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7. FURTHER APPLICATIONS

7.1. COMPUTATIONAL ASPECTS

To evaluate the small sample approximations developed in the previous chapters we
require the use of numerical software. The most critical aspect involves the solution for the
saddlepoint, a(t). In the most general case, this involves solving the system

P
/¢j(zl t) exp{z aj (t)¢1(z) t)}f(z)dz =0 j =1,-- P (71)
i=1
This is a non-linear system of equations which require an integration to evaluate the left
hand side. Given the values for a, the computation of ¢(t), L(t), A(t) also involve the
evaluation of integrals. In all the examples for which we have done computations, z has
been univariate. In principle, there is no difficulty with multivariate z, but the problems of
integration become severe as the dimension of z increases.

In terms of computational effort, it is the solution of (7.1) which is the dominant feature.
In the problems involving location/scale, the functions involved in (7.1) are continuous and
piecewise differentiable and the resulting a;(t)’s have been smooth. This smoothness is very
helpful in solving (7.1) over a grid of t since we are able to get good initial guesses for a
based on values at adjacent grid points. For one dimensional problems, we have used the
NAG (Numerical Algorithm Group) subroutine C85AJF. This procedure works well given
a good initial guess and iterates using a secant method. The algorithm solves a sequence of
problems h(a) — 0,h(ag) where 1 =60y > 8y > 03--- > 0, = 0 where ag is the initial guess.
For each 0., a robust secant iteration is used based on the solution from earlier problems. If
bounds are available on the solution «, a routine such as COSADF may be used. In the case
of location/scale problems a is two-dimensional. For the problem of Huber’s Proposal 2, we
used the NAG subroutines COSNBF or CA5NCF. Both routines are suitable for the situation
where the derivatives with respect to a are not provided. These routines are similar to the
IMSL routines HYBRD and HYBRDI. It is necessary to choose initial estimates carefully
using information from other grid points. It is possible to evaluate the derivatives of a and
use a more reliable routine. However the derivatives are somewhat complicated and it is
not clear that the extra coding required is worth the effort.

The numerical integration has been carried out using Gaussian quadrature. The partic-
ular NAG subroutine used is DO1FBF. From experience, it appears that a 32 point quadra-
ture procedure is necessary to get reliable results in (7.1) for t in the tail of the distribution.

The evaluation of tail areas has been carried out using the Lugannani-Rice approxima-
tion (6.3). The error in that approximation is about the same order as that resulting from
a numerical integration of f,(t).

To give a sense of the computing time involved, we did several runs on a SUN4, 0S (4.2
Berkeley Unix) using the NAG subroutines mentioned above. The first two cases involved
computation of a(t), c(t), s(t) for the mean, ¥(z,t) = (z—t) for a uniform density on (-1, 1]
and an extreme density. The results are as follows.

Uniform: t = 0[.005].99 CPU time = 2.5 seconds
Extreme: t= -9[.1]2.5 CPU time = 5.9 seconds

In a two dimensional problem, we solved for a;(t) and as(t) in the case of the extreme
density. For a total of 110 grid points (¢, varying, ¢, fixed), the CPU time was 8.2 seconds.
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The root finding procedure seems to fail if the initial values of a are not close to the final
solution.

Our only attempt to find « in a three-dimensional problem was not successful. The root
finding subroutine was unable to find a solution within a reasonable numbers of function
evaluations. It is likely that tailor-made root finders would have to be constructed for these
higher dimension problems.

It is possible to write equation (7.1) as a differential equation and then use a differential
equation solver to obtain a(t). For the case p = 1, we can write (7.1) as

/ (¥'(z.1) + '¥?(z,1) + a(t)y(z,1)¥'(z,1)) exp{a(t)¥(z, 1)} f(z)dz = 0

where ’ represents differentiation with respect to t. Viewing this as a differential equation
in a(t), we are able to solve for a(t). Some preliminary runs gave results similar in terms of
accuracy and time to those obtained via the rootfinder. This approach seems worth pursuing
in higher dimensional problems.

7.2. EMPIRICAL SMALL SAMPLE ASYMPTOTICS AND DENSITY
ESTIMATION

The small sample asymptotic approximation of the density or the tail area of some
statistic developed in chapters 3 through 5 requires the knowledge of the underlying distri-
bution of the observations. From (4.25), for instance, we see that the underlying distribution
F enters in the approximation only through the integrals defining C, A, ¥ and a. To make
the technique nonparametric, it is natural to consider replacing F' by the empirical distribu-
tion function: we obtain then an empirical small sample asymptotic approzimation. Notice
that in this approximation the integrals which appear for instance in (4.25) become sums.
This fact greatly reduces the complexity of the computations.

Feuerverger (1989) studied this approximation for the univariate mean and showed
that an appropriate standardization of the estimator allows to keep a relative error of order
O,(n=1/2). Ronchetti and Welsh (1990) extended this result to multivariate M-estimators
and proved that by appropriate standardization of the estimator the renormalized empirical
approximation has a relative error or order Op(n~!). In section 6.3 a similar idea was used
to construct confidence intervals based on the empirical cumulant generating function. In
that situation, the exponential tilt was used to adjust the first cumulant enabling us to
obtain second order coverage for the confidence interval. To summarize: the empirical small
sample asymptotic approxiamtion is an alternative to the bootstrap with the advantage that
resampling is avoided. For a related result, see Davison and Hinkley (1988).

A related potential application is the use of small sample asymptotics in density es-
timation. The approximations which have been developed are asymptotic expansions in
terms of n. Since they work so well for very small sample sizes, we can examine them with
n = 1 although clearly it does not make sense to discuss the order of the error terms. The
approximation for n = 1 can be thought of as a version of the underlying density smoothed
in some sense towards normality.

Consider the small sample asymptotic approximation of univariate M-estimators given
by (4.8). For n = 1 we obtain

91(t) < A(t)/(c(t)o(2)),

where A, ¢, and ¢ are defined in Theorem 4.3. g,(t) depends on the function ¥ which defines
the M-estimator. Let us consider this approximation for the mean (¢(z,t) = z —t) and the
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following four underlying situations:

1. Uniform on [-1, 1]

2. Extreme density, f(z) = exp(z — exp(z))

3. Cosine density on [0, 1], f(z) =1 + cosdrz

4. U-shape density on [-1,1], f(z) = 1.5z2
The last two densities were chosen as situations where the density is very different from a
normal and we might expect the approximation to do badly. For each of the above, we have
calculated g, and plotted it with the true underlying density f in Exhibit 7.1. As can be seen
from the plots, g; is a reasonable estimate of the density for the extreme but as expected is
a poor estimate for the cosine and U-shape although it starts to match reasonably well in
the tails. Exhibits 3.9 through 3.13 confirm this result.
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Exhibit 7.1
Small sample approximation with n = 1 versus true density

If we want to use g; as a density estimator, we face two problems. Firstly, we have
different possible choices of . Each of them will define a different estimator. Secondly,
the underlying density (which we are trying to estimate) enters in the computation of g,
through A, ¢, and ¢.

The second problem can be solved by replacing the underlying distribution in A, ¢,
and o by the empirical distribution function. If we apply this idea to g;(t) we obtain the
following nonparametric density estimator §,(t) for f(t) (see Ronchetti, 1989):

§1(t) = DI AQ)/(&()5(2)), (72)

where a(t) is determined by the implicit equation

D (=i, t) exp{a(t)p(zi,t)} = 0,

i=1
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and

é(t):( Zexp{a(t)¢(x.,¢)}) ,

i=1

6¢(z,, t)

A(t) = &(t)- Z exp{a(t)¥(z;,1)},

o_l

&(t) = é(t)— Zw’(z..t)exp{a(t)rb(z.,t)}

l_l

-1

= ([ a0 ewoma)

We can investigate the quality of this estimator by looking at §,(t) — f(¢).
This difference can be written as

311 = £) = [3:(0) = ()] + [92 (1) = £D)].

Whereas the first term (variability) decreases as n increases, the second one (bias) is fixed.
Clearly this term depends on the choice of ¢ and on the underlying density f and plays an
important role in determining the quality of the estimator.

Feuerverger (1989) studied this problem in the case of the mean (¢¥(z,t) = z — t) and
showed that the bias can be substantial; see Exhibit 7.2.
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Exhibit 7.2
f(t) and g¢,(¢t) (- - -) for the underlying distribution
5°N(4,1) + .5°N(—4,1); from Feuerverger (1989).

Ronchetti (1989) proposed an estimator based on the following ¥ function:
Y. (v) = y/ka if lyl < kn

= sgn(y) otherwise,
where k, — 0 as n — co. With this choice of ¥, (7.2) takes the form:

q1(t) = %; %1{"'_&:_11 < 1} exp{an(t)¥r, (zi — t)}.

3 exp{an(t)¥s.(z; — 1)} 1/2
[ ] (7.2a)

—_ J
; Vi _(z; —t)exp{an(t)¥r.(z; — 1)}

where 1{ } is the indicator function and an(t) is defined through the implicit equation

D bea(zi — 1) explan(t)¥n, (z: — 1)} = 0.

i=1
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Note that D, in (7.2) is replaced here by its asymptotic value 1/2. The reason for this
choice of ¥ is that ¢y, converges to the ¢-function of the median as n — oo and the small
sample asymptotic approximation for the median is exact (after renormalization) for any
underlying density f; see Field and Hampel (1982) and section 4.2. Therefore the bias term
of the density estimator (7.2a) vanishes asymptotically. A comparison of Exhibits 7.2 and
7.3 shows the important reduction of bias achieved by using the estimator (7.2a). More
details are provided in Ronchetti (1989).

0.20
T

0.05
T

0.0

Exhibit 7.3

Exact density (- - -) and density estimator for three
samples generated from a .5*N(4,1) + .5° N(—4,1) and n = 200.

Finally it is possible to use §(t) along with the Lugannani-Rice tail area approximation
to construct prediction intervals. Field and Manchester are currently carrying out some
research in this direction.

7.3. ROBUST TESTING

7.3.a The Use of Small Sample Asymptotics in Robust Statistics

In this section we will discuss an application of small sample asymptotics to robust
statistics. It shows that small sample asymptotics can be applied successfully not only
to compute very accurate approximations to the exact distribution of robust estimators
and test statistics (cf. sections 4.2 and 4.5 and Visek, 1983, 1986) but also, from a more



114 Further Applications

methodological point of view, to define new tools and to improve those based on asymptotic
normality.

Consider, for instance, the study of the robustness properties of tests. Two different
approaches are available.

The first one is Huber’s minimax approach (see Huber 1965; 1981, p. 253 ff.) which
is based. on the following idea. In a simple hypothesis against a simple alternative testing
problem, find the test which maximizes the minimum power over a neighborhood of the
alternative, under the side condition that the maximum level over a neighborhood of the
hypothesis is bounded. The solution to this problem is the censored likelihood ratio test
which is based on a truncated likelihood ratio statistic. This ensures that outlying points
will have only a bounded influence on the level and on the power of the test. While this
formulation of the problem is very elegant and leads to an exact finite sample result, it
seems very difficult to generalize it beyond the simple situation described above.

The second approach is based on the idea of influence function originally introduced by
Hampel (1968, 1974) for estimators; see section 2.5. Here the key point is to investigate the
behaviour of the level and of the power of a test when the true underlying distribution of the
observations doesn’t belong to the model F but is of the form (1—¢) Fy+¢A. ( “contaminated
distribution™), where 0 < € < 1, and A, is the distribution which puts mass 1 at the point z.
The actual level and the actual power computed under the contaminated distribution will
describe, as functions of z, the influence on the level and on the power of a small amount
of contamination at the point z. A natural robustness requirement for these functions is
to be bounded in z. For details on this approach we refer to Ronchetti (1979, 1982, 1987),
Rousseeuw and Ronchetti (1979, 1981) and Hampel et al. (1986), chapters 3 and 7. A
related technique developed by Lambert (1981) is to look at the log P-value of the test
rather than the level and the power. The corresponding influence function is related to the
previous one as shown in Hampel et al. (1986), section 3.6. While the influence function
approach is very general and can be applied to complex situations, as for instance testing
in the regression model (cf. Ronchetti, 1982, 1987, and Hampel et al., 1986, chapter 7), it
requires the evaluation of tail areas under contaminated distibutions. Since in general these
cannot be computed exactly, one has to approximate them by means of the asymptotic
distribution of the test statistic.

Small sample asymptotic techniques which lead to very accurate approximations down
to very small sample sizes can be used to bridge the gap between exact finite sample results
and results based on the asymptotic distribution. In sections 7.3b and 7.3¢c we will illustrate
this point for a simple class of tests. The arguments hold for more general situations.

7.3.b A Tail Area Influence Function

Suppose we want to investigate the properties of the tail area Pp(T,, > t) (¢ and n
fixed) from a robustness point of view or, more precisely, we are interested in the behavior
of Pr(T, > t) when the observations do not follow exactly the model distribution F. To
accomplish this, we use the idea of an influence function and introduce a tail area influence
function. :

Definition 7.1 Let A, be the distribution which puts mass 1 at any point z € R and
define F, ; := (1 — €)F + ¢A.. Then, the tail area influence function of T, at F is defined
by
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TAIF (53t Ty, F) = lim [ Pr,.(Tu > ) = Po(Ty > 0)] e

for all z € R where the right hand side exists.

TAIF(z;t;T,, F) describes the normalized influence on the tail area of a small amount
of contamination at the point z.

Let us now apply this definition to the following one-parameter situation. Consider a
family of distributions {Fy|0 € ©} where © is a real interval and a sequence of statistics
Ta(z1,: -+, zn) which are used to test the null hypothesis Hy : 6§ = 6. The test is assumed
to be based on a M-statistic, that is the test statistic T}, is the solution of the equation

> ¥(2i,Ta) =0, (7.3)
i=1
where z,, - - -, z, are n independent observations and ¥ is a given function; cf. (4.1).

A small sample asymptotic approximation to the exact density f,(t) can be obtained
from Theorem 4.3. The corresponding approximation to the tail area Pp(T, > t) =
f‘°° fn(u)du can be computed by means of a Laplacian approximation to the integral when
the approximation (4.8) is substituted for fn(u); cf. section 6.2. This leads to the following
tail area approximation

Pr(Tn > t) = (2mn)~Y2cz"(t)/ [op(2) - ar(t)] - [1 + 0(1/n)], (7.4)

where ap(t) solves

/ ¥(z,t) exp{ar - ¥(z,t)}dF(z) = 0, (7.5)
c;l(t) = /exp{ap -Y(z,t)}dF (z),

oA(t) = cr(t) / ¥¥(z, ) {ar - $(z,1)}dF(2).

Notice that this approximation works as well as (6.3) in the tails; see section 6.2.

We now apply Definition 7.1 to (7.4) and compute the tail area influence function. To
achieve this we have to evaluate the tail area under the contaminated distribution F, . =
(1—€)F +e€A,. Although this distribution formally does not satisfy the regularity conditions
required for (7.4) to hold (see sections 4.2 and 6.2), one can first consider a mixture (1 -
€)F+¢Gs, where G has a density and the property that as § approaches to 0, G5 approaches
A;. Then, (7.4) holds for the mixture and a limiting argument can be used to show that it
holds for F, .. Using the defining equation (7.5) for a we obtain

(8/8e)er! (1) =g = neF"(t) - [cr(t) - exp(ar(t) - ¥(z, 1)) - 1]

and

(0100 [c72 )/ o500 - oru0)]

= {cp™(t)/[or(t) -ar(t)]} - {n[cr(t) - exp(ar(t) - ¥(z,t)) - 1]
— (ar/ar)(t) = (6r/oF)(t)},
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where the dot denotes the derivative with respect to ¢ at ¢ = 0. Therefore, the tail area
influence function of a M-statistic defined by a function 1 (see (7.3)) is given by

TAIF(z;t;¢,F) = (21)'1/2{c;"(t)/ [dp(t) ~ap(t)]}-
{n/2[cr(t) - exp(ap(t) - ¥(z, 1)) — 1] + 0(n~/%)}. (7.6)

The TAIF can be interpreted in the same way as any influence function; see Hampel et
al. (1986), chapters 2, 3. For instance, if K,(.") is the critical value of a test of nominal level
a based on (7.3), TAIF (z; K,(.“); ¥, Fy,) is the influence function of the level of this test and

describes the robustness of validity of the test. A bounded (in z) TAIF (I;K,(,d);ll),Foo)
indicates that the maximum influence of a single observation on the level of the test is
bounded. Hence, the test has robustness of validity. Similarly for the power and robustness
of efficiency.

In other words, TAIF when applied to a testing problem, can be viewed as a small
sample refinement of the (asymptotic) level influence function (LIF) and the (asymptotic)
power influence function (PIF) discussed in Hampel et al. (1986), chapter 3. In fact the
following theorem holds.

Theorem 7.1

Given 0 < a < 1 (level), let K (critical value) be defined by P, (T > K,(.")) =a.
Define a sequence 6, of alternatives as 6, = 6 + én='/2, § > 0.

Then, under the assumptions A4.1-A4.5 of section 4.2 the following holds:

(%) Jim n~Y3TAIF(z; K\*; ¢, Fy,)

= ¢(®7'(1 - a)) - ¥(z,00)/(E¥*)"/? = LIF(z;9, Fs,),
(i) lim n~ Y2 TAIF(z; K\%; 9, Fy.)

= ¢(®~1(1 - a) = S|EY'|/(EY?)!/?) - (z; 60)/(Ey?)*/?
= PIF(z; ¥, Fe,),

where ¢ and ® are the density and the cumulative of the standard normal distribution,
respectively, and EY’ = [ ¢/(z,00)dFy,(z), E¥? = [ ¢*(z,00)dFs,(z) and ¢’ denotes dif-
ferentiation with respect to 4.

Proof: We prove (i). More tedious computations with similar arguments lead to (ii). By
(7.6) we have to compute

lim (20)772 <52 ()/(om, O, ()]

[cp.o (Yexplar, () - ¥(z,)) - 1 + O(n-*)] . (7.7)
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where the argument (-) of the functions involved is K . From the asymptotic normality of
T, (see Huber 1967, 1981)

LF,, (n'/*(Tn = 60)) = N (0, E¥*/(-E¥')?),
as n — 0o, we obtain

1/2
K =6+ n~120-1(1 - a)- [E¢’/(E¢')’] +0(n™1). (1.8)

Using the defining equations for ¢, a, o (see (7.5)) and the Fisher-consistency of T, that is
T(Fe,) = 0o, we get

K — 60, ar,,(K{Y) =0, cr, (K) =1, o}, (K) — Ey?,

when n — oo.
Now define B, := logc;.':(K,(.")).

. - h ( ) -1
ul-l-onolo Bn = nllorgo [lOg CFoq (K"“ )] / n
and by L’Hépital’s rule and (7.8)
1, _ . @)\ /o
= —3®7 (1= a) - [E¢*/(Ew'Y]"" - lim (5, Jer, (KE) /a2, (19)
where C’F.,(t) = (9/0t)cr,,(t). By the defining equation (7.5) we have
ch.o (t) = =CFy, (t) * QFy, (t) : Af'oo (t)’

where Af(t) = cr(t) [ ¥/(z,t) exp{ar - ¥(z,1)}dF(z), and Ap, (KSY) — EY', as n — 0.
Therefore, from (7.8) we obtain '

Jim B, = -21-0-1(1 —a) - (Ey?)Y/?sgn(EY') - Jim ar,, (K®)/n=1/2, (7.10)
Since (dropping the arguments)
o = —[j Y/ exp(a - ¢)dF + a- /¢ -9’ exp(a - 11:)(11"']//1[)2 -exp(a - ¢)dF,

using L’Hopital’s rule in (7.10), we have

. 1, _
Jim By = -2[#7}(1- a)]?, (7.11)
and finally
lim cz? (KS) = (27)'7¢(37(1 - a)).
Therefore,

Jim n~V3TAIF(z; K*; ¥, Fo,)

= $(&(1 - a))/(E¥)/* - lim [cp.,(-) -exp(ar, ()9(z,7) - 1] Jar,, ()

= [¢(@~1(1 - a))] /(E¥®)'/? - ¥(z, 60),

and this equals LIF(z;vy, Fy,) as defined in Hampel et al. (1986), (3.2.13), p. 199 and p.

204.
a
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7.3.c Approximation of The Maximum Level and Minimum Power Over
Gross-error Models

Influence functions can be used to extrapolate the value of the functional of interest
over a neighborhood of a given model distribution F; cf. Hampel et al. (1986), p. 173, 175,
200. Consider, for instance, the gross-error model

P(F):={G:G=(1—-¢)F +¢H, H arbitrary distribution}.

Using the first two terms of the von Mises expansion (¢f. von Mises 1947, Hampel et al.
1986, p. 85) we obtain ‘

Po_oyp+er(Tn > t) = Pp(T, > t) + e/TAIF(:c;t;T,,,F)dH(:c),

hence

8(t;Tn, Fy¢) := supy Pi—e)F4 et (Tn > t) = Pp(Ty > t) + € - sup, TAIF(z;;T,, F).
(7.12)

Similarly for the infimum we get
i(t;Tn, Fy€) .= infg Pu_o)p+ert(Tn > 1) = Pp(T, > t) +€-inf TAIF(z;t;T,, F). (7.13)

(7.12) and (7.13) require the approximation to be valid uniformly over shrinking e-contamin-
ation neighbourhoods. For M-statistics defined by (7.3), this can be obtained by imposing
some additional conditions on the function % as in Rieder (1980), p. 114. In general these
approximations will be valid only when the amount of contamination is much smaller than
the breakdown point of T;,.

This type of approximation has been used successfully for other kinds of problems, for
instance the approximation of the variance of an estimator over ¢-contaminated models, and
leads to very accurate results (cf. Hampel 1983; Hampel et al. 1986, p. 173).

Let us now apply (7.12) and (7.13) to the testing problem. Set t = K,(,“),the critical
value of a level-a test, F' = Fy  in (7.12) and F = Fy, 0 # 6o, in (7.13). Consider the class of
tests based on a M-statistic 7}, defined by a function ¥ (see (7.3)) and approximate TAIF
using (7.6). To compare with asymptotic results we replace € by ¢, = €-n~1/2 and we define
a sequence of alternatives 8,, = 0o + 6n—1/2. Then we have

supremum level = s(K,(‘“); ¥, Fg,, €n)
2 a+e-ba(KY, Fo,) - {cr,, (KV)-
exp [ap,o (K$) - sup,y(z, K,(,“))] -1} (7.14)
and
infimum power = i(K,(,"); ¥, Fy.,€n)
= B(0n) + € - o (KP, Fo,) - {cF,, (KSV).
explar, (KV) -inf, ¥(z, K{)] - 1}, (7.15)

where by (¢, F) := (2m)~Y2 . cg"(t)/lor(t) - ar(t)] and B(8,) is the power of the test at the
alternative Fy_ . Since, in general the exact value of K,(.a) is difficult to compute, we can use
the approximation given by (7.8).
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According to Theorem 7.1, as n — o0, (7.14) becomes

lim $(K$?; 9, Foq,€0) = a+ ¢ - sup, LIF(z; %, Fo,), (7.16)
and (7.15),
lim i(K$®; 4, Foy,€n) = Bay + € - inf  PIF(z;%, Fy,), (7.17)

where (3, = 1 = ®(®~1(1 — a) — 5[(Ev’)?/E%?]*/?) is the asymptotic power of the test at
the model.

As an illustration we compare the exact results with the approximations (7.14) and
(7.15) (and the approximations obtained from LIF and PIF based on the asymptotic
distribution) in the following situation:

Fy(z) = ®(z - 9),
Ho:0=0,
T, = median, that is ¢(z,t) = sgn(z - ¢).

We choose this case because it allows an explicit exact computation of the supremum of
the level and the infimum of the power. Details of computations can be found in Field and
Ronchetti (1985).

n @ ¢ 000 .05 01 10
3 1101 500 5.36 6.89 9.03
5  .880 5.26 6.37 7.94
7 754 5.22 6.17 7.49
11 .609 5.19 5.98 7.08

Exhibit 7.4

Exact supremum of the level s(K{*; med, ®, ¢,) (in %) over
(1 = €n) - ®(z) + €n H(z) of the test based on the median (a = 5%)

n K ¢ 000 .01 .05 10
(approx.)

3 1.190 500 . 5.34 672 843

5 922 5.25 6.24 748

7 779 5.21 6.06 7.1
11 622 5.18 590 6.79
100 206 5.12 561  6.22
10000 021 5.10 552  6.05
o 0.000 5.10 551  6.03

Exhibit 7.5

Approximate supremum of the level s(Kf."); med, ®,¢,) (in %)
over (1 — €,)®(z) + en H(z) of the test based on the median
(a = 5%) (approx. (7.14), (7.16)).
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n @6 e 000 01 05 10
3 1100 5 1120 11.08 10.61 1004
10 2162 2141 2054  19.48
15 3621 3587 3452 3285
5 880 5 1095 10.83 10.34 9.75
10 2085  20.63 1977 1871
15 3472 34.38 33.07 3145
T % 5 1085 10.72 10.22 9.60
10 - 2053  10.31 1943  18.36
15 3409  33.76 3246 30.85
11 609 5 1078 1064 10.11 9.47
10 2028 20.05 19.15  18.06
15 3358  33.26 3.4 30.34
Exhibit 7.6

Exact infimum of the power i(K,(.“); med, @, (- — 0n), €a) (in %) over
(1=¢€n) - ®(z — 0n) + €a H(z) of the test based on the median (a = 5%).
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n K@ § ¢ 0.0 01 05 10
(approx.)
3 1.190 5 1015 1005  9.67 9.19
10 1926 19.08 18.38 17.49
15 3226 3198 30.85 29.44
5 922 5 1034 1023 979 9.24
1.0 1949 1920 1852 17.54
15 3243 3213  30.95 29.46
7 179 5 1042 1030  9.83 9.24
10 1959 1938  18.56 17.53
1.5 3251 3220 3098 29.45
11 622 5 1050 1037  9.85 9.21
1.0 1968 19.46  18.59 17.50
1.5 3257 3226  30.99 20.41
100 206 5 1062 1046  9.81 8.99
1.0 1982 19.57 18.54 17.26
1.5 3268 3233  30.95 29.23
10000 021 5 1063 1045  9.73 8.82
10 1984 1956  18.46 17.08
15 3269 3233  30.90 29.10
o0 .000 5 1064 1045  9.72 8.80
1.0 1985 1957 18.45 17.06
1.5 3270 3234  30.90 29.09

Exhibit 7.7

Approximate infimum of the power i(K,(."); med, ®(- — 0,),€,) (in %) over
(1= €n)®(z — 0n) + €n H(z) of the test based on the median
(a =5%) (approx. (7.13), (7.15)).

A comparison of Exhibit 7.4 and Exhibit 7.5 shows the general good accuracy of the
approximation based on TAIF down to small n (= 3,5). Moreover, this approximation
improves the asymptotic result based on LIF. For instance, for ¢ = 10% and n = 3, the
exact supremum of the level is 9.03%, the approximation based on TAIF gives 8.43%, while
the asymptotic normality predicts 6.03%.

At the moment the advantage of the asymptotic result lies in its greater flexibility:
the expression of the “asymptotic” influence function is simpler and can be computed for
general classes of tests. Therefore, optimal robust tests can be derived using the asymptotic
theory and eventually refined for small sample sizes.

The results related to the infimum of the power (Exhibits 7.6 and 7.7) seem to indicate
that here the accuracy of the approximation based on TAIF is not as good as for the
supremum of the level. The reason seems to lie in the approximation of the power 3(6)
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at the model. With a better correction term it is possible to achieve the high accuracy
obtained for the supremum of the level.

For example, if we used in (7.15) the exact value for §(6,) instead of the approximation
Bas, we would obtain for n = 3, § = .5 and ¢ = .01, .05, .10 the following values for the
given power: 11.10%, 10.72%, 10.24%.

7.3.d Robustness Versus Efficiency

Given a test based on a test statistic T,, defined by 1, one can compute up to terms
of the order n=1/2 the tail area influence function (7.6) and discuss the behaviour of TAIF
with respect to z, t, n. One will strive for a TAIF that is bounded (not necessarily in a
symmetric way) with respect to z to limit the influence of outliers, that is continuous in z
to limit grouping and rounding effects, etc. Moreover, putting FF = Fy and t = K,(.“), the
critical value of a test, by means of TAIF one can investigate the influence of outliers on the
level and on the power and their behaviour over gross-error models (see subsection 7.3b).

A natural problem that arises is to try and find a balance between robustness and
efficiency. We can look for a test in the class (7.3) that maximizes the power, under the
condition of a bounded (with respect to £) TAIF (z; K, Fy). Using (7.4) and (7.6) to
approximate the power and the tail area influence function, one can hope to find a function
Yopt(z, 1) that satisfies a first order condition for the optimality problem. We conjecture that
in the normal-location case, that is, Fg(z) = ®(z — 0), ¥,pt(z,t) equals the Huber-function

Yr(z—t)=z—1 if lz—t|<k
=k sgn(z —t) otherwise,

although an exact proof seems to be rather complicated.

7.4. SADDLEPOINT APPROXIMATION FOR THE WILCOXON TEST

In this section we discuss an application of the method of steepest descent to rank
procedures. More precisely, we discuss the approximation of the density and tail areas of
the Wilcoxon test statistic.

Given a sample of n independent observations z;,---,z,, we want to test the null
hypothesis Ho that these observations have a common symmetric distribution about 0. To
this end one can use the Wilcoxon test or signed-rank test which is defined by the test
statistic

T, = E R; - sgn(z.-), (718)

=1

where R; is the rank of z; according to its absolute value. If large values of T}, are significant,
we are then interested in the tail probability

P = P[T, > to|Ho). (7.19)

Although tables of the exact cumulative distribution

qi = P[0 < Ty < k|Ho] (7.20)
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are available, it is nevertheless interesting to investigate the performance of saddlepoint
approximations in the case. Moreover, a good approximation of (7.19) has its own interest
because it would allow to compute P-values for any given n and t,. This is even more
important in the two-sample case, where two parameters (the sample sizes of the two groups)
are involved in addition to tq.

There are different ways one can use to approximate (7.19). For instance, one could ap-
ply the general saddlepoint approximation developed in section 4.3. By using an Edgeworth
expansion to approximate the cumulant generating function of T}, one can approximate by
means of the techniques of section 4.3 a saddlepoint expansion to the density or a saddle-
point expansion to the tail area. However, it turns out that in this case the exact probability
generating function is known and therefore a direct saddlepoint approximation can be com-
puted. This was done by Helstrom (1986b) and we follow here his development. Similar
results can be found in Robinson et al. (1988).

Since T, can assume only discrete values, define p; = P[T,. =J IHo] . Then, by Cauchy
theorem

= (2r)"! / z=U+Vp, (2)dz,

P
k .
= P0S T, < o] = 35, = (2mi) / {0 bhn(aras
J=0 j=0
= (2xi)~! /z'("“)(l - 2)"1h,(2)dz, (7.21)
P

where hn(z) = Z piz’ = l'[ (1+42%)/2, and P is any closed path surrounding the origin in
the complex plane, but not the point z = 1. By defining

Wn(2) = loghn(z) — (k + 1) log z — log(1 — z),

the right hand side of (7.21) assumes the form of the integral (3.1), where the “large pa-
rameter” v(= n) is already included in @,(z). At this point Helstrom (1986b) computes
numerically the saddlepoint zo which satisfies

!TJ:‘(ZQ) = 0,

and the path of steepest descent given by
Tw,(2)=0

and he integrates along this path by using the trapezoidal rule; cf. Rice (1973). We refer to
that paper for the numerical aspects.

Exhibit 7.8 gives the relative error (= (gx(SAD) — g (exact))/qi(exact)) for several
sample sizes and probability levels. These results show once more the great accuracy of
the saddlepoint approximation even far out in the tail. Similar results are obtained for the
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two-sample case; see Helstrom (1986b).

Sample N,
Size

20 18
35
25 20
40
30 23
45
35 25
50
40 21
42

Sample N,

Size

20 13

26

25 15

30

30 16

29

35 17

33

40 11

19

Further Applications

Probability Level

0.00005

Rel.
Error

-0.27(-2)
-0.27(-2)

-0.17(-3)
-0.13(-3)

0.44(-5)
0.37(-5)

-0.55(-6)
-0.63(-6)

-0.44(-7)
-0.45(-7)

0.0005
N,
16
31

18
36

21
41

18
36

18
35

0.005

Rel.
Error

-0.82(-3)
-0.81(-3)

-0.71(-5)
-0.74(-5)

-0.14(-5)
-0.14(-5)

-0.93(-7)
-0.98(-7)

0.22(-8)
-0.74(-8)

Probability Level

0.01

Rel.
Error

0.22(-4)
0.21(-4)

-0.83(-6)
0.12(-5)

0.23(-6)
-0.20(-6)

0.48(-6)
0.12(-7)

0.55(-6)
-0.11(-8)

Exhibit 7.8 (from Helstrom, 1986b)

0.05
N,
12
24

14
28

16
32

0.2

Rel.
Error

-0.30(-5)
-1.00(-5)

0.44(-5)
0.57(-6)

0.51(-5)
-0.18(-7)

0.53(-5)
-0.34(-8)

0.56(-5)
-0.33(-9)

14
27

16
32

17
31

17
33

17
33

N,

11
22

Rel.
Error

0.15(-4)
0.15(-4)

0.58(-5)
0.57(-5)

0.13(-6)
-0.19(-7)

0.16(-6)
-0.14(-7)

0.20(-6)
-0.17(-8)

Rel.
Error

0.56(-4)
-0.44(-6)

0.56(-4)
-0.29(-6)

0.55(-4)
-0.11(-8)

0.55(-4)
0.54(-9)

0.55(-4)
0.47(-9)

Relative error (= (qx(SAD) — qi(exact))/qr(exact) for the
distribution of the one-sample Wilcoxon statistic.

N, is the number of steps in the numerical integration
involved. 0.22(—4) means 0.22 - 10~4.
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7.5. APPLICATIONS IN COMMUNICATION THEORY AND RADAR
DETECTION

In signal detection problems engineers work with very small false-alarm probabilities.
Accurate real time approximations of extreme tail areas are therefore required in these
situations; cf. Exhibit 2.3. There is a growing number of papers in the engineering literature
where the method of steepest descent and saddlepoint techniques are used to find. good
approximations to tail areas. In this section we summarize the key ideas with two typical
examples.

The first example is taken from Helstrom and Ritcey (1984).

Consider a receiver that integrates a large number n of pulses. The problem of radar
detection of a known signal in additive white Gaussian noise can be formulated as a testing
problem

n

1
Ho :T,. = 52(2?‘!'1]}),

j=1
against
1 n
H:To=3 Z[(z,- +5)% + (y; +t5)7], (7.22)
j=1
where z1,--+,Z,, ¥1,"*,Yn are n iid Gaussian random variables with zero mean and unit

variance and s? + 1} = |d;|?. The d; = s; + it; are the complex amplitudes of the target
n

echoes and the total signal-to-noise ratio is S = } Y- |d;|2. The d;’s are fixed for a steady
j=1

j
target and are random variables when the target fluctuates. In the latter case the phase of
the amplitude is uniformly distributed on [0,2x]. According to the Neyman-Pearson Lemma
the system decides Hy or H; according to whether

H,
Tn z tOv
Ho

where tq is the critical value depending on the false-alarm probability (level of the test).
Note that the test based on this test statistic is not robust and T, can be modified to be
resistant to outlying observations. However, our goal here is to investigate the distribution
of Thn.

No simple analytic expression is available for the density of the test statistic 7,, espe-
cially in the case of a fluctuating target. Moreover, the computation of ¢y for very small
false-alarm probabilities and the computation of the detection probability (power of the
test) requires the integration of the density of T, far out in the tails. In this case the normal
approximation is of little help; cf. Exhibit 2.3. _

In many electrical engineering applications, although the density in general is difficult to
evaluate, the moment generating function is easy to determine. From Helstrom and Ritcey
(1984) the moment generating function for a nonfluctuating target (for a fixed signal-to-noise
ratio S) is

M,(a|S) = (1-a)™" exp{Sa/(1 - a)}

and that for a fluctuating target is
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Ma(a) = (1= a)""M{"(=a/(1 - a)),

where M$) is the (known) moment generating function of S. Then, by the same arguments
as in section 3.3 or section 4.3, one can write the density of T, as

74100

1
= - 7.23
fa(t) 7 / Mp(z) exp(—zt)dz (7.23)
r=100
and the false-alarm probability

o0 1 74400
/ Falt)it = 5 / Mo (z) exp(—zto)dz (7.24)

to 7 =100

cf. also (6.1).
The detection probability can be computed in a similar way.

At this point the integrals in (7.23) and (7.24) could be evaluated by using the saddle-
point techniques discussed in the previous chapters. However, engineers rewrite the integral

74100
in (7.24) as [ exp[wn(z)]dz, where Wn(z) = —log z — ztg + Kn(z), with K,(z) = log M,

T =100

and determine the saddlepoint zo and the corresponding path of steepest descent. Now, in-
stead of developing the exponent in a series around the saddlepoint and keeping the leading
term, they evalute numerically the integral along the contour of integration defined in the
x-y plane by Sw,(z + iy) = 0. This contour corresponds to the path of steepest descent
from the saddlepoint zj; see section 3.2. The numerical integration is performed using the
trapezoidal rule as developed in Rice (1973). Since the contour of integration is a curve on
the x-y plane defined implicitly, it is often approximated by a parabola crossing the real
axis at the (real) saddlepoint zq.

Exhibit 7.9 shows a comparison of saddlepoint approximations and numerical integra-
tion techniques for some selected cases. The integration’s contours considered in this exhibit
are the “vertical contour” and the “parabolic contour”. The former is obtained by approxi-
mating the exact integration’s contour by a vertical straight line at the saddlepoint whereas
the latter is obtained by using a quadratic approximation of the integration path at the
saddlepoint. Exhibit 7.9 shows the improvement of the accuracy by using the numerical
integration and the faster convergence of the parabolic contour method compared to the
vertical one.
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Numerical contour integration

_ Saddlepoint Vertical Parabolic
S/n in dB approximation contour # steps contour # steps

n=10, x = 20, t, = 32.717

- 1.0008(—6)*  9.971482(=7)* 16  9.951845(=7)* 5
9.951150(~7)* 32 9.951149(-7)* 10

5.0 2.1588(-1) 2.190677(-1) 12 2.186425(-1) 6
2.184155(-1) 24 2.184151(-1) 11

n = 100, x = 200, to = 154.9

-0 1.0064(—6)*  1.007402(—6)" 6 1.007217(—6)* 5
1.007099(-6)* 11 1.007099(—-6)" 10
-2.3 3.8960(-1) 4.100784(-1) 7 4.097784(-1) 6
4.086649(-1) 13 4.086641(-1) 12
0.0 4.9742(-3) 4.993271(-3) 6 4.991731(-3) 5
4.990710(-3) 11 4.990710(-3) 10

n = 500, x = 1000, to = 613.576

-0 9.9900(—-7)*  1.000187(—6)" 5  1.000160(—6)" 5
1.000041(—6)* 10  1.000041(—6)* 10

7.0 2.8300(—1)*  2.989386(—1)" 6  2.990300(—1)* 6
2.982082(~1)* 12 2.982983(-1)* 12

-5.0 5.8950(-2) 5.985495(-2) 6 5.984295(-2) 6
5.980515(-2) 11 5.980515(-2) 11

Exhibit 7.9
(from Helstrom and Ritcey (1984))

False dismissal probability (type II error probabilty) for radars with fluctuating target (Swer-
ling Case IV Target) computed by means of saddlepoint techniques and numerical integra-
tion on two approximation of the contour (vertical contour and parabolic contour).

5 is the average signal-to-noise ratio and S/n is given in dB (= 10log;o(-)). & =
2n is the parameter of the distribution of S for Swerling Case IV Targets. 5.8950(—2)
means 5.8950-10~2. An asterisk indicates that 1 - false dismissal probability (= detection
probability = power of the test) is reported.

The second example is taken from Helstrom (1986a).
Consider a binary symmetric channel with intersymbol interference. The output of the

receiver at time ¢ has the form
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z(t) = s(t) + €(t), (7.25)
where the signal s(t) is given by

+00
s(t)y= Y bja(t - jT)

Jj=-00

and ¢(t) is the noise with mean zero and a symmetric density such as the normal. The
b;’s are +1 or —1 with equal probability and express the transmitted message. They are
assumed uncorrelated. a(t) is the pulse transmitted and T is the interval between pulses.
By sampling at a time ¢ we obtain

400
z= Z bjaj +¢, aj =a(t - j7T).
j==00
The receiver then decides whether a particular one of the b;, say bg, is +1 or —1 by choosing
+1if z > 0 and -1 if £ < 0. The error probability is given by

P,"=P[x=q+ao+c<0|bo=+1],

where

+00
n= Z b,-a,-.

jm=oco
jno

The exact calculation of P.,, is very difficult because all possible combinations of the §; = £1
must be taken into account, 1 < |j| < co. Even with only a finite number n of pulses before
and after ag, the computation of the error probability involves 22" combinations, where n
is large in practical applications.

As in the previous example the moment generating function of z can be determined
easily. When a finite number 2n of pulses is considered to interfere with by, the moment
generating function is given by

M, () = 7n(a)M{)(a) exp(aoa), (7.26)

where M{?) is the (known) moment generating function of the noise ¢ and

Tn(a) = E[e""'] = E[CXP(Q Z bja; )]

= H cosh(aja). (7.27)
"swo.
Then, by the same arguments as in (7.23) and (7.24), we can rewrite the density of z
as
1 T4ic0
fale) = 5 / Ma(z)e=*"dz

T-i00
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and the error probability

0 ] 74400 0
Pur= [ f@ie =5 | M..(z){ / c""dz}dz
- 00 T—=100 -0
] 74400
—_—— -1
=5 / 2= M (2)dz. (7.28)
7 ~5$00

The integral in (7.28) can now be evaluated by using saddlepoint techniques and numerical
contour integration; see Helstrom (1986a).

Further engineering applications of saddlepoint echniques can be found in Helstrom
(1978, 1979, 1985), Helstrom and Rice (1984), and Ritcey (1985).

7.6. OTHER APPLICATIONS OF THE SADDLEPOINT METHOD

After Daniels (1954) pioneering paper, saddlepoint techniques have been applied suc-
cessfully to several types of problems. Several applications are already given in the previous
chapters. In this section we summarize some further applications, the goal being to give an
idea of the diversity of situations where these techniques can be used.

Keilson (1963) applied saddlepoint techniques to find an approximation to the density
of the sum of N iid random variables, where N is a Poisson process, whereas Blackwell
and Hodges (1959) and Petrov (1965) used these ideas to derive approximations to tail
probabilities of the sum of iid random variables. A generalization of Keilson’s paper can be
found in Embrechts et al. (1985). A computation is given in Exhibit 3.12.

Although saddlepoint methods rely on the existence of the moment generating function,
Daniels (1960) shows a case where the technique can be carried out when this condition fails.

The approximation to the density of the serial correlation coefficient is considered in
Daniels (1956) and Durbin (1980b). Moreover, Daniels (1982) uses saddlepoint approxima-
tions in birth processes. These papers show that these techniques can be applied in non iid
problems. A related paper is Bolthausen (1986) where Laplace approximations for Markov
processes are discussed.

An important application is considered by Robinson (1982). In this paper tail areas for
permutation tests are approximated and by inversion approximate confidence intervals are
constructed; cf. also the short discussion in Daniels (1955).

The steepest descent method combined with numerical integration is used by Imhof
(1961), Lugannani and Rice (1984), and Helstrom and Ritcey (1985) to approximate the
density of quadratic forms of normal variables and noncentral F-distributions.

An application of similar ideas in the Bayesian framework is provided by Tierney and
Kadane (1986). Basically, Laplacian techniques are used to approximate the integrals in
the numerator and the denominator when computing a posterior expectation. Software to
perform these computations is available in XLISP-STAT; see Tierney (1990).

Important applications in econometrics can be found in Phillips (1978) and Holly and
Phillips (1979). In the latter paper the density of the k-class estimator in the case of the
equation with two endogeneous variables is approximated. A related paper is Chesher,
Peters, Spady (1989).

Further examples are given in Good (1957, 1961), Keilson (1965), Barndorfl-Nielsen
and Cox (1979), and Davison and Hinkley (1988), and Johns (1988).
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7.7. OUTLOOK

In this monograph we have shown how small sample asymptotic techniques can be
successfully applied to many different types of problems. At different places we have pointed
to possible open problems and research directions. Clearly, the striking characteristic of
these approximations is the great accuracy down to very small sample sizes. But, in spite
of the accumulated numerical evidence on many different problems and in spite of the
theoretical results on the expansions, the answer to the question as to why small sample
asymptotics does work so well for very small sample sizes is still not completely satisfactory.
More research probably together with the development of new analytic tools to measure this
accuracy is needed.

Small sample asymptotics has now reached the point where it can be implemented in
computer packages. Both the practitioner and the researcher would benefit greatly from
this software development.





