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For random variables which are associated or which exhibit certain related types of
positive and negative dependence, the independence structure is largely determined by the
covariance structure. We survey results of this sort with particular emphasis on limit
theorems for partial sums of stationary sequences.

1. Introduction. The purpose of this paper is to survey a number of results concern-

ing the degree to which the independence structure is determined by the covariance struc-

ture for families of random variables which exhibit certain types of positive or negative

dependence. The original such result is due to Lehmann (1966). We first recall Lehmann's

definition of positive and negative quadrant dependent (PQD and NQD) random variables.

Xι andX2 are said to be PQD if

(1.1) Hλ ,2(JC, ,JC2) = P[Xλ >xλ ,X2>x2] -P[X\ >xΔ P[Xi>X2] & 0 for all xx ,x2 e 7t\

They are said to be NQD if X, and (-X2) are PQD.

Note that an equivalent condition to (1.1) is that Cov^Xj), g(X2))^0 for all real increas-

ing (i.e. nondecreasing)/and g (such thatf(X}) and g(X2) have finite variance). In the fol-

lowing statement of Lehmann's result and throughout the rest of the paper we will assume,

unless otherwise mentioned, that all random variables have finite variance.

THEOREM 1 (Lehmann (1966)). IfXί andX2 are PQD or NQD, then they are indepen-

dent if and only if Cov(Xλ ,X2) = 0.

Proof. This theorem is an immediate consequence of the identity (obtained from

integration by parts),

(1.2) Cov(X,,X2) = Γ-ooS0°-ooHιa(xux2)dxidx2

and the pointwise positivity (resp. negativity) ofH{ a for PQD (resp. NQD) variables. •

The results which we discuss in this paper concern multivariate generalizations of

Theorem 1 of two types. The first type is a direct generalization in which joint uncorrelated-

ness implies joint independence. The second type is an indirect generalization in which

approximate uncorrelatedness implies approximate independence in a sufficiently quantita-

tive sense to lead to useful limit theorems for sums of dependent variables. In Section 2,

we review all the results of the first type along with an ergodicity result of the second type;

with one exception, these are based on inequalities for distribution functions. In Section

3, we review a number of results of the second type, including a triangular array limit

theorem and a central limit theorem; these are based on inequalities for characteristic func-

tions. In Section 4, we present some recent results which extend the inequalities and limit
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theorems of Section 3 to, e.g., nonmonotonic functions of associated variables; some of

the results of Section 4 are new. Finally, in Section 5, we review briefly some related results

and open problems; these concern nonstationary sequences, Berry-Esseen asymptotics, in-

variance principles, anddemimartingales.

We conclude this section by noting that many of the results given below, which are stated

for both positively and negatively dependent variables, were originally derived, in the re-

ferenced papers, only for the positively dependent case; the derivation for the negative case

is usually essentially unchanged. There is however a simple, but striking, distinction be-

tween the two cases, which can be seen in Theorems 7, 12 and 17. Namely, as a conse-

quence of the elementary Lemma 8, it follows that for a stationary sequence Y\,Y2, ••• ,

the decrease in |Cov(yΊ,y})| as j ; -> °° which must be specifically assumed in the positive

case in order to have ergodicity or a central limit theorem is automatically valid in the nega-

tive case: stationary negatively dependent sequences are automatically asymptotically in-

dependent.

2. Distribution Function Inequalities and Applications. A finite family {X]t ... ,

Xn} of random variables is said to be associated if Cov(/(Xj, ... , Xn)9 g(X\, ... , Xn))^^

for any real (coordinatewise) increasing functions/and g on J?n; it is said to be negatively

associated if for any disjoint A,B C {1, ... , n} and any increasing functions/on 7^ and

g on J?B, Cov(f(Xk;keA), g(X/, feB))^0. The first definition is due to Esary, Proschan, and

Walkup (1967) and the second to Joag-Dev and Proschan (1983). Infinite families are as-

sociated (resp. negatively associated) if every finite subfamily is associated (resp. nega-

tively associated). These definitions are two of the many possible multivariate generaliza-

tions of Lehmann's PQD and NQD; for further discussion of these and related concepts,

see Karlin and Rinott (1980a; 1980b), Shaked (1982a), Block, Savits and Shaked (1982),

and the references therein. All of the results discussed in this paper apply to associated and

most apply to negatively associated families; many results apply under weaker hypotheses

as will be discussed below.

There are two almost independent bodies of literature on the subject of associated random

variables. One developed from the work of Esary, Proschan and Walkup (1967) and Sarkar

(1969) and is oriented towards reliability theory and statistics; the other developed from

the work of Harris (1960) and of Fortuin, Kastelyn and Ginibre (1971) and is oriented to-

wards percolation theory and statistical mechanics. It should be noted that in the latter liter-

ature, the term "associated" is usually not used but rather variables are said to satisfy the

FKG inequalities. Some people use the term FKG inequalities only when the joint distribu-

tion satisfies some version of the lattice-theoretic sufficient condition for being associated

which was analyzed by Fortuin, Kastelyn and Ginibre (1971). When the joint distribution

has a smooth density p(xl9 ... , xn), which is strictly positive on all of 3?n, this condition

is equivalent to

(2.1) ( d 2 / d x i d x j ) l n p > 0 f o r a l l iIΦj a n d a l l J C , , ... , x h ,

which is further equivalent to the "77*2 in pairs" condition obtained independently (and pre-

viously) in Sarkar (1969).

That condition (2.1) is not necessary for association can be seen by considering a

trivariate normal vector whose covariance matrix, although (entrywise) positive, is not the

inverse of a matrix with nonpositive off-diagonal entries. Such normal variables can easily

be constructed; they are associated by the results of Pitt (1982), but do not satisfy (2.1).
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A paper which has a nice proof of the sufficiency of the FKG condition along with refer-

ences to many of the papers in both bodies of literature is Karlin and Rinott (1980a).

The recognition that association is useful in the study of approximate independence

seems to have first occurred in Lebowitz (1972). The central limit theorem reviewed in

Section 3 below was largely motivated by Lebowitz' results. Also in Lebowitz' paper is

an inequality on distribution functions, which we state as Theorem 2, which gives a very

simple proof that uncorrelated implies independent for associated variables. This latter re-

sult was apparently first stated as a theorem in Wells (1977), but the proof given there was

a complicated one based on generalizations of other theorems of Lebowitz (1972) (see

Simon (1973)); it was not noticed until recently that this result is an immediate consequence

of Lebowitz' basic distribution function inequality. We define for A and B subsets of

{1, ... , n}, and realm's,

(2.2) HAB = P(Xj>Xj;jeA \JB)-P(Xk>xk;k^A)P(X/>x/

note that according to (1.1) Hitj = //{/},{,}•

THEOREM 2 (Lebowitz (1972)). If the X/s are associated, then

(2.3a) 0 ̂  HAtB ^ Σ * Λ W / * . , ;

if the Xj's are negatively associated, then for disjoint A,B

(2.3b) 0 ̂  HAtB ^ ΣfaΛ

Proof. Let p7 denote the indicator function of the event {Xj>Xj} and define

It is easy to see that pA, ρB, SA - ρA, SA, and SB - pB are all increasing functions of the

X/s; it follows that for associated X/s

0 ^ Cov(pΛ,Ps) ^ Cov(SAtpB) ^ Cov(SA,SB).

This yields (2.3a) since HAB = Cov(pA,/%) while the right hand side of (2.3a) equals

Cov(5A ,SB'); the case of negative association is similar. •

COROLLARY 3. Suppose the Xf s are either associated or negatively associated. It follows

that {Xk;keA} is independent oflXy /eB} if and only ifCov{XktX/) = OJor all keλ and/eB;

similarly the Xf s are jointly independent if and only ifCov(Xk,X/) = Ofor all k Φ ί.

Proof. This is an immediate consequence of Theorems 1 and 2. D

It is clear that (2.3a) remains valid for disjoint A,B, if the hypothesis of association is

weakened to make it analogous to a positive version of negative association; there seems

to be no standard term for this weakened version of association. Both parts of Corollary

3 are valid for this weakened association (as well as for negative association); the second

part of Corollary 3 can also be shown to be valid under even weaker hypotheses on the

dependence of Xj's as we now discuss.

We let ~pj = l-pj = the indicator function of the event {XJ^XJ}, ~pA = Π7 e 4py, and then

following Joag-Dev (1983) we define {X,, ... , Xn} to be strongly positive orthant depen-

dent (SPOD) ifTor any disjoint A, B C {1, ... , n} and any real JC/S,

( 2 5 a ) Cov(P y 4,pβ)^0, Cov(pΛ, p β )> 0,Cov(pA,

and strongly negative orthant dependent (SNOD) if analogously
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(2.5b) Cov(pΛ,pβ)^0, Cov(pΛ, p β )^0, Cov(pΛ, p β )> 0.

It is immediate that association (resp. negative association) implies SPOD (resp. SNOD)

which in turn implies pairwise PQD (resp. NQD).

The following theorem is due to Joag-Dev, but the proof given here is somewhat different

than the original one.

THEOREM 4. [Joag-Dev (1983)]. Suppose the X/s are either SPOD or SNOD. It fol-

lows that they are jointly independent if and only ifCov(Xk,X/)=Ofor all kΦ I.

Proof. The theorem is an immediate consequence of Theorem 1 together with the fol-

lowing distribution function inequality. D

LEMMA5. Suppose Xu ... ,XmareSPOD;then

(2.6a) 0

where Km is a constant depending only on m. If the X/s are SNOD, then

(2.6b) 0 2* P[XJ>XJ, j= 1, ... ,m] - ΠJL xP(X/>x/) ̂  KmΣ£/= xHkJ.
*</

Proof. We consider the SPOD case; the SNOD case is treated similarly. The quantity

of interest in the center of (2. 6a) may be rewritten as

Its positivity follows easily from repeated application of (2.5a); we wish to obtain the upper

bound of (2. 6a). Denoting UJL \ ρy by pm, we have

(2.7) Gm+λ = E(pm+ι)Gm + Cov(pm

fpm+ί)^Gm + Cov(pm,pm + 1),

while fory > n + 1,

Cov(p"+ 1, py) = Cov(pn,pn + 1p 7)-£(p y)£(pnpn + 1) + E(pn+ίpj)E(pn)

(2.8) = Cov(pΛ,pn+1) + Cov(pn,p,) + Cov(pn,pn+1p,) + Cov(pn+1p,) Έ(pn)

- E(pyjCov(pn,pn+1) ^ Cov(pn,pn+,) 4- Cov(pn,p7) + Cov(pn +, ,p,).

The last inequality follows from the fact that SPOD implies

Cov(p",pΛ+1p,) ^ 0, Cov(pi||+19Pj) ^ 0, Cov(pΛ,pπ+1) ^ 0,

while E{ρn) ^ 1 and £(ρ,) ^ 0. The right hand inequality of (2.6a) follows from (2.7) and

(2.8) by induction. •

Remark. If the X/s are associated or negatively associated, then it is easily seen that

(2.3) implies (2.6) with Km= 1. It is not known to the author whether this value of Km is

valid under the weaker hypothesis of SPOD or SNOD. It is also not known to the author

whether inequality (2.3) (possibly modified by a factor analogous to Km) and the first result

of Corollary 3 are valid when only assuming SPOD or SNOD.

An alternative improvement to the second result of Corollary 3 can be obtained from

the characteristic function inequalities discussed in Section 3 below. We define X/s to be

linearly positive quadrant dependent (LPQD) if for any disjoint A,B and positive λ/s,

XkeA^kX/c and X/eβλ/X/ are PQD; linearly negative quadrant dependent (LNQD) is defined

in the obvious analogous manner. The next theorem is an immediate corollary of Theorem

10 of the next section. We include it here for comparison with Theorem 4.

THEOREM 6. Suppose the X/s are either LPQD or LNQD. It follows that they are

jointly independent if and only if Cov(Xfc,X/) = 0/or all k^Φ ί.
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Remark. As in the previous remark, it is not known to the author whether the first

result of Corollary 3 is valid under the weaker hypothesis of LPQD or LNQD.

In order to compare Theorems 4 and 6, we present two examples of M. Shaked (1982b)

which show that neither SPOD nor LPQD implies the other. Consider three discrete random

variables with joint density p(x} ,x2,x3) — P[X\ =X\ ,Xi = ^ A = ^ ] In the first example,

p(0,l,0) = />(0,2,0) = />(l,0,l) = p(l,l,0) = Vu,p(0,29l) = p(l,0,0) = 2/i4and/?(0,0,0)

= p(l,2,l) = 3/u; here {Xl9X2,X3} is not LPQD since 3/i4 = P[Xx>0,X2+X3 > 1] <

P[Xι>0] P[X2 + X3>1] = (7/i4)2 while a lengthy verification shows that it is in fact

SPOD. In the second example, p(2,2,l) = /?(3,2,l) =/?(2,3,l) = p(3,3,l) = p(l,\,2) =

p(2,l,2) = p(3,l,2) = p(l,2,2) = p(l,3,2) = J/i7 andp(l , l , l ) = /?(3,3,2) = Vi7; here

{X,,X2,X3} is not SPOD sinceP[Xγ>\yX2>\yX3>\] = Alιη <P[XX>19X2>1\'P[X3>\\ =

(8/π) * (9/π) while a lengthy verification shows that it is in fact LPQD. For another example

showing that LPQD does not imply SPOD with more details, see Joag-Dev (1983).

The next theorem on ergodicity is a consequence of Theorem 2. It is implicitly contained

in the work of Lebowitz (1972) and is explicitly mentioned in a remark of Newman (1980)

in the more general context of sequences indexed by Zd. A somewhat simpler proof than

the following one can be based on Theorem 16 below.

THEOREM 7 [Lebowitz (1972)]. LetXλ,X2, ~. be a strictly stationary sequence which

is either associated or negatively associated and let T denote the usual shift transformation,

defined so that T(flXjχ, ... , X J ) =fiXJί + i, ... ,XJm+ι). ThenTis ergodic (i.e., every T-in-

variant event in the σ-field generated by the X/ s has probability Oorl) if and only if

(2.9) limn-x^xCov{XuXj) = 0.

Jnparticular, if (2.9) is valid, then for any f such thatf{Xχ) isLu

\imn-ιy=ιf(Xj) = E(fiXx)) a.s.

In the negatively associated case, (2.9) is automatically valid.

Proof. The necessity of (2.9) follows from the L2 ergodic theorem which implies

w^ΣjL \Xj -> E(XX) in L2. To prove the sufficiency of (2.9) we note that by standard ergodic

theory/Hilbert space arguments, it suffices to find two sets S\ and S2 of random variables

(measurable with respect to the X/s) each of whose linear combinations are dense in L2

and a subsequence ni9 such that for any W\eS\, W2eS2,

(2.10) lim Cov(Wι, nΓι%]L λTW2) = 0,

since that would imply that the eigenvalue 1 of T is simple. For / = 1,2, we take 5/ =

{Π.jL\Pj{xβ : m = 1,2, ... each x^D} where pficj) is the indicator function of {XJ>XJ} and

D/ is a dense subset of CR to be chosen. To see that linear combinations of S/ are dense

in L2, note that for Xj^x/, ΠJL^p/jt,) - p/x/)] is the indicator function of the rectangle,

{xj<Xj^Xj\ for all./}. Defining Hj(xux2) = COV(PI(JCI),P/JC2)) and Hn = n~] Σn

j=ιHj. we

see from Theorem 2 that to obtain (2.10) it suffices to show that Hn.(xux2) -> 0 for

r1eD1,jc2eD2. But by (2.9) and identity (1.2) we know that ί°l00ί°l00Hn(xux2)dxιdx2 -• 0

as n -> oo and moreover | # π | ^ l ; it follows there is a subsequence so that Hn-> 0 pointwise

(except on a set of zero Lebesgue measure) in J?2 and thus that D\ and D2 exist. The final

statement of the theorem is a consequence of the following lemma. •

LEMMA 8. IfXλ,X2, ... is a (wide sense) stationary sequence with Cov(XhXj)^0 for

i 4 j , then Σ7=2Cov(X! ,Xj) is absolutely convergent and
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(2.11) σ* = vai(Xi )+2Σ;=2Cov(X, ^ ) e [0, Var(X,)]

Proof. This is a consequence of the negativity of Cov(X, JCj) forys2, which implies

that σf = Var(/r"2Σ;=1^) satisfies

(2.12) 0«lim(Var(X,)-σ 2

π) = -2

Since σ2

n ^ 0, we must have the right hand side of (2.12) finite and bounded by Var(Xi)

which completes the proof. •

3. Characteristic Function Inequalities and Applications. We begin with a simple

extension of Theorem 1 which gives a quantitative estimate of the approximate indepen-

dence between a pair of variables in terms of the covariance.

PROPOSITION 9 (Newman (1980)). IfX and Y are PQD or NQD, then

(3.1) \E(eirX+isY)-E(eirX)E(eisY)\^\rsCo\(X,Y)\, for all real r,s.

Proof. Integration by parts yields, analogously to (1.2), the identity,

(3.2) Cov(έ?lrX, eisY) = Γ-~Γ-ooireirxiseisyH{x,y)dxdy.

where H is defined as in (1.1). The triangle inequality, the pointwise positivity (resp.

negativity) of H for PQD (resp. NQD) variables, and equation (1.2) then yield (3.1). •

The next theorem is the main ingredient used to obtain the limit theorems of this section.

THEOREM 10 (Newman (1980)). SupposeXλ, ... ,XmareLPQD orNPQD; then

(3.3) | | \ \

where φ and φ, are given by

φ = E(εxp[iϊ]l λrjXj\), φ, = £(exp[/ rβίj[).

Proof. (3.3) follows from (3.1) by induction on m. The first step of the induction argu-

ment is to choose a nontrivial subset A of {1, ... , m} so that the r/s have a common sign

in A and a common sign in A, the complement of A. Defining φβ=E(exp[/ Xj^rjXj]), we

then have the left hand side of (3.3) bounded by

(3-4) |Φ-ΦΛΦ;J + |ΦΛ| iΦa-IWM + IΠ^φJΦ^HeΛ^I.
The first term of (3.4) is bounded by (3.1) while the other two terms are bounded by the

induction hypothesis (and the fact that \φA\ ,|φ/| ^ 1) to yield the right hand side of (3.3). •

The next theorem is an immediate corollary of Theorem 10. I appears in Newman,
Rinot and Tversky (1982) and independently in Wood (1982). It was used in the latter
reference for a general analysis of limit theorems for sums of associated variables and in

the former reference for a specific application to a model arising in mathematical psycholo-

gy. In that model there is a collection of "distances," {Dψ 0^i<j^n}9 between objects i

and j , which are exchangeable random variables and one is interested in the asymptotic

behavior of Sn= number of objects in {1, ... , n} which have object 0 as their nearest neigh-

bor. Sn can be represented as Σ/L i Ynj where Ynj is the indicator function of the event that

j has 0 as its nearest neighbor. Each Ynj is Bernoulli (p=l/n) and although they are not

independent (for fixed ή) they can be shown to be associated. The following theorem can

then be used to give a particularly simple proof that Sn converges in distribution to Poisson

THEOREM 11 (Newman, Rinott, Tversky (1982); Wood (1982)). Suppose Yn. and Wn.
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(AZ=1,2, ... 7=1,2, ... , Mn) are triangular arrays such that for each n and j , Ynj is

equidistributed with Wnj and such that for each n, the YnJ
 s <*re LPQD or NPQD while

the Wnjs are independent. If in addition,

(3.5) l imXft., Cov(Kn>it, YnJ) = 0,
n->co k</

then SJii. Ynj converges in distribution to (some) X if and only ifXy=\Wnj converges in

distribution to (the same) X.

Proof This is an immediate consequence of Theorem 10 and standard arguments. •

The next theorem was the original application of (and motivation for) the characteristic

function inequality (3.3). It was first given in Newman (1980) in the more general context

of sequences indexed by Zd. In this paper we sketch a proof based on Theorem 11 for a

more detailed proof (using Theorem 10 directly rather than Theorem 11) see Newman

(1980) or Newman and Wright (1981). The theorem itself (or more accurately its Zd in-

dexed generalization) was applied to Ising model magnetization fluctuations (or the equiva-

lent lattice gas model density fluctuations) in Newman (1980) and to the density fluctua-

tions of infinite clusters in percolation models in Newman and Schulman (1981). In the

statement of the theorem, note that for LPQD (resp. NPQD) Y/s

Cov(y, ,Yj) =3= 0 (resp. Cov<y, 9YJ) ^ 0) for all; ^ 2.

THEOREM 12 (Newman (1980)). Let Y\,Y2, be a strictly stationary sequence which

is LPQD or LNQD. Then

σ 2 s Var(F,) + 2 X;==2Cov(F1 ,Yj)

always exists αndσ2e[Var(F,), oo] (resp. a2€[0,Var(y0]) in the LPQD (resp. LNQD) case.
Ifσ2 =t w i.e. if in the LPQD case we additionally assume that

(3.6) Σ;=2cov(r1;y,)<°o,

then

(3.7) Mmn-^X^^Yj-EYj) = σZ

where Z is standard normal and (3.7) refers to convergence in distribution.

Sketch of Proof. The first part of the theorem follows from the positivity or negativity

of (7, ,Yj) for j > 2 and Lemma 8 above. In particular, this, together with the non-

negativity of the variance of Σ*=1 Yjf yields in the LNQD case the bound, 2Ί?j=2Cov(Yγ 9Y.)

> - Var^) . For the rest of the theorem, we define "block variables,"

(3.8) γ»< = m - " ^ i k _ l ) m + ι ( Y Γ E Y j ) m = 1 , 2 , ... y = 1 , 2 , ...

By straightforward variance estimates, it can be seen that it suffices to show lirn^^S/V =
σZ, where

(3.9) 5; = (mty^ΊηUY -EYj) = t^Ίf^Y",

and m€ is some nondecreasing sequence of positive integers such that (mί+ι-m)/m€-^0. If
for each m, we define W"j(j= 1,2, ... ) to be i.i.d. and equidistributed with Y"[, then
defining

j ι η
we have (by the standard central limit theorem) that for fixed m, \\m€_^Jίm

€ = σmZ where

σ2

m = Var(y;). More variance estimates show that σm-^σ and thus that for any sequence mt

growing to oo sufficiently slowly, Urn^S"1/ = σZ. The desired result follows from Theorem

11 by taking Y€J = tι/2Y^ and W€j = tmWf, providing we show that (3.5) is valid.
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But (3.5) is a simple consequence of σm converging to σ.

Remark. Note that σ 2 > 0 in the LPQD case (except when the Y/s are constant) but

σ2 can in fact vanish in the LNQD case. A trivial example of the latter phenomenon is ob-

tained by taking Yj = Zj - Zj_! where Z^Zλ, ... are i.i.d. standard normal; these Y/s are

not only LNQD but are negatively associated by a result of Joag-Dev and Proschan (1983).

We present the following theorem of Herrndorf (1983) without proof. It disproves a con-

jecture of Newman (1980) and Newman and Wright (1981) concerning the weakening of

condition (3.6).

THEOREM 13 (Herrndorf (1983)). There exists, Y\J2> •- ,a strictly stationary non-

constant associated sequence with K(R) = V a r ^ ) + 2 Lj^RCow(Yι ,Yj) slowly varying as

fl^oo (imβm K(\R)/K(R)^> 1 asR->™for any λ>0) such that

does not converge in distribution to a standard normal Z.

4. More Characteristic Function Inequalities and Applications. In this section, we

present a number of recent results, one of whose motivations is the desire to extend

Theorem 12 to a central limit theorem for sums of fiy/γs\ some of the results are presented

here for the first time. If the Y/s are associated or negatively associated and/is either in-

creasing or decreasing, then Theorem 12 can be directly applied to UitflYjYs. We begin

with a number of inequalities which are applicable to more general/5 s.

For/and/j complex functions on CRm, we write f « f\ if f\-Re(elOLf) is (coordi-

natewise) nondecreasing for all real α. Note first thatf}=[(fι-Re(f)) + (fλ-Re(-f))\l2 and

hence is automatically nondecreasing and second that/ «f\ for real/if and only iffi +/

anάfι-f are both nondecreasing. We w r i t e / < < χfλ \if«f\ and both/ and/depend

only on x/s with jeA. The next two propositions will be used to obtain useful characteristic

function inequalities.

PROPOSITION 14. Ifhis real, h « hλ, and φ is a complex function on CR such that

|φ(ί)-φ(s)| =ss \t-s\forallt,s, then φ(A) « hi. This applies in particular to φ(h) = exp(//ι).

Proof. We denote by Δg the increment in the function g when one or more of the x/s

is increased. We wish to show that for any real α, Δ[/i1-/?^(^/αφ(/ι))]^0. But

|Δ/?^(^αφ(/ι))|^|Δ(^ιαφ(Λ))| = |Δφ(A)| ^ |ΔA| because of the properties of φ, while

|ΔA|s£ΔA, because h « hλ. •

PROPOSITION 15 (Newman (1983)). Suppose f « 4\ andg « βg^ Define <f,g >

= Cov^X] ,X2> •)> gPfi >X2> )) where the X/s are either associated or negatively as-

sociated. In the negatively associated case, assume in addition that A and B are disjoint.

Then\<fg>\ ^ I <fug }>\ iff and/or g is real; otherwise \<f,g>\^2\<fug}>\.

Proof. First suppose/is real. Since | < / g > | = swp(Re(eiQL<f,g>):aeJ?), it suffices

to show that Re(eiθί<fg>) ^ |</i,gi>|. This follows from the assumption that A =

Re(eiag)« g} and/<</j and the identities,

" <f>h> = <fug\> ~ <f,h> =

for the associated case, and

- <f,h> = "</i,gi> - </A> = ^K/i+/,£,+A>
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for the negatively associated case. If g is real the argument is the same and if neither are

real, one has

l</.ί>l = \<Ref,h> + i<Imf,g>\ < |<Jte/,*>| + \<Imfg>\

so that the desired inequality follows from the real/inequality. •

Remark. Proposition 15 is a generalization of Theorem 2. It is possible that the factor

2 appearing when both/and g are complex could be eliminated by a better proof; that would

also eliminate the corresponding factors of 2 in the next theorem.

THEOREM 16. (Newman (1983)). Suppose that for eachj, Xj = fj(Y]9Y2, ••• )> Xj' =

f/Xi ,Y2, ) where the Yfs are associated or negatively associated. Suppose further that

f «Λfor each j and, in the negatively associated case, additionally that the AJs are

disjoint Then the characteristic functions of the Xj' s, φ, φj, φc, defined as in Theorem 10 and

its proof, satisfy (for disjoint A,B)

(4.1) IΦΛUS-ΦΛΦSI ^ 2XkΈAϊ/cB\rkr£ov(Xk,X/)\

and

(4.2) |φ - ΠJL,φj| « 2 2ϊ f /.,I V /Cov(X tX)|.

Proof (4.1) follows from Propositions 14 and 15 since the left hand side of (4.1) is

|</,S>| with/= exp(i ϊjeArjXj), g = exp(ΐ Xj^rjXJ) and since Xr/j«X\r^j. (4.2) follows

from (4.1) essentially as in the proof of Theorem 10 from Proposition 9. •

There is a natural extension of Theorem 11 which follows from Theorem 16 in the same

way as Theorem 11 follows from Theorem 10. To save space, we do not state that extension

explicitly but rather go on to an extension of Theorem 12. This latter extension was applied

in Newman (1983) to the fluctuations in Ising model energy densities and to the fluctuations

of infinite cluster surfaces in percolation models.

THEOREM 17 (Newman (1983)). Let Yx ,Y2, ...be a strictly stationary sequence which
is associated (resp. negatively associated). Let Xj = fiYj,YJ+u ... ) and Xj = βYJf

Yj+ι, ... ) (resp. Xj = fiYj) and Xj = f[Yj)) withf«f; in the associated case, assume in
addition that

(4.3) Σ7=2Cov(X, ,Xj) < oo.

Then

(4.4) lim n-ι/2Σn.ι(X-EXj) =

where Z is standard normal and

(4.5) σ 2 = Var(X,) + 2 Σ;=2Cov(X] ,Xj) e [0,«>).

Proof. This theorem follows from Theorem 16 in the same way as Theorem 12 follows
from Theorem 10. •

To investigate Theorem 17 in more detail, we restrict attention to X, = j(Y) even in the

associated case. In this context, we define fory,yre3?

(4.6) H(y,y') = Hλ(y,y') + ϊf=2[Hj(y,y') + HJy',y)]9

where

(4.7) Hj(y,y') = P{Yx>y, Yj>y') - P(Yι>y)P(Yj> / ) .

PROPOSITION 18. LetY]9Y2, ... be a strictly stationary (not necessarily L2) sequence
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which is either associated or negatively associated. Then H(y,y') exists for all y,y' with

O^f/^/Z^oo in the associated case and -1 ̂ H^HX ^ 1 in the negatively associated case.

H and Hx are positive semidefinite in the sense that for any real g such that g(y)H(y,y')g(y')

(4.8) f-J-~g(y)H(yy)g(y')dydy' ^ 0,

and similarly for H\.

Proof. Denoting by p/y) the indicator function of {Yj>y}9 and defining

ff(»)(yy) = n-ιCov(X]=ι9j(y), Σ£= l P*(/)),

we see that H(n) is positive semidefinite. In the associated case, the positivity of the H/s

implies that H exists, that 0^Hx^H^<χ> and that H = lim //(n) is positive semidefinite.

In the negatively associated case, the negativity of the H/s implies that H exists, that

,, and that

limJ7/(1)(y,y') - Hw(y,y')] = -2ΪJ=2[HJy,y') + Hjy'.y)] = G(y,y').

Since //(/ί)(y,y)^ Owe have that G(y,y) ^Hω(y,y)= H{(y,y) and thus that H(yfy) = Hx(y,y)

~ G(y,y) ^ 0. By the positive semidefiniteness of H(n)9 we have that

[H(y,y) //(/,/ )] - [//(y,y')]2 = lim ([Hw(yfy) Hin)(y',y')] - [H,n)(yfy
f)]2) ^ 0,

n->°°

which implies that for any y,y\

\H(y,y')\ ̂  [H(yfy) H(y',y')]V2 ^ [Hλ(yty) Hλ(y'J)]υ2 ^ 1.

The positive semidefiniteness of H = lim H{n) follows from that of Hin). •

Remark. In the associated case, H(y,y') may equal 4- o° for some or all values of v,y'.

For example, straightforward estimates show that when the F/'s are jointly normal, then

for any y,y'9 Σ Hj(y,yf) is absolutely convergent if and only ifXCov(YuYj) is absolutely

convergent.

We define DH to be the set of real functions such that g(y)H(yfy')g(y') is in LX(J?2) and

similarly for //,, and we say that a real function/on 9? is absolutely continuous if it is

the indefinite integral of a locally L, function/. Note that/eD,/, if and only if the random

variable, / o1 \f(t)\dt, has finite variance.

THEOREM 19. Let Y\,Y2, ... be a strictly stationary (not necessarily L2) sequence

which is either associated or negatively associated and let Xj =f{YJ) where f is an absolutely

continuous function. Define Xj = f{Yj) where f{y) = fy

0\f(t)\dt. In the associated (resp.

negatively associated) case, assume in addition thatfeDH (resp. Xx is L^); it follows that

Xλ isL2 (resp.feDH) and that (4 A) is valid with σ 2 given by (4.5) or equivalently by

(4.9) σ2 = r-~Γ-«f(y)H(y,y')f (y)dydy'.

Proof. A straightforward generalization of (1.2) and (3.2) yields

(4.10) Covίg.OUg/y)) = Γ-<J"-*&\iyW)Hj{y9y')dydy\

providing gx ,gj are absoluted continuous and the random variables on the left hand side are
L2. If we take gx = gj = /and7 = 1, then the identity (4.10) shows that X, is L2 if and
only iffeDHi. In the associated case the inequalities H^H^O show thatfeDH implies
feDHr In the negatively associated case the positive semidefiniteness of//, the negativity
of H-H1, and the positivity of Hi imply
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which shows that/eD / / ] imp\esfeDH. In either case, we now obtain the desired results

by applying Theorem 17 and using (4.10) first with gλ = gj = / t o verify (4.3) and then

with g, = gj = / t o obtain (4.9). D

Remark. In the associated case, the automatic convergence of ΣCov(yj 9Yj) implies

by (2) that H e Lλ φ?2) and then the hypothesis, feDH, of Theorem 19 will be satisfied for

any / with f^L^T?1). In the associated case, if one assumes the convergence of

Σy sup(//(y,/) : y,yre3?), then one would have H bounded on CR1 while in the negatively

associated case this is automatically the case; in either of these situations, if X, =fiXj) where

/"has bounded total variation then an/can be chosen to satisfy the hypothesis of Theorem

17. The central limit result of Theorem 17 can then be interpreted in terms of the scaled,

centered, empirical distribution function,

In(y) = T1/2[(number of ίe{l, ... , n} with Y^y) - nP(Y^y)]

= >T1/2[(numberof/e{l, ... , >ι} with y,>y) - nP{Yi>y)]\

the result is that In converges to a Gaussian process with mean zero and covariance H(y,y')

(at least) in the sense of convergence of finite dimensional distributions.

5. Related Results and Open Problems. We present the following triangular array

central limit theorem without proof; for more details, see Cox and Grimmett (1982) where

this theorem is proved as a consequence of Theorem 10.

THEOREM 20 (Cox and Grimmett (1982)). Let Sn = Vf±x<ynJ-E YnJ) where for each

n, the YnJs are LPQD. Suppose there exist cuc2,c3e(0^) and a sequence U/ * 0 so that

for all njj, the following hold:

(5.1) Var(Ynj) ^ cλ, E(\Ynj-E Ynf) ^ c2.

(5.2) 1fc
(5.3)

\k-J>'

then

(5.4) lim(Var(SJΓ1 / 2Sn =

Remark. There should be extensions of this theorem to the LNQD case and to sums of

nonmonotonic functions of associated or negatively associated YnJ's (analogous to the

extension of Theorem 12 to Theorems 17 and 19); the details of such extensions have not

been worked out.

The next theorem is due to Wood (1982; 1983). As in Theorem 20 the existence of

absolute third moments is assumed; as a consequence a Berry-Esseen type result is ob-

tained. In order to use this theorem to obtain uniform rates of convergence in the limit (3.7)

of Theorem 12, one must control (usually in an ad hoc manner) the asymptotics of the

parameters,

for more details and for the proof of the theorem, see Wood (1982; 1983).

THEOREM 21 (Wood (1982)). Let Sn = Yx + ... + Yn^ιE(Yι)9 where Yl9Y2, ... is
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astrictly stationary LPQD sequence withE(\Yλγ) <*> and such that

(5.6) 0 < σ 2 = V a r ^ ) + 2 Vj=2Cov(Yλ,F, ) < oo.

Then for n = m- k,

(5.7) \P[rrιl2Sn< z] -P[σZ<z]\ < 16σ4

km(ari-<j2

k)/9πv2

k + 3

The next result extends Theorem 12 in the associated case to an invariance principle

(functional central limit theorem); such extensions in the negatively associated case and/or

in the more general limits of Theorems 17 and 19 have not been investigated.

THEOREM 22 (Newman and Wright (1981)). Let Sn = Yx + ... + Yn-nEYu where

Yx ,Y2, ... is a strictly stationary associated sequence with (5.6) valid. Define the stochastic

processes, Wn(t)for0^t^Tby

(5.8) Wn{t) = {σ2nTυ2[SmHnt-m)(Ym+x-EYm+λ)]form

then Wn converges in distribution (on C[0,7] to the standard Wiener process.

Sketch of proof. A slight extension of Theorem 12 shows that the finite dimensional

distributions of Wn converge to those of W. It remains to show that the distributions of Wn

are tight. This is done in Newman and Wright (1981) as a consequence of the inequality

(forα 2 -α! > 1),

(5.9) P[Max(|5y |, ... , \Sn\)> α 2 V « σ J

. P[|SJ

which is derived by using the association of the Y/s. •

A version of Theorem 12 for sequences indexed by J-dimensional parameters was al-

ready given in Newman (1980). The problem of obtaining a d-dimensional invariance prin-

ciple for d> 1 by deriving appropriate d-dimensional maximal inequalities was solved in

Newman and Wright (1982) for d=2 by somewhat ad hoc methods; the problem is still

open for d>2. In the process of obtaining results for d=2, the status of maximal and other

inequalities for d= 1 was clarified by realizing that there is a close connection between mar-

tingales and sums of associated variables. The following definition is due to Newman and

Wright (1982).

Definition. An Lλ sequence, 5 0 = 0 , Sι,S2, ... , is a demimartingale (resp. demisub-

martingale)ifforj=\,2, ...,

(5.10) E((Sj+ι-Sj)f{Su ... ,Sj))&0,

for all non decreasing (resp. nonnegative and nondecreasing) f such that the expectation

is defined.

Note that with the natural choice of σ-fields, S0,Sχ, ... would be a martingale (resp. sub-

martingale) if the nondecreasing hypothesis were dropped. Note also that the assumption

that the (Sj+ i-SjYs are mean zero and associated implies that the sequence Sn is a demimar-

tingale. It was shown in Newman and Wright (1982) that many standard martingale (resp.

submartingale) inequalities, including Doob's maximal inequality and upcrossing inequal-

ity, remain valid for demimartingales (resp. demisubmartingales). In particular, we note

that the inequalities of Corollary 6 of Newman and Wright (1982) are sufficient (without

recourse to (5.9)) to yield tightness once convergence of finite dimensional distributions

to those of a Wiener process is known. This fact, among others, suggests that both an ordi-

nary and functional central limit theorem should be valid in the demimartingale context

as it is in the martingale context (see, e.g. Billingsley (1968)).
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CONJECTURE 23. Let So = 0, SUS2, ... be an L2 demimartingale whose difference se-

quence Yi = S\-So, Y2 = S2S\, -is strictly stationary and ergodic with (5.6) valid. Then

Wn defined by (5.8) converges in distribution to the standard Wiener process; in particular,

\imn-]/2Sn = σZ.

Remark. The status of maximal inequalities for sequences which satisfy (5.10) for all

nonincreasing/has not yet been investigated. We do not consider that case further.

As a first step toward proving the above conjecture, we have the following result, pre-

sented here for the first time.

THEOREM 24. Let To = 0, Tλ ,T2, ... beanL2 demimartingale and let 7n be the σ field

generated by Γ0,Γ,, ... , Tn. If the T/s have uncorrelated increments (i.e. ifCov((Tj+ \-Tj),

(Tk+ \-Tk)) = Ofor allθ^k< j), then the sequence (Tn, 7n) is a martingale.

Proof. It follows immediately from the uncorrelated increment hypothesis that for

eachj,

(5.11) E((Tj+ι-Tj)Tk) = Cov(Tj+]-TjJk) = OJork= 1, ... J.

We have used the fact that 7}+1-7} has zero mean, as can be seen by taking /in (5.10) to

be alternately +1 and-1. It suffices to show that

(5.12) E((Tj+ι-Tj)cxp[iϊ{=ιrkTk]) = 0,forr,, ... ,rjeX,

in order to conclude that E(YJ+ ι\7j) = 0 and thus that (7), 7j) is a martingale. The next prop-

osition shows that (5.12) is a consequence of (5.11). •

PROPOSITION 25. Suppose fand fx are complex functions on J?j such thatf«f\\ then

for a demimartingale Tn

\E((TJ+ι-TjfflTl9 ... ,Γ ; ) ) |^£((Γ y + , -7^,(7 , , ... ,7}))

In particular this is the case for fitu ... , tj) = exp [/ Σ{=\rktk] and f\{t\, ... , tj) —

Proof. The proposition follows easily from Proposition 14 and a portion of the proof

of Proposition 15. •

Remark. To clarify somewhat the distinction between martingales, sums of associated

variables, and demimartingales we let So = 0, Sn = Z{ + ... + Zn(n = 1,2, ... ) where

the Z/s are jointly normal. The sequence Sn is a martingale (resp. submartingale) if and

only if Cov(Z*,Z/) = 0 for all k > f and E Z} = 0 (resp. E Z,^0) for all j . By the results

of Pitt (1982), the Z/s are associated if and only if Cov(Z*,Z/) ^ 0 for all k > ί while the

sequence Sn is a demimartingale (resp. subdemimartingale) if and only

> 0 f o r a l U > / a n d £ ζ ^ 0) for ally.
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