/H

a relatively invariant measure with multiplier χ it is necessary and

sufficient that

(7.4.1) Δ?(Λ) = χ(Λ)Δ?(Λ) for every h e H,

in which A^ and Δ ^ are the right-hand moduli of H, G, respectively.

If (7.4-1) is satisfied, then every χ-relatively invariant measure on

G/H is of the form μb = μ/β (Definition 7.3.4) ̂ n which μ = cχμG

for some c > 0.

PROOF. The left action of G on G/H induces a left action of G

on functions on G/H. Consider in particular / b of (7.3.3) if / G %{G).

It is easy to check that (#/)b = gf^ Now suppose a measure v on

G/H is χ-relatively invariant. Then u(gfb) = χ(g)u(f) for / G X(G)

so that u((gff) = χ(gWf'). By (7.3.10), v\gf) = χ{g)yKf) so that
v$ is a relatively invariant measure on G with left multiplier χt = χ.

By Proposition 7.2.3 z/' must be of the form μ = cχμG for some c > 0.

By Proposition 7.2.5 the right multiplier of μ is

(7.4.2) Xr(g) = χ(g)Δ%).

On the other hand, we know from (7.3.6) and (7.3.7) that under right

translation with an element h G H, μ is relatively invariant with

multiplier A^(h). Equating this to the right-hand side of (7.4.2)

with g = h gives (7.4.1). If this condition is satisfied, then μ = cχμG

satisfies Theorem 7.3.3 so that v — v^ — μ^. Ώ
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7.4.2. COROLLARY. On a topological left homogeneous space any

χ-relatively invariant measure is unique up to a positive multiplicative

constant

7.4.3. COROLLARY. If H is a closed normal subgroup of a I.e.

group, then A^(h) = A^(h) for every h £ H.

PROOF. Since G/H now is a group it admits a left invariant

measure. The conclusion follows from (7.4.1) after applying Theo-

rem 7.4.1 with x = 1. D

For us the greatest interest of Theorem 7.4.1 lies in the case where

H is compact.

7.4.4. COROLLARY. If H is a compact subgroup of a I.e. group

G, then for every continuous homomorphism χ : G —> R+ there is a

χ-relatively invariant measure v on the space G/H of left cosets under

the left action of G. This measure is necessarily of the form

(7.4.3) v = π(χμG)

for any choice of left Haar measure μG on G, where π : G —> G/H

is the coset projection. Thus, v is unique except for a positive multi-

plicative constant

PROOF. Take Haar measure β on H normalized. Equation

(7.4.1) is satisfied because each of the three homomorphisms, χ, Δ^,

and Δ^, are identically equal to 1 on ff, by Corollary 7.1.8. By

Theorem 7.4.1 there is on G/H a χ-relatively invariant measure v

which is necessarily of the form μ , with μ = xμc Compactness of H

ensures that μ is invariant under right translations with elements of

H. Then Proposition 7.3.5 applies so that v = μb = π(μ) = τr(χμG).

D

The measure v of (7.4.3) may be expressed in different ways.

Put Y = G/H and observe that χ is constant on every coset τr""1(y),

y G y, since χ(gh) = χ(g)χ(h) = χ(g) for h £ H since H is com-

pact (Corollary 7.1.8). Therefore, χ is a function of g only through

y = [g]. With some abuse of notation we shall write χ{y) when we



§7.5 ON PRODUCT SPACE 139

want to consider χ as a function on Y. For any version μG of left

Haar measure on G define the measure on Y

(7.4.4) μγ = π(μG), Y = G/H.

This is v of (7.4.3) with χ = 1. Then (7.4.3) can be written

(7.4.5) u{dy) = χ(y)μγ(dy).

Furthermore, for / £ %{Y), (7.4.3) can be written in either of the two

following forms:

(7.4.6) !/(/) = J f(π(g))χ(g)μG(dg),

(7.4.7) !/(/) = Jf(y)χ(y)μγ(dy),

and these equations hold of course for any / :Y —> R such that fχ is

μy-integrable.

7.5. Relatively invariant measure on a product space on

which a group acts. Later applications will often involve the

following situation: there is a group G that acts continuously and

transitively on the left of a I.e. space Xλ and trivially on a I.e. space

X2, i e > 9X2 = X2 f° r e v e r y 9 ^ G and x2 G X2 The left action of G

on the I.e. product space Xλ x X2 is defined by g(x1^x2) = (gχiiχ2)

Suppose that on Xi there is given a measure μz , i = 1,2, where

μλ is relatively invariant with multiplier χ. Consider the product

measure μλ ® μ2 (Section 6.5). It is easy to verify that μλ ® μ2 is χ-

relatively invariant under the action of G oτi Xλ x l 2 , By the theory

of Section 6.5 it is sufficient to consider only / £ %{Xλ x X2) of the

form / = Λ ® / 2 , where /• £ OC(X ), i = 1,2. Then gf = (gfj® / 2 ,

and one computes, using (6.5.12), (/^ <g) μ2)(gf) = ^ ( ^ / J ^ ί Λ ) =

x(9)μiUΊ^ίΛ) = x(^)(/^i ® ^2)(/) T h e r e a l Problem we shall

be faced with is in a sense the converse of the situation described



140 INVARIANT MEASURES 7

above: there is given χ-relatively invariant measures μλ and μ on

Xλ and Xλ x X 2 , respectively, and we want to show the existence

of μ2 on X2 such that μ = μλ ® μ2. This will be the subject of

the theorem below, which may be regarded as a Bourbaki version of

Theorem 3.4.1 in Farrell (1985). A somewhat abbreviated proof can

also be found in Andersson, Br0ns, and Jensen (1983), Lemma 3. A

proof of a version of the theorem along classical measure theory also

appears in Bondar (1976), Theorem 2. The principal application of

the theorem will be in the case that G acts properly on Xλ. Then Xλ

is a topological homogeneous space (first paragraph of Section 7.4) so

that Theorem 7.4.1 applies. In particular, any χ-relatively invariant

measure on Xλ will then be essentially unique.

7.5.1. THEOREM. Let X1 and X2 be I.e. spaces, G a I.e. group

acting continuously on X1 to the left and trivially on X2. Suppose on

X1 is given a nonzero measure μ1 that is relatively invariant with mul-

tiplier x and suppose that an arbitrary nonzero χ-relatively invariant

measure on X1 is necessarily of the form cμλ, with c > 0. Then if μ

is a χ-relatively invariant measure on Xλ xX2, there exists a measure

μ2 on X2 such that μ = μλ ® μ2. In particular, this conclusion holds

if G acts transitively and properly on Xl9 so that Xλ is a topological

left homogeneous space under G.

PROOF. We may assume in the proof that μ is nonzero, oth-

erwise we can simply take μ2 = 0. Let fi £ %(Xi), i = 1,2, so

that fλ ® f2 e X(Xλ x X>). Temporarily fix f2 > 0 and not = 0,

then μ(/ 2 ® f2) as a function of fx is a not identically zero linear

functional on %{Xλ) that is nonnegative on 3C+(.X1) so that it is

a nonzero measure on Xλ. It is χ-relatively invariant by the com-

putation μ((#Λ) ® / 2 ) = K9(fi ® Λ)) = X(9)μ(fi ® / 2 ) % hy-

pothesis there exists a constant c(/2) > 0 such that μ(/ 2 ® f2) =

c(/ 2 )μ 1 (/ 1 ) . Now relax the temporary restriction f2>0 and write

f?^ Λ~ ^ 0 Then by the linearity of μ we have

</ 2 ")]^i(/i) = < / 2 > i ( / i ) , say, with c(/ 2) e R.

Now fix fλ G 3C+(-XΊ) with ^ ( / J > 0 and observe that μ(fχ ® / 2 )

as a function of f2 is a nonzero linear functional on 0C(X2) that is
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nonnegative on 3C+(Xj). Then so is μ(/ 2 ® / 2 )/μi(/ i) = c(/ 2) so

that there is a measure μ2 on X2 such that c(/2) = μ 2 (/ 2 ) . Thus,

μ(/i ® Λ) = ^Λf 1)^2^2) a n ( ^ it f°U° w s from Theorem 6.5.1 that

μ = μχ (g) μ2. If Xj is a topological left homogeneous space under

G, then by Corollary 7.4.2 an arbitrary nonzero χ-relatively invariant

measure on X1 must be of the form cμ1 ? c > 0, so that the hypotheses

of the theorem are satisfied. D

7.6. Haar measure on a group spanned by two subgroups.
Suppose K is a I.e. group with the same structure as in Section 5.9;

i.e., K has closed subgroups G and H such that

(7.6.1) K = GH.

(In applications K will be Lie, but that aspect will not be used here.)

Since G and H are also I.e. we have left Haar measures on all three

groups: μ^, μG, and μ H , say. It is of great practical value to derive

an expression for μκ in terms of μG and μH.

A trivial example of (7.6.1) is the case of a product group, say

K1 = G x H. Then define a group K with elements gh (g 6 G, h £

H) and multiplication (gιh1)(g2h2) = (#i#2X^1^2) (then G and H

commute as subgroups of K). Thus, there is an isomorphism between

K1 and K) with correspondence (g,h) <-> gh. Left Haar measure on

K is then the image under this isomorphism of the left Haar measure

μG (g) μH on G X H.

A much less trivial example is the case of a semi-direct product

(see, e.g., Bourbaki, 1966b, III, §2.10). Then one of the groups G, H

is normal in K and GΠH = {e} (so that the decomposition k = gh is

unique). Suppose H is normal in K so that g~1Hg = H for every g 6

G. Then for each g £ G,h —» σg(h) = g~ιhg £ iJ is an automorphism

σ of if. We have hg — gσg{h), which shows that the elements of G

and H "semi-commute," i.e., hg can be interchanged after replacing h

by σAh) while g stays the same. One establishes easily that σgi<7g2 =

σ so that {σ : g G G} is a group of automorphisms of i ί . The
1/2 y 1 i/

elements of ϋΓ can be written as (5, /i) in a unique way, but the group
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multiplication is in general not the same as in a product group (unless

G and H commute in which case the semi-direct product is a direct

product and each σg is trivial). From hιg2 = g2σ

92{}ι\) i* follows that

the group multiplication is (gu hι){g2,h2) = (9i92iσg2(
hi)h2)'

A simple example of such a group is the affine group on R that

arises from combining transformations R —> R of the form x —> ax,

a > 0, with x -> x + 6, b G R. Here G = iζj., H = R, and if 0

corresponds to α, /* to 6, then ghx corresponds to x —> z + 6 —* α(#+&).

One computes σα(6) = 6/α and if the elements of K are written (g, /i),

represented by (α,6), then (α 1 ,6 1 )(α 2 ,δ 2 ) = ( α j ^ j α ^ " 1 ^ +62)- (The

same group K can also be written HG, corresponding to x —•> αa: + ί>.)

An immediate generalization is to the affine group of transformations

of Rn : x —• A(x + fc), x,b £ i2n, A : n x n nonsingular. Here

(T = GL(n) (notation: Section 5.1), H = i? n , and H is normal in

GH. Another important example of (7.6.1) is K = UT(n) or LT(n),

G = all d iag(α l 9 . . . , α n ) , α i > 0 for all i, and i ϊ = all members of

K with diagonal elements equal to 1. Here also H is normal in K.

An important example of (7.6.1) where neither G nor H is normal

in K is K = GL(n), G - ?7Γ(n) or LT(rι), and H = O(n).

The construction of a left Haar measure μκ on K from the left

Haar measures μG and μH uses the same device of Bourbaki that was

used in Section 5.9. That is, we consider K as a I.e. space on which the

product group G x H acts to the left, continuously and transitively,

according to (5.9.4). This sets up the 1-1 correspondence (5.9.5) and

we shall again assume that it is a homeomorphism. Any measure on

(G x H)/F* can then be transferred to if, and vice versa. Further-

more, we shall now need F — G Π H to be compact. This certainly

will be the case in the common situation where F = {e}.

7.6.1. PROPOSITION. Let G and H be closed subgroups of the

he. group K such that (7.6.1) is satisfied. Furthermore, assume that

F = GΠH is compact and that Assumption 5.9.2 is satisfied. Let μG

and μH be left Haar measures on G, H, respectively and let Λ be the

right-hand modulus Δ ^ of K restricted to H. Then

(7.6.2) ^K' = 7 Γ ( ^ G ® Λ
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is a left Haar measure on K, where π is the coset projection Gx H —>

(GxH)/F*.

PROOF. Let μκ be a version of left Haar measure on K and

consider it to be a measure on the topological left homogeneous space

(G X H)/F* = F, say. We investigate the relative invariance of μκ

under the action (5.9.4) of G x # on Y. Let / G %{Y) and let g G G,

h G H be fixed. While identifying Y and K compute ((</, h)f){k) =

f{{g,h)-ik) = fig-'kh) = (gfh-^k); i.e., (g,h)f = gfh^ (note

that since Y = K is not only a homogeneous space, but also a group,

points and therefore functions can be acted on to the right as well as to

the left). Next, compute μκ((g, h)f) = μ^gfh-1) = ^{h~ι)μκ{f)

since μκ is left invariant on K. This shows that under the action of

G x £Γ, μκ is a relatively invariant measure on Y with multiplier

χ(g,h) = Afih-1) = A~\h). Apply Corollary 7.4.4 with G and H

there replaced by G X H and F*, respectively, and conclude μκ =
7Γ(x(iuG ® A*i/)) f°r s o m e versions of μG and μH. Then observe that

In the above proof the step showing relative invariance can be

done simpler using integrable sets rather than functions in %(Y): let

A C K be μκ-integrable, then μκ(gAh~1) = A^(h~1)μκ(A).

The result (7.6.2) can be put in the informal form

(7.6.3) μκ(dk) = AK(h-1)μG(dg)μH(dh), k = gh~\

or, more precisely, in integral form

(7.6.4) Jf(k)μκ(dk) = Jj f(gh-1)A^(h-1)μG(dg)μH(dh),

f € X(K\

and by the usual extension (7.6.4) holds for all //^-integrable func-
tions. With help of (7.1.8), (7.6.4) can also be put in the form

(7.6.5) Jf(k)μκ(dk) =
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It should be kept in mind that (7.6.3)-(7.6.5) are valid for suitable

versions of the left Haar measures μG, μH, μκ. Choice of the versions

of two of these fixes the third one. If it is desired to leave all three ver-

sions undetermined, then there should be an arbitrary multiplicative

positive constant on the right-hand sides of (7.6.3)-(7.6.5).

7.6.2. COROLLARY. In addition to the hypotheses of Proposi-

tion 7.6.1 suppose that H is normal in K. Then

(7.6.6) j f(k)μκ(dk) = JJ f(gh)μG(dg)μH(dh)

for μκ-integrable f.

PROOF. This follows from (7.6.5) and Corollary 7.4.3 with G in

the latter replaced by K. D

The same formula (7.6.6) holds of course if G and H commute,

which is a special case of Corollary 7.6.2. But whereas in the commut-

ing case on the right-hand side of (7.6.6) we may equally well write

f(hg) instead of f(gh), this is not true in the noncommuting case. We

remark without proof that (7.6.6) remains valid if f(gh) is replaced

by f(hg) and at the same time all left Haar measures are replaced by

the corresponding right Haar measures.

7.6.3. COROLLARY. In addition to the hypotheses of Proposi-

tion 7.6.1 suppose that G is normal in K. Then

(7.6.7) J f(k)μκ(dk) = Jf(hg)μG(dg)μH(dh)

and

(7.6.8) J f(k)μκ(dk) = IJ f(gh)δ(h)μG(dg)μH(dh)

in which 8{h) is the modulus of the topological automorphism g —>

h~Ύgh = ah(g) defined in Proposition 7.1.9. If G and H commute,

then δ = 1.
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PROOF. Equation (7.6.7) is of course (7.6.6) with g and h inter-
changed. Then write hg = a~^λ{g)h and apply (7.1.11) with μ = μG.
Ώ

The modulus δ(h) = δ(ah) can also be represented by μ{h~1Ah)
I'μ(A) for any integrable (e.g., compact) set A C G. This can be seen
by writing (7.1.11) in the form/ f{hgh-ι)μG(dg) = δ(h) J f(g)μG(dg)
and taking / to be the indicator of A. Informally one may write
δ(h) = μ(d(h~1 gh)) / μ(dg) and use this to pass from (7.6.7) to (7.6.8)
by a change of variable. Replace in (7.6.7) g by g1 and make the
change of variable g' = h~1gh, then μG{dg') — δ(h)μG(dg) so that

I f(hg')μG(dg') = / f(gh)δ(h)μG(dg).

7.7. Invariant measures on Lie groups and its cosets by
means of invariant differential forms. Notation. In addi-
tion to GL(n), LT{n), ϊ7Γ(n), and 0(n), introduced in Sections 2.1
and 5.1, we shall also use the notation M(m,n) for the group of
all real m x n matrices under addition, PD{n) for all n x n posi-
tive definite matrices, and AS(n) for all n x n skew symmetric (=
"anti-symmetric") matrices. If C is a real n x n matrix, then \C\
will stand for abs det(C). In order to shorten the notation for wedge
products, following Muirhead (1982), we shall let (dC) stand for the
appropriate wedge product of all or some of the elements dci of dC
(the order in the product is immaterial since any negative sign is dis-
carded in forming a measure). To be more precise, if B 6 M{πι,n),
then (dB) = A^db^ (i = 1,... , m, j = 1,... , n); if C G GL(n), then
(dC) = Λijdctj (ij = 1,... ,n); if T G LT(n\ then (dT) = Λ ^
with 1 < j < i < n, and if Γ G UT{n) similarly with i < j \ if
S G PD(n), (dS) = Λijdstj with i > j (or i < j); and if Γ G 0(n),
then at Γ = /n, rfΓ is skew symmetric and we take (dT) = /K-dη-
where the wedge product is over 1 < j < i < n or 1 < i < j < n.

Invariant differential forms on Lie groups, as defined in Sec-
tion 5.3, can be used via Section 6.6 to obtain Haar measures.

7.7.1. PROPOSITION. If ω is a left invariant d-form on the d-
dimensional Lie group G, then it defines a left Haar measure on G.
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The same holds with "leβ" replaced by "right."

PROOF. In Proposition 6.6.3 take M = N = G and take φ to be

the left translation Lg, for any g 6 G. Then / o φ on the right-hand

side of (6.6.5) can also be written fif"1/. If ω is left invariant, then

δLg(ω) = ω. Hence (6.6.5) reads J fω = J(g~1f)ω. This being true

for every g 6 G shows that j fω is a left invariant integral. The proof

for right invariant ω is similar, with R replacing L . D
y y

We shall usually write μG for left, vG for right Haar measure on

G. It should be kept in mind that in converting ω to a measure we are

using only |ω| rather than ω itself. Thus, for instance, even though

the left invariant d-form (5.3.9) is not necessarily right invariant on

all of G since sign change may occur, it does represent a right Haar

measure (in agreement with Corollary 7.1.7).

7.7.2. EXAMPLES. Haar measures on GL(n), LT(n), UT(n),

and 0(n). Write elements of GL(n) generically as C : n x n, of LT(n)

and UT(n) a s T n x n , and of 0(n) asΓ n x n , On GL(n) (5.3.4)

defines a d-form that is both left and right invariant. Thus, on GL(n)

the measure

(7-7.1) μGL(n)(dC) = \C\~n(dC)

is both left and right Haar measure, and it follows that GL(n) is

unimodular. From Examples 5.3.2 and 5.3.3 we obtain left and right

Haar measures on LT{n) and UT(n):

(7.7.2) μLT(n)(dT) = φ £ ... t

(7-7.3) vLT{n){dT) = trftn"*1... t

whereas μuτ(n) a n c ^ uuτ(n) a r e g i y e n by the right-hand sides of (7.7.3)
and (7.7.2), respectively.

Proposition 7.2.6 can also be used to construct Haar measure in

these cases, as well as right- and left-hand moduli. This is the method
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employed by Eaton (1983), Section 6.2, Examples 6.11, 6.12. On

GL(n) take dX = (dC) (Lebesgue measure), then the Jacobian compu-

tation in Example 5.3.1 produces χ£(C) = χr{C) = \C\n. Via (7.2.8)

this reproduces (7.7.1). On LT(n) take dλ = (dT), then a Jacobian

computation for a transformation of the type y = gx as in Exam-

ple 5.3.2, and a similar one for y = xg, produces the multipliers

υnm
(7.7.4)

(7.7.5)

Then (7.7.4), (7.7.5), and (7.2.8) reproduce (7.7.2) and (7.7.3). By

(7.2.9), the right- and left-hand moduli are the ratios of (7.7.4) and

(7.7.5). Thus,

σ 7 M \LT(n) _ .n-l.n-3 .±-n-fl

•' D ; ^ r — r l l r22 " τnn ?

and Δ^ is the reciprocal of (7.7.6). For UT(n) the results may be

obtained from those for LT(n) by an interchange of left and right.

On 0(n) (5.3.9) is a formula for Haar measure. We shall not

need this explicit form other than its expression at Γ = In:

(7.7.7) μO(n)(dΓ) = (<fΓ) at Γ = In.

This choice of μo(n)
 a * *^ e identity determines μo(n) uniquely on all

of O(n).

7.7.3. Total Haar measure of O(n). The version of the Haar

measure defined by (7.7.7) is not normalized, but it is for our purpose

more convenient to leave it that way. However, we shall need the

value

(7-7.8) cn = μo(n)(0(n)\

i.e., the integral of the left-hand side of (7.7.7) over 0{n). Without

proof we state the result:

n

(7.7.9) c n = Π ^ , Λ i = 2 π i / 2 / Γ ( i / 2 ) , n = l , 2 , . . . ,
1 = 1



148 INVARIANT MEASURES 7

and refer for its derivation to James (1954), equations (5.9) and (5.16),

or Muirhead (1982), Corollary 2:1.16. In (7.7.9) A{ is the area of the

unit (i — l)-sphere in R\ It is also convenient to set c0 = 1 by-

convention.

7.7.4. Factorization of Haar measure on GL(n). Put K =

GL{n), G = XΓ(n), or UT(n), H = 0{n), then G and H are closed

Lie subgroups of K with GΠH = {e} trivially compact. Hence, Propo-

sition 7.6.1 applies. We shall pursue this for G = LT(n). Choose the

form (7.6.5) of the conclusion and observe that both K and H are

unimodular, then (7.6.5) can be written

(7.7.10) μGL(n)(dC) = μLT(n)(dT)μo(n)(dΓ), C = TΓ,

with μ G L ( n ) , μ L T ( n ) , and μo{n) of (7.7.1), (7.7.2), and (7.7.7), re-

spectively. That the multiplicative constant on the right-hand side

of (7.7.10) should be 1 follows by comparing the two sides of (7.7.10)

in terms of their differential forms at g = e. This necessitates the fol-

lowing simple computation, which is typical in the use of differential

forms. Take the equation C = TΓ (see (7.7.10)) and take differentials

on both sides: dC = TdT + (dT)Γ evaluate at e : dC = dT + dT, at

C = In. Since dT is lower triangular and dΓ skew symmetric, we have

dci{ = dtu, and for i > j , dc{j = dt{j + dη^ dcj{ = dηάi = -dη^, so

dc{j Λ dcji = -dt{j Λ dΊij - dΊij A dΊij = (use (4.1.10)) - Λ y Λ dΊj.

The minus sign may be discarded. Take the wedge product over

all dciά with the result (dC) = (dT)(dΓ), which, by (7.7.1), (7.7.2),

and (7.7.7), is (7.7.10) evaluated at g = e.

7.7.5. Left invariant measure on a coset space. Let G be a

d-dimensional Lie group, H a compact Lie subgroup, and Y = G/H

the space of left cosets. Any given left Haar measure μG on G induces

via (7.4.4) a left invariant measure μγ. For application in subsequent

sections it will be necessary to express in an explicit way the relation

between μG and μγ.

7.7.6. PROPOSITION. Let G be a d-dimensional Lie group and

H a compact (d — m)-dimensional Lie subgroup, 0 < m < d. Let
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i t j , . . . ,ud be the coordinates of a canonical chart at e, ofwhich u1^... ,

um are the coordinates of a chart onY = G/H at [e] and u m + 1 , . . . , ud

the coordinates of a chart on H at e (Section 5.8). Let μG be the

unique left Haar measure on G corresponding to the left invariant

d-form ωG whose value at e is

(7.7.11) ω? = Λ **.-

t = l

Similarly μH on H and

d

(7.7.12) ω e

H = /\ d"i

Then the unique induced left invariant measure μγ given by (7.4-4)

corresponds to an m-form whose value at [e] is

m

(7.7.13) ω{e] = cH/\ du,

in which

(7.7.14) cH = μH(H).

The statement remains true if dim H = 0 and cH equals the (finite)

number of elements of H.

PROOF. Assume first m < d so that dimff > 0. Let μλ be

the left invariant measure on Y corresponding to an ra-form whose

value at [e] is /\™ du{. It remains to be shown that μγ = cHμ1. Since

in any case μγ and μλ are equal except for a positive multiplicative

factor, put μγ — ccHμλ; then it will be shown that c = 1. Take the

local cross section W in the proof of Theorem 5.8.1, parametrized by

t ί j , . . . , u m , and consider the product space W x H. On this space H

acts to the right by acting to the right on H and trivially on W (since

under right action the first m coordinates of a point don't change). On
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W x H the measure μG is invariant under the right action of H since

H is compact (so that Δ G restricted to H is = 1, Corollary 7.1.8). By

Theorem 7.5.1 there is a measure μ2 on W such that μG = μ2 ® μ#

on VF x iί . It follows that μG induces on W the measure cHμ2. Then
c///i2 *s My restricted to W since μG induces μγ on the whole of Y.

We had put μy = ccHμx so that μ2 is cμx restrcited to W. Then

μG = cμ2 ® μ H on W. But at e both μG and μλ <g) μH equal /\2 du^

therefore, c = 1.

The proof remains the same in the case dim H = 0 if we take μH

to be counting measure on H. D

7.7.7. EXAMPLE. Let G and if be as in Example 5.8.2: G =

0{n) and H is isomorphic to O(s), 0 < s < n. Partition Γ = [Γ l 9Γ2]

with Γ2 : n x 6, and define (dl\) as the wedge product of the dr-

over all (i,i) G Δ x (notation Example 5.8.2). It was found in Exam-

ple 5.8.2 that at g = e the differentials of the canonical coordinates

u- can be replaced by those of the 7- . Thus, the wedge product on

the right-hand side of (7.7.13), which now reads /\^ , ) G Δ l du^, may

be replaced by {dYλ). Furthermore, the constant cH in (7.7.13) equals

c3 given by (7.7.9). With slight abuse of notation equate a measure

to its defining differential form. Then (7.7.13) in this example reads

(7.7.15) μγ(dy) = cs(dT1)^y = {e}.

7.7.8. EXAMPLE. Take the space PD{n) of Example 5.3.7 with

the action (5.3.10), but restrict G to 0{n). For some \λ > >

λn > 0 take SQ = diag(λx,... , λn) £ PD(n), then at 5 0 the isotropy

subgroup H consists of all matrices diag(±l,... ,±1). This is a 0-

dimensional finite group so that cH of (7.7.14) equals 2n. Let μG =

ftoin) ^ e defined by (7.7.7), then since now in (7.7.13) m = d, the

wedge product in (7.7.13) equals the right-hand side of (7.7.7). We

get therefore

(7.7.16) μγ(dy) = 2n(dΓ) at y = [e].




