
Chapter 4. Probabilistic Arguments

A. INTRODUCTION — STRONG UNIFORM TIMES.

There are a number of other arguments available for bounding the rate of
convergence to the uniform distribution. This chapter discusses the method of
strong uniform times and coupling. Let's begin with a simple example, drawn
from Aldous and Diaconis (1986).

Example 1. Top in at random. Consider mixing a deck of n cards by repeatedly
removing the top card and inserting it at a random position. This corresponds to
choosing a random cycle:

(1) P(id) = P(21) = P(321) = P(4321) = . . . = P(nn - 1. . . 1) = - .
n

The following argument will be used to show that n log n shuffles suffice to mix up
the cards. Consider the bottom card of the deck. This card stays at the bottom
until the first time a card is inserted below it. This is a geometric waiting time
with mean n. As the shuffles continue, eventually a second card is inserted below
the original bottom card (this takes about n/2 further shuffles). The two cards
under the original bottom card are equally likely to be in relative order low-high
or high-low.

Similarly, the first time a third card is inserted below the original bottom
card, each of the six possible orders of the three bottom cards is equally likely.
Now consider the first time T that the original bottom card comes to the top. By
an inductive argument, all (n — 1)! arrangements of the lower cards are equally
likely. When the original bottom card is inserted at random, all n\ possible
arrangements of the deck are equally likely.

When the original bottom card is at position k from the bottom, the waiting
time for a new card to be inserted is geometric with mean n/k. Thus the waiting
time T has mean n + j + j + ... + ^ = n log n.

To make this argument rigorous, introduce strong uniform times. Let G be
a finite group. Intuitively, a stopping time is a rule which looks at a sequence of
elements in G and says "stop at the j\λ\ one." The rule is allowed to depend on
what appears up to time j , but not to look in the future. Formally, a stopping
time is a function T: G°° -> {1,2,..., oo} such that if T(s) = j then T(sr) = j for
all s' with s[ = S{ for 1 < i < j. Let Q be a probability on C?, Xk the associated
random walk, P the associated probability on G°°. A strong uniform time T is a
stopping time T such that for each k < oo,

(2) P{T •= k, Xk — s) is constant in s.
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Note that (2) is equivalent to independence of the stopping time and the stopped
process:

(3) P{Xk = s\T = k} = 1/\G\

or to

(4) P{Xk = s\T<k} = l/\G\.

In Example 1, the time T that the first card takes to reach the top and has
been inserted into the deck is certainly a stopping time. The inductive argument
given shows that, given T = fc, all arrangements of the deck are equally likely, so
T is a strong uniform time. Many other examples will be given in the remainder
of this chapter. The following lemma relates strong uniform times to the distance
between Q*k and the uniform distribution U.

LEMMA 1. Let Q be a probability on the finite group G. Let T be a strong
uniform time for Q. Then for all k > 0

\\Q*k-U\\<P{T>k}.

Proof For any AcG,

Q*k(A) = P{Xk E A}

= ^ P { x k eA,τ = j} + P{xk e A , Γ > k}

= Σ U(A)P(T = j) + P{Xk E A|Γ > k} P{T > k}

= U(A) + [P{Xk E A|Γ > k} - U(A)] P{T > k}.

Thus,
|g**(A)-^(A)|<P{Γ>*}.

D

Using this result we can deduce a sharp bound for the first example:
n log n steps are both necessary and sufficient to drive the variation distance
to zero.

Theorem 1. For the top in at random shuffle defined in (1), let k = n log n + cn.
Then,

(5) | |P** - U\\ < e" c for c > 0, n > 2,

(6) | |P* f c - Ϊ7|| -+ 1 as n -> oo, for c = c(n) -• -oo.
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Proof. As argued above, T = Ti + (T 2 -Γi)+.. .+(T n _ 1 -T n _ 2 )+(T-T n _i) where
T\ is the time until the 1st card is placed under the bottom card and T2 _f_i — T{
has a geometric distribution P{Ti+1 - 7* = j} = i±l(l - ί ^ 1 ) j " 1 ; j > 1. Further,
these differences are independent.

The time T has the same distribution as the waiting time in the coupon
collector's problem; to define this, consider a random sample with replacement
from an urn with n balls. Let V be the number of balls required until each ball
has been drawn at least once. Let m = n log n + en. For each ball 6, let Ab be
the event "ball b is not drawn in the first m draws." Then,

(7) P{V >m} = P{UbAb} < Σb P{Ab} = n(l - -)m < n e" m / n = e" c.
n

Now V can be written

V = (V- Vn_!) + (Vn_i - Vn_2) + . . . + (V2 - Vi) + Fi

where VJ is the number of draws required until i distinct balls have been drawn
at least once. After i distinct balls have been drawn, the chance that a draw
produces a new ball is ΏL^L-) SO Vi+ι — V{ is geometric,

It follows that the laws of T and V are the same. So (7) and lemma 1 (the upper
bound lemma) combine to give a proof of (5).

To prove (6), fix j and let Aj be the set of configurations of the deck such
that the bottom j original cards remain in their original relative order. Plainly
U(Aj) — 1/jΊ. For k = n log n + cnn, cn —• —oo, we argue that

(8) P*k(Aj) -> 1 as n -* oo, j fixed.

Then | |P** - Ϊ7|| > max{P*A:(Aj) - U(Aj)} -> 1 as n -+ oo, establishing (6).

To prove (8), observe that P*fc(Λi) > P(T - Tj-ι > k). For T - T̂  -i is
distributed as the time for the card initially jth from bottom to come to the top
and be inserted; and if this has not occurred by time &, then the original bottom
j cards must still be in their original relative order at time k. Thus it suffices to
show

(9) P(T - Γ -i < k) -> 0 as n -> oo; j fixed .

We shall prove this using Chebyshev's inequality:

P(\Z - EZ\ >a)< VaΓ^2 , where a > 0, and Z is any random variable .
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For a geometric variable

JP/Ύ1 T1 \ iro-r/'T1 T'Λ ( \^ (

£jy±i+\ — ±i) — — , v a r v ^ i - f l ~~ -Li) — v j _ -j / V

and so
n-1

E(T - Tj) = Σ -r— = n\ogn + 0(n),

τι — 1 , .,

var(T - Tj) =

and Chebyshev's inequality applied to Z = T - Tj_i readily yields (9). D

B. EXAMPLES OF STRONG UNIFORM TIMES.

Example 2. Simple random walk on Z* For simplicity we work with the following
probability

1 1
Q(o...o) = -, Q ( i o . . . o ) = Q ( o i . . . o ) = ... = ( 5 ( o . . . 1) = —,

2 2ct

(10) (5 = 0 otherwise .

The following simple stopping time has been developed by Andre Broder. It
involves "checking off coordinates" according to the following scheme: at each
time, pick one of the d coordinates at random and check it off. Then flip a
fair coin. If the coin comes up heads, take a step in the direction of the chosen
coordinate. If the coin comes up tails, the random walk stays where it is. Stop at
time T when all coordinates have been checked.

Clearly the particle evolves according to the probability (10). To see that T
is a strong uniform time, observe that because of the randomized coin toss, the
particle is equally likely to have a zero or one in each checked coordinate.

Theorem 2. For simple random walk on Z§ (10), and k = n log n + en,

\\P*k-U\\<e-c.

Proof. This follows from the upper bound lemma and the bound from the coupon
collector's waiting time (7). D

Remark 1. Fourier analysis and the lower bound arguments of Chapter 3 show
that \n log n + en steps is the right answer for this version of random walk. The
discrepancy is explained in Section C (exercise 4) below.

Remark 2. In Example 2, the uniform time depends on added, external, ran-
domization. It was not constructed just by looking at the past of the process. The
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upper bound, lemma 1, holds for such randomized strong uniform times without
change.

EXERCISE 1. Give a strong uniform time for random walk on Z$ determined by

Example 3. General random walk on a finite group.

Theorem 3. Let G be a finite group and Q a probability on G such that for some
c(0 < c < 1) and k0,

(11) Q*k{A) > cU(A)

for all AC G, k > k0. Then

Proof Suppose first that fco = l Define a probability Q\ on G by

Thus

This gives the following recipe for choosing steps according to Q: flip a coin with
probability of heads equal to c. If the coin comes up heads, step according to ί7,
if tails, step according to Q\. Let T be the first time a head occurs. This T is
clearly a strong uniform time and

P{T> k} = ( l - c ) * .

For general k0, apply the argument to Q*k°. D

Remarks. The argument above extends easily to compact groups with condition
(11) required to hold for all open sets. In this generality, the theorem appears in
Kloss (1959) whose proof is a Fourier version of the same argument Athreya and
Ney (1978) apply this idea to prove convergence to stationarity for general state
space Markov chains.

The simplicity of the proof, coupled with the generality of the argument,
should make the reader suspicious. While the result seems quantitative, all de-
pends on estimating c and fco I do not know how to use this theorem to get the
right rate of convergence in a single example.

Example 4- Random transpositions. This problem was discussed at some length
in Chapter 3. Here are two constructions of strong uniform times. Both involve
the notion of "checking" the backs of certain cards as they are chosen successively
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in pairs. This argument is capable of use in a variety of other random walks. It
is due to Andre Broder.

Construction A (Broder). The basic mixing procedure involves switching pairs of
cards (Z;,i2t ). If either

a) both hands touch the same unchecked card; or
b) the card touched by the left hand is unchecked but the card touched by the

right hand is checked,
then check the card touched by the left hand. Stop at time T when all cards are
checked.
Construction B (Matthews). If both hands touch unchecked cards, then check the
card touched by the left hand.

In each construction stop at the time T that only one card remains unchecked.

Proof. Construction A. First consider the situation informally. The procedure
starts when both hands hit the same card (say card 1). This is checked. Nothing
happens until either both hands hit a different card (say 2) or the left hand hits
an unchecked card (say 2) and the right hand hits card 1 whereupon these cards
are switched. At this stage, conditional on the positions of the two checked cards
Aι,A2 say, and the labels 1, 2, the positions are equally likely to correspond
(Ai,l)(A2,2) or (Aχ,2)(A2,1). This is because the chance of choosing card 2 is
JJΓ for both possibilities.

In general, the position may be described as follows:

Where

L = number of checked cards

{A\ ... AL} = set of positions of the checked cards

{C\ .. .CL} = labels (or names) of the checked cards.

{A\.. .AL} -> {Ci .. .CL} records the card at each position.

D

Claim. At each time, conditional on X, {A\ . . . AL}, {C\ .. .CL}, the permuta-
tion HL is uniform.

The claim is proved by induction. It is clearly true for L = 0 and 1. Assume
it for L = p. The claim remains true until a new card c is checked. This can occur
by both hands hitting the same new card or by the left hand hitting c and the
right hand hitting one of the p checked cards. For any new card c, each of these
p+ 1 possibilities has the same chance ^ j . It follows that Π^+i is uniform.

The proof for Construction B is similar. The state at any time can again be
taken as above. This time the inductive step is that, given i ,

a) {Ai . . . AL} and {C\ .. .CL} are independent and uniformly distributed
b) Given X, {^i . . . AL} and {C\ .. .CL}, the permutation Π^ is uniform.
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It can be verified that both α and b hold at each time for Construction B. Here,
(a) is needed to check (b) in the argument. Note that (a) is not valid (or needed)
for Construction A. ({Aι .. .AL} and {C\ . . . CL) are marginally uniform but not
independent.)

The analysis of T in Construction A is similar to that in Example 2. Write
n

T = Σ(Ti — T;_i) where T; is the number of transpositions until i cards are
ichecked. The random variables (Tt — Ti) are independent with geometric distri-

butions of mean n2/[(i + l)(n - i)]. Thus

E(T) = Σ > 2 / [ ( * + ! ) ( * - <)] = (2 + 0(i))n log n
2 = 0 n

Var(T) = 0(n2).

Now the central limit theorem implies for k = 2n log n + c(n)n, with c{n) —• oo.

| | P * f c - t / | | ->0asn->oo.

The Γ given by Construction B turns out to give k = 0(n2) as required.
However, Construction B starts out by checking cards rapidly. Peter Matthews
(1986b) observes that the two constructions can be combined: use Construction B
until m cards have been checked (for fixed m, say m = j). Then use Construction
A. Because (a) and (b) are valid throughout the time involved for Construction B,
when A takes over, (b) remains valid until the time T that all cards are checked.
This time gives k = n log n sufficient to drive the variance distance to zero.
Matthews has suggested variants which give the correct number of steps \n log n.

EXERCISE 2. To emphasize the need for careful proof, show that checking each
card as it is touched or checking each card the left hand touches do not yield
strong uniform times in the random transposition problem. (Hint: consider a
three-card deck, and see what the distribution is given T = 3.)

Further examples (simple random walk on Zp or Xk+i = α^Xk + b^) are given
in Aldous and Diaconis (1986, 1987a, 1987b) and Matthews (1986a,b).

C. A CLOSER LOOK AT STRONG UNIFORM TIMES.

The success of strong uniform times in the examples above and a variety
of other examples given below prompts obvious questions: can one always find
a useful strong uniform time? Are there strong uniform times that achieve the
variation distance? To answer these questions it is useful to introduce a different
notion of distance from uniformity.

Definition. Let Q be a probability on the finite group G. Define the n step
separation by
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Clearly, 0 < s(n) < 1 with s(n) = 0 iff Q*n = U,s{n) = 1 iff Q*n(s) = 0 for some
θ. The separation is an upper bound for the variation distance:

\\Q*n-U\\<s(n)

because

Note that the two distances can be very different: If Q is uniform on G — {id}
then \\Q — U\\ = l/\G\ but s(l) = 1. The following theorem improves the upper
bound of lemma 1.

Theorem 4. // T is a strong uniform time for the random walk generated by Q
on G, then for all k

(12) s(k) < P{T > k}.

Conversely, for every random walk there is a strong uniform time such that (12)
holds with equality.

Proof Let kQ be the smallest value of k such that P{T < ko} > 0. The result
holds vacuously if ko = oo and for k < fco For k > &o, s E G

W\ ~ Q*k{s)] = x" |G|g*fc(5) - x "
= 1 - \G\P{Xk = s\T < k} • P{T < k}

= 1 - P{T <k} = P{T > k}.

This proves (12).
For the converse, the random time T will be defined as follows: at time k,

given that the random walk is at t, flip a coin with probability of heads

Pk(t) =
Q*k(t) - αfc_χ

where <xk = minQ* f c(s). If heads comes up, stop. If tails comes up, take another
S

step and flip again with probability Pk+ι> Observe that Pk(t) > 0. Let ko be the
smallest integer such that θίkQ > 0. Clearly pk = 0 for k < ko, and

Pko(t) = P{T = ko\Xko = t} =
P{Xko = t}

Thus, P{T = ko} = Σt P{T = ko\Xko = t} • P{Xko =t} = \G\ako. Further,

P{Xk0 = slT = k0} = P{T = ko\Xka = s}
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This is the first step in an inductive argument to show that T is a strong uniform
time. For general k,

(13)

This follows because

P{Xk = s,T=k} = P{T = k\Xk = s,T>k}- P{Xk = s,T> k}

αk - α f e_i

" P{Xk = s}- αk

T< k- 1}]

If (13) holds for all integers smaller than fc, then

[P{Xk = S} ~

This shows T is strong uniform. D

EXERCISE 3. Prove that the strong uniform time T* constructed in the course
of proving Theorem 4 is the stochastically fastest strong uniform: P{T* > k} <
P{T > k} for all k. Now consider Example 1 (top in at random). The stopping
time defined there can be improved: consider T* — the first time that the card
originally second from the bottom comes up to the top. Show that T* is a fastest
strong uniform time.

EXERCISE 4. As an example of Theorem 4, consider the model for random
walk on the cf-cube treated in Section B. The cutoff point for variation distance is
j d log cf, and the stopping time argument gives d log d. Show that this is sharp:
it takes d log d + cd steps to have a reasonable probability of reaching the vertex
opposite 0, namely ( 1 . . . 1). Hint: try Fourier analysis.

The following result, proved in Aldous and Diaconis (1987) shows that the
factor of 2 found above is no accident. Roughly, if the variation distance becomes
small after k steps, the separation becomes small after at most 2k steps. To make
this precise, let φ(ε) = 1 — (1 — 2ε* )(1 - ε* ) 2 . Observe that φ(ε) decreases with
ε and φ(ε) ~ 4ε2 as ε —• 0.

Theorem 5. For any probability Q on any finite group G, and all k > 1,

s(2k) < φ(2\\Q*k - U\\) provided ||Q * - U\\ < ί

Further discussion of separation can be found in Aldous and Diaconis (1986,
1987) or Diaconis and Fill (1988).

D. AN ANALYSIS OF REAL RIFFLE SHUFFLES.

How many ordinary riffle shuffles are required to bring a deck of cards close
to random? We will show that the answer is 7. The discussion proceeds in two
sections: (1) practical discussion and data analysis, (2) a model for riffle shuffling.
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(1) Practical shuffling. Of course, people shuffle cards all the time for card
games. We begin by asking "Does it matter?" That is, even if people don't shuffle
really well, will it make any practical difference? One answer to this question is
in Berger (1973). Berger uses the fact that tournament bridge went from hand
shuffling to computer shuffling in the late 1960's. Berger obtained records of
the suit distribution of the south hand in 2000 deals, one thousand before the
computer, one thousand after the computer. A summary is in Table 1.

Inspection of the table shows that hands with an even suit distribution occur
with higher than the expected frequency in hand shuffling. A chi-squared test re-
jects uniformity of the suit distribution in hand shuffling. Uniformity is accepted
for computer shuffling. Something is going on that does make a practical, observ-
able difference. Here is a first explanation: The way bridge tends to be played,
cards are collected in groups of 4, by suit. If the riffle shuffling was clumpy and
clustery, cards of the same suit would tend to clump together and then, when the
deck was dealt into 4 hands, tend to be separated.

Table 1
Frequency of Computer-dealt Hands Versus Theoretical

Expected Frequencies from Berger (1973)

Distribution of
the 4 suits

4,4,3,2*
5,3,3,2
5,4,3,1
5,4,2,2
4,3,3,3
6,3,2,2
6,4,2,1
6,3,3,1
5,5,2,1
4,4,4,1
7,3,2,1 and others

Expected
Frequencies

216
155
129
106
105
56
47
34
32
30
90

1,000

Actual Frequencies
of Computer-dealt

Hands

198
160
116
92

103
64
53
40
40
35
99

1,000

Actual Frequencies
of Man-dealt

Hands

241
172
124
105
129
46
36
41
19
25
62

1,000

* by "4,4,3,2" we mean that the thirteen cards contained 4 cards in one suit, 4
cards in another suit, 3 cards in another suit, and 2 cards in the remaining suit.

This would make "even splits" like 4 3 3 3 occur more often than they should. One
objection to this is that the cards in duplicate bridge are not usually collected
in groups of 4 (they are in non-duplicate games). In duplicate, the cards are
collected into 4 piles of 13, each pile being roughly in the same suit order. If these
piles were placed on top of one another and riffle shuffled twice, the cards would



Probabilistic Arguments 79

tend to clump in suit groups of 4 and we are back to the previous case.
Ely Culbertson (1934) discusses ways of taking advantage of poor shuffling

in Bridge. Thorp (1973) discusses other card games.
A second practical view comes from considering the results of a single shuffle.

An example is presented in Table 2 below. This records a shuffle for which the
deck was cut 1 through 29, and 30 through 52. Card 29 was dropped first, then
28, then 52, then, . . . , then 1, finally 30.

Table 2
A Single Riffle Shuffle

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

x(i) 2 3 5 7 9 11 13 14 16 18 20 22 24 26 27 29 31 33 35 36 38 39 41 42 45 46

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

48 51 52 1 4 6 8 10 12 15 17 19 21 23 25 28 30 32 34 37 40 43 44 47 49 50

A single riffle shuffle can have at most 2 rising sequences. There are 2 n — n possible

arrangements of n cards after a single riffle shuffle. Similarly, there are at most 4

rising sequences after 2 riffle shuffles. This generalizes:

Theorem 6 (Shannon).
(1) Let π be a permutation with R rising sequences, π is the outcome of k riffle

shuffles if and only if R < 2k.
(2) Each π with exactly 2k rising sequences can be obtained by k riffle shuffles in

only one way.

This theorem appears in E. Gilbert (1955), "Theory of Shuffling," Bell Lab-
oratories Technical Memorandum. Part (1) has been used as the basis of a card
trick for many years. In this trick, a deck of cards is mailed to a spectator who is
instructed to riffle shuffle the deck 3 times, giving the deck any number of straight
cuts during the shuffling. Then the top card is removed, noted, and placed into
the center of the pack. This is followed by more cuts. The pack is mailed back
to the magician who unerringly finds the card. The secret is that there will be
eight rising sequences and 1 card in its own rising sequence. It is not hard to
show that a random permutation has about j rising sequences so a few shuffles
(on order log2f) will not be enough to randomize n cards.

These arguments yield a lower bound. In a bit more generaltiy, if P is a
probability on a finite group G supported and uniform on the set i c G , then

This can be combined with the observations on rising sequences to give a lower
bound that works for a few shuffles. Let Fn{R) be the number of permutations of
n items with exactly R rising sequences. Thus Fn(l) = 1 and Fn{2) = 2 n - ( n + l ) .
A formula for Fn(R) is derived in Sade (1949); see also Riordan (1950):

j=o
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In k shuffles, the total number of permutations that can be achieved is Tn(k) =
2*

Σ Fn(R). Thus 1 — Tn(k)/n\ is a lower bound for the variation distance. For
H = l

n = 52, the lower bound is larger than .99 for 1 < k < 4. For k = 5 it is .38, for
k = 6 it is zero.

Observe that this approach makes no assumptions about the stochastic mech-
anism for shuffling, but the argument breaks down at 6 shuffles.
(2) A probability model The following model for riffle shuffling was suggested by

Shannon and Gilbert, and Reeds.

1st description: Cut the n card deck according to a binomial distribution with
parameters j , n . Suppose k cards are cut off. Pick one of the (£) possible riffle
shuffles uniformly.

2nd description: Cut the n card deck according to a binomial distribution with
parameters j , n. Suppose k cards are cut off and held in the left hand and n — k
held in the right hand. Drop cards with probability proportional to packet size.
Thus the chance that a card is dropped first from the left hand is j- . If this
happens, the chance that the left hand drops a second card is 5̂i*> a n ( i s o o n

3rd description: To generate the inverse shuffle, label the back of each card with
the result of an independent fair coin flip: {0, 1}. Remove all cards labeled 0 and
place them on top of the deck, keeping the cards otherwise in the same relative
order.

LEMMA 2. The three descriptions yield the same probability distribution.

Proof. The 1st and 3rd descriptions are equivalent: indeed, the binary labeling
chooses a binomial number of zeros and conditional on this choice, all possible
placements of the zeros are equally likely. The 1st and 2nd descriptions are equiv-
alent: Suppose k cards have been cut off. Under the 2nd description, the chance
of a shuffle is the chance of the sequence of drops Z)χ, J?2,..., Dn, where each D{
can be L or R and k 2?, 's must be L and n - k Dfs must be R. The chance of
any such sequence is k\(n - k)\jn\. Ώ

Remarks. This shuffling mechanism has some claim to being the "most random"
subject to the binomial cutting. It has the largest entropy, for example. As a
model for shuffling, it yields shuffles a bit "clumpier" than either the shuffles
of Diaconis or Reeds discussed in remark (e) below. Only half the packets are
expected to be of size 1, a quarter of size 2, etc. Of course, extremely neat shuffles
are not necessarily good for randomization. A perfect shuffle is completely non-
random for example, eight perfect shuffles bring the deck back to order. See
Diaconis, Graham, and Kantor (1983). Mellish (1973) discusses these issues.

To proceed further, we construct a strong uniform time for this model of
shuffling. To begin, observe that the variation distance is invariant under 1-1
transformations, so it is the same problem to bound the number of inverse shuffles
required to get close to random.

The results of repeated inverse shuffles of n cards can be recorded by forming
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a binary matrix with n rows. The first column records the zeros and ones that
determine the first shuffle, and so on. The ith row of the matrix is associated to
the ith card in the original ordering of the deck, recording in coordinate j the
behavior of this card on the jth shuffle.

LEMMA 3 (Reeds), Let T be the first time that the binary matrix formed from
inverse shuffling has distinct rows. Then T is a strong uniform time.

Proof. The matrix can be considered as formed by flipping a fair coin to fill
out the i,j entry. At every stage, the rows are independent binary vectors. The
joint distribution of the rows, conditional on being all distinct, is invariant under
permutations.

After the first inverse shuffle, all cards associated to binary vectors starting
with 0 are above cards with binary vectors starting with 1. After two shuffles,
cards associated with binary vectors starting (0,0) are on top followed by cards
associated to vectors beginning (1,0), followed by (0,1), followed by (1,1) at the
bottom of the deck.

Inductively, the inverse shuffles sort the binary vectors starting with 0 are
above cards with binary vectors starting with 1. After two shuffles, cards associ-
ated with binary vectors starting (0,0) are on top followed by cards associated to
vectors beginning (1,0), followed by (0,1), followed by (1,1) at the bottom of the
deck.

Inductively, the inverse shuffles sort the binary vectors (from right to left)
in lexographic order. At time T the vectors are all distinct, and all sorted. By
permutation invariance, any of the n cards is equally likely to have been associated
with the smallest row of the matrix (and so be on top). Similarly, at time T, all
n! orders are equally likely. D

To complete this analysis, the chance that T > k must be computed. This
is simply the probability that if n balls are dropped into 2k boxes there are not
two or more balls in a box. If the balls are thought of as people, and the boxes
as birthdays, we have the familiar question of the birthday problem and its well
known answer. This yields:

Theorem 7. For Q the Gilbert-Shannon-Reeds distribution defined in Lemma 2}

(14) ||<rfc - U\\ < P{T > k} = 1 - Π ( l - £ ) .

Standard calculus shows that if k = 21og2(n/c),

In this sense, 2 log n is the cut off point for this bound. Exact computation of
the right side of (14) when n = 52 gives the bounds
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k
10
11
12
13
14

upper bound
.73
.48
.28
.15
.08

Remark (a). The lovely new idea here is to consider shuffling as inverse sorting.
The argument works for any symmetric method of labelling the cards. For ex-
ample, biased cuts can be modeled by flipping an unfair coin. To model cutting
off exactly j cards each time, fill the columns of the matrix with the results of n
draws without replacement from an urn containing j balls labelled zero and n - j
balls labelled one. The first time all vectors are different is a strong uniform time.
These lead to slightly unorthodox birthday problems which turn out to be easy
to work with.

Observe that the shuffle in which only 1 card is cut off and randomly riffled
into the deck is the "top in at random" shuffle of example 1. The two stopping
times are the same!

Remark (b). The argument can be refined. Suppose shuffling is stopped slightly
before all rows of the matrix are distinct — e.g., stop after 2 log n shuffles. Cards
associated to identical binary rows correspond to cards in their original relative
positions. It is possible to bound how far such permutations are from uniform
and get bounds on \\Q*k - Ϊ7||. Reeds (1981) has used such arguments to show
that 9 or fewer shuffles make the variation distance small for 52 cards.

Remark (c). A variety of ad hoc techniques have been used to get lower bounds.
One simple method that works well is simply to follow the top card after repeated
shuffles. This executes a Markov chain on n states with a simple transition matrix.
For n in the range of real deck sizes, π x π matrices can be numerically multiplied
and then the variation distance to uniform computed. Reeds (1981) has carried
this out for decks of size 52 and shown that | |Q*6 — Ϊ 7 | | > . 1 . Techniques which
allow asymptotic verification that k = 3/2 log2n is the right cutoff for large n are
described in Aldous (1983). These analyses and the results quoted above suggest
that seven riffle shuffles are needed to get close to random.

Remark (d). Other mathematical models for riffle shuffling are suggested in Don-
ner and Uppuluri (1970), Epstein (1977), and Thorp (1973). Borel and Cheron
(1955) and Kosambi and Rao (1958) discuss the problem in a less formal way.
Where conclusions are drawn, 6 to 7 shuffles are recommended to randomize 52
cards.

Remark (e) some data analysis. Of course, our ability to shuffle cards depends on
practice and agility. The model produces shuffles with single cards being dropped
about 1/2 of the time, pairs of cards being dropped about 1/4 of the time, and i
card blocks being dropped about 1/2* of the time.

To get a feeling for the difference between shufflers, the following experiment
was performed: Diaconis and Reeds each shuffled a deck of 52 cards about 100
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times; every permutation was recorded. The following summary statistics are
relevant.

Diaconis — 103 Shuffles
# cut off top 23 24 25 26 27 28 29

2 4 22 32 33 9 1
In shuffling, the left hand dropped first 44 times. In all there were 4,376 "packets"
dropped. The counts and proportions were

1 2 3 4 5
3501 793 63 15 4

.80 .18 .01 .00 .00
The packet size distribution of first dropped packets was

1 2 3 4 5
.37 .37 .17 .1 .01

Reeds — 100 Shuffles
# cut off top 23 24 25 26 27 28 29 30 31

2 2 8 16 23 26 16 5 2
In shuffling, the left hand dropped first 18 times. In all there were 3,375 "packets"
dropped. The counts and proportions were

1 2 3 4 5 6 7 8 9 10 11 12 13
2102 931 228 68 24 12 3 3 2 0 0 1 1

.62 .28 .07 .02 .01 .00 .00 .00 .00 .00 .00 .00 .00
Diaconis does very neat shuffles and can be compared to a Las Vegas dealer. Reeds
shuffles like an "ordinary person." Observe that the first drops for Diaconis are
quite different from the average drop. Even though the two types of shufflers are
fairly different, to a first approximation they are quite similar, both dropping 1,
2, or 3 cards most of the time.

Remark (f). There is another equivalent way to describe repeated riffle shuffles
under the Gilbert-Shannon-Reeds model that suggests much further research. The
following evolved in conversations with Izzy Katznelson and Jim Reeds. Begin
by dropping n points at random into the unit interval and labeling them, left to
right, as 1,2,...,n. The transformation T(x) = 2#(mod 1) (sometimes called the
Baker's transformation) maps the unit interval into itself and so permutes the
points. T takes each of the two half intervals and stretches it out to cover [0,1].
There are a binomial number of points in each half and T shuffles them together.
Arguing as in Lemma 1 above, it is easy to see that the induced permutation is
precisely a basic riffle shuffle. Further, successive shuffles are independent (they
depend on successive bits of the underlying uniform variables).

To complete the argument, consider k chosen so large that n points dropped
at random into [0,1] fall into disjoint pieces of a partition with pieces of length
1/2^, with high probability. Picture a point in a piece of the partition. After k
shuffles, the piece is stretched out to cover [0,1]. The point is randomly distributed
in the piece of the partition. After k shuffles it's randomly distributed in [0,1].
Further, points in disjoint pieces are independent. After k shuffles, the n points
are in random relative arrangement (given that they fall into disjoint pieces).
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This argument generalizes to some extent (x —> kjx(moά 1) on shuffle j for
integer kj). It should be possible to take other measure preserving transformations
(toral endomorphisms of the unit square (see Walters (1982)) and convert them
to other shuffles.

E. COUPLING.

There is a more widely known purely probabilistic argument called coupling.
Again, perhaps it is best to begin with an example, this one is due to David
Aldous.

Example 1-BoreUs shuffle. Borel and Cheron (1955) discuss several methods
of mixing up cards. They give the following as an open problem: begin with n
cards. Take the top card off and put it into the deck at a random position. Take
the bottom card off and put it into the deck at a random position. Continue
alternately placing top in at random, bottom in at random.

Observe that there is no longer an obvious stopping time. The following
elegant coupling argument has been suggested by David Aldous. It is better to
work with the inverse shuffle that removes a random card and places it alternately
on top or bottom. Because of the invariance of variation distance under 1-1 maps
(||g - U\\ = \\Qh~1 - Uh-λ\\ for any 1-1 function G -> G) the two shuffles have
the same rates of convergence (see exercise 3 of Chapter 3).

To describe a "coupling", consider a second deck of cards. The first deck
starts in order {1,2,3,.. .,n}. The second deck starts in a random order. A
card is determined at each stage by shuffling a third deck and choosing a card at
random. Say the first card chosen is the six of hearts. Remove the six from deck
1 and place it on top. Remove the six from deck two and place it on top. Note
that from each deck's marginal vantage point, a card was removed at random and
placed on top.

The second step is to reshuffle the 3rd deck and choose a second card, say the
Ace of spades. This is removed and placed at the bottom of each deck. Continue
in this way, each time choosing a card at random from the third deck, removing
the card from decks one and two, and placing the card alternately on top and
bottom.

As this process continues, decks one and two match up. The same cards
being in the same order at top and bottom. If the same card is chosen again,
the procedure keeps the same number of matches. A new match is created for
each new card touched. Let T be the first time that each card has been touched.
Clearly, the two decks are in the same order, but deck two started at random, and
so remains random. It follows that deck one is random at time T. The bound on
the coupon collector's problem yields

Theorem 8 For BoreVs shuffle, if k = n log n + en for c > 0,

\\P*k-U\\<e-c.
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EXERCISE 5. Find a strong uniform time to get a bound in BorePs problem.
To discuss coupling more carefully, we need the following fact about variation

distance:

LEMMA 4. Let S be α finite set. Let Pi and P2 be probability measures on S.
Let Q be a probability on S X S with margins Pi and P2. Let Δ be the diagonal:
Δ = {(s,s):s £ S} then,

\\Pι-P2\\<Q(Δc).

Proof.

\Pι(A) - P2(A)\ = \Q(A x S) - Q(S x A)\

= \Q(A x S Π Δ) + Q(A xSΠAc)-Q(SxAΠA)

-Q(SxAnΔc)\.

The first and third numbers in the absolute value sign are equal. The second
and fourth give a difference between two numbers, both non-negative and smaller
than Q(ΔC). D

Remarks. The inequality is sharp in the sense that there is a Q which achieves
equality. A proof and discussion may be found in V. Strassen (1965). This Q
allows the following interpretation of variation distance: | |Pχ — P2 | | = ε if and only
if there are two random variables, Xι distributed as Pi and X2 distributed as P2,
such that Xι = X2 with probability 1 — ε; Xι and X2 may be arbitrarily different
with probability ε. Another interpretation: the optimal Q is most concentrated
about the diagonal with these fixed margins.

Let us define a coupling for a Markov chain on state space I, with transition
probability Pi(j), and stationary distribution π. We will work with Markovian
couplings. These are processes on / X / with transition probability Q satisfying

iJ(s,t) = Pi(s) for Ά\\j

These conditions just say that the transition mechanism of each component of
the vector process is Pi{j) Call the vector process (X^,X^). Suppose that X1

starts in i and X2 starts according to π. Let T = min{&: X\ — X\). This T is a
stopping time. Suppose that T is finite with probability 1. Let

3 _ U f c

2

k~\X\
_ f c k<T

k~\X\ k>T.

The process (X\, Xl) is called a coupling, the interpretation being that the two
processes evolve until they are equal, at which time they couple, and thereafter
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remain equal. The usefulness of coupling depends on being able to get our hands
on T: Let Pj* be the law of the process after k steps started from i.

LEMMA 5. (Coupling inequality). | |Pf - π| | < P{T > k).

Proof. Take Q to be the distribution of (X£, X%). This Q has marginal
distributions Pj*( ) and π. Lemma 4 implies that

D

Remarks. It is instructive to note that while the distribution of XT is stationary
(and so uniform in our examples) the time T is not a strong uniform time as we
have defined it; for this requires P(Xk G A\T = k) = U(A) for all k.

Remarks. Example 1 gives an actual construction of Qij(kί). It might be
instructive to write down what Qij(kί) is for this example. Griffeath (1975),
Pitman (1976) or Goldstein (1979) show that the argument is tight in the sense
that there is a coupling that achieves the total variation distance. This coupling
cannot be taken as Markovian in general (that is, the bivariate process needn't
be Markov).

Example 2. Random walk on the d-cube. Here G = Z$- Take

...0) = P(0 1 00. . .0) . . . = P(0...1) = (1 - p)/d.

Here is a coupling argument, due to David Aldous, for bounding convergence
to uniform. Consider two cubes. The process XQ starts at zero, XQ starts in
a uniformly distributed position. The pair (Xf, Xf) evolves as follows: if X}
and Xf differ in an odd number of places, the two processes take independent
steps according to P. If X} and Xf differ in an even number of places, then
with probability p each remains unchanged. If they don't stay the same, then
pick an index j at random in {1,2,..., d}. If the jth component of X} and Xf
agree, change that component to its opposite (mod 2) in both processes. If the jth
component of X} and Xf do not agree, complement the jth component of X} and
the next non-agreeing component of Xf from j counting cyclically. This forces
X} and Xf to agree in two more coordinates. Once the number of disagreeing
places is even, it stays even, so the coupled process "gets together" very rapidly.
Of course, once X} = X?, they stay coupled.

EXERCISE 6. Analyze the coupling time T and get a bound on the rate of
convergence for Example 2 . Compare this with the right rate derived from
Fourier analysis.

Matthews (1986b) has constructed non-Markovian couplings that give the
right rate of convergence for the cube.

Coupling is a very widely used tool which has many success stories to its
credit. Aldous (1983a) gives a number of card shuffling examples. Robin Pemantle
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(1989) has given a marvelous coupling analysis of the familiar over-hand shuffle.
For a range of reasonable models he shows that order n2 shuffles are required to
mix up n cards. Thus about 2,500 shuffles are required for 52 cards. This should
be compared with 7 or 8 riffle shuffles, and the computation that a single riffle
and single over-hand shuffle produce the same number of distinct permutations.

Aldous and Diaconis (1987a) and Thorisson (1987) study the relation between
coupling and strong uniform times. Briefly, for any strong uniform time there is
a coupling with the same time. Thus couplings can occur faster in principle.

Theorem 5 of Section C shows that couplings can only speed things up by a
factor of at most 2. The example of simple random walk on the cube shows that
this actually happens: it takes \ n log n +cn steps to make the variation distance
small; j n log n +cn steps are needed to make the separation small.

Despite the similarities, the connection is fairly formal. The way of thinking,
and basic examples, can be very different. There is no known direct coupling
argument to get anything better than n2 for random transpositions, while strong
uniform times or Fourier analysis show the right rate is order n log n. Similarly,
there is no strong uniform time for the over-hand shuffle, or the shuffle that picks
a card at random and switches it with a neighbor. Coupling can handle these
problems.

F. FIRST HITS AND FIRST TIME TO COVER ALL.

(1) Introduction. Most of the work in this and the previous chapter has been
devoted to estimating rates of convergence to uniformity. There are many
other natural questions connectd to random walk. One may ask
• How long does it take to hit a fixed state (or set of states) from a given (or
random) start?
• How long does it take to hit every state?
• How long until the first return to the starting state? How far away is the
walk likely to get before first returning? How many states does the walk hit
before first returning? What is the maximum number of times any state has
been visited at first return?
• How long does a walk take before it hits a point previously hit (the birthday
problem for random walk)?
David Aldous has introduced an important heuristic which suggests and ex-

plains answers to such questions, and sometimes allows a proof using only bounds
on convergence to stationarity.

The idea is as follows. Suppose a specific random walk on a group G is
rapidly mixing in the sense that the variation distance is less than j after k steps
with log k of order α polynomial in log|G|. Then, the random walk forgets where
it is rapidly, and successive steps may be thought about as the position of balls,
dropped at random, into |G| boxes.

Questions about balls in boxes are well understood. For example, the mean
waiting time T until a ball is dropped into a fixed box is \G\ and

P{W\ > *> ~* β~* M G ~* °°'
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This suggests that a rapidly mixing random walk takes about |G| steps to hit a
fixed point and the waiting time is approximately exponential. A precise version
is given in (2) below.

As a second example, the waiting time V for all boxes to have at least one ball
is well studied as the coupon collector's problem. For balls dropped at random
into \G\ boxes, it takes about |G| log|G| balls to have a good chance of filling all
boxes. Results in Feller (1968, pg. 106) yield

This suggests that a rapidly mixing random walk takes about |G| log|G| steps to
cover all points. (3) below gives some precise results due to Aldous and Matthews.

Section 4 points to what little is known about other problems on the list
above.

(2) First hit distributions. The heuristics above are right "up to constants."
One remarkable finding of Aldous (1982, 1983b) is that only one other feature of
the walk enters. This is a measure of the amount of time the walk spends in its
starting state in a short time period. Consider throughout a random walk on a
finite group G. The transition mechanism is assumed to be aperiodic, and the
uniform distribution on G is the stationary distribution.

Standard renewal theory implies that iZ(s ί), the amount of time the walk
spends in a fixed state s up to time t, is asymptotically t/\G\. Moreover

R= lim E{R(s;t)}-t/\G\
t—» o o

exists and is finite. By homogeneity R doesn't depend on s. Aldous (1983b)
argues that for rapidly mixing walks, R can be interpreted as the mean number
of visits the random walk spends in its initial state in a short time. For most of
the examples in this and the previous chapter, R = 1.

With this notation, some careful results can be stated.

Theorem 9. (Aldous). Let Ts be the first time a random walk starting in a
uniformly chosen position hits state s. Then

(1) E(TS) = R\G\ for all s G G.

Let T = inf{||P * - U\\ < l/2e}. Then

(2) sup \P{TS >t}- e-'/βlGl| < φ(τ/R\G\),

with φ(x) tending monotonically to zero as x tends to 0.

Remarks. Part (2) makes precise the heuristics of the previous section. Consider
a process like simple random walk on the c/-cube. Then |G| = 2d, and r =
\d log cf, R — 1, and (1) and (2) recapture the limiting results derived in Chapter
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3H. Aldous (1983b) gives similar results for the first hitting time to arbitrary sets
with any starting distribution.

Most random walks considered above have τ/\G\ —» 0. An exception is simple
random walk on Z n , where r is of order n2. The wait to first hit a point has a
rather complicated distribution (see Chapter 3H). Flatto, Odlyzko, and Wales
(1985) use Fourier analytic methods to get higher order correction terms.

(3) Time to cover all. Let G be a finite group and P a probability with
convolutions that converge to uniform aperiodically. Let V be the first time that
a random walk hits every point in G. Note that the distribution of V doesn't
depend on the starting state. Let r and R be as defined in Section 2. Aldous
(1983a) proves

Theorem 10,

with ψ(x) tending monotonically to zero as x tends to 0.

Remark. In the case of the cube, log(l + r) ~ log d, log|£?| ~ d log 2, so the
ratio tends to zero. Analogs of the extreme value limits for the coupon collector's
problem are not established in this generality. However, Matthews (1985) has
established limit theorems for many of the examples where Fourier analysis can
be successfully applied.

Usually the results follow the heuristic. For the cube there is an extra factor
of 2. Matthews shows

{ 2n

for all fixed x as n tends to infinity. Here R ~ 1 + ^ which explains the 2.
Matthews' argument works by getting upper and lower bounds on the re-

quired probability. These apply to problems like first time for a Markov chain
to hit every point in a finite state space or first time for Brownian motion to
come within ε of every point on a high-dimensional sphere. The bounds merge as
\G\ —• oo for random walk problems.

(4) Other problems. There has been some work on special cases of the prob-
lems listed in (1) above. Aldous (1985) started to classify the kind of limiting
behavior that can occur in the birthday problem for random walk. Diaconis and
Smith (1988) have begun to develop a fluctuation theory (as in Chapter 3 of Feller
(1968)). Some neat results emerge for nearest neighbor random walk on a 2-point
homogeneous space. For example, on the ra-cube, the probability that random
walk starting at (00.. .0) hits a given point at any specified distance less than n
before returning to zero tends to 1 as n tends to oo. The probability tends to 1/2

This seems like a rich collection of reasonably tractable problems. Passing
to the limit should give results for the approximating diffusions (e.g., Ornstein-
Uhlenbeck process for the cube) in much the same way as results about simple
random walk lead to results for Brownian motion.
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G. SOME OPEN PROBLEMS ON RANDOM WALK AND STRONG UNIFORM TIMES.

Here is a small list of problems that seem worth careful work.
(1) The slowest shuffle. Arunas Rudvalis has suggested the following can-

didate for the slowest shuffle: At each time, the top card is placed either at
the bottom, or second from the bottom, each with chance \. How long does it
take to get random? Is this the slowest shuffle equally supported at 2 generating
permutations?

(2) Let G = Zn. Pick k points in G, and repeatedly choose one of them at
random. This determines a random walk. What are the slowest k points (given
no paritiy problems) — a "arc" near zero? (i.e. the set of points j with \j\ < fc/2.)
What are the fastest k points? Andy Greenhalgh has shown how to get rate nλ/k

by an appropriate choice. What's the rate for "most" sets of k points? These
questions are already non-trivial for k = 3. They are also worth studying when k
grows with n.

(3) Moving on to other groups, Aldous and Diaconis showed that for most
measures P on a finite group G, | | P * P - U\\ < τ^τ, so for G large, most measures
are random after two steps. To get an interesting theory, constraints must be put
on the support. Andre Broder asked the following: pick a pair of elements in Sn.
Consider the walk generated by choosing both of these elements at random. It can
be shown that such a pair generates Sn with probability 3/4 asymptotically. Is
the walk random after a polynomial number of steps? Similar problems are worth
investigating for any of the classical infinite families of finite simple groups (I'd
try PGLn(q)). Back on Sn]. it seems that any "reasonable" shuffle gets random
in at most a polynomial number of steps.

(4) The 15 puzzle. This familiar puzzle has 15 blocks arranged in a 4 X 4
grid. At each state, any of the blocks can be slid into the blank. Suppose uniform
choices are made among the current possibilities.

Here is a simplified version: Consider the blank as a 16th block, and consider
the puzzle on a "torus." An allowable move now involves picking one of the 16
squares at random, and then a direction (North, South, East, West) and "cycling"
that square in the chosen direction. For example, the bottom row might change
from 13, 14, 15, 16 to 16, 13, 14, 15 or to 14, 15, 16, 13. It is not hard to show
that it takes order n 3 steps to randomize a single square (on an n x n grid). I
presume that order n 3 log n steps suffice to randomize everything. For a 4 x 4, this
gives about 90 "moves" to randomize. I presume this simplified version converges
to uniform faster than the original 15 puzzle. Similar questions can be asked for
other puzzles such as Ruble's cube.

(5) The affine group. Consider random walks of form Xn = αnXn_i +
6n(mod p). Here p is a fixed number (perhaps a prime) and (an,bn) are cho-
sen at random: e.g., an = 2 or j(mod p), bn = ±1. It seems that the right answer
for these is (log p)a for a = 1 or 2. The best that has been proved at present is
order p2 (see Diaconis and Shahshahani (1986a).

(6) Thorp's shuffle. A simple model for a random riffle shuffle has been
described by Thorp (1973). Cut the deck exactly in half. Start to drop the cards
from left or right hand as with an ordinary shuffle. At each time, choose left or
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right with chance \. Whatever is chosen, drop that card, and then a card from
the opposite half. Continue inductively. I think use of the mathematics of shuffle
nets (or work on sorting in parallel) will allow an elegant solution to this problem.

(7) Continuous groups. We have no examples of a strong uniform time ar-
gument being used to get rates of convergence for a random walk on a compact,
infinite group. It may be necessary to change the distance to the Prohorov metric.
For problems like random reflections (see Diaconis and Shahshahani (1968a)) or
random walk on the circle determined by repeatedly choosing a point in a small
arc uniformly, there is convergence in total variation metric.

(8) The cutoff phenomenon. The most striking finding is the existence of
sharp phase transition, \\P*k — U\\ cutting down from 1 to zero in a relatively
short time. It would be great to understand if this usually happens. As explained
in problem (3) above, restrictions will have to be put on the support.

(9) Relations between various approaches. A curious feature of the examples
is that usually if one method of attack works (e. g., Fourier analysis, or coupling,
or strong uniform times), then all the methods work. There must be a reason.
The greatest mystery is to understand the connections between the analytic and
probabilistic methods. One place to start is "top in at random," the first example
of Chapter 4. This can be done by strong uniform times and coupling. There
must be a way to do it Fourier analytically.




